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Scattering properties of an open quantum system
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We study the scattering properties of an open quantum system, in terms of the complex poles of the
analytically continued energy Green’s function. We use a model for which many dynamical properties can be
expressed analytically. We first study particle wave scattering and compute the Wigner delay times. Then,
using perturbation theory, we compute the photodetachment rate due to a weak time-periodic electric field. In
addition, we show that the model we use qualitatively reproduces several features of the experimentally
obtained photodetachment cross section ofibhs and gives interesting insight into the mechanism underly-
ing the photodetachment of Hions.

PACS numbgs): 31.70.Hq, 03.65.Ge, 32.80.Gc, 34.56.

[. INTRODUCTION ing the complex coordinate translation to our model. In Sec.
V, we finish with some concluding remarks.
The mechanisms underlying decay processes in open
guantum systems are of great interest because they play a Il. THE MODEL
key role in the dynamics of mesoscopic and atomic systems. ) ) ) )
In order to elucidate some of these mechanisms we focus on 1he model we consider describes the behavior of a single
a model consisting of single particle states in the presence ¢{a"ticle, of massnand charge, in one space dimension, in
a d-potential well and a static electric field. Ludvikssfi] the presence of a static electric field and-function poten-
showed that many of the dynamical properties of this modefial well. The one-dimensional Hamiltonian is
can be obtained analytically. s
In this paper we study the scattering properties of this H(x)= — h® 9 L Cy_\
) ; : . (X)=—z=——Fx—=V'4(x), (D)

metastable system using generalized eigenstates associated 2m gx2
with complex eigenvalues that are found by analytic continu-
ation of the energy Green’s function. In Sec. Il, we reviewwhere# is Planck’s constant/q is the strength of the static
essential features of Ludviksson’s description of the metaelectric field andv’ is the strength of thé-potential well.
stable system. In addition, we review the complex spectralhe above Hamiltonian has a continuum of energy eigenval-
decomposition of the survival probability, that was devel-ues over the interval-«<E’<w. If we introduce the di-
oped by Nickel and ReicHI2], for a certain class of initial mensionless variables
states and is used in this paper to study light scattering. In

Sec. Ill, we study particle wave scattering from the E=xIxg, E=E'ley, t=t'eylt,
S-potential well in the presence of a constant electric field.

By determining the Wigner delay times we show the physi- h

cal effect of the quasibound states associated with poles of V=V'Ixoeq, z=2'leo, ‘*’:‘*"6_’ 2

the energy Green'’s function in the complex energy plane. 0

In Sec. IV, we study light scattering. We compute thewhere
photodetachment rate using the complex spectral decompo-
sition mentioned above and directly interpret its main fea- h?
tures in terms of the quasibound states. We find that the o:(m
photodetachment rate oscillates as a function of photon en-
ergies. Similar oscillations have been observed experimente Hamiltonian is given by
tally in the photodetachment cross section of ldns[3-5]

13
) » €=FXg )

in the presence of static electric fields when usingolar- 52
ized light. These oscillations have been predicted by a num- H(é)=— —2—§—V5(§). 4
ber of author$6—10] who used three-dimensional theoretical 9

models. However, these models do not account for the final
state interaction of the detached electron with the neutral
atom, as our model does. In Sec. IV, we discuss new effects 7
that can occur when the final state interaction is included.
We also offer a qualitative comparison with the experimental H(OTe()= 9&2 §-Va() | Te(6) =EVe(&),
results which, we believe, gives interesting insight into the (5
mechanism underlying the photodetachment of idns.

In the Appendix, we briefly discuss some of the mainwe find that the continuum energy eigenfunctiodsz(¢)
features of the complex coordinate metiad,12 by apply-  =(¢|E), in Hilbert space, are given by

Solving the Schidinger equation
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NAiI(—¢—E), ¢<0,
Ve(é)= e o A L o (6)
N{Ai(—&é—E)[1-V@Bi(—E)Ai(—E)]+Bi(— ¢é-E)VmAI“(—E)}, &=0,
|
where Ai and Bi are Airy function$13] and plex poles are given by, = 1/2/Im(z,)|. Ludviksson[1] has
found that the residues of the retarded energy Green'’s func-
N= 1 R tion, at these complex poles, take the form
~ J[1=V#Bi(—E)Ai(—E) ]2+ V2m2AI*(—E) , ,
ML=VaBi(=B)AI(= B+ Vi AR~ E) Res_, GREL D= dn(Ob(€), (1D
In the rest of this paper, we use dimensionless variables.
The retarded and advanced energy Green’s functions of Where
the system are given byGR(¢,&,E+id)=(¢(E—H s
+i0)"Y¢') and GA(¢,¢' E—i6)=(¢[(E-H=id) 1[¢'), 6 ()= — L GR0,02)
respectively, wheres is real andé>0. Ludviksson found n gz 0T s
that n
» i [Ci+<—zn>Ai<—§—zn>, =0
. ’. X i i
GRA(E,£2)= GRA(, 8/ 12)— 0 o030 D87 A=z G (=62, £20.

1IN +G§'A(0,0:2) )
(8)  The functions¢,(§) satisfy the Schrdinger equation with
complex eigenvalues
wherez=E+i 4 for the retarded energy Green'’s functions,
GR andGF, andz=E—i § for the advanced energy Green's H(&) dn(&) =zZ,dn(6), 13
functions, G* and G}). GN'A(¢,¢';z) are the retarded and

advanced energy Green’s functions wher-0, and are where z,, are the complex poles of the retarded energy
given by Green’s function. The functiong, (&) are called generalized

eigenstates because they are not square integrable and thus,
Ai(—¢—2)Cit(—¢' —2), é<¢, they do not belong to the Hilbert space. As Nickel and Re-
S P , ichl have shown, the functiong,(&) belong to a larger
CiT(—é-2Ai(-¢'-2), &= S(é) spaced’ , where

GoAE e 7)==

where Ci =Bi+iAi. ' T
d' =] ¢
The energy Green'’s functions, defined in E@.and(9), “ (d) f_oc #(8)

are bounded whe#, ¢’ — +«. The energy spectrum of the

system described by the Hamiltonighis determined by the for any a>3.

singularities of the energy Green’s functions. The Green’s It is useful for later reference to introduce the transition
functions given by Eqs(8) and (9), have a cut along the spectral density2], pg(&,£'), defined by

entire real energy axis and do not have any other singulari-

ties on the real axis. Due to causali§¥A(¢&,¢';z) for zon pe(&,€")=(¢|EXE[E")

the upper/lower half energy plane have no singularities. If we

2
eﬁ“dg<oo] (14)

analytically continueGR(&,&';2) on the lower half energy - I_|im[GR(§ £ E+i8)—GAE& ¢ E—i6)]
plane thenGR(£,£';2) is no longer bounded wheg, ¢’ — 2ms e e
+o and it has simple poles at complex valwesz,,. These
simple poles are determined by the condition i RR(&,¢:z2,) RMNEE,Z)
1 _ﬂ n E-z, E—Z:c , 19
v T G0(0,0:z0) =0, (10

where (¢|E) are the continuum eigenstates of the Hamil-
tonian H, and RR(&,&';z,,) are the residues of the Green’s

and for every value oY/, there is an infinite number of com- function GR(¢,£':2) evaluated at the poles=z,, so that
il ’ n:»

plex poles z,. Similarly, if we analytically continue
GA(&,¢';2) on the upper half energy plane thed\(¢,¢’:2) RR(£,6':2.)= Res_, GR(£.¢:2),
is no longer bounded whe#, ¢’ — *+ and it has simple n
— 5% :
poles at complex values=z, , where an asterisk denotes and RA(£,¢';2%) are the residues of the Green’s function

complex conjugation. As we will later show, the scattering ~ o B %
properties of this system are determined by the comple>€3 (£,¢7;2) evaluated at the poles=2z, , so that

poles of the analytically continued Green’s functions. The A ykn A .
lifetimes of the quasibound states associated with these com- RY(£,¢:2,)=Re §=Z§G (£,¢2),
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andRA(&,&;Z8)=[RR(¢,£';2,) ]* . These quantities will be Im(z)
used when we study light scattering. 4
-5 5 10
ll. PARTICLE SCATTERING S N S S
In this section, we study the interaction of an incoming . Rez)
particle wave with the potential that consists of-potential J -4
well and a static electric field and we compare its reflection o
with the case when the particle wave interacts only with the . 3
static electric field. In this case thepotential well acts as a &
scatterer. We compute the Wigner delay times, which are o 12
related with the time that the reflection of the particle wave is ¢
delayed due to its interaction with thpotential well. FIG. 1. Dimensionless poleg, of the retarded energy Green’s

As a first step, let us solve the scattering problem considfynction GR in the dimensionless energy range?<E<13.5, for
ering only the static electric field. The Schinger equation, v=2. The poles shown as dark circles correspond to the long-lived
in dimensionless units, is given by quasibound states. The long-lived quasibound state with negative

energy is a remnant of the bound state in the absence of the static
P electric field.

HOW%<§>=(—ﬁ—gz—f)\lf%@):E\P‘é(&). (16)

B(E)= .
There are two boundary conditions that have to be satisfied. & 7VAI(—E)?+i[1-7VAi(-E)Bi(—E)]
The first condition is that we can only have a wave incident (20
from the right, since the potential energy given in E4p)
becomes infinite ag— —. The second condition is that  The reflection coefficien§(E) given in Eq(19) has ab-
there is no transmitted wave. The solution that satisfies thgolute value 1, as expected, since there is no transmitted

above conditions is wave. ThusS(E) can be written a$(E)=¢'®). Compar-
ing Egs.(19) and (10), we see that when we analytically
wg(g)zcr(—g— E)—Ci*(—£—E), (17) continue the reflection coefficiel8(E) into the lower half

complex energy plane it has the same singularities as the
retarded energy Green’s functi@f. Comparing Eqs(17)

and (18) we see that the effect of th& potential well is to
cause a phase shift of the reflected wave df). The
Wigner delay time is the derivative of the phagge) with
nrespect to the energy

where the functions Ci(—&—E) are traveling waves and
are defined Ci(—&—E)==iAi(—£—E)+Bi(—£—E),
andE is the energy of the traveling wave. The function”Ci
represents a wave traveling to the right, while the functio
Ci™ represents a wave traveling to the left. In Ef7), the
amplitude of the incident wave Ciis normalized to 1. We
see that the reflected wave ‘Cis phase shifted byr, with o= —
respect to the incident wave Ci v dE’ € dE
We now study the scattering of an incident wave for the

case when both thé-potential well and the static electric where7,, is dimensionless. In our case, the Wigner delay
field are present. In this case, the Sdinger equation, in  time s the time that the reflection of the particle is delayed
dimensionless units, is given by B@). The scattering solu-  que to the presence of thizpotential well. We compute the
tion that satisfies the same two boundary conditions as dGWigner delay time for the case thett=2. The poles of the
scribed above, but which has a discontinuous first derivativeai;ded energy Green’s function fée=2 are shown in Fig.
até=o0, is

ﬁde(E)_ﬁda(E)zeﬁ;\N’ o1
0

1. ForV=2, the dimensionless Wigner delay timg has the
. " form shown in Fig. 2. The phase shif{ E) of the incident
Cir(=é-B)+S(E)CI"(—¢-F), §=0, wave, in the presence of th&potential well, is shown in
B(E)Ci (—&é—E)—B(E)Ci"(—&—E), &=0, Fig. 3 whered(E) is plotted so that it is a continuous func-
(18 tion of the energ)E.

An interesting feature of the Wigner delay time, shown in
whereS(E) is the reflection coefficient and is given by Fig. 2, is that it has negative values for certain incident en-
ergies and the negative values become larger as the incident
energy increases. The negative values indicate that for cer-

Ve(é)=

_ @VAI(—E)?*~i[1-7VAiI(—E)Bi(—E)]

S(E) ' tain energies the incident particle gets reflected faster when
mVAI(—E)?+i[1— 7VAI(—E)Bi(—E)] both the static electric field and thé&potential well are
(19 present, as compared to the case when only the static electric
field is present. When only the static field is present, a par-
andB(E) is the amplitude of the wave faf<0 ticle with incident energyE reflects até= —E. When both
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TABLE I. Numerical values for the incident energiEswhere

~ 8 the peaks occur i, , as compared to the energies of the long-lived
Tw guasibound states,, for V=2.
4
E Re(z,)
0 —1.14859 —1.14764
2.65419 2.654 95
4.358 39 4.358 97
5.766 18 5.766 65

FIG. 2. Dimensionless Wigner delay timg as a function of the

dlmen_S|0nIess incident enerdy for V=2. The arrows indicate the \aan the potential hill on the left created by the static elec-

energies where the peaks occur. tric field, and the potential discontinuity created by the
S-potential well.

the static field and thé-potential well are present, then if the

particle’s incident energy is negativie< 0, the particle first IV. LIGHT SCATTERING
reflects att=—E>0, while if the particle’s incident energy
is positive,E>0, the particle first reflects at=0. Conse- Let us now study the photodetachment, due to a weak

quently, for large negative values of the incident energy théPPlied time-periodic electric field, of a particle trapped in
particle is not affected by the presence of theotential the §-potential well. We will compute the smgle-photon pho-
well, and we find zero Wigner delay times in Fig. 2. How- {odétachment rate, assuming dipole coupling between the
ever, for increasing positive values of the incident energy thé@'ticle and the time-periodic electric field. We will offer a

particle begins to be affected by téepotential well and can qualitative comparison of the theoretical results we obtain
reflect até=0, i.e., earlier than it would if nos-potential for the photodetachment rate with the experimental results

well was present. obtained in the photodetachment of the loosely bound second

The Wigner delay time, shown in Fig. 2, has peaks Wherplectrpn _of the H ion in the presence of moderate static
the energy of the incident particle is very close to the energglectric fields[3-5].
of one of the long-lived quasibound states. Actually, the _
peaks occur at incident energies which are slightly shifted to A. Theoretical results
the left compared to the energies of the long-lived quasi- The Hamiltonian that describes the interaction of the par-

bound stategsee Table )l These peaks occur because wherkjcle and the time-periodic electric field is given, in terms of
the incident energy is almost equal to the energy of the longgimensionless variables, by

lived quasibound states, the eigenph&¢éE) undergoes an
abrupt change as can be seen in Fig. 3. In the limit that 92
becomes very large, the energies of the long-lived quasi- H'(§)=—— —£-Vd(§) +EE coqwt), (22)
bound states approach values which are equal to the eigenen- 29
ergies of a triangular potential well that is formed by the
constant electric field and an impenetrable wall located at

=0 (region | in Fig. 4. Cocke and Reich14] have shown where&’ is the strength of the time-periodic field in units of

for a finite model(a wall is placed far down the hill from the T e
é-potential wel) that the discrete eigenstates with energies‘]OUIeS/m’ and=w'f/ €, wherew'" is the frequency of the

very close to the energies of the long-lived quasibound states
obtained in Ludviksson’s model are very localized. Thus, the V(&)

where&, o are the strength and the frequency of the time-
periodic field using dimensionless variabless (Xo/€p)E’,

long-lived quasibound states correspond to resonance be-
T
4
=0
0 &

2 /\ g
0 N\

2T 0 27 47 ¥

E
FIG. 4. The dimensionless potentdl(¢) as a function of the
FIG. 3. Phase shif¢(E) as a function of the dimensionless dimensionless distancg when both thes-potential well and the
incident energy, for V=2. The arrows indicate the energies where static electric field are present. Region | is the triangular region
the peaks inr,, occur. defined by a vertical line a§=0 and the static electric field.
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time-periodic field in units of rad/sec. Assuming that the T 2 )
time-periodic field is a weak perturbation, we use perturba-

5
tion theory to find that the photodetachment rate is given by

£\2 [+
E) J‘ioodEf|<\PEf|§|‘PO>|26(Ef_EO_w), . Re(z)
(23 -5

_%o
W—ﬁ27T

whereV is the initial state of the patrticle, anHEf, defined 10
in Egs. (6) and (7), are the continuum eigenstates of the
Hamiltonian H. We will take as our initial state ¥ .15
= (VI2)el~V2lédl - which is the bound state of the ‘

S-potential well when no static field is present. The bound
state energy, in dimensionless variables, is givenEQy
—(V/2)?. In the presence of the static electric field this stat
eventually decays. Ludviksson, though, found that the life

time of this state is given by ~2e"*/8 [1]. Thus, if we con-
sider the attractiveS-potential well to be very deep in com- +oo
parison with the static electric field, i.e\V is large, the f dé(E|Wo)édn(é),
lifetime of the initial state is very large compared to the o
times of interest here. Therefore, the initial stdtg when
expanded in terms of the energy eigenstatekl o sharply
peaked around the ener@g and in that sense it is a good

FIG. 5. Dimensionless poleg, of the retarded energy Green'’s
function GR in the dimensionless energy ranged.5<E<14, for
=5.5. The long-lived quasibound state with negative energy is a
remnant of the bound state in the absence of the static electric field.

are well defined. Nickel and Reichl have shoMfthat these
initial states must be elements of a spdeg where

approximation to consider th& E;— Eq— w) function in Eq. +oo ) el
3. = v [ luoPet< ol (@9
We rewrite Eq(23) asW= (e, /%)W, whereW is dimen-
sionless and is given by for any a>1. The eigenstate of thé-potential well, i.e.,
o2 ia Y Vo= /(Vi2)el~V2I€l 'is an element of the spack, and
\7\/:277(_) f dEff d&(Eq| £)E(E| W) thus, we safely interchange the sum and the integrals in Eq.
2) J-w — (25) to obtain
f *°° | | & r
X dé'(Wo|&") €' (§'|Er) d(Et—Ep—w). (29) W=— _n
o 0 0 w 2|m ; Eotw—2z,| @7

In Eq. (24), we used the fact that the continuum eigenstates
(€|E) of the HamiltonianH are real functions. If we substi-
tute Eqg.(15) into Eq. (24), we obtain

where
+ 2
, Fn:U dé<»:l%>§¢n<f)) :
_ g + o0 + oo — o0
=2 5| [ e[ o avoecrdere ve, .
o o We now compute the photodetachment rate for the case

(&' V=5.5. The reason for the choice df will become clear
(§',8) : - :
when we compare our theoretical predictions with the ex-

2 [t e e perimental results for the photodetachment of. kh Fig. 5,
=2m 2/ |_., d¢ . d&’(§[Wo)&(Wol¢')¢ we show the poles of the retarded energy Green’s function
for the caseV=5.5. In Fig. 6 we plot the dimensionless
i RR(¢,&2,) RNELEZ) photodetachment rat as a function ofw, using the com-
275 Eotw—2z, E0+w—Z: "
1.2x10
52 4+ 40 W
-G [Tae[ accavacviere g0
-6
dn(E) Pn(E") 4x10
X Eeroan | = :

2 6 10 14

where the summation is over the complex poles of the re- ®

tarded energy Green'’s function. In E@®5), we can inter-
change the sum and the integral only for a certain class of FIG. 6. Dimensionless photodetachment fé&tas a function of
initial statesW, for which the integrals the dimensionless frequenay, for V=5.5 and€=0.01.
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plex poles in the energy range10.8<E<27.7. In all the 12x10°°
figures that follow, we take&€=0.01. These results are in W (a)
gualitative agreement with the results of Cocke and Reichl 841077
[14] for a finite model and/=5.
One of the advantages of using generalized eigenstates to 407"
describe the photodetachment rate is that we can directly
interpret the main features of the photodetachment rate in 0 J’J“J_JJ/)J)
terms of the quasibound states of the unperturbed system. In 124107
particular, we see from Fig. 6, that the photodetachment rate W (b)
is strongly enhanced and suppressed for certain frequencies 8x10*
of the weak time-periodic field. The peaks occur when the
frequency of the weak time-periodic field s=E,—E,, 40
whereE, is the energy of the initial state aril,=Re(z,)
are the energies of the long-lived quasibound statesith 0
Re(z,)>0. Thus, the location of the maxima in the photo- 0.75 0.8 0.85 0.9
detachment rate is due to the presence of both the static ho' (eV)

electric field and the attractivé-potential well. Also, we see

in Fig. 6, that the system makes a transition for frequencies F|G. 7. Dimensionless photodetachment fétes a function of
that are below the energy of the bound state, which in ouphoton energysw’, where the photon energy is expressed in eV,
case is given byEy= —(V/2)?. The lowering of the photo- for £=0.01 and F,/q=9.2x10° Vim—V,=14.3 and e,
detachment threshold is due to the presence of the static elee-0.0148 eV.(a) and (b) are the same data but different scales to
tric field. What is interesting is that the short-lived quasi-emphasize different aspects.

bound states are responsible for the considerable transition

rate below the energ,=—(V/2)?, as well as for a large V2

amount of the asymmetry that the peaks exhibit in the pho- |Eql= 7 0= Ep=0.7542 eV=1.21X 1079, (29

todetachment rat@, Fig. 6, as we have shown in R¢L5].
Two values of the static electric field, that were used in the

B. Comparison to experimental results experimentg4] are

The strong enhancement and suppression of the photode- F; F, .
tachment rate for certain frequencies of the weak time- < =9.2x10° V/m and EZlAgX 10° Vim, (29)
periodic field, that we obtained using the model described by
the HamiltonianH, is also observed experimentally in the whereq=1.60x 10 1° C is the electron charge. These yield
photodetachment of Hions.[3-5] In these experiments, the V,=14.3 andV,=12.3, respectively, for the strength of the
photodetachment cross section of the loosely bound seconsipotential well. Thus, the valueB,/q and F,/q of the
electron of the H ion has a “ripple” structure, in the pres- static electric field used in the experiment, correspond to
ence of moderate static electric fields and using light that isery deeps-potential wells in the model we use.
7 polarized[3]. (The light is 7 polarized, when its electric Using Eq.(24), we now plot, in Figs. 7 and 8, the dimen-

field is par_allel to the applied static electric figld. sionless photodetachment rafé, for V, and V,, respec-
Theoretical studies on the photodetachment of #8n ey, as a function of photon enerdyw’ expressed in elec-
have been carried out by a number of auth@rs10. These  ton" volts. Instead of using the complex spectral

studies use three dimensional models where the final Sta@ecomposition, Eq(27), to compute the photodetachment

interaction of the electron with the neutral atom is ignored. ~ . .
They obtain smooth symmetric oscillations in the photode-ratew’ we have used the continuum eigenstdf), de-

tachment cross section of the Hons with the same period fin€d in Egs.(6) and(7), to obtainW because it is numeri-
as observed experimentally. In what follows, we shall showf@lly more efficient. Both methods give the same results.
that our model, which includes final state interaction, also Next, we discuss the features of the experimentally ob-
qualitatively reproduces the oscillations observed in the ext@ined photodetachment cross section of tHat are qualita-
periments. However, in addition, it predicts strong asymmelively reproduced by our model. The location of the peaks in
tries in the oscillations when the static elecric field is large [he €xperimentally observed “ripple” structure is the same
Since our model is one dimensional our comparison is onlyS Predicted by our theoretical model. In our model, the
qualitative. But, it does suggest that in the three-dimensiondf@xima in the photodetachment rate occur for frequencies
models it may be worth including the final state interaction®=En—Eo, in dimensionless units. Thus, usikgw =% o’
to see if the asymmetries persist. [see Eq.(2)],~ we find that the maxima in the photodetach-
We first have to relate our parameéito those used in ment rate W occur for photon energiesfio’=E,¢,
the experiments, which are the strength of the static electrig- (V/2)%e,, whereE,, are the energies of the long-lived qua-
field and the binding energ¥,,=0.7542 eV(where eV de- sibound states with Re()>0. For largeV, the energie&,
notes electron volis of the loosely bound second electron. are close to the eigenenergies of the triangular well that is
In order to do so, we set formed by the constant electric field and thgotential well.
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12 x107°
15 a0 @ W
W o 8x10°
X
p x10_7 4 x 10-6
; A ) \
04 0.8 12
1.5x107" (®) he'(E€V)
w o ~ .
1x10”" FIG. 9. Dimensionless photodetachment nates a function of
photon energyiw’, where the photon energy is expressed in eV,
5x10°° for £=0.01 andv="5.5—F/q=1.61x 10® V/m ande,=0.0997 eV.
° 0.75 0.8 0.85 0.9 V. CONCLUSIONS
ho'(eV) In this paper, we studied the scattering properties of a

simple model consisting of single particle states in the pres-
ence of ad-potential well and a static electric field. The
importance of this model lies in its simplicity. That is, ana-
lytic expressions can be obtained for many of its dynamical
properties, such as the scattering properties that we studied
in this paper, offering interesting insights into the mecha-
) ) _ nisms underlying the decay processes of more complex sys-
Our explanation of the location of the peaks in the photodetems. The photodetachment rate computed using the above
tachment rate is in agreement with the explanation given bynodel, is in qualitative agreement with experimental mea-
Rau and Wong 7] who used a three dimensional model to gyrements of the photodetachment cross sectiom pblar-
explain the experimentally observed photodetachment crogggq electromagnetic radiation in"H
section. In addition, the mod_el we use qualita_tively repro-  The asymmetric shape of the photodetachment peaks are a
duces one more feature that is observed experimentally, thabsy of the short-lived quasibound state poles, which can be
is, the big “shoulder” between_the energies O.74_and_0.79 iNseen in Figs. 1, 5. These asymmetries might be observable
Fig. 7 and between the energies 0.72 and 0.79 in Fig. 8. experimentally for stronger static electric field strengths than
We now focus on the fact that the experimental oscilla-those that have been used up to now. It would be interesting

tions appear to be less asymmetric than those we predigt future experiments could search for those asymmetries.
theoretically. The asymmetry of the peaks predicted by our

model, seen in Figs. 7 and 8, is a result of the presence of
both the static electric field as well as thgotential well, as

we have discussed in Sec. IV A. That is, when the interaction The authors wish to thank the Robert A. Welch Founda-
of the final state with the bound state is included it results injon Grant No. F-1051, NSF Grant No. INT-9602971, the
asymmetric peaks. Note, that in the three dimensional modgngineering Research Program of the Office of Basic En-
els[6-10] used to study the photodetachment of Where  ergy, and DOE Contract No. DE-FG03-94ER14465 for par-
the final state interaction is not included the “ripple” struc- tial support of this work. The authors also thank Dr. Chris-
ture is smooth and symmetric. One possible explanation fofoph Jung for useful discussions.

the less asymmetric peaks observed experimentally when
compared to those predicted by our model is the following. It
would be difficult to observe experimentally the sharp right
asymmetric part of the peaks shown in Figs. 7 and 8 due to The simplicity of the model that is described by the
finite resolution(among other experimental sources of exror HamiltonianH allows us to easily apply the complex coor-

It would be of interest to see if for higher values of static dinate method11,12 to this model and discuss some of the
electric fields than those used in Rdi3-5] the experimen- main features of this method. The complex coordinate
tal results for the photodetachment cross section of the H method is a powerful computational technique for the calcu-
(for 7 polarized lighf would indicate asymmetric peaks, lation of energies and lifetimes in quantum systems. For sys-
since for higher static electric field values, i.e., smallethe  tems with a continuum spectrum that are bounded from be-
theoretical model we use, Fig. 9, predicts asymmetry whichow, it consists of a complex coordinate rotatiafi- £e'?
extends over a wider range of energies. Therefore, it wouldvhose effect on the spectrum of the transformed Hamil-
be easier to observe experimentally. To illustrate this pointtonian H(#) is that the bound states and the branch point
in Fig. 9 we plot the photodetachment rate as a function ofvhere the continuum begins remain invariant while the con-
the incident photon energy fov=5.5. From EQ.(28) we  tinuum spectrum ‘“rotates” about the branch point 526

find that whenv=5.5, the corresponding static electric field [11,12. In the case of the model that is described by the
is F/q=1.61xX 10° V/m. HamiltonianH, where the continuum spectrum extends from

FIG. 8. Dimensionless photodetachment fatas a function of
photon energyi ', where the photon energy is expressed in eV,
for £=0.01 and F,/q=1.43x10" VIm—V,=12.3 and ¢,
=0.0198 eV.(a) and(b) are the same data but different scales to
emphasize different aspects.
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-1/2
z—zn)

Ci+(_zn)Ai(_§_iq_Zn)y §$O,
% Ai(—z,)Cit(—é-ig—1z,), &=0. (A4)

—o to +o we apply a complex coordinate translatign where
—&+iq.
Applying the complex coordinate translatiof— é+iq, 9
to the energy Green's function8®NA(¢,¢';z), defined in ¢>ﬁ(§):w( _EGE(O:OJZ)

Egs.(8) and(9), we find that the transformed energy Green’s
/A

functionsG¢ A(¢,£';2) are given by

04q

Gog (£,0:2)GGq (0.£';2)
GRA(E,€2) =GR (£, 7)) —— :
- RIA .
v Goq (0.02) If we write z,=E,—il",, thenz,+iq=E,+i(q—T,)=2]
(A1)  and the transformed functiong!(¢) acquire the form

-1/2
zzn>

Ci'(—zy)Ai(—¢-2z)), ¢=<0,
Ai(—z,)Ci*(—¢-2%), &=0.

where Ggg\(g,g';z) are the transformed retarded/advanced

energy Green'’s functions wher=0, and are given by ya(E) = 77( _ %G?(0,0;z)
GRAZ _ Ai(—é-iq—2)Ci"(—¢' —iq—2z), é&s<¢,

00 = TN CiF (— g—ig-2)AI(— ¢ —iq—2), é=¢.
(A2)

(A5)

In order for GE*, G§* to be bounded wher, & —
+oo, zshould be given by=E—iq=i ¢ for the transformed The transformed functiong(¢), given in Eq.(A5), are
retarded/advanced energy Green’s functions. Thus, the trangquare integrable only when laf{)>0, i.e.,q—I',>0=0
formed energy Green's function§ (£,¢';2), defined in < Im(z,)< —iq, which is true for the poleg, “exposed”

Egs. (A1) and (A2), have a cut along the axis=E—iq,  when the cut shifts by-iq. For the poles witH',>q, the
while the energy Green’s functio@~(¢,£';2) have a cut  functions ¢%(£) are still not square integrable. Thus, in
along the real axis. Even though the cut is moved to theygreement with the complex coordinate method, we find that
lower complex energy plane a distanegq, [11] the com-  the eigenfunctions that correspond to the “exposed” com-
plex coordinate translation does not affect the position of thep|ex poles are square integrable functions and are given by
complex poles,,, which are still defined by Eq10). Eq. (A5), for 0< Im(z,)< —iq.

One of the advantages of the complex coordinate method, |n conclusion, the complex coordinate method and the
is that the residues of the complex poles exposed by thghethod we have used, both address decaying processes but
shifted cut, become square integrable functions, as we shoom a different perspective. In the complex coordinate
in what follows. In particular, in Sec. Il we have eXpreSSEdmethod the quasibound states are described by square inte-
the residues in terms of the generalized functiahgé),  grable functions that correspond to complex eigenvalues of a
defined in Eq.(12). These are not square integrable func-non-Hermitian Hamiltonian. In our method the quasibound
tions. From Eqgs(Al) and(A2), we find that the residues of states are described by generalized eigenstates that are not
the transformed energy Green's functions are given by square integrabléthey do not belong to the Hilbert space

that correspond to the complex poles obtained by the analyti-

R Iy — 40 A ¢ . ) ’
Re sl:Zan(g'f 12)= n(E) dnl(€), (A3) cal continuation of the energy Green’s function.
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