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Rayleigh-Ritz approximation of the Dirac operator in atomic and molecular physics
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Four-componengspinop solutions of the Dirac equation may be approximated_fspinor expansions. We
discuss their orthogonality and completeness and relstgnor properties to those of the Coulomb Sturmians.
The mathematics of Rayleigh-Ritz approximations for one-electron 8ttiger and Dirac operators provides
a rigorous setting for applying finité-spinor matrix approximations to the relativistic hydrogenic atom.
Convergence of eigenvalues and eigenvectors with respect to the sizele$pieor set, of expectation values
of quantum-mechanical operators, sum rules, and perturbation expansions is examined. The contribution to
perturbation sums over states from solutions with eigenvalues in the continuum rangec] (electronic
scattering stat@sand (— %, —mc®) (positronic scattering states shown to be essential to get accurate results.

PACS numbgs): 31.10+z, 31.15.Pf, 31.30.Jv

I. INTRODUCTION The stationary state solutions in such a spherically symmet-
ric potential for energye have the form
L spinors were first mentioned [d], although they were

introduced with a different name in an earlier pafiéi, [Eq. 1] Ped®)xm(6.9)
(71)]) (see alsd3], p. 240 and 4], Sec. 22.6.8 Although wEKm(r)_F Qe (Nx—.m(8,0)] 2
they have played a major role in our development of tech-
niques for solving Dirac-FocgkBreit) equations for atoms The two-component spinoy,.( 0, ¢) is a coupled spin-orbit
[2,4—6 and molecule$8—11], relativistic correlation studies function (see, for example, Ref4], Eq. (22.92 for a full
[2,7] and related problems in quantum electrodynarfl®-  description. The angular quantum numberis related to the
15], we have not previously given a full description in print. total angular-momentum quantum numbeby |x|=]+ 3,
Recently, SzmytkowskKi16] introduced what he called rela- with j=3,%, ... and the quantum number, representing
tivistic Coulomb Sturmians, which somewhat resemble the component of total angular momentum on the quantiza-
spinors, though there are quite profound differences of detaition axis Oz, can take values in the rangej,—j
and his description of our work, based on the limited pub-+1, ... j—1,j. The spinory,m(6,¢) is associated with an
lished material, is misleading. This paper aims to give a deorbital angular-momentum quantum numbehaving | =]
finitive account ofL spinors and their applications to enable +1/2 if « is positive and =j—1/2 if « is negative. These
readers to evaluate their usefulness. A secondary, but no lefisnctions form a basis for the irreducible representativn
important, aim is to show that despite the common belief thabf SQ(3) for both signs ofx and are the fundamental build-
it cannot be done, the Rayleigh-Ritz method can be appliethg blocks for constructing atomic and molecular wave func-
to Dirac-Coulomb and related operators as long as the trigions. A major difference from Schdinger wave functions
solutions are expanded in spinor basis sets that span the cg¢-the coupling of spatial and spin degrees of freedom, ex-

rect operator domain. pressed by the four components of the Dirac spinors. The

The Dirac Hamiltonian for a single particle/e only con-  coupling of these components by the Dirac operator deter-
sider electrons and/or positrons in this papsr mines the asymptotic behavior of the wave functions as
—0, the region in which the dynamic effects of relativity

Hp:=Ca-p+mc®B+V(r), (1) largely originate. An understanding of the structure and sym-

metry properties of Dirac spinors is therefore essential for
wherea, 8 are the usual 44 Dirac matricesc is the speed the effective use of relativistic wave functiof#].
of light, p is the three-momentum operator, avi¢r) is the Sturmian functions have long been advocated in nonrela-
potential energy of interaction of the particle with an externaltivistic quantum mechanics because they allow wave func-
electric field, the nuclear Coulomb attractivigr)=—Z/r in  tions, for bound states or for scattering, to be expanded in a
this paper. We shall always use atontidartreg units, so  complete countable set of eigenfunctions of a convenient
that m=1 and c~137. Dirac solutions therefore are four form[17,18 and the range of applications is now quite wide.
component spinors, whose properties are defined in standawle therefore start with a brief account of the properties of
texts. We shall adhere in this paper to the conventioidlof Coulomb Sturmians, introducing ideas and relations that

serve in part to motivate the definition bfspinors that fol-

lows. We connect the orthogonality and completeness prop-

*Electronic address: ipg@maths.ox.ac.uk erties ofL spinors to those of Coulomb Sturmians by exam-
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ining the nonrelativistic limiting behavior as—«. The Z

emphasis in this paper will be on usirg spinors in the V(r)=—?, 0<r<oe,

context of the Rayleigh-Ritz procedure for Dirac Hamilto-

nians. As many have claimed that this approach is doomed tgye setE,= —\2/2, and rewrite Eq(3) in terms of the inde-
failure, we next give an account of the relevant mathematicgendent variablec= 2\r, so that

that is sufficiently rigorous to support this work and related

applications in relativistic quantum mechanics and quantum a2 1(1+1) 1 a,Z
electrodynamics. Some of the mathematical background was -t >t 7 Sni(x)=0, (5)
previously summarized if8,4]; the present paper covers as- dx X
pects not previously discussed. having the solutions
The theory is illustrated with several applications, starting
with electronic states of the hydrogenic atom for which exact S (X) =Ny S(X),
analytic results are available. The large and small compo-
nents are each expanded in matchespinor subsets of the s |(x)=e‘x’2x'+1L2'_+|£1(x), 6)
same dimension, using the radial amplitudé§, (r)}h_, K "
and{f> (r)}N_,, respectively, and we examine the conver- n=1+11+2,...,

gence of bound-state solutions for different values of the
symmetry quantum numbe¢ as N increases, and examine which vanish ax=0 andx=< provided
the influence of the tuning parameterThe completeness of

the L-spinor expansions is important for calculating sum- n=anZ/\.
over-states expressions in perturbation theory. We illustrat
this by way of calculations on the static polarizability of kd X
hydrogenic atoms, and through the very instructive model ir{nallzatl_on constant._ Wg recover_the standard solgt!ons for
which the nuclear charge of a hydrogenic atom is changed® rad";’" h%/droggnlc eigenfunctions wheq,=1, giving
from Z to Z+2Z', which we studied earligi19,20]. Here, we Eo=—2Z%/2n“. Notlc_e that\ (and thereforeE) is fixed for
know the exact answer, and the calculations provide stron%’1e Coulomb Sturmians wherers- | —2E, depends upon
evidence of the completeness bfspinor expansions pro- or the Schradinger eigenfunctions.

vided the negative-energy states are included. More impor- The properties of the orthogonal polynomidl§(x) are
tantly, it also shows that the partition between positive- andisted in many compilations such §21]. Whena=1 they
negative-energy states depends on the choice of potenti@le orthogonal on (8, with weight functionw(x)=e~"x“,
exposing the major flaw in proposals to eliminate the influ-such that

ence of negative-energy states with projection operators.

?’he L¢(x) are Laguerre polynomial®1] and V,, is a nor-

° § [(a+k+1)
e‘xx“Lﬁ(x)Lk,(x)dx=T Sk k' - 7
Il. THE COULOMB STURMIAN FUNCTIONS 0 '
A. Definition and properties of Coulomb Sturmians The generating function

The nonrelativistic Sturmian functions are defined by ts
[17,18 as the normalized solutions of the differential equa- ®*(t,s): ZLE(S)IKZ(l—t)aleXF{—>, <1

; t—1
tion (8)
_d_2 [(1+1) 2B+ 24 V(1) )=0, O<r<w &N be used to write down explicit representations of the
dr? r2 o 2anV(r) |S(r)=0, r polynomials. It also provides an economical means of evalu-

3 ating integrals of the form

vanishing at the end points=0 andr=«. The integers (kl|xp|k’l>:f Sk(X)XPsyr(X)dx
=1,2,3... andl=0,1,... n—1 correspond to the usual 0
nonrelativistic quantum numbers agqg is a fixed, negative
number. The parameter,,, must be adjusted to ensure that . oK )
the boundary conditions are satisfied. The functions are ofifying the coefficient oft®u” in the integral
thonormal with respect to the weight functis(r) (which -
must be strictly of one sign, usually negadive® that ||(P)(t,u):J e_xx2'+2+p<b(2'+1)(t,x)<1>(2'+1)(u,x)dx
0

for integer values op for which this integral exists by iden-

fo Sa(N)San(NV(r)dr= =8, @ _AR2EPN i, ©

a (1_tu)2|+3+p

The most important case is that in whidf{r) is a Cou- Two cases have immediate application
lomb potential Case Ap=—1: then
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D= @+1!

(21 +k+1)!
(1_tu)2|+2 K (tu)k

0 k!

from which we obtain

(21+k+1)!

(KI[x Kk'l)y= k! Skt » (10

which agrees with Eq(7) if we put a=2l+1 andk=n-|
—1.

Case Bp=0: This gives the Granfoverlap matrix G of
Coulomb Sturmians. In this case

(21+2)!

= s

[(1-t)(1-u)]

so that there are nonvanishing matrix elements Ko k

+1 as well as fok’ =k. We shall normalize the Sturmians

so that
(KIK'Ty= Sy (11
so that, remembering=n—1-1, Eq.(10) gives
N (n—1—1)1* 12
2n(n+1)!

The nonvanishing elements of the Gram matrix, are thus

nn=1,
| | 1 [(1+1)
gn,n+1=gn+1,n=_§ 1- n(n+1)’ n=1+11+2,....
(13
B. Completeness and linear independence
The classical proof that the orthonormal system

(2x) Y28, (x)ir_, . 1 is complete inL2(R.) is given by([22],
p. 170 and 23], p. 95. It follows that if we define the func-
tions onR*—R by

r
Prim(r) = SnlT()Ylm( 0,0), n=l+1, |m|$|,

PHYSICAL REVIEW A 62 022508

where (,) is the appropriate inner product. For anyn the
span of the sefy,ih_,, then we can decomposE in the
form

N
V=2 (Vx5 Xm»
m=1

so that in particular
N N
Xa= 2 O Xmxm= 2 GH0* X,
m=1 m=1

whereGM* is the Gram matrix of the sty }n_; . Simi-
larly

N N
XnZE (vaXn)X%ZE GmnXE!
m=1 n=1

whereG™ is the Gram matrix of the sdty,}h-,. Clearly
this construction ensures that each elemgpis in the span
of {xn}\_, and each elemeng,, is in the span of xX}N_,,

and

GN*GN = GNGMN* — ()

wherel ™ is the N-dimensional identity matrix.

Things are not quite so simple for infinite sets, and there
are several inequivalent criteria for linear independence in
Hilbert spaces. For our purposes, tiénimality property is
the most useful: an infinite set of functions is said to be
minimal if no single elementy, can be approximated with
arbitrary precision in the linear span of the remaining ele-
ments of the set. A minimal set has a BOS, so that the ex-
pansion coefficients} of an elemenP ¥ =¥ in the span
of the finite subset

X1s - ooxn)

can be determined from the equation

n

CEZ(X: 7q,(n))= X: 12‘41 CinXi ’ k21121 O 1 F

where ,6,¢) are spherical polar coordinates of the positionindependently of the way in whicby is calculated. More-
r and Y,,(6,¢) are spherical harmonics, then the setover, the expansion coefficients converge to the expansion
{2 Rpam(r)} is a complete orthonormal system in coefficients of¥ itself asn— .

L?(R%) ([24], Lemma 6, p. 31

In this setting, it is easy to see that the Coulomb Sturmi-

Although the weighted Sturmians are therefore a comans have BOS with elementS; (x)=(2/x)S;(x) and
plete orthonormal set ih2(R%), it is often more convenient  ¢m(X) =[2S,1(X)/X*1Yim(6,¢), respectively. Thus every
to use the unweighted Sturmians, so that the Gram matrix aflement¥ e L?(R®) has a formal expansion in terms of this

the set{d,m(r)} is tridiagonal in each infinitdm subset.

set. The se{¢,m(x)} is also minimal and complete on the

The completeness and linear independence of the Sturmiai$obolev spacew(zp)(R3) for p=1,2, which proves to be

has to be reexamined in this context.
In a finite set of dimensiorN, positivity of the Gram

determinant, de&\)>0, is sufficient to ensure that a set is

exactly what is needed for the convergence of the Rayleigh-
Ritz method in atomic and molecular problems.
Gerschgorin’s circle theoref25,26 allows us to verify

linearly independent. This is equivalent to the statement thathat any finite subset of the Coulomb Sturmians has a posi-

for every finite sel{Xn}yzl, there exists diorthonormal set

tive definite Gram matrix wheh>0. Since each eigenvalue
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w of the tridiagonal matrixG™) is located in the union of The labelsL,S identify the “large” and “small” compo-
intervals 1-p,<u<1+p,, where nents of the Dirac spinor in a conventional way, is a
non-negative integer, and

Pn— |gn,nfl| + |gn,n+1|! n=I+1/+2,...]+N

y=+k?=2%c%, Np,=+nj+2ny+x? (17)

so that
are, respectively, the leading exponent of the power series
1 expansion of the functions abaxt 0 and theapparent prin-
Pri1=1G111)12 = —= cipal quantum numberThe L spinors are solutions of the
V2l+4 differential equation systeln
and 1 e Zel d ok
27 x & x|[ath
1 |(|+1)+O -3 >|+1 =0
Pn ”) (n™), n : d « 1z 1| wfh0

dx x 2, pcX

Thus all eigenvalues lie in the interior of the interv@d)2) so ' (18)

that every finite subset of the Coulomb Sturmians has a posi-

tive definite Gram matrix. The condition number of the ma-wherec is the speed of lightd~137 in atomic units and
trix G is ky= (1+ pp)/(1— pp) ~2N?/1(1+1) whenN is w? is a root of the equation

large, so that the system is very well conditioned and there is

little danger of linear dependence problems in practice. 2c

This estimate fails wheh=0, asg,, ,+1=—1/2 indepen- - T'““ZJF 1=0. (19)
dent of the value oh. However, sinceG(V) is a tridiagonal
matrix with diagonal elements 1 and subdiagonal and supeMe choose
diagonal elements- 3, it is easy to show that d&™) never
vanishes, so that we still have linear independence. , C \? ., C A?
,U,:X 1+ 1_?, M :X 1- 1_0—,

Ill. DIRAC L SPINORS
which ensures tha%hrk(x)econstsqr,(x) in the nonrelativ-

The DiracL spinors are defined as relativistic analogs of, . )
jstic limit c— 2o which we study below.

the Coulomb Sturmians. We envisage representing Dira

four-component wave functions as linear combinations The analog of the nonrelativistic energy parameigr
=—\“/2 is given by
1 R_ 2 [1_ — 2 2
- ; Ch i k(1) Xem( 0,9) ER=c2\1-\%c?=c?+Ey+O(1/c?). (20)
(14) The boundary conditions as—0 andr—c are satisfied

1 when
IF 2 Cﬁrfﬁrk(r)X—Km(av(P)
Mr an «=Np (MNZ

of a form similar to that of Eq(2).

In terms of the independent variabte=2Ar, A\>0 con-
stant, theL-spinor amplitudes are given by the formulggt]
EQs.(22.146 and (22.147)

and thelL-spinor amplitudes coincide with Dirac-Coulomb
eigenfunctiond,,,.(r) andQ,,.(r) having principal quantum
numbern=n, + || whena, =1.

A. L spinors in the nonrelativistic limit

fhrK(X)=J\fanXye_X/2[ —(1= 8, LT 1(X) It is essential that our construction should coincide with
the nonrelativistic Coulomb Sturmians in the lingt- o,

Nn «— K ) corresponding to instantaneous propagation of electromag-
+ — Lnry(X) , (15  netic disturbances, and this can be done directly from the
rrey definitions (15) and (16). It is easy to see thay—|«]|,
Nn «— N, so that for negative values af= —1—1, we have

o (X) =NanxVeX’2[ —(1= 8, LT 4(x)

1The brief summary of. spinors in( [4], Sec.(22.6.3) is correct
Lﬁ:/(x)]- (16) Zz;vilfs(;r Eq.(22.145, which should be replaced by the present

Nan—K
a n,+2y
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fh(x)—constx' te ™ — (1= 8, o) LA L300 + L7 200}
=constX x'“e*X’zLﬁ'r“(x) (22)

using ([21], Eqg. (22.7.30) in the second line. Similarly for
positive k=1, remembering that, =1 in this case, we have

fL(x)— constx x'e‘X/Z[ —(1— 5nr0)Lﬁ'r,1(x)

e 2
* n,+2l L”r(x)}
= const<x'e A~ (n+21)L3 () +n, L2 ()}

=constx x' +le*’(’zLﬁ'r“(x), (22

using ([19] Eq. (22.7.32) in the third line. Sincen,=n—|
—1, we have proved that

fL(x)— consix S (X)

for both signs ofx in the nonrelativistic limit.
A similar analysis shows that for both signs of

d «
S S w2y 2141
f (x)ﬂcons(dx+x)x e Ly (%),
which may be expressed in terms of the criterionstict
kinetic balance

d «
; S/v) — “lsL
lim f (x)—const><(dx+x)f (x).

C—©

The kinetic balance criterion simply states that the large and

PHYSICAL REVIEW A 62 022508

nality relation(7) in the nonrelativistic limit, the integrand is
not obviously positive definite and the result is not very use-
ful.

However, it is easy to use the elementary results of the
previous section to write down the elements of the Gram
matrix. The normalization factoNan is the same for both

fr. () andfy (x), and is given by the equation

1=g{
r'2y+n,)
_Ar2 _ A
_Nnr:c{(l 5nr0) (nr_1)|
Nn o=\ T(2y+n, +1)
2y+n, (np)!
r'2y+n,)
_Ar2 )
_NanZNan(Nan K)nr! (27+nr) '
so that
n!(2y+n vz
Nn = M2y r) 23)
| 2N o(Np .= 0T (2y+1,)
In a similar fashion we can easily show that
95 =1,
(24)

951':),(nr+ 1)~ 9553+ 1)n,

7' (nr+1)(27+nr+l)(Nan_K) v
2| Np N +1)(Nen +1) 0~ &)
T=L,S

small component amplitudes should be related according to
the Pauli approximation, guaranteeing consistency with nonwhere "= —1 and %= +1.

relativistic equations in the limit—co [27].

B. Orthogonality properties

The standard orthogonality properties of Laguerre polyno

mials can be used to write dowrspinor generalizations of

Sturmian properties. However, an orthogonality relation with

respect to the weight functionxL.tan be written down in an
elementary way from Eq.18). Multiplying from the left by

the adjoint vecto{ﬂ‘lft,K,Mf:K] and subtracting the re-
r r

sult from the corresponding equation with and n; inter-

changed gives

(=) [ (15,0015 ,00

dx
~ (@) Mo (O] (x)}-=0.

Thus the integral vanishes if the eigenvalugs, and ay,

It is straightforward to show that the-spinor Gram ma-
trices reduce to the Gram matrices for Coulomb Sturmians
(apart from the sign of the off-diagonal elemeéritsthe non-
relativistic limit. Writing g™W=GMN -1 we see, by ex-

panding with respect to the last row, that) (o) =det(g™
—alN) satisfies

fN(g)=—ofN" Do) =g y_F N Do)

with f8(g)=— ¢ and f? (o) =o2—g?,. We conclude in-
ductively thatf ®) (o) andf?k*1(g)/o are polynomials in
o? of degreek, so that the eigenvalues &™) are in the
interval (1—py,1+pyn), Where

c -3
PN=1—Q+O(N ), (25

whereC is a positive constant. The eigenvaluesf6f are
distributed symmetrically about=0 whenN is even, and
there is an additional zero eigenvalue whéns odd. Thus

are different. Although this reduces to the Sturmian orthogoG™ has condition numbeky=(1+ pn)/(1— pn)~2N?/C

022508-5



I. P. GRANT AND H. M. QUINEY PHYSICAL REVIEW A 62 022508

whenN is large, so that the linear independence behavior i¢Jnder this transformation, expectation values of the position

very similar to the Coulomb Sturmians. variable and the charge-current vector remain invariant,
whilst those of spin, orbital, and total angular momentum
C. Completeness oL spinors change sign, as does the sign of the energy pararkeded
the sign ofZ coupling the electron to the external Coulomb

We can establish completenesd.dadpinors in a variety of
Hilbert spaces by exploiting the followin24], Lemma 5.
Lemma 1 (Klahn)Let{¢,},_, be a complete system in a
Hilbert spaceH. Moreover, leta,,, (1<u=<n) be arbitrary Z——2Z, fh K(x)<—>f§ (X)), ke —k, uespt
. r r
complex numbers witla,,,# 0. Then the system

potential.
By making the corresponding changes

N - in Eq. (18) we see that spinors retain the charge conjuga-
Y= 2 a tion symmetries of the Dirac eigenfunctions on which they
=] nuPu are modeled. Since the mappipg— ! is equivalent to

=t changing the sign of the energy paramet@&:=
is also complete irH. +1—-\?/c?, Eq. (20), we infer thatL-spinor expansions
To apply this to thel spinors, we note that Eqél5) and  will be able correctly to represent positronegative-energy
(16) can be written electron states as well as bound states. This assertion will be
clarified in the discussion df-spinor applications that fol-
fIrK(x) =ay, ,nr_lxye*X’ZLﬁry, 1(%) lows.
+n'a, o xe 2L (x), T=L,S IV. THE RAYLEIGH-RITZ METHOD FOR SCHRO ~DINGER

AND DIRAC OPERATORS
with 7t=+1,7°=—1. Sincea, n 1=—(1- 8, o), only
the second term contributes whep=0 for both signs ofk.
Also sinceNg ,=|«|, the first nonvanishind. spinor for «
>0 hasn,=1. We infer that the radial amplitudes appearing
in Eq. (14) have formalL-spinor expansions and that the
spinors are both complete and minimal on the Sobole
spaceg W) (R®) ]2 for p=1,2. We shall see that this is ex-
actly what we need for constructing trial wave functions for
the Rayleigh-Ritz approximation of Dirac four-component Applications of the Rayleigh-Ritz method in quantum me-

In view of the misunderstanding of the status of the
Rayleigh-Ritz methods for Dirac problems in atomic and
molecular physics, it is useful to begin with a review of the
known mathematical results and to see how they can be ap-
\Plied to both nonrelativistic and relativistic cases.

A. The Rayleigh quotient

wave functions. chanics usually assume that one is dealing witrsedf-
adjoint, non-negative, compaoperatorT, defined on a do-
D. Charge conjugation andL spinors mainD contained in a Hilbert spacde. Such an operator has

) ) ) an ordered set of non-negative eigenvalues
One of the most important symmetries of the Dirac equa-

tion is charge conjugation which, loosely speaking, sets up a 59 WS WS
correspondence between electron and positron states. Under
charge conjugation, Dirac four-spinors transform like with due regard for multiplicity, with corresponding eigen-
- functions 1,4, . . ., respectively. TheRayleigh quotient
y— ho=Cyt (26)  defined(in Dirac bra-ket notationby

where the superscriptenotes transposition anig= * y° is RLy 1= (ATl ), (27

Dirac conjugation. The matri€ is given by evidently exists for all nontrivialy e D. The Rayleigh-Ritz

0 —ig? method assumes that we can approximate every gubl
C=iy?y°=| . 5 its projection, P, on a finite dimensional subspace
—lo 0 Whi={X1:X2, - - - .Xn}CD, so that there exists some set of

) ) o coefficients(in general complexfor which
When the radial amplitudeB(r),Q(r) are real, it is easy to

show that if Pay=Clx1+Cox2+ - +Cpxn- (28
1[ P(r) X«em } A simple calculation shows that
FHQ(N X~ wem F'[c"]=R[P,]=c"T"c"/c"Sc", (29
then wherec"=(c,ch, ... .chY ¢ is its Hermitian conjugate,
andT",S" arenxXn Hermitian matrices with elements
Vo= —i(— 1)m+1/2 Q(r)X—K,—m}
¢ iP(NXe,-m] Ti=ilTlxp),  Sj=xilx)), 1=ij=n (30
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respectively. The Gram matri®’ must be positive definite if function P, approximates the true eigenfunctioh and

Eqg. (29 is to have a meaning, so that the 38t must be  whether approximate expectation values and transition ma-
linearly independent. We shall henceforth require that this bérix elements constructed from approximate wave functions
true for every set of functions meriting consideration. Theare sufficiently close to the true values to be of practical use.

Gram matrix is ther-dimensional identity matrix if the func- The convergence of Rayleigh-Ritz eigenvalues and eigen-
tions x; are orthonormal, but we have already seen that Coufunctions of nonrelativistic quantum Hamiltonian operators
lomb Sturmians andl spinors are not of this type. was analyzed iri24]. Let T=p?/2 be the usual particle ki-

This manipulation approximates the Rayleigh quotient bynetic energy, and consider the Sobolev spaif’cCL?
an algebraic functior="[c"]. Elementary calculus tells us equipped with the norm
how to find its stationary points as the roots of the Galerkin 5 5
equation([28], p. 399 [l = (Ul 1+ TIw) =11+ T) 4l 2. (32

nA~n_ n n
The'=A"S, (D) Klahn and Bingel[22] establish that the Rayleigh-Ritz ap-

Jroximate eigenvalues converge to the eigenvalues of the
target Hamiltonian(which they termE convergenceif the
set W is complete inW(Zl). Moreover, the approximation
0<AlsAl<...<A], #'==P, 4 to theith bound state converges in the mean to the

eigenfunction¢; whenever the corresponding eigenvalue,

with due regard for multiplicity. We denote the cgrrespond—Ein, converges tcE; asn increases. Thus we have only to

H H n n
ing eigenvectors, the columns df, by ¢1,c, ... Gy. construct a basis set that is completaNfg” to be certain of
It is customary in the quantum-mechanical literature t0g ¢qnyergence both to eigenvalues and eigenfunctions of the
show at this point that the lowest eigenvalig is an upper  Hamiltonian.
bound to the true eigenvall)él‘. This is attributed to the fact This ana|ysis has been extended by Klahn and Morgan
that T is a positive definite operator, and the conclusion is[29] to the convergence of expectation values and transition
easily generalized to encompass all operafbrwhich are  matrix elements. LeA be a strictly positive operator, self-
bounded below. However, this needs to be seen in a morgdjoint on a domairD(A), and define a newA norm by
general szetting given by the following theore(fi28], pp. ,
397-398. L _ Il Z=CwlAlp) =AY 2. (33
Theorem 1 (Poincade Let T be as defined above. Then
the eigenvalues of the Galerkin equati¢®l) are upper With the related scalar product, this induces a new Hilbert

where A" is a diagonal eigenvalue matrix whose element
can be ordered so that

bounds to the target eigenvalues space with theA norm. We say that a set of functions is
. N A-complete if it is complete in this space. The Sobolev space
O<h =Ays---=A=Ap. WS is a special case of this construction havikg 1+ T.

. . . Lemma 2.The sequence
Stakgold[28] lists a number of comments, in particular g

the following. (A)"=(y"Aly"™)
(1) If T is nonpositivethen —T is non-negative, and all
the above holds with the inequalities reversed. converges tg¢A) = (¢|Al| ) if and only if 4" — ¢ asn— in

(2) If T is indefinitethen the inequalities for non-negative the A norm.
T hold for the upper part of the spectrum whilst those for This is a direct consequence of two inequalities
nonpositiveT hold for the lower eigenvalues.

(3) Increasing the size of the s&v, generally improves [(AY = (A<l "= w2+ 2(A) 2 4" ]| o
the approximation. In practice, one would like to use a com-

plete set of functiondV:={x; 1, spanning the domai®, so  and
that W, spans an increasing subspaceldfas n increases. n 2_ n n
—ylas|(AY"—(A)|+2|A —y].
Then A{'—\; asn—~ because the compact operafyT [97= dla< A" = (A + 2l Ag 4" = g
—T in the operator norm. Thus the se¥V must beA complete if a sequence of eigen-
functions { "} generated by the Rayleigh-Ritz method is
B. Convergence of Rayleigh-Ritz approximations also to give a convergent sequence of approximat{@y)s.

We need rather more precise criteria of convergence if we W€ ¢&n avoid having to deal Wim—completengss if the
are to rely on the Rayleigh-Ritz approximations on finite OPEratorA is relatively form boundedy T: that is, there

basis sets. Not only do we need to have some idea how clo&XISts @ pair of non-negative numbexrsh such that

our estimates of eigenvalues are to the exact values, we
should like to know in what sense the approximate eigen- [KlAlp|<a(yl ) +b(HITlh), VpeD(T). (34

This includes a wide range of operatobsundedoperators,
for which we can seb=0; Coulomb potentialsT itself

2Stakgold’s inequalitie§28] are reversed as he lists the eigenval- (with a=0 andb=1); components of the momentum opera-
ues in reverse order. tor p; and nonrelativistic atomic and molecular Hamilto-
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nians, sayHs. Clearly,T can be relatively form bounded by there(recall y= + Jk?—Z?/c?) and anirregular solution of

Hs+k, wherek>0 is chosen large enough thdt+k hasa  orderO(r~?). Whenk=*1 theny=1/2 atZ/c= J3/2. So
purely positive spectrum. Then ()| A|y) satisfies Eq(34),  for Z<118, only the regular solution is square integrable
we choosek>0 so thatT+k is strictly positive, and the nearr=0, whereas both solutions are square integrable for
sequence)” is E convergent tay in the T+k norm, then Z>118, and a general square integrable eigensolution of the
Dirac Coulomb problem is an arbitrary linear combination of
"=yl a=maxar/k,b)|[ "~ 7. the two. Order can be restored by noting that any solution
containing a multiple of the irregular solution makes
so that{«"} is alsoA convergent tay. This means that itis (y|V|y) infinite (4], Sec. 22.5 so that the physics requires
sufficient for}V to be complete in the Sobolev spabéél). exclusion of the irregular solution to make the expectation of
Finally, it is straightforward to show that transition matrix V finite. This behavior can also be interpreted in the language
elements of the formiy{'|A| ¢/]') converge to the desired limit of the theory of differential equations either as a transition of
(l//i|A|<//j> asn—o provided the sequencds'} and{d;}‘} the behavior at the origin from a limit-point description for

are alsoA convergent. y>1/2 to a limit-circle description fory<3 ([33], Chap.
11), or in terms of the theory of deficiency indic€s31],
. . Chap. X.
C. Extension to Dirac operators . . . .
P The idealized point charge nucleus is not a good enough
1. Operator domains model for the heavier elements, or for very accurate work

The Dirac operators occurring in atomic and molecular@nywhere in the Periodic Table, and one can then replace the

physics calculations have many features in common witffeoulomb potential by one which is infinitely differentiable.

Schralinger operators but the analysis reveals some essenti] this caseH is again essentially self-adjoint 6P(Ho)
differences. The first step is to identify a domain on which(l33]; Theorem 4.8 The extension to many-electron atoms

the Dirac operator is essentially self-adjoint. The books of?" Molecules is not considered B3], but there seem to be
[30] (Chap. V.5, [31] (Chap. %, and[32] have a common O insuperable difficulties once the single particle case has
strategy, which is to identify a suitable domain in the rel-P&€n understood.

evant Hilbert space in which thigee particle Hamiltonian

H, is essentially self-adjoint and then to establish the largest 2. Rayleigh-Ritz method for the Dirac operator
CIa_S§ of potential¥/ such thatH:=Hy+V is essentially self- We now have a mathematical framework in which we can
adjoint onD(H,). study the Rayleigh-Ritz method for Dirac operators. For sim-

In the nonrelativistic caseto=p®/2, H, is essentially plicity, consider the Dirac Coulomb atomic Hamiltonian
self-adjoint on G(R?), the space of infinitely differentiable
functions with compact support R®. The eigenfunctions of Z
Ho have square integrable partial derivatives of order 2 so H(v):=ca-p+mcB— v (36)
thatH, is self-adjoint on the Sobolev spadé (R®) ([31], p.
54, Theorem IX.27; p. 166, Ex.) demonstrating that when .
V=—27/r, wherer is the radial distance from the point With Z/c<\3/2 onD(Ho)=Wy(R®%)*, where
charge nucleus of a hydrogenic atom, thdr=Hy+V is
essentially self-adjoint orD(Hg). Kato's theorem([31] p. 0 o I 0
166, Theorem X.1Bextends this to the full nonrelativistic a= o Ol B= 0 —I
Hamiltonian for atoms and molecules.

The analogs for the relativistic Dirac Hamiltonian are
more messy. When

and| is the two-dimensional identity matrix. The real num-
ber v defines a family of Dirac Hamiltonians interpolating
Hy:=Ca-p+c28 (35) smoothly betweend(0)=H, gndH(l) which incorpprates
the full strength Coulomb field. We assume a trial wave

(using Hartree atomic units then H, is essentially self- function of the general form

adjoint onCg (R*\0)* and self-adjoint on the Sobolev space
D(Ho) =W, (R3*CL2(R%* ([32], Theorem 1.1 In the case
of the hydrogenic atom with a point nucleés = Z/r, then

N

> ctM[L,nkm,r]
n=1

H=Hy+V is well defined and essentially self-adjoint on b= 37)
Cg(R3\0)* and self-adjoint orD(H,) only if Z/c<3/2 N '
([32], Theorem 4.4 Sincec~137 in atomic units, this re- iE ch[S,nKm,r]

n=1

stricts the potentials t@<<118, which satisfactorily covers

all elements in the Periodic Table. However, the standard

textbook analytic eigenfunctions for the relativistic hydro- Later we shall identify the expansion functions
genic atom are well behaved for 1&&=<137. There are M[T,n«xm,r],T=L,S with the L spinors(15) and (16), but

two analytic solutions of the Dirac Coulomb problem: the at this stage we merely assume that the set is complete in
solutionregular at r=0 having amplitudes of ordeD(r?) D(H,). The Galerkin equations take the form
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L L

c2st+pytt cIIs

c st o]l
cIIst — 28554 VS| ¢8 -E 0 S9|cS
(39

in which all the submatrices are of dimensidbhx N. The
Gram matrices denoted b§'", T=L,S, andV'" are the

corresponding matrices of the potentialThe matricedI™"
(whereT=S whenT=L and vice verspare given by

nn’

n-s :=f MT[L,nkm,r]o-pM[S,n’ km,r]dr,

nn’

st ::f MT[S,nkm,r]e-pM[L,n’ km,r]dr.

The system is Hermitian and has real eigenvalues.

The original operatoH(0) has a pure absolutely continu-

ous spectrum consisting of two disjoint intervals_
=(—o,—mc?] and o, =[mc ). Suppose thatp is an
arbitrary trial function inD(H,), and let

Ey(v)=(p|H(v)|¢)=E4(0)+vV,,

where V,=(¢|V|¢). Suppose thaip has been chosen so
that E¢(O)>mc2. Since V has, by hypothesis, a strictly

negative expectation/,<0, thenE ,(v)<E,(0) decreases

monotonically as increases from 0 to 1, and we shall have

mMc2>E,4(v)>—mc? if E40) is not too largé. As only
point eigenvalues of bound states can lie innic®, mc®),

E,4(v) will approximate a bound-state eigenvalue for values

of v in some interval & yy<v=<1. A sufficient condition
that E,(1)>—mc? is that 0>V ,=V,;,>—2m¢?, so that

PHYSICAL REVIEW A 62 022508

fore decaying exponentially as—«. This behavior is con-

sistent with the discussion following the Poincaineorem.
Provided the Coulomb potential is not too strong, we see

that the spectrum has two disjoint parts, and that the domain

D(H) is the union of two disjoint subspaceB,, andD_ .

This suggests we define a new form of convergeitepn-

vergence D for Dirac) on D, with the norm

lllo=(IH0) ),

V¢ such that(y|H(0)|¢)=mdc. (39
For basis sets that are complete with respect to this norm we
can infer[3] the following.

(i) Rayleigh-Ritz convergence i®, for bound-stateen-
ergies and eigensolutions of the one-electron Dirac operator
for atomic potentials. This may be extended to many-
electron atoms and moleculéa the Born-Oppenheimer ap-
proximation with the nuclei in fixed positiopsvithout diffi-
culty.

(i) A version of A convergence for operators that are
relatively form bounded by (0) onD(H). Fortunately, this
class includes most of the interesting operators in atomic and
molecular physics:

(1) Bounded operators: constants, Diracand 8 matri-
ces, and operators such as<r and a- A, whereA is the
vector potential of some external field.

(2) Powersr* \=—1.

(3) Components of momentum and combinations such
a-p.

(4) Other pieces of the Dirac operator itself.

no state of the positive-energy spectrum can ever enter the

“negative-energy sea” ag approaches unity. Of course, a

state WithE(/,(0)<—mc2 will have E(r,,(v)<—mc2 for all

values O<v=<1. Another way of putting this is to say that

the positive-energy eigenvalues are bounded belby

mc+ V> —mc?), and the negative-energy eigenvalues
are bounded abovy —m¢?), in the manner suggested by

Stakgold[28].

This behavior applies also to the eigensolutions of th

Galerkin equation$38). We shall see that with. spinors

(and with other admissible sets of expansion functions dis

cussed by4], with matched sets oN functions for both

large and small components, we obtain a discrete pselﬁa

dospectrum havingN eigensolutions in the intervat-o
<EM<-m& (i=1,2,...N) and N in —m&<md
+Vmin<EN<o (i=N+1N+2,...,2N). As N increases,
the lower eigenvalues of the upper s&fy.,,EN.,, ...,

converge to the lowest bound-state eigenvalues from above(a),=(a+k—1)(a),_;=a(a+1)---(at+k—1),

e

V. APPLICATIONS TO RELATIVISTIC ATOMS

This section reviews some applications of the preceding
theory of Rayleigh-Ritz methods to a range of physical prob-
lems. Much of the power df spinors derives from the abil-
ity to write down simple algebraic expressions for the effec-
tive Hamiltonian in hydrogenic problems. The difficulty of
evaluating matrix elements for the electron-electron interac-
tion with L spinors effectively rules out their use in many-
electron systems. Fortunately other sets of functions are
available for that purposg4], Sec. 22.6.8
For simplicity, we shall defin@:=2v, and exploit Poch-
mmer’s symbol

(a)o=1,

k=1.

exactly as they do in nonrelativistic calculations. The solu-

tions with eigenvalues in the continuum regios> mc?
above anE< —mc? below, represent continuufstanding-
wave scattering solutioh$n a region 6<r <R,.(\) of size
depending on the state and on the arbitrary parametse-

3For examples of this behavior see Reé4], Figs. 9.11 and 9.13.

We also use the notations

min mn

_ @+ kZO Gi(a—1). (40)

k(@) o

Hno(@)=

Then
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min!(a+m)(a+n)
NmKNnK(NmK_ K)(NnK_K)(a)m(a)n

nk

n+a

K
Hm-1n(2)

1/2
V-nr"ln:_Z)‘[ [Hml,nl(a)‘l'ﬂ-r

TNmK_ mx~ K NﬂK_

KHmn(a>}. (41)

K
Hinpoq(a) + —— 0%~
mn-1(2) m+a n+a

m-+a

where -=—1 and#°= + 1. The kinetic energy matrices are

ISt q1LS A min!(a+m)(a+n) vz N 2242 H . NmK—KH
mn~ *tnm™ 2 NmKNnK(NmK_K)(NnK_ K)(a)m(a)n ( nk n a) m—l,n—l(a) m+a m,n—l(a)
Np.— K N — K N — K
- n+a (2n+2k+a) Hm—l,n(a)""mHm,n(a) —2(n+a-1) Hm—l,n—2(a)_mHm,n—2(a)
NmK_K nk— K NmK_K NnK_K
_Gmfl,nfl(a)_ m+a Gm,nfl(a)"' n+a Gm—l,n(a)+ m+a n+a Gmn(a) ) (42)

whilst the symmetric tridiagonal Gram matric88" are re-  as the conditioV ;> —2mc? is sufficient, but not neces-
lated to the expressiorig4) by sary. We can generate solutions for larger valugscptip to
Z=clk| in the same way.

Convergence of the solution as the basis-set dimeridion
is increased follows the expected pattern. The matrix diago-
nalizer produces ordered eigenvalues, in which those num-
where the additional factorX2arises from the change of an beredN+1N+2,... 2N correspond to the positive spec-
independent variable from to r. It is convenient that the trum, and those numbered .1 . N lie below —2mc®. The
parametei only enters these matrix definitions as a constanpositive eigenvalues converge to the correct values from
multiplier, so that it is easy to assess the effect of makingibove, exactly as in nonrelativistic calculations, and for ex-
changes to its value. actly the same reasons. A sample Z6£ 50, large enough to

show some relativistic effects, appears in Table Ill, showing
. rapid stabilization of the lowest eigenvalues Msncreases
A. Hydrogenic atoms with X =50.0. The special choice=Z/N,, , ensures that the

Matrix diagonalizations were done using standardn,x eigenstate is represented by a singlepinor, although
EISPACK routines with Fortran double precision arithmetic
taking the speed of light=137.035989 5 a.uthe currently
accepted value of the reciprocal fine-structure constant

The numerical method appears to be very stable. The ei- N

S| '=gfj/2\,

TABLE I. Gram matrix conditioning.

genvalues of the Gram matrices lie, as predic¢&s), in the “ 1w kn
range (I-pn,1+pn), Where O0<py<1. Typical values of 10 100 -1 4.837x 10 * 4134
pn and the condition numbéa, appear in Table I. These are 1 9.702¢<10™ 4 2061
much smaller than the condition numbers, of ordef, 18- -2 9.702x10™* 2061
ported for methods that use unrestricted kinetic bald86g 2 1.565¢< 102 1277
Typical values of the lowest eigenvalue of the system -3 1.565< 102 1277
3 2.257x10°3 885
Vie=vSTe, —4 2.257x 103 885
4 3.036<10°3 658
the same folT=L and T=S, estimating the lower bound =5 3.036x10°° 658
Vmin (Sec. IV Q, are shown in Table II. This lower bound is 100 100 -1 2173104 9203
in the gap (0;-2mc?) for Z<135, well beyond the atomic 1 4.387x10°* 4558
numberZ=118 which is usually taken as the limit of self- -2 4.377x10°* 4568
adjointness of the Dirac Coulomb operator. Thgpinors are 2 7.103x 104 2815
constructed from functions that have a finite expectation of -3 7.107x10°4 2813
1/r, so that the condition to extend the rangeZofrom Z 3 2.261x 1073 884
=118 to 137 is satisfied. We have successfully generated —4 2.260<10° 3 884
solutions wherkx|=1 even for values oZ as close to criti- 4 1.395¢ 1073 143
cal as 137.035989, wheM,,,< —2mc? though the accu- _5 1.394x 1073 143

racy is no longer very good. This should not cause surprise
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TABLE II. V;, in atomic units.N=100.

VA k=—1 k=1 Kk=—2 k=2 k=-3
10 —552 —-201 —-201 —-107 —-107
20 —-1117 —406 —402 —215 —-215
30 —1708 —-618 —607 —324 —323
40 —2342 —843 —-815 —434 —432
50 —3039 —1086 —-1028 —547 —542
60 —3827 —1355 —1248 —664 —653
70 —4748 —1663 —1476 —785 —767
80 —5868 —2026 —-1715 —-910 —883
90 —7296 — 2476 —1966 —1042 —1002
100 —9243 —3069 —2232 —1181 —1123
110 —12176 —3928 —-2517 —-1328 —1249
120 —17440 —-5407 —2823 —1487 —1378
130 —31921 —9286 —-3157 - 1657 —1512

(—2mc@=—37557.7248 a.i.

PHYSICAL REVIEW A 62 022508

the correct|«| degeneracyeas=e€zp , €3p,,= €3dyy - - - »

and the correct fine-structure ordering. Ti+{1)th eigen-
value is always the lowest bound state of its symmetry and
there are no spurious states, interlopers, or pathological be-
havior characterized as “finite basis-set disease” and “con-
tinuum dissolution” in such papers §36].

TheNth eigenvalue of each symmetry is always the high-
est in the “negative-energy sea” and is always safely below
the upper bound- 2mc?. Since there are no bound states, we
expect to see no convergent sequences of eigenvaluls as
increases nor do we find any. The sensitivity of the highest
negative eigenvalue to botN and \, Table 1V, illustrates
these conclusions.

B. Static dipole polarizability of relativistic hydrogenic atoms

This much studied problentsee[16] for the extensive
literature can be used to illustrate two useslegpinor com-
pleteness: evaluation of matrices of simple functions of co-
ordinates, and the evaluation of perturbation sums. The
second-order static dipole polarizability,, for the state
| o), energye,, of a hydrogenic atom is given by the for-

other eigenstates will be represented by a nontrivial lineamula
combination. Because the basis is complete, we expect that

stable eigenvalues are insensitive to the choick,@&nd this
is what we observe. Thus the eigenvalegs, n=1-8, are
unchanged to seven decimal places, whdg reduced from

- 22 (ol z| )l 2| o) ,

n#0 €T €p

(43

50.0 to 30.0. The same behavior is observed with other symwhere the restrictiom#0 excludesy, from the sum over
metries and it is gratifying that, even though the matrixstates. In the Dirac case, the sum includes both positive- and
Hamiltonians are different, the stabilized eigenvalues displayiegative-energy eigenstates. For brevity, we treat only the

TABLE Ill. Convergence with respect to the matrix block dimenshtior positive-energy states of a

hydrogenic atom witlZ =50.

N €1s €25 €35 €4s €s5s
A=50.0
20 —1294.62616 —326.494806 —143.829353 —79.5730938  —35.1391668
40 —1294.62616 —326.494806 —143.829802 —80.3703311  —51.1923424
60 —1294.62616 —326.494806 —143.829802 —80.3703316  —51.1977244
80 —1294.62616 —326.494806 —143.829802 —80.3703316  —51.1977244
€2y €3py €apyp €51 €6py
N=25.0
20 —326.494806  —143.829807 —80.3703372  —51.1972465  —35.2027152
40 —326.494806  —143.829803 —80.3703331  —51.1977253  —35.433571
60 —326.494806  —143.829802 —80.3703323  —51.1977248  —35.4335707
80 —326.494806  —143.829802 —80.370332 —51.1977247  —35.4335706
100 —326.494806  —143.829802 —80.3703319  —51.1977246  —35.4335705
€2pg, €33 €4y, €53, €6p3,
A=25.0
20 —315.144355  —140.457874 —78.952058 —50.4731861  —34.7554737
40 —315.144355  —140.457874 —78.952058 —50.4738674  —35.0157937
60 —315.144355  —140.457874 —78.952058 —50.4738674  —35.0157937
€3dg, €4dg, €5d €6d3, €7dg,
A=15.0
20 —140.457874 —78.9520581 —50.4738674  —35.0157937  —25.7034854
40 —140.457874 —78.952058 —50.4738674  —35.0157937  —25.7037387
60 —140.457874 —78.952058 —50.4738674  —35.0157937  —25.7037387
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TABLE V. Highest negative-energy eigenvalues fdr=50 TABLE V. Contributions«, Eq. (45), computed with the con-
(a.u) relative to—2mc2. vergence criterion, Eq46), =105,
N= 20 40 60 80 100 z Z4+1 N,y Z4-2 N_,

A 1 6.749531 2 6.749676 2
k=—1 5 6.738272 2 6.741888 2
30 —-576 —-266 —17.0 —124 -9.7 10 6.703128 4 6.717556 2
40 -80.3 —-36.7 —-234 —-170 -—133 15 6.644694 6 6.677018 2
50 -104.3 -—-474 -301 -218 —17.1 20 6.563177 10 6.620296 3
k=+1 30 6.332152 18 6.458439 3
20 -46.6 —-20.7 —13.0 -94 -73 40 6.013420 26 6.232346 3
25 -61.1 -270 -169 -—121 -9.4 50 5.611749 36 5.942529 4
30 -764 —-336 —-209 —-150 -—11.6 60 5.133374 46 5.589629 4
Kk=—2 70 4.586085 56 5.174405 3
20 —-348 -16.6 —10.7 -7.9 -6.2 80 3.979358 66 4.697663 5
25 —449 -212 —13.7 -—101 -7.9 90 3.324546 76 4.160097 6
30 -554 -260 —-168 —123 -9.7 100 2.635150 86 3.561882 6
k=42 110 1.927202 96 2.901526 5
10 —19.6 -9.1 -5.9 —-43 -33 120 1.219632 102 2.171964 10
15 —-31.4 146 -9.3 -6.7 -53 130 0.532359 108 1.339899 16
20 —-442 -204 —129 -9.4 -7.3 135 0.192185 103 0.819494 22

case in whichyy, is the Is,, ground state with angular- L-spinor sets. However, it also influences the rate of conver
momentum projectiom; = + 1/2; angular-momentum selec- P : ’

tion rules then restrict the intermediate sum to states wittf€"c® of pertur.b.a'qon expansions mfikm_g it essential to ex-
symmetry typesc= + 1,k = —2, both withm, = + 1 \We can amine the sensitivity ta in each application.
therefore ignore the quantum numbe in what follows.
After performing angular integrations, we obtain the atomic . .
dipole polarizability of the % state in the form C. A simple perturbation problem
Perturbation calculations show the completeness proper-
ties of L spinors to advantage, in this case to study the con-
vergence of the perturbation expansion of the energy of a
hydrogenic atom in which the nuclear charge is perturbed
Szmytkowski has presented analytical expressions for thgom Zto Z+2Z’ in powers ofZ’. This model was first stud-
quantitiesA ,; andA _, ([16], Egs.(182—(184)) with which  jed nonrelativistically by Rossky and Karpl{&7]; it has the
we have compared our numerical results in Table V. Thesggyantage that the states of the unperturbed system are
have been obtained by computing the sums known exactly, as is the final answer, so that the error at each
. . N B - - qrder of perturbation is easy to establishl. In .the nonrelativis-
A=Y (O[r[n" k) (n"k|r[0) S (O]r|n~ k)(n~«|r|0) tic case, the sum over all diagrams contributing to the energy
K= < e — et = et ' of orderk vanishes fok>2, sincee, = —(Z+2Z')?/2n? E,,.
noo (45) However, there are usually several diagrams of oideB
which should sum to zero for each value lgfbut Rossky
where superscripts-/— designate the two branches of the and Karplus found that this was only true approximately.
pseudospectrum and the matrix elements are now purely ra&lthough summing over the discrete spectrum is straightfor-
dial. It is convenient to choose the tuning parameter to havevard, integrating over continuum states is troublesome.
the valuex=2Z, so that the & reference stat@), is repre-  Whilst in principle this is just a quadrature, integrals over the
sented exactly by thé spinors withn,=0,k=—1. The perturbation—Z'/r which are diagonal in energy diverge, so

2
ad=§(A+l+2A_2), (44)

basis-set dimensions, have been adjusted so that that the energy integration needs to be done with care. We
showed 19] that all these difficulties could be avoided if we
Z4 A~ ANAVIG < (46)  solved the Schrdinger equation for the nonrelativistic hy-

drogenic atom using simple finite basis sets of either expo-
The valuen=10 ° used in Table V ensures agreement ofnential or Gaussian form. The more difficult Dirac case was
our numerical values with the analytic values to six signifi-studied in[20]; the higher-order diagrams of ordex3 no
cant figures. We have done similar calculations at highetonger sum to zero, and we found that it was essential to
precision, but these take longer to run. include negative-energy sums in order to get the analytic
The results are relatively insensitive to the choicenof results obtained by expanding the Sommerfeld formula for
over a wide range, consistent with the completeness ofhargeZ+Z'’ in powers ofZ’.
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TABLE VI. Perturbed hydrogenic 4 state.

Z € € I € €, [Eq. (48)]
10 —50.066742 —0.504124 0.000103 —0.504021 —0.504021
20 —201.076523 —0.517050 0.000639 —0.516412 —0.516412
30 —455.524907 —0.539986 0.001761 —0.538225 —0.538225
40 —817.807498 —0.575014 0.003560 —0.571454 —0.571455
50 —1294.626156 —0.625644 0.006153 —0.619491 —0.619495
60 —1895.682356 —0.697763 0.009731 —0.688032 —0.688042
70 —2634.846565 —0.801543 0.014631 —0.786912 —0.786943
80 —3532.192151 —0.955598 0.021459 —0.934139 —0.934228
90 —4617.757654 —1.197084 0.031394 —1.165689 —1.165967
100 —5939.195384 —1.610319 0.047022 —1.563297 —1.564287
Here we treat the perturbeds level, for which we have VI. DISCUSSION

the simple formula We have set out the theory bfspinors, and demonstrated

(1) (2 _ 72,72 their orthonormality properties. The theory of Raleigh-Ritz
€2)=(y=1)c% y=y1-27a% “n approximation has been formulated for Dirac operators, and
we have illustrated it with applications to a range of prob-
lems in the theory of hydrogenic atoms using a basis of
spinors. We have verified the existence of a lower bound to

so that the perturbation series takes the form

€(Z+Z)=eZ)+eD)Z' +A2)Z'?+ -+ (48) e positive branch of the spectrum in the bound-state gap,

and shown that in a basis of dimensidh the N lowest

where, using Taylor’s theorem, eigenvalues lie in the lower continuum region whilst te
highest approximate bound states and the positive con-

€(2)=€'(2)=—21v, tinuum. The completeness propertied odpinors in the Hil-

bert spaces of Sec. IV C are essential for the convergence of
1 perturbation sums in Secs. VB and V C. The numerical ac-
€(Z2)= EE”(Z)Z —1/2y3, ... curacy of these calculations depends upon the numerical sta-
bility of L-spinor expansions for largé, and we have found
that the Gram matrices witN~ 100 have condition numbers
which Clearly agrees with the nonrelativistic result in theof order 16, Comparab|e to those of nonrelativistic Sturmi-
limit c—ce. In the finite dimensional fOfmUlation, we have to ans, rather than the Order%oted for extended small com-

evaluate the expressions ponent basis sets ii85].
The applications discussed in this paper by no means ex-
€1(Z) = (ol Lr | i), haust applications of spinors, although they are largely
(49 limited to problems involving hydrogenic atoms as it is ex-

LIt | o) (il LI ) tremely diffipult to evaluf':lte electron—eleqtron interactions in
, a computationally practical way. For this reason, we have

€(2)—en(2) introduced other types of basis functio®,spinors andG
spinors, see for examp|@—-4] which have similar properties
wheree,(Z) is the eigenvalue associated wjth,), the sum  making them suitable for the Rayleigh-Ritz approximation of
extending over the complete spectrum of positive- andirac many-electron atomic and molecular problems. How-
negative-energy states. Table VI displays the results comever, nonrelativistic Sturmians were originally introduced as
puted with block dimensiofl=100 takingh =Z to be fixed. a way to approximate the effect of continuum stdtes, 1§
This is not sufficient for the highest values df the differ-  and these ideas can be extended naturally to the Dirac case.
ence between the sum over states in the penultimate column The Dirac-Coulomb Sturmians defined by Szmytkowski
and the exact value in the last column gives some idea of thgl6] are closely related to the spinors presented in this
error. The negative-energy state contribution grows roughlypaper, although there are major differencesspinors in-
like Z3, and is clearly non-negligible for high, demonstrat- volve pairedtwo-component basis sets for large and small
ing that any perturbation of the Dirac Hamiltonian, whethercomponents, whereas Szmytkowski deals only withr-
one-electron or two-electron, contains contributions from uncomponent objects and focuses on the construction of the
perturbed negative-energy states. Thus attempts to soh@irac-Coulomb Green'’s function. He has correctly noted that
many-electron problems using methods that attempt ta spinors do not satisfy the differential equation of Héf
project out negative-energy contributiof6] always intro-  [(Eqg. (22.145], an error corrected in Sec. Il of this paper.
duce unquantifiable errors as well as formidable technicaHowever, his suggestion that thespinor basis sets are in-
complications. complete([16], p. 837 is clearly wrong(see Sec. I ¢ Itis

Ez(z)zgo (o
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