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Rayleigh-Ritz approximation of the Dirac operator in atomic and molecular physics
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Four-component~spinor! solutions of the Dirac equation may be approximated byL-spinor expansions. We
discuss their orthogonality and completeness and relateL-spinor properties to those of the Coulomb Sturmians.
The mathematics of Rayleigh-Ritz approximations for one-electron Schro¨dinger and Dirac operators provides
a rigorous setting for applying finiteL-spinor matrix approximations to the relativistic hydrogenic atom.
Convergence of eigenvalues and eigenvectors with respect to the size of theL-spinor set, of expectation values
of quantum-mechanical operators, sum rules, and perturbation expansions is examined. The contribution to
perturbation sums over states from solutions with eigenvalues in the continuum range (mc2,`) ~electronic
scattering states! and (2`,2mc2) ~positronic scattering states! is shown to be essential to get accurate results.

PACS number~s!: 31.10.1z, 31.15.Pf, 31.30.Jv
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I. INTRODUCTION

L spinors were first mentioned in@1#, although they were
introduced with a different name in an earlier paper„@2#, @Eq.
~71!#… ~see also@3#, p. 240 and@4#, Sec. 22.6.3!. Although
they have played a major role in our development of te
niques for solving Dirac-Fock~-Breit! equations for atoms
@2,4–6# and molecules@8–11#, relativistic correlation studies
@2,7# and related problems in quantum electrodynamics@12–
15#, we have not previously given a full description in prin
Recently, Szmytkowski@16# introduced what he called rela
tivistic Coulomb Sturmians, which somewhat resembleL
spinors, though there are quite profound differences of de
and his description of our work, based on the limited pu
lished material, is misleading. This paper aims to give a
finitive account ofL spinors and their applications to enab
readers to evaluate their usefulness. A secondary, but no
important, aim is to show that despite the common belief t
it cannot be done, the Rayleigh-Ritz method can be app
to Dirac-Coulomb and related operators as long as the
solutions are expanded in spinor basis sets that span the
rect operator domain.

The Dirac Hamiltonian for a single particle~we only con-
sider electrons and/or positrons in this paper! is

HDªca•p1mc2b1V~r!, ~1!

wherea,b are the usual 434 Dirac matrices,c is the speed
of light, p is the three-momentum operator, andV(r) is the
potential energy of interaction of the particle with an exter
electric field, the nuclear Coulomb attractionV(r )52Z/r in
this paper. We shall always use atomic~Hartree! units, so
that m51 and c'137. Dirac solutions therefore are fou
component spinors, whose properties are defined in stan
texts. We shall adhere in this paper to the conventions of@4#.

*Electronic address: ipg@maths.ox.ac.uk
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The stationary state solutions in such a spherically symm
ric potential for energyE have the form

cEkm~r !5
1

r F PEk~r !xkm~u,w!

iQEk~r !x2km~u,w!
G . ~2!

The two-component spinorxkm(u,w) is a coupled spin-orbit
function „see, for example, Ref.@4#, Eq. ~22.92! for a full
description…. The angular quantum numberk is related to the
total angular-momentum quantum numberj by uku5 j 1 1

2 ,
with j 5 1

2 , 3
2 , . . . and the quantum numberm, representing

the component of total angular momentum on the quant
tion axis Oz, can take values in the range2 j ,2 j
11, . . . ,j 21,j . The spinorxkm(u,w) is associated with an
orbital angular-momentum quantum numberl having l 5 j
11/2 if k is positive andl 5 j 21/2 if k is negative. These
functions form a basis for the irreducible representationD j

of SO~3! for both signs ofk and are the fundamental build
ing blocks for constructing atomic and molecular wave fun
tions. A major difference from Schro¨dinger wave functions
is the coupling of spatial and spin degrees of freedom,
pressed by the four components of the Dirac spinors. T
coupling of these components by the Dirac operator de
mines the asymptotic behavior of the wave functions ar
→0, the region in which the dynamic effects of relativi
largely originate. An understanding of the structure and sy
metry properties of Dirac spinors is therefore essential
the effective use of relativistic wave functions@4#.

Sturmian functions have long been advocated in nonr
tivistic quantum mechanics because they allow wave fu
tions, for bound states or for scattering, to be expanded
complete countable set of eigenfunctions of a conven
form @17,18# and the range of applications is now quite wid
We therefore start with a brief account of the properties
Coulomb Sturmians, introducing ideas and relations t
serve in part to motivate the definition ofL spinors that fol-
lows. We connect the orthogonality and completeness pr
erties ofL spinors to those of Coulomb Sturmians by exa
©2000 The American Physical Society08-1
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I. P. GRANT AND H. M. QUINEY PHYSICAL REVIEW A 62 022508
ining the nonrelativistic limiting behavior asc→`. The
emphasis in this paper will be on usingL spinors in the
context of the Rayleigh-Ritz procedure for Dirac Hamilt
nians. As many have claimed that this approach is doome
failure, we next give an account of the relevant mathema
that is sufficiently rigorous to support this work and relat
applications in relativistic quantum mechanics and quan
electrodynamics. Some of the mathematical background
previously summarized in@3,4#; the present paper covers a
pects not previously discussed.

The theory is illustrated with several applications, start
with electronic states of the hydrogenic atom for which ex
analytic results are available. The large and small com
nents are each expanded in matchedL-spinor subsets of the
same dimension, using the radial amplitudes$ f nk

L (r )%n51
N

and $ f nk
S (r )%n51

N , respectively, and we examine the conve
gence of bound-state solutions for different values of
symmetry quantum numberk as N increases, and examin
the influence of the tuning parameterl. The completeness o
the L-spinor expansions is important for calculating su
over-states expressions in perturbation theory. We illust
this by way of calculations on the static polarizability
hydrogenic atoms, and through the very instructive mode
which the nuclear charge of a hydrogenic atom is chan
from Z to Z1Z8, which we studied earlier@19,20#. Here, we
know the exact answer, and the calculations provide str
evidence of the completeness ofL-spinor expansions pro
vided the negative-energy states are included. More imp
tantly, it also shows that the partition between positive- a
negative-energy states depends on the choice of poten
exposing the major flaw in proposals to eliminate the infl
ence of negative-energy states with projection operators

II. THE COULOMB STURMIAN FUNCTIONS

A. Definition and properties of Coulomb Sturmians

The nonrelativistic Sturmian functions are defined
@17,18# as the normalized solutions of the differential equ
tion

F2
d2

dr2
1

l ~ l 11!

r 2
22E012anlV~r !GSnl~r !50, 0,r ,`

~3!

vanishing at the end pointsr 50 andr 5`. The integersn
51,2,3, . . . and l 50,1, . . . ,n21 correspond to the usua
nonrelativistic quantum numbers andE0 is a fixed, negative
number. The parameteranl must be adjusted to ensure th
the boundary conditions are satisfied. The functions are
thonormal with respect to the weight functionV(r ) ~which
must be strictly of one sign, usually negative! so that

E
0

`

Snl~r !Sn8 l~r !V~r !dr52dnn8 . ~4!

The most important case is that in whichV(r ) is a Cou-
lomb potential
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V~r !52
Z

r
, 0,r ,`.

We setE052l2/2, and rewrite Eq.~3! in terms of the inde-
pendent variablex52lr , so that

F2
d2

dx2
1

l ~ l 11!

x2
1

1

4
2

anlZ

lx GSnl~x!50, ~5!

having the solutions

Snl~x!ªNnlsnl~x!,

snl~x!5e2x/2xl 11Ln2 l 21
2l 11 ~x!, ~6!

n5 l 11,l 12, . . . ,

which vanish atx50 andx5` provided

n5anlZ/l.

The Lk
a(x) are Laguerre polynomials@21# andNnl is a nor-

malization constant. We recover the standard solutions
the radial hydrogenic eigenfunctions whenanl51, giving
E052Z2/2n2. Notice thatl ~and thereforeE0) is fixed for
the Coulomb Sturmians whereasl5A22E0 depends uponn
for the Schro¨dinger eigenfunctions.

The properties of the orthogonal polynomialsLk
a(x) are

listed in many compilations such as@21#. Whena>1 they
are orthogonal on (0,̀) with weight functionw(x)5e2xxa,
such that

E
0

`

e2xxaLk
a~x!Lk8

a
~x!dx5

G~a1k11!

k!
dk,k8 . ~7!

The generating function

F (a)~ t,s!:5Lk
a~s!tk5~12t !2a21expS ts

t21D , utu,1

~8!

can be used to write down explicit representations of
polynomials. It also provides an economical means of eva
ating integrals of the form

^kluxpuk8l &5E
0

`

skl~x!xpsk8 l~x!dx

for integer values ofp for which this integral exists by iden
tifying the coefficient oftkuk8 in the integral

I l
(p)~ t,u!5E

0

`

e2xx2l 121pF (2l 11)~ t,x!F (2l 11)~u,x!dx

5
~2l 121p!!

~12tu!2l 131p
@~12t !~12u!#11p. ~9!

Two cases have immediate application
Case A. p521: then
8-2
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I l
(21)~ t,u!5

~2l 11!!

~12tu!2l 12
5 (

k50

`
~2l 1k11!!

k!
~ tu!k

from which we obtain

^klux21uk8l &5
~2l 1k11!!

k!
dk,k8 , ~10!

which agrees with Eq.~7! if we put a52l 11 andk5n2 l
21.

Case B. p50: This gives the Gram~overlap! matrix G of
Coulomb Sturmians. In this case

I l
(0)~ t,u!5

~2l 12!!

~12tu!2l 13
@~12t !~12u!#

so that there are nonvanishing matrix elements fork85k
61 as well as fork85k. We shall normalize the Sturmian
so that

^kluk8l &5dk,k8 , ~11!

so that, rememberingk5n2 l 21, Eq. ~10! gives

Nnl5F ~n2 l 21!!

2n~n1 l !! G1/2

. ~12!

The nonvanishing elements of the Gram matrix, are thus

gnn
l 51,

gn,n11
l 5gn11,n

l 52
1

2
A12

l ~ l 11!

n~n11!
, n5 l 11,l 12, . . . .

~13!

B. Completeness and linear independence

The classical proof that the orthonormal syste
(2/x)1/2Snl(x)n5 l 11

` is complete inL2(R1) is given by~@22#,
p. 170 and@23#, p. 95!. It follows that if we define the func-
tions onR3→R by

fnlm~r!5
Snl~r !

r
Ylm~u,w!, n> l 11, umu< l ,

where (r ,u,w) are spherical polar coordinates of the positi
r and Ylm(u,w) are spherical harmonics, then the s
$(2/r )1/2fnlm(r)% is a complete orthonormal system
L2(R3) ~@24#, Lemma 6, p. 31!.

Although the weighted Sturmians are therefore a co
plete orthonormal set inL2(R3), it is often more convenien
to use the unweighted Sturmians, so that the Gram matri
the set$fnlm(r)% is tridiagonal in each infinitelm subset.
The completeness and linear independence of the Sturm
has to be reexamined in this context.

In a finite set of dimensionN, positivity of the Gram
determinant, detG(N).0, is sufficient to ensure that a set
linearly independent. This is equivalent to the statement
for every finite set$xn%n51

N , there exists abiorthonormal set
02250
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~BOS! $xn* %n51
N such that, for allm,n, (xm* ,xn)5dmn ,

where (,) is the appropriate inner product. For anyC in the
span of the set$xn%n51

N , then we can decomposeC in the
form

C5 (
m51

N

~C,xm* !xm ,

so that in particular

xn* 5 (
m51

N

~xn* ,xm* !xm5 (
m51

N

Gmn
(N)* xm ,

whereG(N)* is the Gram matrix of the set$xn* %n51
N . Simi-

larly

xn5 (
m51

N

~xm ,xn!xm* 5 (
n51

N

Gmnxm* ,

whereG(N) is the Gram matrix of the set$xn%n51
N . Clearly

this construction ensures that each elementxn* is in the span
of $xn%n51

N and each elementxm is in the span of$xm* %m51
N ,

and

G(N)* G(N)5G(N)G(N)* 5I (N),

whereI (N) is theN-dimensional identity matrix.
Things are not quite so simple for infinite sets, and th

are several inequivalent criteria for linear independence
Hilbert spaces. For our purposes, theminimality property is
the most useful: an infinite set of functions is said to
minimal if no single elementxk can be approximated with
arbitrary precision in the linear span of the remaining e
ments of the set. A minimal set has a BOS, so that the
pansion coefficientsck

n of an elementPnC5C (n) in the span
of the finite subset

$x1 , . . . ,xn%

can be determined from the equation

ck
n5~xk* ,C (n)!5S xk* ,(

i 51

n

ci
nx i D , k51,2, . . . ,n,

independently of the way in whichck
n is calculated. More-

over, the expansion coefficients converge to the expan
coefficients ofC itself asn→`.

In this setting, it is easy to see that the Coulomb Sturm
ans have BOS with elementsSnl* (x)5(2/x)Snl(x) and
fnlm* (x)5@2Snl(x)/x2#Ylm(u,w), respectively. Thus every
elementCPL2(R3) has a formal expansion in terms of th
set. The set$fnlm(x)% is also minimal and complete on th
Sobolev spacesW2

(p)(R3) for p51,2, which proves to be
exactly what is needed for the convergence of the Rayle
Ritz method in atomic and molecular problems.

Gerschgorin’s circle theorem@25,26# allows us to verify
that any finite subset of the Coulomb Sturmians has a p
tive definite Gram matrix whenl .0. Since each eigenvalu
8-3
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I. P. GRANT AND H. M. QUINEY PHYSICAL REVIEW A 62 022508
m of the tridiagonal matrixG(N) is located in the union of
intervals 12rn<m<11rn , where

rn5ugn,n21u1ugn,n11u, n5 l 11,l 12, . . . ,l 1N

so that

r l 115ugl 11,l 12u5
1

A2l 14

and

rn;12
l ~ l 11!

n2
1O~n23!, n@ l 11.

Thus all eigenvalues lie in the interior of the interval~0,2! so
that every finite subset of the Coulomb Sturmians has a p
tive definite Gram matrix. The condition number of the m
trix G(N) is kN5(11rN)/(12rN);2N2/ l ( l 11) whenN is
large, so that the system is very well conditioned and ther
little danger of linear dependence problems in practice.

This estimate fails whenl 50, asgn,n11521/2 indepen-
dent of the value ofn. However, sinceG(N) is a tridiagonal
matrix with diagonal elements 1 and subdiagonal and su
diagonal elements2 1

2 , it is easy to show that detG(N) never
vanishes, so that we still have linear independence.

III. DIRAC L SPINORS

The DiracL spinors are defined as relativistic analogs
the Coulomb Sturmians. We envisage representing D
four-component wave functions as linear combinations

F 1

r (
nr

cnr

L f nrk
L ~r !xkm~u,w!

i
1

r (
nr

cnr

S f nrk
S ~r !x2km~u,w!

G ~14!

of a form similar to that of Eq.~2!.
In terms of the independent variablex52lr , l.0 con-

stant, theL-spinor amplitudes are given by the formulas„ @4#
Eqs.~22.146! and ~22.147!…

f nrk
L ~x!5Nnrk

xge2x/2H 2~12dnr ,0!Lnr21
2g ~x!

1
Nnrk

2k

nr12g
Lnr

2g~x!J , ~15!

f nrk
S ~x!5Nnrk

xge2x/2H 2~12dnr ,0!Lnr21
2g ~x!

2
Nnrk

2k

nr12g
Lnr

2g~x!J . ~16!
02250
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The labelsL,S identify the ‘‘large’’ and ‘‘small’’ compo-
nents of the Dirac spinor in a conventional way,nr is a
non-negative integer, and

g51Ak22Z2/c2, Nnrk
51Anr

212nrg1k2, ~17!

are, respectively, the leading exponent of the power se
expansion of the functions aboutx50 and theapparent prin-
cipal quantum number. The L spinors are solutions of the
differential equation system1

F 1

2
2

anrk
Zm2

c

1

x
2

d

dx
1

k

x

d

dx
1

k

x
2

1

2
2

Z

anrk
m2c

1

x

G F m21f nrk
L ~x!

m f nrk
S ~x!

G50,

~18!

wherec is the speed of light (c'137 in atomic units!, and
m2 is a root of the equation

m42
2c

l
m21150. ~19!

We choose

m25
c

l S 11A12
l2

c2 D , m225
c

l S 12A12
l2

c2 D ,

which ensures thatf nrk
L (x)→constSnr l

(x) in the nonrelativ-

istic limit c→` which we study below.
The analog of the nonrelativistic energy parameterE0

52l2/2 is given by

E0
R5c2A12l2/c25c21E01O~1/c2!. ~20!

The boundary conditions asr→0 and r→` are satisfied
when

anrk
5Nnrk

l/Z

and theL-spinor amplitudes coincide with Dirac-Coulom
eigenfunctionsPnk(r ) andQnk(r ) having principal quantum
numbern5nr1uku whenanrk

51.

A. L spinors in the nonrelativistic limit

It is essential that our construction should coincide w
the nonrelativistic Coulomb Sturmians in the limitc→`,
corresponding to instantaneous propagation of electrom
netic disturbances, and this can be done directly from
definitions ~15! and ~16!. It is easy to see thatg→uku,
Nnrk

→n, so that for negative values ofk52 l 21, we have

1The brief summary ofL spinors in„ @4#, Sec.~22.6.3!… is correct
save for Eq.~22.145!, which should be replaced by the prese
Eq. ~18!.
8-4
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f L~x!→const3xl 11e2x/2$2~12dnr0
!Lnr21

2l 12~x!1Lnr

2l 12~x!%

5const3xl 11e2x/2Lnr

2l 11~x! ~21!

using „@21#, Eq. ~22.7.30!… in the second line. Similarly for
positivek5 l , remembering thatnr>1 in this case, we have

f L~x!→const3xle2x/2H 2~12dnr0
!Lnr21

2l ~x!

1
nr

nr12l
Lnr

2l ~x!J
5const3xle2x/2$2~nr12l !Lnr21

2l ~x!1nrLnr

2l ~x!%

5const3xl 11e2x/2Lnr

2l 11~x!, ~22!

using „@19# Eq. ~22.7.31!… in the third line. Sincenr5n2 l
21, we have proved that

f L~x!→const3Snl~x!

for both signs ofk in the nonrelativistic limit.
A similar analysis shows that for both signs ofk,

f S~x!→constS d

dx
1

k

x D xl 11e2x/2Lnr

2l 11~x!,

which may be expressed in terms of the criterion ofstrict
kinetic balance

lim
c→`

f S~x!5const3S d

dx
1

k

x D f L~x!.

The kinetic balance criterion simply states that the large
small component amplitudes should be related accordin
the Pauli approximation, guaranteeing consistency with n
relativistic equations in the limitc→` @27#.

B. Orthogonality properties

The standard orthogonality properties of Laguerre poly
mials can be used to write downL-spinor generalizations o
Sturmian properties. However, an orthogonality relation w
respect to the weight function 1/x can be written down in an
elementary way from Eq.~18!. Multiplying from the left by
the adjoint vector@m21f n

r8k
L

,m f n
r8k

S
# and subtracting the re

sult from the corresponding equation withnr and nr8 inter-
changed gives

~anrk
2an

r8k!E
0

`

$ f n
r8k

L
~x! f nrk

L ~x!

2~anrk
an

r8k!21f n
r8k

S
~x! f nrk

S ~x!%
dx

x
50.

Thus the integral vanishes if the eigenvaluesanrk
andan

r8k

are different. Although this reduces to the Sturmian ortho
02250
d
to
n-

-

-

nality relation~7! in the nonrelativistic limit, the integrand is
not obviously positive definite and the result is not very u
ful.

However, it is easy to use the elementary results of
previous section to write down the elements of the Gr
matrix. The normalization factorNnrk

is the same for both

f nrk
L (x) and f nrk

S (x), and is given by the equation

15gnrnr

(k)

5N nrk
2 H ~12dnr0

!
G~2g1nr !

~nr21!!

1S Nnrk
2k

2g1nr
D 2

G~2g1nr11!

~nr !!
J

5N nrk
2 2Nnrk

~Nnrk
2k!

G~2g1nr !

nr ! ~2g1nr !
,

so that

Nnrk
5F nr ! ~2g1nr !

2Nnrk
~Nnrk

2k!G~2g1nr !
G1/2

. ~23!

In a similar fashion we can easily show that

gnr ,nr

k 51,

~24!
gnr ,(nr11)

(k) 5g(nr11),nr

(k)

5
hT

2 F ~nr11!~2g1nr11!~Nnrk
2k!

Nnrk
N(nr11),k~N(nr11),k2k! G 1/2

,

T5L,S

wherehL521 andhS511.
It is straightforward to show that theL-spinor Gram ma-

trices reduce to the Gram matrices for Coulomb Sturmi
~apart from the sign of the off-diagonal elements! in the non-
relativistic limit. Writing g(N)5G(N)2I (N), we see, by ex-
panding with respect to the last row, thatf (N)(s)5det(g(N)

2sI (N)) satisfies

f (N)~s!52s f (N21)~s!2gN,N21
2 f (N22)~s!

with f (1)(s)52s and f (2)(s)5s22g12
2 . We conclude in-

ductively thatf (2k)(s) and f (2k11)(s)/s are polynomials in
s2 of degreek, so that the eigenvalues ofG(N) are in the
interval (12rN ,11rN), where

rN512
C

N2
1O~N23!, ~25!

whereC is a positive constant. The eigenvalues off (N) are
distributed symmetrically abouts50 whenN is even, and
there is an additional zero eigenvalue whenN is odd. Thus
G(N) has condition numberkN5(11rN)/(12rN);2N2/C
8-5
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I. P. GRANT AND H. M. QUINEY PHYSICAL REVIEW A 62 022508
whenN is large, so that the linear independence behavio
very similar to the Coulomb Sturmians.

C. Completeness ofL spinors

We can establish completeness ofL spinors in a variety of
Hilbert spaces by exploiting the following~@24#, Lemma 5!.

Lemma 1 (Klahn). Let $wn%n51
` be a complete system in

Hilbert spaceH. Moreover, letanm , (1<m<n) be arbitrary
complex numbers withannÞ0. Then the system

H cn5 (
m51

n

anmwmJ
n51

`

is also complete inH.
To apply this to theL spinors, we note that Eqs.~15! and

~16! can be written

f nrk
T ~x!5anr ,nr21xge2x/2Lnr21

2g ~x!

1hTanr ,nr
xge2x/2Lnr

2g~x!, T5L,S

with hL511,hS521. Sinceanr ,nr2152(12dnr ,0
), only

the second term contributes whennr50 for both signs ofk.
Also sinceN0,k5uku, the first nonvanishingL spinor for k
.0 hasnr51. We infer that the radial amplitudes appeari
in Eq. ~14! have formalL-spinor expansions and that theL
spinors are both complete and minimal on the Sobo
spaces@W2

(p)(R3)#2 for p51,2. We shall see that this is ex
actly what we need for constructing trial wave functions
the Rayleigh-Ritz approximation of Dirac four-compone
wave functions.

D. Charge conjugation andL spinors

One of the most important symmetries of the Dirac eq
tion is charge conjugation which, loosely speaking, sets u
correspondence between electron and positron states. U
charge conjugation, Dirac four-spinors transform like

c→cc5Cc̄ t ~26!

where the superscriptt denotes transposition andc̄5c* g0 is
Dirac conjugation. The matrixC is given by

C5 ig2g05F 0 2 is2

2 is2 0 G .
When the radial amplitudesP(r ),Q(r ) are real, it is easy to
show that if

c5
1

r F P~r !xk,m

iQ~r !x2k,m
G

then

cc52 i ~21!m11/2FQ~r !x2k,2m

iP~r !xk,2m
G .
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Under this transformation, expectation values of the posit
variable and the charge-current vector remain invaria
whilst those of spin, orbital, and total angular momentu
change sign, as does the sign of the energy parameterE and
the sign ofZ coupling the electron to the external Coulom
potential.

By making the corresponding changes

Z↔2Z, f nrk
L ~x!↔ f nrk

S ~x!, k↔2k, m↔m21

in Eq. ~18! we see thatL spinors retain the charge conjug
tion symmetries of the Dirac eigenfunctions on which th
are modeled. Since the mappingm↔m21 is equivalent to
changing the sign of the energy parameterE0

R5

1A12l2/c2, Eq. ~20!, we infer thatL-spinor expansions
will be able correctly to represent positron~negative-energy
electron! states as well as bound states. This assertion wil
clarified in the discussion ofL-spinor applications that fol-
lows.

IV. THE RAYLEIGH-RITZ METHOD FOR SCHRO ¨ DINGER
AND DIRAC OPERATORS

In view of the misunderstanding of the status of t
Rayleigh-Ritz methods for Dirac problems in atomic a
molecular physics, it is useful to begin with a review of th
known mathematical results and to see how they can be
plied to both nonrelativistic and relativistic cases.

A. The Rayleigh quotient

Applications of the Rayleigh-Ritz method in quantum m
chanics usually assume that one is dealing with aself-
adjoint, non-negative, compactoperatorT, defined on a do-
mainD contained in a Hilbert spaceH. Such an operator ha
an ordered set of non-negative eigenvalues

0<l1<l2<•••

with due regard for multiplicity, with corresponding eigen
functionsc1 ,c2 , . . . , respectively. TheRayleigh quotient,
defined~in Dirac bra-ket notation! by

R@c#ª^cuTuc&/^cuc&, ~27!

evidently exists for all nontrivialcPD. The Rayleigh-Ritz
method assumes that we can approximate every suchc by
its projection, Pnc, on a finite dimensional subspac
Wnª$x1 ,x2 , . . . ,xn%,D, so that there exists some set
coefficients~in general complex! for which

Pnc5c1
nx11c2

nx21•••1cn
nxn . ~28!

A simple calculation shows that

Fn@cn#ªR@Pnc#5cn†Tncn/cn†Sncn, ~29!

wherecn5(c1
n ,c2

n , . . . ,cn
n) t, cn† is its Hermitian conjugate,

andTn,Sn aren3n Hermitian matrices with elements

Ti j
n 5^x i uTux j&, Si j

n 5^x i ux j&, 1< i , j <n ~30!
8-6
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respectively. The Gram matrixSn must be positive definite if
Eq. ~29! is to have a meaning, so that the setWn must be
linearly independent. We shall henceforth require that this
true for every set of functions meriting consideration. T
Gram matrix is then-dimensional identity matrix if the func
tionsx i are orthonormal, but we have already seen that C
lomb Sturmians andL spinors are not of this type.

This manipulation approximates the Rayleigh quotient
an algebraic functionFn@cn#. Elementary calculus tells u
how to find its stationary points as the roots of the Galer
equation~@28#, p. 395!

Tncn5LnSncn, ~31!

whereLn is a diagonal eigenvalue matrix whose eleme
can be ordered so that

0,L1
n<L2

n<•••<Ln
n ,

with due regard for multiplicity. We denote the correspon
ing eigenvectors, the columns ofcn, by c1

n ,c2
n , . . . ,cn

n .
It is customary in the quantum-mechanical literature

show at this point that the lowest eigenvalueL1
n is an upper

bound to the true eigenvaluel1
n . This is attributed to the fac

that T is a positive definite operator, and the conclusion
easily generalized to encompass all operatorsT which are
bounded below. However, this needs to be seen in a m
general setting given by the following theorem~@28#, pp.
397–398!.2

Theorem 1 (Poincare´). Let T be as defined above. The
the eigenvalues of the Galerkin equation~31! are upper
bounds to the target eigenvalues

0,l1<L1
n<•••<ln<Ln

n .

Stakgold@28# lists a number of comments, in particula
the following.

~1! If T is nonpositivethen 2T is non-negative, and al
the above holds with the inequalities reversed.

~2! If T is indefinitethen the inequalities for non-negativ
T hold for the upper part of the spectrum whilst those
nonpositiveT hold for the lower eigenvalues.

~3! Increasing the size of the setWn generally improves
the approximation. In practice, one would like to use a co
plete set of functionsWª$x i% i 51

` spanning the domainD, so
that Wn spans an increasing subspace ofD as n increases.
Then L i

n→l i as n→` because the compact operatorPnT
→T in the operator norm.

B. Convergence of Rayleigh-Ritz approximations

We need rather more precise criteria of convergence if
are to rely on the Rayleigh-Ritz approximations on fin
basis sets. Not only do we need to have some idea how c
our estimates of eigenvalues are to the exact values,
should like to know in what sense the approximate eig

2Stakgold’s inequalities@28# are reversed as he lists the eigenv
ues in reverse order.
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function Pnc approximates the true eigenfunctionc and
whether approximate expectation values and transition
trix elements constructed from approximate wave functio
are sufficiently close to the true values to be of practical u

The convergence of Rayleigh-Ritz eigenvalues and eig
functions of nonrelativistic quantum Hamiltonian operato
was analyzed in@24#. Let T5p2/2 be the usual particle ki-
netic energy, and consider the Sobolev spaceW2

(1),L2

equipped with the norm

iciW
2
(1)

2
5^uu11Tuu&5i~11T!1/2uiL2

2 . ~32!

Klahn and Bingel@22# establish that the Rayleigh-Ritz ap
proximate eigenvalues converge to the eigenvalues of
target Hamiltonian~which they termE convergence! if the
set W is complete inW2

(1) . Moreover, the approximation
c i

n
ªPnc i to thei th bound state converges in the mean to

eigenfunctionc i whenever the corresponding eigenvalu
Ei

n , converges toEi as n increases. Thus we have only t
construct a basis set that is complete inW2

(1) to be certain of
E convergence both to eigenvalues and eigenfunctions of
Hamiltonian.

This analysis has been extended by Klahn and Mor
@29# to the convergence of expectation values and transi
matrix elements. LetA be a strictly positive operator, self
adjoint on a domainD(A), and define a newA norm by

iciA
25^cuAuc&5iA1/2ciL2

2 . ~33!

With the related scalar product, this induces a new Hilb
space with theA norm. We say that a set of functions
A-complete if it is complete in this space. The Sobolev sp
W2

(1) is a special case of this construction havingA511T.
Lemma 2.The sequence

^A&n
ª^cnuAucn&

converges tôA&5^cuAuc& if and only if cn→c asn→` in
the A norm.

This is a direct consequence of two inequalities

u^A&n2^A&u<icn2ciA
212^A&1/2icn2ciA

and

icn2ciA
2<u^A&n2^A&u12iAci icn2ci .

Thus the setW must beA complete if a sequence of eigen
functions $cn% generated by the Rayleigh-Ritz method
also to give a convergent sequence of approximations^A&n.

We can avoid having to deal withA-completeness if the
operatorA is relatively form boundedby T: that is, there
exists a pair of non-negative numbersa,b such that

z^cuAuc& z,a^cuc&1b^cuTuc&, ;cPD~T!. ~34!

This includes a wide range of operators:boundedoperators,
for which we can setb50; Coulomb potentials;T itself
~with a50 andb51); components of the momentum oper
tor p; and nonrelativistic atomic and molecular Hamilt
8-7
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nians, sayHS . Clearly,T can be relatively form bounded b
HS1k, wherek.0 is chosen large enough thatHS1k has a
purely positive spectrum. Then if^cuAuc& satisfies Eq.~34!,
we choosek.0 so thatT1k is strictly positive, and the
sequencecn is E convergent toc in the T1k norm, then

icn2ciA
2<max~a/k,b!icn2ciT1k

2

so that$cn% is alsoA convergent toc. This means that it is
sufficient forW to be complete in the Sobolev spaceW 2

(1) .
Finally, it is straightforward to show that transition matr

elements of the form̂c i
nuAuc j

n& converge to the desired limi
^c i uAuc j& as n→` provided the sequences$c i

n% and $c j
n%

are alsoA convergent.

C. Extension to Dirac operators

1. Operator domains

The Dirac operators occurring in atomic and molecu
physics calculations have many features in common w
Schrödinger operators but the analysis reveals some esse
differences. The first step is to identify a domain on whi
the Dirac operator is essentially self-adjoint. The books
@30# ~Chap. V.5!, @31# ~Chap. X!, and @32# have a common
strategy, which is to identify a suitable domain in the r
evant Hilbert space in which thefree particleHamiltonian
H0 is essentially self-adjoint and then to establish the larg
class of potentialsV such thatHªH01V is essentially self-
adjoint onD(H0).

In the nonrelativistic case,H05p2/2, H0 is essentially
self-adjoint on C0

`(R3), the space of infinitely differentiable
functions with compact support inR3. The eigenfunctions of
H0 have square integrable partial derivatives of order 2
thatH0 is self-adjoint on the Sobolev spaceW2(R3) ~@31#, p.
54, Theorem IX.27; p. 166, Ex. 1! demonstrating that when
V52Z/r , where r is the radial distance from the poin
charge nucleus of a hydrogenic atom, thenHªH01V is
essentially self-adjoint onD(H0). Kato’s theorem~@31# p.
166, Theorem X.16! extends this to the full nonrelativisti
Hamiltonian for atoms and molecules.

The analogs for the relativistic Dirac Hamiltonian a
more messy. When

H0ªca•p1c2b ~35!

~using Hartree atomic units!, then H0 is essentially self-
adjoint onC0

`(R3\0)4 and self-adjoint on the Sobolev spa
D(H0)5W1(R3)4,L2(R3)4 ~@32#, Theorem 1.1!. In the case
of the hydrogenic atom with a point nucleus,V56Z/r , then
H5H01V is well defined and essentially self-adjoint o
C0

`(R3\0)4 and self-adjoint onD(H0) only if Z/c,A3/2
~@32#, Theorem 4.4!. Sincec'137 in atomic units, this re-
stricts the potentials toZ,118, which satisfactorily covers
all elements in the Periodic Table. However, the stand
textbook analytic eigenfunctions for the relativistic hydr
genic atom are well behaved for 118,Z<137. There are
two analytic solutions of the Dirac Coulomb problem: t
solution regular at r 50 having amplitudes of orderO(r g)
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there~recallg51Ak22Z2/c2) and anirregular solution of
orderO(r 2g). Whenk561 theng51/2 atZ/c5A3/2. So
for Z,118, only the regular solution is square integrab
nearr 50, whereas both solutions are square integrable
Z.118, and a general square integrable eigensolution of
Dirac Coulomb problem is an arbitrary linear combination
the two. Order can be restored by noting that any solut
containing a multiple of the irregular solution make
^cuVuc& infinite ~@4#, Sec. 22.5!, so that the physics require
exclusion of the irregular solution to make the expectation
V finite. This behavior can also be interpreted in the langu
of the theory of differential equations either as a transition
the behavior at the origin from a limit-point description fo
g.1/2 to a limit-circle description forg, 1

2 ~@33#, Chap.
11!, or in terms of the theory of deficiency indices~@31#,
Chap. X!.

The idealized point charge nucleus is not a good eno
model for the heavier elements, or for very accurate w
anywhere in the Periodic Table, and one can then replace
Coulomb potential by one which is infinitely differentiable
In this caseH is again essentially self-adjoint onD(H0)
~@33#, Theorem 4.3!. The extension to many-electron atom
or molecules is not considered in@33#, but there seem to be
no insuperable difficulties once the single particle case
been understood.

2. Rayleigh-Ritz method for the Dirac operator

We now have a mathematical framework in which we c
study the Rayleigh-Ritz method for Dirac operators. For si
plicity, consider the Dirac Coulomb atomic Hamiltonian

H~n!ªca•p1mc2b2n
Z

r
~36!

with Z/c,A3/2 onD(H0)5W1(R3)4, where

a5F 0 s

s 0G , b5F I 0

0 2I G ,
and I is the two-dimensional identity matrix. The real num
ber n defines a family of Dirac Hamiltonians interpolatin
smoothly betweenH(0)5H0 andH(1) which incorporates
the full strength Coulomb field. We assume a trial wa
function of the general form

fªF (
n51

N

cn
LM @L,nkm,r#

i (
n51

N

cn
SM @S,nkm,r#

G . ~37!

Later we shall identify the expansion function
M @T,nkm,r#,T5L,S with the L spinors~15! and ~16!, but
at this stage we merely assume that the set is complet
D(H0). The Galerkin equations take the form
8-8
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Fc2SLL1nVLL cPLS

cPSL 2c2SSS1nVSSGFcL

cSG5EFSLL 0

0 SSSGFcL

cSG
~38!

in which all the submatrices are of dimensionN3N. The
Gram matrices denoted bySTT, T5L,S, and VTT are the
corresponding matrices of the potentialV. The matricesPTT̄

~whereT̄5S whenT5L and vice versa! are given by

Pnn8
LS

ªE M†@L,nkm,r#s•pM @S,n8km,r#dr,

Pnn8
SL

ªE M†@S,nkm,r#s•pM @L,n8km,r#dr.

The system is Hermitian and has real eigenvalues.
The original operatorH(0) has a pure absolutely continu

ous spectrum consisting of two disjoint intervalss2

5(2`,2mc2# and s15@mc2,`). Suppose thatf is an
arbitrary trial function inD(H0), and let

Ef~n!5^fuH~n!uf&5Ef~0!1nVf ,

where Vf5^fuVuf&. Suppose thatf has been chosen s
that Ef(0).mc2. Since V has, by hypothesis, a strictl
negative expectation,Vf,0, thenEf(n),Ef(0) decreases
monotonically asn increases from 0 to 1, and we shall ha
mc2.Ef(n).2mc2 if Ef(0) is not too large.3 As only
point eigenvalues of bound states can lie in (2mc2,mc2),
Ef(n) will approximate a bound-state eigenvalue for valu
of n in some interval 0,n0<n<1. A sufficient condition
that Ef(1).2mc2 is that 0.Vf>Vmin.22mc2, so that
no state of the positive-energy spectrum can ever enter
‘‘negative-energy sea’’ asn approaches unity. Of course,
state withEf(0),2mc2 will have Ef(n),2mc2 for all
values 0<n<1. Another way of putting this is to say tha
the positive-energy eigenvalues are bounded below~by
mc21Vmin.2mc2), and the negative-energy eigenvalu
are bounded above~by 2mc2), in the manner suggested b
Stakgold@28#.

This behavior applies also to the eigensolutions of
Galerkin equations~38!. We shall see that withL spinors
~and with other admissible sets of expansion functions
cussed by@4#, with matched sets ofN functions for both
large and small components, we obtain a discrete ps
dospectrum havingN eigensolutions in the interval2`
,Ei

N,2mc2 ( i 51,2, . . . ,N) and N in 2mc2,mc2

1Vmin,Ei
N,` ( i 5N11,N12, . . . ,2N). As N increases,

the lower eigenvalues of the upper set,EN11
N ,EN12

N , . . . ,
converge to the lowest bound-state eigenvalues from ab
exactly as they do in nonrelativistic calculations. The so
tions with eigenvalues in the continuum regions,E.mc2

above andE,2mc2 below, represent continuum~standing-
wave scattering solutions! in a region 0,r ,Rnk(l) of size
depending on the state and on the arbitrary parameterl be-

3For examples of this behavior see Ref.@34#, Figs. 9.11 and 9.13
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fore decaying exponentially asr→`. This behavior is con-
sistent with the discussion following the Poincare´ theorem.

Provided the Coulomb potential is not too strong, we s
that the spectrum has two disjoint parts, and that the dom
D(H) is the union of two disjoint subspaces,D1 andD2 .
This suggests we define a new form of convergence,D con-
vergence (D for Dirac! on D1 with the norm

iciD5^cuH~0!uc&,

;c such that ^cuH~0!uc&>mc2. ~39!

For basis sets that are complete with respect to this norm
can infer@3# the following.

~i! Rayleigh-Ritz convergence inD1 for bound-stateen-
ergies and eigensolutions of the one-electron Dirac oper
for atomic potentials. This may be extended to man
electron atoms and molecules~in the Born-Oppenheimer ap
proximation with the nuclei in fixed positions! without diffi-
culty.

~ii ! A version of A convergence for operators that a
relatively form bounded byH(0) onD(H). Fortunately, this
class includes most of the interesting operators in atomic
molecular physics:

~1! Bounded operators: constants, Diraca and b matri-
ces, and operators such asa3r and a•A, whereA is the
vector potential of some external field.

~2! Powersr l,l>21.
~3! Components of momentump and combinations such

asa•p.
~4! Other pieces of the Dirac operator itself.

V. APPLICATIONS TO RELATIVISTIC ATOMS

This section reviews some applications of the preced
theory of Rayleigh-Ritz methods to a range of physical pro
lems. Much of the power ofL spinors derives from the abil
ity to write down simple algebraic expressions for the effe
tive Hamiltonian in hydrogenic problems. The difficulty o
evaluating matrix elements for the electron-electron inter
tion with L spinors effectively rules out their use in man
electron systems. Fortunately other sets of functions
available for that purpose~@4#, Sec. 22.6.3!.

For simplicity, we shall defineaª2g, and exploit Poch-
hammer’s symbol

~a!051,

~a!k5~a1k21! ~a!k215a~a11!•••~a1k21!, k>1.

We also use the notations

Gk~a!5
~a11!k

k!
, Hmn~a!5 (

k50

min m,n

Gk~a21!. ~40!

Then
8-9
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Vmn
T 52ZlF m!n! ~a1m!~a1n!

NmkNnk~Nmk2k!~Nnk2k!~a!m~a!n
G1/2H Hm21,n21~a!1hT

Nnk2k

n1a
Hm21,n~a!

1hT
Nmk2k

m1a
Hm,n21~a!1

Nmk2k

m1a

Nnk2k

n1a
Hmn~a!J , ~41!

wherehL521 andhS511. The kinetic energy matrices are

Pmn
SL5Pnm

LS5
l

2 F m!n! ~a1m!~a1n!

NmkNnk~Nmk2k!~Nnk2k!~a!m~a!n
G1/2H ~2Nnk12n221a!FHm21,n21~a!1

Nmk2k

m1a
Hm,n21~a!G

2
Nnk2k

n1a
~2n12k1a!FHm21,n~a!1

Nmk2k

m1a
Hm,n~a!G22~n1a21!FHm21,n22~a!2

Nmk2k

m1a
Hm,n22~a!G

2Gm21,n21~a!2
Nmk2k

m1a
Gm,n21~a!1

Nnk2k

n1a
Gm21,n~a!1

Nmk2k

m1a

Nnk2k

n1a
Gmn~a!J , ~42!
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whilst the symmetric tridiagonal Gram matricesSTT are re-
lated to the expressions~24! by

Si j
TT5gi j

k /2l,

where the additional factor 2l arises from the change of a
independent variable fromx to r. It is convenient that the
parameterl only enters these matrix definitions as a const
multiplier, so that it is easy to assess the effect of mak
changes to its value.

A. Hydrogenic atoms

Matrix diagonalizations were done using standa
EISPACK routines with Fortran double precision arithme
taking the speed of lightc5137.035 989 5 a.u.~the currently
accepted value of the reciprocal fine-structure constant!.

The numerical method appears to be very stable. The
genvalues of the Gram matrices lie, as predicted~25!, in the
range (12rN ,11rN), where 0,rN,1. Typical values of
rN and the condition numberkN appear in Table I. These ar
much smaller than the condition numbers, of order 108, re-
ported for methods that use unrestricted kinetic balance@35#.
Typical values of the lowest eigenvalue of the system

VTTc5v STTc,

the same forT5L and T5S, estimating the lower bound
Vmin ~Sec. IV C!, are shown in Table II. This lower bound
in the gap (0,22mc2) for Z,135, well beyond the atomic
numberZ5118 which is usually taken as the limit of sel
adjointness of the Dirac Coulomb operator. TheL spinors are
constructed from functions that have a finite expectation
1/r , so that the condition to extend the range ofZ from Z
5118 to 137 is satisfied. We have successfully genera
solutions whenuku51 even for values ofZ as close to criti-
cal as 137.035 989, whereVmin,22mc2 though the accu-
racy is no longer very good. This should not cause surpr
02250
t
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as the conditionVmin.22mc2 is sufficient, but not neces
sary. We can generate solutions for larger values ofuku up to
Z5cuku in the same way.

Convergence of the solution as the basis-set dimensioN
is increased follows the expected pattern. The matrix dia
nalizer produces ordered eigenvalues, in which those n
beredN11,N12, . . . ,2N correspond to the positive spec
trum, and those numbered 1, . . . ,N lie below 22mc2. The
positive eigenvalues converge to the correct values fr
above, exactly as in nonrelativistic calculations, and for
actly the same reasons. A sample forZ550, large enough to
show some relativistic effects, appears in Table III, show
rapid stabilization of the lowest eigenvalues asN increases
with l550.0. The special choicel5Z/Nnrk

ensures that the

nrk eigenstate is represented by a singleL spinor, although

TABLE I. Gram matrix conditioning.

Z N k 1-rN kN

10 100 21 4.83731024 4134
1 9.70231024 2061

22 9.70231024 2061
2 1.56531023 1277

23 1.56531023 1277
3 2.25731023 885

24 2.25731023 885
4 3.03631023 658

25 3.03631023 658
100 100 21 2.17331024 9203

1 4.38731024 4558
22 4.37731024 4568

2 7.10331024 2815
23 7.10731024 2813

3 2.26131023 884
24 2.26031023 884

4 1.39531023 143
25 1.39431023 143
8-10
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other eigenstates will be represented by a nontrivial lin
combination. Because the basis is complete, we expect
stable eigenvalues are insensitive to the choice ofl, and this
is what we observe. Thus the eigenvaluesens , n51 – 8, are
unchanged to seven decimal places, whenl is reduced from
50.0 to 30.0. The same behavior is observed with other s
metries and it is gratifying that, even though the mat
Hamiltonians are different, the stabilized eigenvalues disp

TABLE II. Vmin in atomic units.N5100.

Z k521 k51 k522 k52 k523

10 2552 2201 2201 2107 2107
20 21117 2406 2402 2215 2215
30 21708 2618 2607 2324 2323
40 22342 2843 2815 2434 2432
50 23039 21086 21028 2547 2542

60 23827 21355 21248 2664 2653
70 24748 21663 21476 2785 2767
80 25868 22026 21715 2910 2883
90 27296 22476 21966 21042 21002

100 29243 23069 22232 21181 21123

110 212176 23928 22517 21328 21249
120 217440 25407 22823 21487 21378
130 231921 29286 23157 21657 21512

(22mc25237 557.7248 a.u.!
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the correctuku degeneracy,e2s5e2p1/2
, e3p3/2

5e3d3/2
, . . . ,

and the correct fine-structure ordering. The (N11)th eigen-
value is always the lowest bound state of its symmetry a
there are no spurious states, interlopers, or pathological
havior characterized as ‘‘finite basis-set disease’’ and ‘‘co
tinuum dissolution’’ in such papers as@36#.

TheNth eigenvalue of each symmetry is always the hig
est in the ‘‘negative-energy sea’’ and is always safely bel
the upper bound22mc2. Since there are no bound states, w
expect to see no convergent sequences of eigenvaluesN
increases nor do we find any. The sensitivity of the high
negative eigenvalue to bothN and l, Table IV, illustrates
these conclusions.

B. Static dipole polarizability of relativistic hydrogenic atoms

This much studied problem~see @16# for the extensive
literature! can be used to illustrate two uses ofL-spinor com-
pleteness: evaluation of matrices of simple functions of
ordinates, and the evaluation of perturbation sums. T
second-order static dipole polarizabilityazz for the state
uc0&, energye0, of a hydrogenic atom is given by the for
mula

azz52(
nÞ0

^c0uzucn&^cnuzuc0&
en2e0

, ~43!

where the restrictionnÞ0 excludesc0 from the sum over
states. In the Dirac case, the sum includes both positive-
negative-energy eigenstates. For brevity, we treat only
TABLE III. Convergence with respect to the matrix block dimensionN for positive-energy states of a
hydrogenic atom withZ550.

N e1s e2s e3s e4s e5s

l550.0
20 21294.62616 2326.494806 2143.829353 279.5730938 235.1391668
40 21294.62616 2326.494806 2143.829802 280.3703311 251.1923424
60 21294.62616 2326.494806 2143.829802 280.3703316 251.1977244
80 21294.62616 2326.494806 2143.829802 280.3703316 251.1977244

e2p1/2
e3p1/2

e4p1/2
e5p1/2

e6p1/2

l525.0
20 2326.494806 2143.829807 280.3703372 251.1972465 235.2027152
40 2326.494806 2143.829803 280.3703331 251.1977253 235.433571
60 2326.494806 2143.829802 280.3703323 251.1977248 235.4335707
80 2326.494806 2143.829802 280.370332 251.1977247 235.4335706

100 2326.494806 2143.829802 280.3703319 251.1977246 235.4335705
e2p3/2

e3p3/2
e4p3/2

e5p3/2
e6p3/2

l525.0
20 2315.144355 2140.457874 278.952058 250.4731861 234.7554737
40 2315.144355 2140.457874 278.952058 250.4738674 235.0157937
60 2315.144355 2140.457874 278.952058 250.4738674 235.0157937

e3d3/2
e4d3/2

e5d3/2
e6d3/2

e7d3/2

l515.0
20 2140.457874 278.9520581 250.4738674 235.0157937 225.7034854
40 2140.457874 278.952058 250.4738674 235.0157937 225.7037387
60 2140.457874 278.952058 250.4738674 235.0157937 225.7037387
8-11
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case in whichc0 is the 1s1/2 ground state with angular
momentum projectionmj511/2; angular-momentum selec
tion rules then restrict the intermediate sum to states w
symmetry typesk511,k522, both withmj51 1

2 . We can
therefore ignore the quantum numbermj in what follows.
After performing angular integrations, we obtain the atom
dipole polarizability of the 1s state in the form

ad5
2

9
~D1112D22!, ~44!

Szmytkowski has presented analytical expressions for
quantitiesD11 andD22 „@16#, Eqs.~182!–~184!… with which
we have compared our numerical results in Table V. Th
have been obtained by computing the sums

Dk5 (
nÞ0

1
~0ur un1k!~n1kur u0!

en
12e0

1
1(

n

2
~0ur un2k!~n2kur u0!

en
22e0

1
,

~45!

where superscripts1/2 designate the two branches of th
pseudospectrum and the matrix elements are now purely
dial. It is convenient to choose the tuning parameter to h
the valuel5Z, so that the 1s reference statec0 is repre-
sented exactly by theL spinors with nr50,k521. The
basis-set dimensionsNk have been adjusted so that

Z4uDk2Dk
analyticu<h. ~46!

The valueh51026 used in Table V ensures agreement
our numerical values with the analytic values to six sign
cant figures. We have done similar calculations at hig
precision, but these take longer to run.

The results are relatively insensitive to the choice ofl
over a wide range, consistent with the completeness

TABLE IV. Highest negative-energy eigenvalues forZ550
~a.u.! relative to22mc2.

N5
l

20 40 60 80 100

k521
30 257.6 226.6 217.0 212.4 29.7
40 280.3 236.7 223.4 217.0 213.3
50 2104.3 247.4 230.1 221.8 217.1

k511
20 246.6 220.7 213.0 29.4 27.3
25 261.1 227.0 216.9 212.1 29.4
30 276.4 233.6 220.9 215.0 211.6

k522
20 234.8 216.6 210.7 27.9 26.2
25 244.9 221.2 213.7 210.1 27.9
30 255.4 226.0 216.8 212.3 29.7

k512
10 219.6 29.1 25.9 24.3 23.3
15 231.4 214.6 29.3 26.7 25.3
20 244.2 220.4 212.9 29.4 27.3
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L-spinor sets. However, it also influences the rate of conv
gence of perturbation expansions making it essential to
amine the sensitivity tol in each application.

C. A simple perturbation problem

Perturbation calculations show the completeness pro
ties of L spinors to advantage, in this case to study the c
vergence of the perturbation expansion of the energy o
hydrogenic atom in which the nuclear charge is perturb
from Z to Z1Z8 in powers ofZ8. This model was first stud-
ied nonrelativistically by Rossky and Karplus@37#; it has the
advantage that the states of the unperturbed system
known exactly, as is the final answer, so that the error at e
order of perturbation is easy to establish. In the nonrelativ
tic case, the sum over all diagrams contributing to the ene
of orderk vanishes fork.2, sinceenl52(Z1Z8)2/2n2 Eh .
However, there are usually several diagrams of orderk>3
which should sum to zero for each value ofk, but Rossky
and Karplus found that this was only true approximate
Although summing over the discrete spectrum is straightf
ward, integrating over continuum states is troublesom
Whilst in principle this is just a quadrature, integrals over t
perturbation2Z8/r which are diagonal in energy diverge, s
that the energy integration needs to be done with care.
showed@19# that all these difficulties could be avoided if w
solved the Schro¨dinger equation for the nonrelativistic hy
drogenic atom using simple finite basis sets of either ex
nential or Gaussian form. The more difficult Dirac case w
studied in@20#; the higher-order diagrams of orderk>3 no
longer sum to zero, and we found that it was essentia
include negative-energy sums in order to get the anal
results obtained by expanding the Sommerfeld formula
chargeZ1Z8 in powers ofZ8.

TABLE V. Contributionsk, Eq. ~45!, computed with the con-
vergence criterion, Eq.~46!, h51026.

Z Z411 N11 Z422 N22

1 6.749531 2 6.749676 2
5 6.738272 2 6.741888 2

10 6.703128 4 6.717556 2
15 6.644694 6 6.677018 2
20 6.563177 10 6.620296 3
30 6.332152 18 6.458439 3
40 6.013420 26 6.232346 3
50 5.611749 36 5.942529 4
60 5.133374 46 5.589629 4
70 4.586085 56 5.174405 3
80 3.979358 66 4.697663 5
90 3.324546 76 4.160097 6

100 2.635150 86 3.561882 6
110 1.927202 96 2.901526 5
120 1.219632 102 2.171964 10
130 0.532359 108 1.339899 16
135 0.192185 103 0.819494 22
8-12
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TABLE VI. Perturbed hydrogenic 1s state.

Z e0 e2
1 e2

2 e2 e2 @Eq. ~48!#

10 250.066742 20.504124 0.000103 20.504021 20.504021
20 2201.076523 20.517050 0.000639 20.516412 20.516412
30 2455.524907 20.539986 0.001761 20.538225 20.538225
40 2817.807498 20.575014 0.003560 20.571454 20.571455
50 21294.626156 20.625644 0.006153 20.619491 20.619495
60 21895.682356 20.697763 0.009731 20.688032 20.688042
70 22634.846565 20.801543 0.014631 20.786912 20.786943
80 23532.192151 20.955598 0.021459 20.934139 20.934228
90 24617.757654 21.197084 0.031394 21.165689 21.165967

100 25939.195384 21.610319 0.047022 21.563297 21.564287
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Here we treat the perturbed 1s level, for which we have
the simple formula

e~Z!5~g21!c2, g5A12Z2a2, ~47!

so that the perturbation series takes the form

e~Z1Z8!5e~Z!1e1~Z!Z81e2~Z!Z821••• ~48!

where, using Taylor’s theorem,

e1~Z!5e8~Z!52Z/g,

e2~Z!5
1

2
e9~Z!521/2g3, . . .

which clearly agrees with the nonrelativistic result in t
limit c→`. In the finite dimensional formulation, we have
evaluate the expressions

e1~Z!5^c0u1/r uc0&,
~49!

e2~Z!5 (
nÞ0

^c0u1/r ucn&^cnu1/r uc0&
e~Z!2en~Z!

,

whereen(Z) is the eigenvalue associated withucn&, the sum
extending over the complete spectrum of positive- a
negative-energy states. Table VI displays the results c
puted with block dimensionN5100 takingl5Z to be fixed.
This is not sufficient for the highest values ofZ; the differ-
ence between the sum over states in the penultimate col
and the exact value in the last column gives some idea of
error. The negative-energy state contribution grows roug
like Z3, and is clearly non-negligible for highZ, demonstrat-
ing that any perturbation of the Dirac Hamiltonian, wheth
one-electron or two-electron, contains contributions from
perturbed negative-energy states. Thus attempts to s
many-electron problems using methods that attempt
project out negative-energy contributions@36# always intro-
duce unquantifiable errors as well as formidable techn
complications.
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VI. DISCUSSION

We have set out the theory ofL spinors, and demonstrate
their orthonormality properties. The theory of Raleigh-R
approximation has been formulated for Dirac operators,
we have illustrated it with applications to a range of pro
lems in the theory of hydrogenic atoms using a basis oL
spinors. We have verified the existence of a lower bound
the positive branch of the spectrum in the bound-state g
and shown that in a basis of dimensionN, the N lowest
eigenvalues lie in the lower continuum region whilst theN
highest approximate bound states and the positive c
tinuum. The completeness properties ofL spinors in the Hil-
bert spaces of Sec. IV C are essential for the convergenc
perturbation sums in Secs. V B and V C. The numerical
curacy of these calculations depends upon the numerical
bility of L-spinor expansions for largeN, and we have found
that the Gram matrices withN;100 have condition number
of order 103, comparable to those of nonrelativistic Sturm
ans, rather than the order 108 quoted for extended small com
ponent basis sets in@35#.

The applications discussed in this paper by no means
haust applications ofL spinors, although they are largel
limited to problems involving hydrogenic atoms as it is e
tremely difficult to evaluate electron-electron interactions
a computationally practical way. For this reason, we ha
introduced other types of basis function,S spinors andG
spinors, see for example@2–4# which have similar properties
making them suitable for the Rayleigh-Ritz approximation
Dirac many-electron atomic and molecular problems. Ho
ever, nonrelativistic Sturmians were originally introduced
a way to approximate the effect of continuum states@17,18#
and these ideas can be extended naturally to the Dirac c

The Dirac-Coulomb Sturmians defined by Szmytkows
@16# are closely related to theL spinors presented in thi
paper, although there are major differences.L spinors in-
volve pairedtwo-component basis sets for large and sm
components, whereas Szmytkowski deals only withfour-
component objects and focuses on the construction of
Dirac-Coulomb Green’s function. He has correctly noted t
L spinors do not satisfy the differential equation of Ref.@4#
@~Eq. ~22.145!#, an error corrected in Sec. III of this pape
However, his suggestion that theL-spinor basis sets are in
complete~@16#, p. 837! is clearly wrong~see Sec. III C!. It is
8-13
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unlikely that we could have reproduced exactly the sa
results as Szmytkowski for relativistic hydrogenic polar
abilties had there been any substance to this claim. It is
deed gratifying that these two very different computatio
approaches to this problem agree so well.
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