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Scattering properties of an open quantum system

Agapi Emmanouilidou and L. E. Reichl
Center for Studies in Statistical Mechanics and Complex Systems, The University of Texas at Austin, Austin, Texas 7821

~Received 15 November 1999; published 18 July 2000!

We study the scattering properties of an open quantum system, in terms of the complex poles of the
analytically continued energy Green’s function. We use a model for which many dynamical properties can be
expressed analytically. We first study particle wave scattering and compute the Wigner delay times. Then,
using perturbation theory, we compute the photodetachment rate due to a weak time-periodic electric field. In
addition, we show that the model we use qualitatively reproduces several features of the experimentally
obtained photodetachment cross section of H2 ions and gives interesting insight into the mechanism underly-
ing the photodetachment of H2 ions.

PACS number~s!: 31.70.Hq, 03.65.Ge, 32.80.Gc, 34.50.2s
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I. INTRODUCTION

The mechanisms underlying decay processes in o
quantum systems are of great interest because they pl
key role in the dynamics of mesoscopic and atomic syste
In order to elucidate some of these mechanisms we focu
a model consisting of single particle states in the presenc
a d-potential well and a static electric field. Ludviksson@1#
showed that many of the dynamical properties of this mo
can be obtained analytically.

In this paper we study the scattering properties of t
metastable system using generalized eigenstates asso
with complex eigenvalues that are found by analytic conti
ation of the energy Green’s function. In Sec. II, we revie
essential features of Ludviksson’s description of the me
stable system. In addition, we review the complex spec
decomposition of the survival probability, that was dev
oped by Nickel and Reichl@2#, for a certain class of initial
states and is used in this paper to study light scattering
Sec. III, we study particle wave scattering from t
d-potential well in the presence of a constant electric fie
By determining the Wigner delay times we show the phy
cal effect of the quasibound states associated with pole
the energy Green’s function in the complex energy plane

In Sec. IV, we study light scattering. We compute t
photodetachment rate using the complex spectral decom
sition mentioned above and directly interpret its main fe
tures in terms of the quasibound states. We find that
photodetachment rate oscillates as a function of photon
ergies. Similar oscillations have been observed experim
tally in the photodetachment cross section of H2 ions @3–5#
in the presence of static electric fields when usingp polar-
ized light. These oscillations have been predicted by a n
ber of authors@6–10# who used three-dimensional theoretic
models. However, these models do not account for the fi
state interaction of the detached electron with the neu
atom, as our model does. In Sec. IV, we discuss new eff
that can occur when the final state interaction is includ
We also offer a qualitative comparison with the experimen
results which, we believe, gives interesting insight into
mechanism underlying the photodetachment of H2 ions.

In the Appendix, we briefly discuss some of the ma
features of the complex coordinate method@11,12# by apply-
1050-2947/2000/62~2!/022709~8!/$15.00 62 0227
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ing the complex coordinate translation to our model. In S
V, we finish with some concluding remarks.

II. THE MODEL

The model we consider describes the behavior of a sin
particle, of massm and chargeq, in one space dimension, i
the presence of a static electric field and ad-function poten-
tial well. The one-dimensional Hamiltonian is

H~x!52
\2

2m

]2

]x2
2Fx2V8d~x!, ~1!

where\ is Planck’s constant,F/q is the strength of the static
electric field andV8 is the strength of thed-potential well.
The above Hamiltonian has a continuum of energy eigen
ues over the interval2`,E8,`. If we introduce the di-
mensionless variables

j5x/x0 , E5E8/e0 , t5t8e0 /\,

V5V8/x0e0 , z5z8/e0 , v5v8
\

e0
, ~2!

where

x05S \2

2mFD 1/3

, e05Fx0 ~3!

the Hamiltonian is given by

H~j!52
]2

]j2
2j2Vd~j!. ~4!

Solving the Schro¨dinger equation

H~j!CE~j!5S 2
]2

]j2
2j2Vd~j!D CE~j!5ECE~j!,

~5!

we find that the continuum energy eigenfunctions,CE(j)
5^juE&, in Hilbert space, are given by
©2000 The American Physical Society09-1
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CE~j!5H NAi ~2j2E!, j<0,

N$Ai ~2j2E!@12VpBi~2E!Ai ~2E!#1Bi~2j2E!VpAi2~2E!%, j>0,
~6!
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where Ai and Bi are Airy functions@13# and

N5
1

A@12VpBi~2E!Ai ~2E!#21V2p2Ai4~2E!
. ~7!

In the rest of this paper, we use dimensionless variables
The retarded and advanced energy Green’s function

the system are given byGR(j,j8,E1 id)5^ju(E2H
1 id)21uj8& and GA(j,j8,E2 id)5^ju(E2H2 id)21uj8&,
respectively, whered is real andd.0. Ludviksson found
that

GR/A~j,j8;z!5G0
R/A~j,j8;z!2

G0
R/A~j,0;z!G0

R/A~0,j8;z!

1/V1G0
R/A~0,0;z!

,

~8!

wherez5E1 id for the retarded energy Green’s function
GR andG0

R , andz5E2 id for the advanced energy Green
functions,GA and G0

A . G0
R/A(j,j8;z) are the retarded an

advanced energy Green’s functions whenV50, and are
given by

G0
R/A~j,j8;z!52p3H Ai ~2j2z!Ci6~2j82z!, j<j8,

Ci6~2j2z!Ai ~2j82z!, j>j8,
~9!

where Ci65Bi6 iAi.
The energy Green’s functions, defined in Eqs.~8! and~9!,

are bounded whenj,j8→6`. The energy spectrum of th
system described by the HamiltonianH is determined by the
singularities of the energy Green’s functions. The Gree
functions given by Eqs.~8! and ~9!, have a cut along the
entire real energy axis and do not have any other singu
ties on the real axis. Due to causality,GR/A(j,j8;z) for z on
the upper/lower half energy plane have no singularities. If
analytically continueGR(j,j8;z) on the lower half energy
plane thenGR(j,j8;z) is no longer bounded whenj,j8→
6` and it has simple poles at complex valuesz5zn . These
simple poles are determined by the condition

1

V
1G0

R~0,0;zn!50, ~10!

and for every value ofV, there is an infinite number of com
plex poles zn . Similarly, if we analytically continue
GA(j,j8;z) on the upper half energy plane thenGA(j,j8;z)
is no longer bounded whenj,j8→6` and it has simple
poles at complex valuesz5zn* , where an asterisk denote
complex conjugation. As we will later show, the scatteri
properties of this system are determined by the comp
poles of the analytically continued Green’s functions. T
lifetimes of the quasibound states associated with these c
02270
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plex poles are given bytn51/2uIm(zn)u. Ludviksson@1# has
found that the residues of the retarded energy Green’s fu
tion, at these complex poles, take the form

Re sz5zn
GR~j,j8;z!5fn~j!fn~j8!, ~11!

where

fn~j!5pS 2
]

]z
G0

R~0,0;z!U
z5zn

D 21/2

3H Ci1~2zn!Ai ~2j2zn!, j<0

Ai ~2zn!Ci1~2j2zn!, j>0.
~12!

The functionsfn(j) satisfy the Schro¨dinger equation with
complex eigenvalues

H~j!fn~j!5znfn~j!, ~13!

where zn are the complex poles of the retarded ener
Green’s function. The functionsfn(j) are called generalized
eigenstates because they are not square integrable and
they do not belong to the Hilbert space. As Nickel and R
ichl have shown, the functionsfn(j) belong to a larger
spaceFa8 , where

Fa8ªH f;E
2`

1`

uf~j!U2

e2ujuadj,`J ~14!

for any a. 1
2 .

It is useful for later reference to introduce the transiti
spectral density@2#, rE(j,j8), defined by

rE~j,j8!5^juE&^Euj8&

5
i

2p
lim

d→0
@GR~j,j8;E1 id!2GA~j,j8;E2 id!#

5
i

2p (
n

FRR~j,j8;zn!

E2zn
2

RA~j,j8;zn* !

E2zn*
G , ~15!

where ^juE& are the continuum eigenstates of the Ham
tonian H, and RR(j,j8;zn) are the residues of the Green
function GR(j,j8;z) evaluated at the polesz5zn , so that

RR~j,j8;zn!5 Re sz5zn
GR~j,j8;z!,

and RA(j,j8;zn* ) are the residues of the Green’s functio
GA(j,j8;z) evaluated at the polesz5zn* , so that

RA~j,j8;zn* !5 Re sz5z
n*
GA~j,j8;z!,
9-2
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SCATTERING PROPERTIES OF AN OPEN QUANTUM SYSTEM PHYSICAL REVIEW A62 022709
andRA(j,j8;zn* )5@RR(j,j8;zn)#* . These quantities will be
used when we study light scattering.

III. PARTICLE SCATTERING

In this section, we study the interaction of an incomi
particle wave with the potential that consists of ad-potential
well and a static electric field and we compare its reflect
with the case when the particle wave interacts only with
static electric field. In this case thed-potential well acts as a
scatterer. We compute the Wigner delay times, which
related with the time that the reflection of the particle wave
delayed due to its interaction with thed-potential well.

As a first step, let us solve the scattering problem con
ering only the static electric field. The Schro¨dinger equation,
in dimensionless units, is given by

H0CE
0~j!5S 2

]2

]j2
2j D CE

0~j!5ECE
0~j!. ~16!

There are two boundary conditions that have to be satisfi
The first condition is that we can only have a wave incid
from the right, since the potential energy given in Eq.~16!
becomes infinite asj→2`. The second condition is tha
there is no transmitted wave. The solution that satisfies
above conditions is

CE
0~j!5Ci2~2j2E!2Ci1~2j2E!, ~17!

where the functions Ci6(2j2E) are traveling waves and
are defined Ci6(2j2E)56 iAi( 2j2E)1Bi( 2j2E),
andE is the energy of the traveling wave. The function C1

represents a wave traveling to the right, while the funct
Ci2 represents a wave traveling to the left. In Eq.~17!, the
amplitude of the incident wave Ci2 is normalized to 1. We
see that the reflected wave Ci1 is phase shifted byp, with
respect to the incident wave Ci2.

We now study the scattering of an incident wave for t
case when both thed-potential well and the static electri
field are present. In this case, the Schro¨dinger equation, in
dimensionless units, is given by Eq.~4!. The scattering solu-
tion that satisfies the same two boundary conditions as
scribed above, but which has a discontinuous first deriva
at j50, is

CE~j!5H Ci2~2j2E!1S~E!Ci1~2j2E!, j>0,

B~E!Ci2~2j2E!2B~E!Ci1~2j2E!, j<0,
~18!

whereS(E) is the reflection coefficient and is given by

S~E!5
pVAi ~2E!22 i @12pVAi ~2E!Bi~2E!#

pVAi ~2E!21 i @12pVAi ~2E!Bi~2E!#
,

~19!

andB(E) is the amplitude of the wave forj<0
02270
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B~E!5
i

pVAi ~2E!21 i @12pVAi ~2E!Bi~2E!#
.

~20!

The reflection coefficientS(E) given in Eq.~19! has ab-
solute value 1, as expected, since there is no transm
wave. Thus,S(E) can be written asS(E)5eiu(E). Compar-
ing Eqs. ~19! and ~10!, we see that when we analyticall
continue the reflection coefficientS(E) into the lower half
complex energy plane it has the same singularities as
retarded energy Green’s functionGR. Comparing Eqs.~17!
and ~18! we see that the effect of thed-potential well is to
cause a phase shift of the reflected wave byu(E). The
Wigner delay time is the derivative of the phaseu(E) with
respect to the energy

tw5\
du~E!

dE8
5

\

e0

du~E!

dE
5

\

e0
t̃w , ~21!

where t̃w is dimensionless. In our case, the Wigner de
time is the time that the reflection of the particle is delay
due to the presence of thed-potential well. We compute the
Wigner delay time for the case thatV52. The poles of the
retarded energy Green’s function forV52 are shown in Fig.
1. ForV52, the dimensionless Wigner delay timet̃w has the
form shown in Fig. 2. The phase shiftu(E) of the incident
wave, in the presence of thed-potential well, is shown in
Fig. 3 whereu(E) is plotted so that it is a continuous func
tion of the energyE.

An interesting feature of the Wigner delay time, shown
Fig. 2, is that it has negative values for certain incident
ergies and the negative values become larger as the inc
energy increases. The negative values indicate that for
tain energies the incident particle gets reflected faster w
both the static electric field and thed-potential well are
present, as compared to the case when only the static ele
field is present. When only the static field is present, a p
ticle with incident energyE reflects atj52E. When both

FIG. 1. Dimensionless poleszn of the retarded energy Green’
function GR in the dimensionless energy range27,E,13.5, for
V52. The poles shown as dark circles correspond to the long-li
quasibound states. The long-lived quasibound state with nega
energy is a remnant of the bound state in the absence of the s
electric field.
9-3
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AGAPI EMMANOUILIDOU AND L. E. REICHL PHYSICAL REVIEW A 62 022709
the static field and thed-potential well are present, then if th
particle’s incident energy is negative,E,0, the particle first
reflects atj52E.0, while if the particle’s incident energy
is positive,E.0, the particle first reflects atj50. Conse-
quently, for large negative values of the incident energy
particle is not affected by the presence of thed-potential
well, and we find zero Wigner delay times in Fig. 2. How
ever, for increasing positive values of the incident energy
particle begins to be affected by thed-potential well and can
reflect atj50, i.e., earlier than it would if nod-potential
well was present.

The Wigner delay time, shown in Fig. 2, has peaks wh
the energy of the incident particle is very close to the ene
of one of the long-lived quasibound states. Actually, t
peaks occur at incident energies which are slightly shifted
the left compared to the energies of the long-lived qua
bound states~see Table I!. These peaks occur because wh
the incident energy is almost equal to the energy of the lo
lived quasibound states, the eigenphaseu(E) undergoes an
abrupt change as can be seen in Fig. 3. In the limit thaV
becomes very large, the energies of the long-lived qu
bound states approach values which are equal to the eige
ergies of a triangular potential well that is formed by t
constant electric field and an impenetrable wall located aj
50 ~region I in Fig. 4!. Cocke and Reichl@14# have shown
for a finite model~a wall is placed far down the hill from the
d-potential well! that the discrete eigenstates with energ
very close to the energies of the long-lived quasibound st
obtained in Ludviksson’s model are very localized. Thus,
long-lived quasibound states correspond to resonance

FIG. 2. Dimensionless Wigner delay timet̃w as a function of the
dimensionless incident energyE, for V52. The arrows indicate the
energies where the peaks occur.

FIG. 3. Phase shiftu(E) as a function of the dimensionles
incident energyE, for V52. The arrows indicate the energies whe

the peaks int̃w occur.
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tween the potential hill on the left created by the static el
tric field, and the potential discontinuity created by t
d-potential well.

IV. LIGHT SCATTERING

Let us now study the photodetachment, due to a w
applied time-periodic electric field, of a particle trapped
thed-potential well. We will compute the single-photon ph
todetachment rate, assuming dipole coupling between
particle and the time-periodic electric field. We will offer
qualitative comparison of the theoretical results we obt
for the photodetachment rate with the experimental res
obtained in the photodetachment of the loosely bound sec
electron of the H2 ion in the presence of moderate sta
electric fields@3–5#.

A. Theoretical results

The Hamiltonian that describes the interaction of the p
ticle and the time-periodic electric field is given, in terms
dimensionless variables, by

H8~j!52
]2

]j2
2j2Vd~j!1Ej cos~vt !, ~22!

whereE, v are the strength and the frequency of the tim
periodic field using dimensionless variables.E5(x0 /e0)E8,
whereE8 is the strength of the time-periodic field in units o
Joules/m, andv5v8\/e0, wherev8 is the frequency of the

TABLE I. Numerical values for the incident energiesE, where

the peaks occur int̃w , as compared to the energies of the long-liv
quasibound stateszn , for V52.

E Re(zn)

21.148 59 21.147 64
2.654 19 2.654 95
4.358 39 4.358 97
5.766 18 5.766 65

FIG. 4. The dimensionless potentialV(j) as a function of the
dimensionless distancej, when both thed-potential well and the
static electric field are present. Region I is the triangular reg
defined by a vertical line atj50 and the static electric field.
9-4
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SCATTERING PROPERTIES OF AN OPEN QUANTUM SYSTEM PHYSICAL REVIEW A62 022709
time-periodic field in units of rad/sec. Assuming that t
time-periodic field is a weak perturbation, we use pertur
tion theory to find that the photodetachment rate is given

W5
eo

\
2pS E

2D 2E
2`

1`

dEf u^CEf
ujuC0&u2d~Ef2E02v!,

~23!

whereC0 is the initial state of the particle, andCEf
, defined

in Eqs. ~6! and ~7!, are the continuum eigenstates of t
Hamiltonian H. We will take as our initial state,C0

5A(V/2)e[ 2(V/2)uju] , which is the bound state of th
d-potential well when no static field is present. The bou
state energy, in dimensionless variables, is given byE05
2(V/2)2. In the presence of the static electric field this st
eventually decays. Ludviksson, though, found that the l
time of this state is given byV22 eV3/6 @1#. Thus, if we con-
sider the attractived-potential well to be very deep in com
parison with the static electric field, i.e.,V is large, the
lifetime of the initial state is very large compared to t
times of interest here. Therefore, the initial stateC0 when
expanded in terms of the energy eigenstates ofH is sharply
peaked around the energyE0 and in that sense it is a goo
approximation to consider thed(Ef2E02v) function in Eq.
~23!.

We rewrite Eq.~23! asW5(e0 /\)W̃, whereW̃ is dimen-
sionless and is given by

W̃52pS E
2D 2E

2`

1`

dEfE
2`

1`

dj^Ef uj&j^juC0&

3E
2`

1`

dj8^C0uj8&j8^j8uEf&d~Ef2E02v!. ~24!

In Eq. ~24!, we used the fact that the continuum eigensta
^juE& of the HamiltonianH are real functions. If we substi
tute Eq.~15! into Eq. ~24!, we obtain

W̃52pS E
2D 2E

2`

1`

djE
2`

1`

dj8^juC0&j^C0uj8&j8rE01v

3~j8,j!

52pS E
2D 2E

2`

1`

djE
2`

1`

dj8^juC0&j^C0uj8&j8

3
i

2p(
n

FRR~j8,j;zn!

E01v2zn
2

RA~j8,j;zn* !

E01v2zn*
G

52
E2

2
ImF E

2`

1`

djE
2`

1`

dj8^juC0&j^C0uj8&j8

3(
n

fn~j!fn~j8!

E01v2zn
G , ~25!

where the summation is over the complex poles of the
tarded energy Green’s function. In Eq.~25!, we can inter-
change the sum and the integral only for a certain clas
initial statesC0 for which the integrals
02270
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E
2`

1`

dj^juC0&jfn~j!,

are well defined. Nickel and Reichl have shown@2# that these
initial states must be elements of a spaceFa where

FaªH c;E
2`

1`

uc~j!u2eujuadj,1`J ~26!

for any a. 1
2 . The eigenstate of thed-potential well, i.e.,

C05A(V/2)e[ 2(V/2)uju] , is an element of the spaceFa and
thus, we safely interchange the sum and the integrals in
~25! to obtain

W̃52
E2

2
ImF(

n

Gn

E01v2zn
G , ~27!

where

Gn5S E
2`

1`

dj^juC0&jfn~j! D 2

.

We now compute the photodetachment rate for the c
V55.5. The reason for the choice ofV will become clear
when we compare our theoretical predictions with the
perimental results for the photodetachment of H2. In Fig. 5,
we show the poles of the retarded energy Green’s func
for the caseV55.5. In Fig. 6 we plot the dimensionles
photodetachment rateW̃ as a function ofv, using the com-

FIG. 5. Dimensionless poleszn of the retarded energy Green’
function GR in the dimensionless energy range29.5,E,14, for
V55.5. The long-lived quasibound state with negative energy
remnant of the bound state in the absence of the static electric fi

FIG. 6. Dimensionless photodetachment rateW̃ as a function of
the dimensionless frequencyv, for V55.5 andE50.01.
9-5
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AGAPI EMMANOUILIDOU AND L. E. REICHL PHYSICAL REVIEW A 62 022709
plex poles in the energy range210.8,E,27.7. In all the
figures that follow, we takeE50.01. These results are i
qualitative agreement with the results of Cocke and Re
@14# for a finite model andV55.

One of the advantages of using generalized eigenstate
describe the photodetachment rate is that we can dire
interpret the main features of the photodetachment rat
terms of the quasibound states of the unperturbed system
particular, we see from Fig. 6, that the photodetachment
is strongly enhanced and suppressed for certain frequen
of the weak time-periodic field. The peaks occur when
frequency of the weak time-periodic field isv5En2E0,
whereE0 is the energy of the initial state andEn5Re(zn)
are the energies of the long-lived quasibound stateszn with
Re(zn).0. Thus, the location of the maxima in the phot
detachment rate is due to the presence of both the s
electric field and the attractived-potential well. Also, we see
in Fig. 6, that the system makes a transition for frequenc
that are below the energy of the bound state, which in
case is given byE052(V/2)2. The lowering of the photo-
detachment threshold is due to the presence of the static
tric field. What is interesting is that the short-lived qua
bound states are responsible for the considerable trans
rate below the energyE052(V/2)2, as well as for a large
amount of the asymmetry that the peaks exhibit in the p
todetachment rateW̃, Fig. 6, as we have shown in Ref.@15#.

B. Comparison to experimental results

The strong enhancement and suppression of the phot
tachment rate for certain frequencies of the weak tim
periodic field, that we obtained using the model described
the HamiltonianH, is also observed experimentally in th
photodetachment of H2 ions.@3–5# In these experiments, th
photodetachment cross section of the loosely bound sec
electron of the H2 ion has a ‘‘ripple’’ structure, in the pres
ence of moderate static electric fields and using light tha
p polarized@3#. ~The light isp polarized, when its electric
field is parallel to the applied static electric field.!

Theoretical studies on the photodetachment of H2 ion
have been carried out by a number of authors@6–10#. These
studies use three dimensional models where the final s
interaction of the electron with the neutral atom is ignore
They obtain smooth symmetric oscillations in the photo
tachment cross section of the H2 ions with the same period
as observed experimentally. In what follows, we shall sh
that our model, which includes final state interaction, a
qualitatively reproduces the oscillations observed in the
periments. However, in addition, it predicts strong asymm
tries in the oscillations when the static elecric field is larg
Since our model is one dimensional our comparison is o
qualitative. But, it does suggest that in the three-dimensio
models it may be worth including the final state interacti
to see if the asymmetries persist.

We first have to relate our parameterV to those used in
the experiments, which are the strength of the static elec
field and the binding energy,Eb50.7542 eV~where eV de-
notes electron volts!, of the loosely bound second electro
In order to do so, we set
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e05Eb50.7542 eV51.21310219J. ~28!

Two values of the static electric field, that were used in
experiments@4# are

F1

q
59.23106 V/m and

F2

q
51.433107 V/m, ~29!

whereq51.60310219 C is the electron charge. These yie
V1514.3 andV2512.3, respectively, for the strength of th
d-potential well. Thus, the valuesF1 /q and F2 /q of the
static electric field used in the experiment, correspond
very deepd-potential wells in the model we use.

Using Eq.~24!, we now plot, in Figs. 7 and 8, the dimen
sionless photodetachment rateW̃, for V1 and V2, respec-
tively, as a function of photon energy\v8 expressed in elec
tron volts. Instead of using the complex spect
decomposition, Eq.~27!, to compute the photodetachme
rate W̃, we have used the continuum eigenstates^Euj&, de-
fined in Eqs.~6! and ~7!, to obtainW̃ because it is numeri-
cally more efficient. Both methods give the same results

Next, we discuss the features of the experimentally
tained photodetachment cross section of H2 that are qualita-
tively reproduced by our model. The location of the peaks
the experimentally observed ‘‘ripple’’ structure is the sam
as predicted by our theoretical model. In our model,
maxima in the photodetachment rate occur for frequenc
v5En2E0, in dimensionless units. Thus, usinge0v5\v8
@see Eq.~2!#, we find that the maxima in the photodetac
ment rate W̃ occur for photon energies,\v85Ene0
1(V/2)2e0, whereEn are the energies of the long-lived qu
sibound states with Re(zn).0. For largeV, the energiesEn
are close to the eigenenergies of the triangular well tha
formed by the constant electric field and thed-potential well.

FIG. 7. Dimensionless photodetachment rateW̃ as a function of
photon energy\v8, where the photon energy is expressed in e
for E50.01 and F1 /q59.23106 V/m→V1514.3 and e0

50.0148 eV.~a! and ~b! are the same data but different scales
emphasize different aspects.
9-6
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Our explanation of the location of the peaks in the photo
tachment rate is in agreement with the explanation given
Rau and Wong@7# who used a three dimensional model
explain the experimentally observed photodetachment c
section. In addition, the model we use qualitatively rep
duces one more feature that is observed experimentally,
is, the big ‘‘shoulder’’ between the energies 0.74 and 0.79
Fig. 7 and between the energies 0.72 and 0.79 in Fig. 8

We now focus on the fact that the experimental osci
tions appear to be less asymmetric than those we pre
theoretically. The asymmetry of the peaks predicted by
model, seen in Figs. 7 and 8, is a result of the presenc
both the static electric field as well as thed-potential well, as
we have discussed in Sec. IV A. That is, when the interac
of the final state with the bound state is included it results
asymmetric peaks. Note, that in the three dimensional m
els @6–10# used to study the photodetachment of H2 where
the final state interaction is not included the ‘‘ripple’’ stru
ture is smooth and symmetric. One possible explanation
the less asymmetric peaks observed experimentally w
compared to those predicted by our model is the following
would be difficult to observe experimentally the sharp rig
asymmetric part of the peaks shown in Figs. 7 and 8 du
finite resolution~among other experimental sources of erro!.
It would be of interest to see if for higher values of sta
electric fields than those used in Refs.@3–5# the experimen-
tal results for the photodetachment cross section of the2

~for p polarized light! would indicate asymmetric peaks
since for higher static electric field values, i.e., smallerV, the
theoretical model we use, Fig. 9, predicts asymmetry wh
extends over a wider range of energies. Therefore, it wo
be easier to observe experimentally. To illustrate this po
in Fig. 9 we plot the photodetachment rate as a function
the incident photon energy forV55.5. From Eq.~28! we
find that whenV55.5, the corresponding static electric fie
is F/q51.613108 V/m.

FIG. 8. Dimensionless photodetachment rateW̃ as a function of
photon energy\v8, where the photon energy is expressed in e
for E50.01 and F2 /q51.433107 V/m→V2512.3 and e0

50.0198 eV.~a! and ~b! are the same data but different scales
emphasize different aspects.
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V. CONCLUSIONS

In this paper, we studied the scattering properties o
simple model consisting of single particle states in the pr
ence of ad-potential well and a static electric field. Th
importance of this model lies in its simplicity. That is, an
lytic expressions can be obtained for many of its dynami
properties, such as the scattering properties that we stu
in this paper, offering interesting insights into the mech
nisms underlying the decay processes of more complex
tems. The photodetachment rate computed using the ab
model, is in qualitative agreement with experimental me
surements of the photodetachment cross section ofp polar-
ized electromagnetic radiation in H2.

The asymmetric shape of the photodetachment peaks a
result of the short-lived quasibound state poles, which can
seen in Figs. 1, 5. These asymmetries might be observ
experimentally for stronger static electric field strengths th
those that have been used up to now. It would be interes
if future experiments could search for those asymmetries
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APPENDIX

The simplicity of the model that is described by th
HamiltonianH allows us to easily apply the complex coo
dinate method@11,12# to this model and discuss some of th
main features of this method. The complex coordin
method is a powerful computational technique for the cal
lation of energies and lifetimes in quantum systems. For s
tems with a continuum spectrum that are bounded from
low, it consists of a complex coordinate rotation,j→jeiu

whose effect on the spectrum of the transformed Ham
tonian H(u) is that the bound states and the branch po
where the continuum begins remain invariant while the c
tinuum spectrum ‘‘rotates’’ about the branch point by22u
@11,12#. In the case of the model that is described by t
HamiltonianH, where the continuum spectrum extends fro

,

FIG. 9. Dimensionless photodetachment rateW̃ as a function of
photon energy\v8, where the photon energy is expressed in e
for E50.01 andV55.5→F/q51.613108 V/m ande050.0997 eV.
9-7
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2` to 1` we apply a complex coordinate translationj
→j1 iq.

Applying the complex coordinate translation,j→j1 iq,
to the energy Green’s functionsGR/A(j,j8;z), defined in
Eqs.~8! and~9!, we find that the transformed energy Green
functionsGq

R/A(j,j8;z) are given by

Gq
R/A~j,j8;z!5G0,q

R/A~j,j8;z!2
G0,q

R/A~j,0;z!G0,q
R/A~0,j8;z!

1

V
1G0,q

R/A~0,0;z!

,

~A1!

whereG0,q
R/A(j,j8;z) are the transformed retarded/advanc

energy Green’s functions whenV50, and are given by

G0,q
R/A52p3H Ai ~2j2 iq2z!Ci6~2j82 iq2z!, j<j8,

Ci6~2j2 iq2z!Ai ~2j82 iq2z!, j>j8.
~A2!

In order for Gq
R/A , G0,q

R/A to be bounded whenj,j8→
6`, z should be given byz5E2 iq6 id for the transformed
retarded/advanced energy Green’s functions. Thus, the tr
formed energy Green’s functions,Gq

R/A(j,j8;z), defined in
Eqs. ~A1! and ~A2!, have a cut along the axisz5E2 iq,
while the energy Green’s functionsGR/A(j,j8;z) have a cut
along the real axis. Even though the cut is moved to
lower complex energy plane a distance2 iq, @11# the com-
plex coordinate translation does not affect the position of
complex poleszn , which are still defined by Eq.~10!.

One of the advantages of the complex coordinate meth
is that the residues of the complex poles exposed by
shifted cut, become square integrable functions, as we s
in what follows. In particular, in Sec. II we have express
the residues in terms of the generalized functionsfn(j),
defined in Eq.~12!. These are not square integrable fun
tions. From Eqs.~A1! and~A2!, we find that the residues o
the transformed energy Green’s functions are given by

Re sz5zn
Gq

R~j,j8;z!5fn
q~j!fn

q~j8!, ~A3!
C
.
e

, J
m

B.
ith

02270
d
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e
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e
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where

fn
q~j!5pS 2

]

]z
G0

R~0,0;z!U
z5zn

D 21/2

3H Ci1~2zn!Ai ~2j2 iq2zn!, j<0,

Ai ~2zn!Ci1~2j2 iq2zn!, j>0.
~A4!

If we write zn5En2 iGn , then zn1 iq5En1 i (q2Gn)5zn
q

and the transformed functionsfn
q(j) acquire the form

cn
q~j!5pS 2

]

]z
G1

R~0,0;z!U
z5zn

D 21/2

3H Ci1~2zn!Ai ~2j2zn
q!, j<0,

Ai ~2zn!Ci1~2j2zn
q!, j>0.

~A5!

The transformed functionsfn
q(j), given in Eq.~A5!, are

square integrable only when Im(zn
q).0, i.e., q2Gn.0⇒0

, Im(zn),2 iq, which is true for the poleszn ‘‘exposed’’
when the cut shifts by2 iq. For the poles withGn.q, the
functions fn

q(j) are still not square integrable. Thus,
agreement with the complex coordinate method, we find t
the eigenfunctions that correspond to the ‘‘exposed’’ co
plex poles are square integrable functions and are given
Eq. ~A5!, for 0, Im(zn),2 iq.

In conclusion, the complex coordinate method and
method we have used, both address decaying processe
from a different perspective. In the complex coordina
method the quasibound states are described by square
grable functions that correspond to complex eigenvalues
non-Hermitian Hamiltonian. In our method the quasibou
states are described by generalized eigenstates that ar
square integrable~they do not belong to the Hilbert space!
that correspond to the complex poles obtained by the ana
cal continuation of the energy Green’s function.
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