
PHYSICAL REVIEW A, VOLUME 62, 022313
Retrodiction for quantum optical communications
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Given the result of a measurement on the output of a quantum optical communication channel, we show how
to calculate a retrodictive state at the input. This state can be used by the receiver to determine the probability
that any one of a given set of states was selected by the transmitter. We establish the remarkably simple result
that retrodicting the prepared input signal for an attenuating~amplifying! channel corresponds to predicting the
measured output signal for an amplifying~attenuating! channel.

PACS number~s!: 03.67.Hk, 42.50.Gy
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I. INTRODUCTION

Quantum cryptography relies on communication
means of quantum states@1#. Quantum communication@2#
will be of increasing importance as this technology, toget
with quantum information processing and computing, dev
ops. Optics provides the most immediate potential for re
izing practical quantum communication channels and he
the study of quantum optical devices forms an important p
of quantum communication theory.

An essential part of the communication problem can
simply stated as determining the transmitted message f
the received signal@3#. This is made more complicated b
the presence of any noise sources that tend to corrupt
signal. With quantum communications we encounter t
features not present in the classical theory. These are~i! the
problem of which of a set of incompatible measurements
perform and~ii ! the fact that environmental effects such
losses introduce an irreducible level of quantum noise i
the communication channel@4#. The problem of assessing
quantum communication channel can been seen either
the perspective of the transmitter~Alice! or the receiver
~Bob! of the signal. It is important to realize that Alice an
Bob base their analyses on quite different prior knowled
Alice knows the signal that was sent and tries to assess
likely information retrieved by Bob. Bob, in contrast, know
what he received and tries to retrieve the information tra
mitted by Alice. We will assume that both Alice and Bo
know the form of the communication channel which m
include features such as losses, amplification, and ph
shifts. The natural approach for Alice is to evaluate the eff
of the quantum communication channel on her prepared
nal. This is apredictiveproblem involving the evolution of
the signal state as it propagates through the channel. A
can then calculate the probabilities for the outcome of a
measurement chosen by Bob. Bob’s natural approach i
begin with the known outcome of his single measurem
and work backwards to calculate aretrodictive @5–7# state
from which he can determine the probability that Alice s
lected any particular signal state.

In this paper we compare the predictive and retrodict
analyses of the important effects of attenuation and amp
cation. Ideal classical amplification and attenuation would
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inverse processes: if Bob could receive a signal attenuate
this way, he could simply restore Alice’s signal with an ide
amplifier. In quantum mechanics, on the other hand, s
devices are impossible and both processes suffer a noise
alty. Thus, following an attenuator by an amplifier does n
restore the original signal@8#. We derive, however, the inter
esting and surprising result that the retrodictive density
erator for the input to an attenuating optical element is s
ply an amplified form of the density operator correspond
to Bob’s measurement result. For an amplifying element
retrodictive input state is an attenuated form of Bob’s m
sured output state. Hence quantum linear amplification
attenuation are predictive-retrodictive inverses.

II. PREDICTIVE AND RETRODICTIVE QUANTUM
MECHANICS

Alice prepares, at timetp , the optical field in one of a se
of statesuAi& with prior probabilityP(Ai). This set of states
and the prior probabilities are known both to Alice and
Bob. At a later time,tm , Bob measures a field observableB̂
with nondegenerate eigenstatesuBj&. This observable is
known both to Alice and to Bob@9#. Alice knows the state
selected and wishes to calculate the probability that Bob
tains the resultBj . Bob knows the result of his measureme
and requires the probability that Alice prepared the st
uAi&.

Alice can use the predictive density operatorr̂ i
pred(tm),

which may be defined by the requirement that its project
onto uBj&^Bj u determines the probability that Bob obtains t
resultBj conditioned on Alice preparinguAi&:

P~Bj uAi !5Tr„uBj&^Bj ur̂ i
pred~ tm!…, ~2.1!

where the vertical stroke means ‘‘if.’’ Bob may perform
more general measurement than can be described by pr
tion onto an eigenstate of a field observable. In such case
can describe the measurement by means of a probability

erator measure~POM! with elementsP̂ j @10#. These sum to
the identity operator and the conditional probability~2.1!
then becomes
©2000 The American Physical Society13-1
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P~Bj uAi !5Tr„P̂ j r̂ i
pred~ tm!…. ~2.2!

Likewise, Bob requires a retrodictive density opera
r̂ j

retr(tp) whose projection ontouAi&^Ai u determines the prob
ability that Alice selecteduAi& conditioned on Bob detecting
the resultBj in accord with@7#

P~Ai uBj !5
Tr@L̂ i r̂ j

retr~ tp!#

(
k

Tr@L̂kr̂ j
retr~ tp!#

. ~2.3!

Here L̂ i5P(Ai)uAi&^Ai u is an element of a set of operato
which describes a biased preparation@7#. It is biased in the
sense that Bob has somea priori information about the
preparation. In the case where the preparation device isun-

biased, the elementsL̂ i become equal toĴj /D, whereĴj
are the elements of a preparation POM andD is the dimen-
sion of the state space. In this case, Eq.~2.3! has a similar
form to Eq. ~2.2!. The conditional probability can be ob
tained from the more familiar predictive approach using E
~2.2! in conjunction with Bayes’ theorem@7#.

The action of the quantum channel on the state,r̂ i
pred(tp)

5uAi&^Ai u, selected by Alice is represented by the unita
operatorÛ. Alice calculates the predictive reduced dens
operator for the channel to be

r̂ i
pred~ tm!5TrE„Û r̂ i

pred~ tp! ^ r̂E~ tp!Û†
…, ~2.4!

where r̂E(tp) is the density matrix representing the state
the channel environment at the preparation time and the t
is evaluated over all states of the environment.

The POM element associated with the field measurem

resultBj is P̂ j . This POM element can be extended to act
the spaces of both the field and the channel environment
Bob’s measurement provides no information about the e
ronment, the single POM element for the environment is
identity operator on the environment space, 1ˆ

E . The retro-
dictive density operator at timetm is the normalized POM
element associated with the result@7#. Hence the retrodictive
density operator for the field and the environment at timetm
is

r̂ j ,E
retr~ tm!5

P̂ j ^ 1̂E

TrES~P̂ j ^ 1̂E!
, ~2.5!

where the trace is evaluated over both the environment
the signal-field states@11#. The corresponding retrodictiv
density matrix at the preparation timetp is

r̂ j ,E
retr~ tp!5

Û†P̂ j ^ 1̂EÛ

TrES~P̂ j ^ 1̂E!
. ~2.6!

The retrodictive state of the signal field at this time is co
ditioned by the known state of the channel environm
r̂E(tp) at the preparation time. Hence the retrodictive dens
02231
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operator for the signal field at the preparation time, con
tioned onr̂E(tp) being the state of the environment at tim
tp , is

r̂ j
retr~ tp!5

TrE@ r̂E~ tp!Û†P̂ j ^ 1̂EÛ#

TrES@ r̂E~ tp!Û†P̂ j ^ 1̂EÛ#
. ~2.7!

Bob can then determine the probability that Alice selec
any given stateuAi& by substituting Eq.~2.7! into Eq. ~2.3!.

III. AMPLIFIERS AND ATTENUATORS

The simplest fully quantum description of an attenuator
an amplifier comprises two field modes: the signal mo
with annihilation operatorâ, and an environment mode wit
annihilation operatorb̂ @12#. The unitary transformations as
sociated with the attenuating and amplifying channels ar

Ûatt5exp@ iu~ â†b̂1b̂†â!#, ~3.1!

Ûamp5exp@ if~ â†b̂†1b̂â!#, ~3.2!

respectively. The attenuation factor isK5cos2 u and the am-
plifier gain is G5cosh2 f. The noise characteristics of th
channel are determined by the initial state of the environm
mode. It has recently been proven that the unitary opera
~3.1! and ~3.2! are related by@13#

b^xuÛattuc&b5coshfb^c* uÛampux* &b ~3.3!

for all statesuc& and ux& if we set sinu5tanhf and cosu
5sechf. This choice makes the amplifier gain equal to t
reciprocal of the attenuator loss. The number-state coe
cients of uc* & and ux* & are the complex conjugates of th
corresponding coefficients ofuc& and ux&, respectively. It fol-
lows immediately from the form of Eq.~3.2! that we can
obtainÛamp

† from Ûamp by changingf to 2f and hence that

b^xuÛattuc&b5coshfb^c* uÛamp
† ux* &b ~3.4!

if we set sinu52tanhf and cosu5sechf. It should be
noted that the change in sign makes no difference toK or G.

The density operator for the initial state of the enviro
ment mode can be written in the general form

r̂E~ tp!5(
l

Pl uc l&b b^c l&u. ~3.5!

If we evaluate the traces in Eqs.~2.4! and ~2.7! using the
environment-mode number states, then Alice’s predicted o
put state and Bob’s retrodicted input state will be

r̂ i
pred~ tm!5(

n
(

l
Pl b^nuÛuc l&br̂ i

pred~ tp! b^c l uÛ†un&b ,

~3.6!
3-2



y
.
-

a

n
h

n
ro
uc

as
n
th

or
n
b
m
to

to
B
e-

i-

it
y
an

ster
on

the

ero
ice.
ret-
ve

by
ult
gh

-
,

e to

the

di-

RETRODICTION FOR QUANTUM OPTICAL COMMUNICATIONS PHYSICAL REVIEW A62 022313
r̂ j
retr~ tp!5N(

n
(

l
Pl b^c l uÛ†un&br̂ j

retr~ tm! b^nuÛuc l&b ,

~3.7!

respectively, whereN is a normalization factor. The unitar
operator Eq.~3.1! or Eq. ~3.2! is substituted into both Eqs
~3.6! and ~3.7! for an attenuating or amplifying channel, re
spectively. If we identify the statesuc l& and un& with uc& and
ux& in Eq. ~3.4! and its Hermitian conjugate, then we see th
for the amplifier

r̂ j
retr~ tp!5

TrE„r̂E~ tp!Ûamp
† r̂ j

retr~ tm!Ûamp…

TrEs„r̂E~ tp!Ûamp
† r̂ j

retr~ tm!Ûamp…

5TrE„Ûattr̂ j
retr~ tm! ^ r̂E* ~ tp!Ûatt

†
…, ~3.8!

wherer̂E
(* )(tp) is formed by replacinguc l& with uc l* & in Eq.

~3.5!.
It is clear from Eq.~3.8! that the stateretrodictedby Bob

for an amplifier with gain G given r̂ j
retr(tm) is the same as

that which Alice wouldpredict for the action of anattenua-
tor, with K5G21, given the input stater̂ j

retr(tm) and an ini-
tial environment stater̂E

(* )(tp). It is straightforward to show
the corresponding result: the retrodicted state for an atte
ator with lossK given r̂ j

retr(tm) is the same as that whic
Alice would predict for the action of an amplifier, withG
5K21, given the input stater̂ j

retr(tm) and an initial environ-
ment stater̂E

(* )(tp).
For most attenuators and amplifiers the initial enviro

ment state is phase-independent and so the initial envi
ment density matrix is diagonal in the energy basis. For s
devicesr̂E

(* )(tp)5 r̂E(tp), which further simplifies the above
correspondence. It is possible, however, to prepare ph
dependent environments@14# and in such cases retrodictio
using the above correspondence will involve changing
initial environment state to its ‘‘conjugate’’ state.

IV. AN EXAMPLE

As a very simple example of the attenuator-amplifier c
respondence, consider an attenuating channel with an e
ronment prepared in its ground state so that light will only
absorbed. Both Alice and Bob know that Alice sends so
photon number state. They also know that Bob’s detec
perfectly counts photons. If Alice prepares a one-pho
state to send through the channel, then she predicts that
will detect either one or zero photons. Similarly, if Bob d
tects a single photon at the output of an ideal amplifier~in
which there is no absorption!, then he can retrodict that e
ther one or zero photons were sent.

Let Alice choose to prepare either the vacuum state w
probability P(A0) or a one-photon state with probabilit
P(A1)512P(A0). She sends her signal to Bob through
attenuating channel with attenuation factorK. She can calcu-
late the two corresponding predictive density operators:

r̂0
pred~ tm!5u0&^0u, ~4.1a!
02231
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r̂1
pred~ tm!5u1&^1uK1u0&^0u~12K !. ~4.1b!

She can use these to find the probabilities for Bob to regi
either one or zero photocounts in his detector, conditioned
her knowledge of the state prepared, by projection onto
appropriate POM elementsu1&^1u and u0&^0u:

P~B1uA0!50, ~4.2a!

P~B0uA0!51, ~4.2b!

P~B1uA1!5K, ~4.2c!

P~B0uA1!512K. ~4.2d!

Bob performs a measurement and finds either one or z
photocounts. He wishes to retrodict the state sent by Al
To do so, he needs to calculate the corresponding two
rodictive density operators. According to the abo
predictive-retrodictive correspondence, he can find these
calculating the predictive density operators that would res
if either a single photon or vacuum signal were sent throu
an amplifier with gainG51/K. A straightforward calcula-
tion gives the output~predictive! density operator of an am
plifier ~with gain G! for an input m-photon number state
um&, as@15#

r̂m
pred~out!5 (

n5m

` S n
mD ~G21!n2m

Gn11 un&^nu. ~4.3!

For the one-photon and vacuum state input, these reduc

r̂1
pred~out!5G22(

n51

`

n~121/G!n21un&^nu, ~4.4a!

r̂0
pred~out!5G21(

n50

`

~121/G!nun&^nu. ~4.4b!

Hence the retrodictive density operators calculated for
attenuating channel are

r̂1
retr~ tp!5K2(

n51

`

n~12K !n21un&^nu, ~4.5a!

r̂0
retr~ tp!5K (

n50

`

~12K !nun&^nu. ~4.5b!

Combining these with L̂05P(A0)u0&^0u and L̂1
5P(A1)u1&^1u, in accord with Eq.~2.3!, gives the probabili-
ties that Alice prepared either one or zero photons con
tioned on the result of Bob’s measurement:

P~A0uB0!5
P~A0!K

P~A0!K1P~A1!K~12K !
, ~4.6a!

P~A1uB0!5
P~A1!K~12K !

P~A0!K1P~A1!K~12K !
, ~4.6b!
3-3
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P~A0uB1!50, ~4.6c!

P~A1uB1!51. ~4.6d!

It is straightforward to show that these probabilities a
the same as would be obtained by use of conventional~pre-
dictive! quantum mechanics for the attenuator in conjunct
with Bayes’ theorem, which states

P~Bj ,Ai !5P~Bj uAi !P~Ai !5P~Ai uBj !P~Bj !, ~4.7!

where the comma means ‘‘and.’’ In order to show this,
require thea priori probabilities that Bob detects one an
zero photons. From the conditional probabilities~4.2!, these
are

P~B1!5P~B1uA0!P~A0!1P~B1uA1!P~A1!5KP~A1!,
~4.8a!

P~B0!5P~B0uA0!P~A0!1P~B0uA1!P~A1!

5P~A0!1~12K !P~A1!. ~4.8b!

Substituting these and the conditional probabilities~4.2! into
Bayes’ theorem~4.7! gives precisely the retrodictive cond
tional probabilities~4.6!. We have previously established th
more general result that all conditional probabilities calc
lated within the retrodictive formalism are in accord wi
Bayes’ theorem@7#.

V. CONCLUSION

Until now, retrodiction has been little more than an inte
esting philosophical concept associated with the problem
a

.
ev

.
:
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time asymmetry in quantum mechanics@5#. With the rapid
development of quantum communications, however, it
likely that retrodictive quantum mechanics will become i
creasingly important. It is the receiver’s natural approach
the communication problem of establishing the signal s
on the basis of the message received. Equations~2.3! and
~2.7! provide all that is needed, for both closed and op
systems, to perform retrodictive calculations of the probab
ties that any one of a known set of quantum states was
pared given the outcome of a subsequent measurement.
first implementations of quantum communications have b
optical and it is likely that quantum optical communicatio
will continue to play a leading role. Any quantum optic
communications channel will involve losses and perhaps a
some amplification. For this reason we have concentrated
this paper, specifically on the problem of retrodiction f
optical attenuators and amplifiers.

We have established a remarkably simple corresponde
between predicting the output of a quantum optical atten
tor ~amplifier! and retrodicting the input for an amplifier~at-
tenuator!. Moreover, Eqs.~2.3! and ~2.7! apply generally to
retrodiction for open systems and have important appli
tions beyond single-mode amplifiers and attenuators inc
ing multimode devices and decohering qubits. We shall
plore some of these applications elsewhere.
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