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Retrodiction for quantum optical communications
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Given the result of a measurement on the output of a quantum optical communication channel, we show how
to calculate a retrodictive state at the input. This state can be used by the receiver to determine the probability
that any one of a given set of states was selected by the transmitter. We establish the remarkably simple result
that retrodicting the prepared input signal for an attenuagngplifying) channel corresponds to predicting the
measured output signal for an amplifyifattenuating channel.

PACS numbdis): 03.67.Hk, 42.50.Gy

[. INTRODUCTION inverse processes: if Bob could receive a signal attenuated in
this way, he could simply restore Alice’s signal with an ideal
Quantum cryptography relies on communication byamplifier. In quantum mechanics, on the other hand, such
means of quantum stat¢s]. Quantum communicatiof2] devices are impossible and both processes suffer a noise pen-
will be of increasing importance as this technology, togethe@lty. Thus, following an attenuator by an amplifier does not
with quantum information processing and computing, develfestore the original sign48]. We derive, however, the inter-
ops. Optics provides the most immediate potential for realesting and surprising result that the retrodictive density op-
izing practical quantum communication channels and hencgrator for the input to an attenuating optical element is sim-
the study of quantum optical devices forms an important parply an amplified form of the density operator corresponding
of quantum communication theory. to Bob’s measurement result. For an amplifying element the
An essential part of the communication problem can pdetrodictive input state is an attenuated form of Bob’s mea-
simply stated as determining the transmitted message frofftired output state. Hence quantum linear amplification and
the received S|gnd]3] This is made more Complicated by attenuation are pred|Ct|Ve'retrOd|Ct|Ve Inverses.
the presence of any noise sources that tend to corrupt the
signal. With quantum communications we encounter two
features not present in the classical theory. Thesdipnthe
problem of which of a set of incompatible measurements to
perform and(ii) the fact that environmental effects such as  Alice prepares, at timep , the optical field in one of a set
losses introduce an irreducible level of quantum noise intgf stateg A;) with prior probability P(A;). This set of states
the communication channpd]. The problem of assessing a and the prior probabilities are known both to Alice and to
guantum communication channel can been seen either fror@ob_ At a later timet,,,, Bob measures a field observalile

the perspectiye of th_e FransmittéAIice) or the regeiver with nondegenerate eigenstaté;). This observable is
(Bob) of the s'|gnal. It is important to realize that Alice and ,0yn poth to Alice and to Bol9]. Alice knows the state
Bob base their analyses on quite different prior knowledgegg|ecteq and wishes to calculate the probability that Bob ob-

Alice knows the signal that was sent and tries to assess thg;q e resulB; . Bob knows the result of his measurement

likely informaj[ion retrievgd by BOb.‘ Bob, in.contrast_, knows and requires the probability that Alice prepared the state
what he received and tries to retrieve the information transr A
i)

mitted by Alice. We will assume that both Alice and Bob Alice can use the predictive density operafdf{t,,),

_know the form of the communication chgnn_el which MaY\\hich may be defined by the requirement that its projection
include features such as losses, amplification, and phase

shifts. The natural approach for Alice is to evaluate the effecf)mO|Bi><Bj| determines the probability that Bob obtains the

of the quantum communication channel on her prepared sigr—eSUItBj conditioned on Alice preparing;):

nal. This is apredictive problem involving the evolution of

the signal state as it propagates through the channel. Alice P(Bj|A)=Tr(1B;)(Bj|p"*ttm)), (2.1

can then calculate the probabilities for the outcome of any

measurement chosen by Bob. Bob’s natural approach is to , ,

begin with the known outcome of his single measurementvhere the vertical stroke means “if.” Bob may perform a
and work backwards to calculateratrodictive [5—7] state  More general measurement than can be described by projec-
from which he can determine the probability that Alice ge-tion onto an eigenstate of a field observable. In such cases we
lected any particular signal state. can describe the measurement by means of a probability op-

In this paper we compare the predictive and retrodictiveerator measuré?OM) with elementd1 j [10]. These sum to
analyses of the important effects of attenuation and amplifithe identity operator and the conditional probabil{.1)
cation. Ideal classical amplification and attenuation would beéhen becomes

II. PREDICTIVE AND RETRODICTIVE QUANTUM
MECHANICS
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P(B; IA) = Tr(H Ipred(t 2.2 qperator onr the signal field at the prepargtion time, cqndi-
tioned onpg(t,) being the state of the environment at time

Likewise, Bob requires a retrodictive density operatortp' IS
ﬁ}e”(tp) whose projection ontpA,;)(A;| determines the prob-
ability that Alice selectedlA;) conditioned on Bob detecting TFE[f)E(tp)UTﬁj®iEU]

the resultB; in accord with[7] pit(ty) = - —— (2.7)
Tred pe(ty) U@ 1cU]

T AP} (tp)]

P(A||B))= (2.3 Bob can then determine the probability that Alice selected

E Tr[Ak‘re” (tp)] any given statéA;) by substituting Eq(2.7) into Eq.(2.3).

~ . Ill. AMPLIFIERS AND ATTENUATORS
Here A;=P(A))|A){A;| is an element of a set of operators

which describes a biased preparat[@h It is biased in the The simplest fully quantum description of an attenuator or
sense that Bob has songe priori information about the an amplifier comprises two field modes: the signal mode,
preparation. In the case where the preparation deviemdis with annihilation operatoé, and an environment mode with

biased the elementsf\i become equal tc%j /D, whereéj annihilation operatof) [12]. The unitary transformations as-
are the elements of a preparation POM &hik the dimen-  sociated with the attenuating and amplifying channels are
sion of the state space. In this case, Ef3) has a similar
form to Eq.(2.2. The conditional probability can be ob- U.=exdio@ab+bta)], (3.
tained from the more familiar predictive approach using Eq.
(2.2) in conjunction with Bayes’ theorefv].

The action of the quantum channel on the stéfée,d(tp)
=|A){Aj|, selected by Alice is represented by the unitary

operatorU. Alice calculates the predictive reduced density
operator for the channel to be

Uamp=exfli p(a'b"+ba)], (3.2

respectively. The attenuation factords= cos § and the am-
plifier gain is G=coslf ¢. The noise characteristics of the
channel are determined by the initial state of the environment

. ~ . - mode. It has recently been proven that the unitary operators
pipred(tm):TrE(UPi[)red(tp)(@pE(tp)UT)' (2.4 (3.1) and(3.2) are related by13]

wherepg(t,) is the density matrix representing the state of . B i .
the channel environment at the preparation time and the trace o{X|Uad )6 = COSheb( 4 U amd X )b 33
is evaluated over all states of the environment. ] ]

The POM element associated with the field measuremerfer all states|y) and |y) if we set sing=tanh¢ and cos

resultB; is fIJ- . This POM element can be extended to act on =secha. This choice makes the amplifier gain equal to the

the spaces of both the field and the channel environment. Aeuprocal of the attenuator loss. The number-state coeffi-
Cents of|4*) and|x*) are the complex conjugates of the

Bob’s measurement provides no information about the eNViz  esponding coefficients bt and|y), respectively. It fol-
ronment, the single POM element for the environment is thef P 9 X P y:

ows immediately from the form of Eq3.2) that we can
identity operator on the environment space,. TThe retro-

Nt ~ . _
dictive density operator at timg, is the normalized POM ObtainU zrmp from U amp by changing to = and hence that
element associated with the requii. Hence the retrodictive

density operator for the field and the environment at ttpe o{x|Uad )= coshepp(¢* | UL d x* )i (3.9
is
if we set sind=—tanh¢ and co¥)=seche¢. It should be
Mei noted that the change in sign makes no differendé¢ tr G.
PiE(tm) = A—EA (2.5 The density operator for the initial state of the environ-
TredIlj®1g) ment mode can be written in the general form

where the trace is evaluated over both the environment and .
the signal-field state§11]. The corresponding retrodictive pE(tp):2 Pil)o ol gl (3.5
density matrix at the preparation tinig is

~ o a If we evaluate the traces in Eq&.4) and (2.7) using the
U'j®1gV environment-mode number states, then Alice’s predicted out-

PRty = ——— . (2.6) . ; ,
P Tr s(ﬁ 210 put state and Bob’s retrodicted input state will be
E i E

The retrodictive state of the signal field at this time is con- ey y=> Z P, b<n|0|¢l>bi)ipred(tp) RUASUID S

ditioned by the known state of the channel environment
pe(ty) at the preparation time. Hence the retrodictive density (3.6
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- N phre = + -K). .
f)fetr(tp):NE E| P 6(4|0T[n)ppi™ (tm) u(n|O] ), PRt = [1)(LIK+[0)0I(1=K) (4-1b
¥ (3.7) She can use these to find the probabilities for Bob to register
either one or zero photocounts in his detector, conditioned on
respectively, wherd\ is a normalization factor. The unitary her knowledge of the state prepared, by projection onto the
operator Eq(3.1) or Eq. (3.2 is substituted into both Egs. appropriate POM element$)(1| and |0)0]:
(3.6) and (3.7) for an attenuating or amplifying channel, re-

spectively. If we identify the statdsy) and|n) with |¢) and P(B1|A¢) =0, (4.29
[x) in Eq. (3.4) and its Hermitian conjugate, then we see that B
for the amplifier P(BolAg) =1, (4.2b
R ~toa - P(B4|A1) =K, (4.20
Brett )= TrE(pE(tp)U;mpolretr(tm)Uamp) 11A1
Pi P(BolA;)=1-K. (4.2

Tres(Pe(ty) Ui (tm) U amp

~ - N Bob performs a measurement and finds either one or zero
:TrE(UaﬂPJretr(tm)®PE(tP)U;ﬂ)’ (3.8 photocounts. He wishes to retrodict the state sent by Alice.

A) _ _ o To do so, he needs to calculate the corresponding two ret-
wherepg(tp) is formed by replacingy) with [4) inEq. o gictive density operators. According to the above

(3-5)-_ ) predictive-retrodictive correspondence, he can find these by

Itis clear from Eq.(3.8) that the ?t‘i‘tee”(_)d":tedby Bob  calculating the predictive density operators that would result
for an amplifier with gain G given pj*(ty,) is the same as it ejther a single photon or vacuum signal were sent through
that which Alice wouldpredictfor the action of arattenua-  an amplifier with gainG=1/K. A straightforward calcula-
tor, with K=G ™1, given the input statp*'(t,)) and an ini-  tion gives the outputpredictive density operator of an am-
tial environment statg)(t,). It is straightforward to show plifier (with gain G) for an input m-photon number state,
the corresponding result: the retrodicted state for an attendm), as[15]
ator with lossK given Z)er"(tm) is the same as that which
Alice would predict for the action of an amplifier, witG < pre
=K1, given the input stat;*(t,,) and an initial environ- Pm d(OUt):ngm
ment statep)(t,).

For most attenuators and amplifiers the initial environ-For the one-photon and vacuum state input, these reduce to
ment state is phase-independent and so the initial environ-
ment density matrix is diagonal in the energy basis. For such
devicespZ)(t,) = pe(t,), which further simplifies the above
correspondence. It is possible, however, to prepare phase-
dependent environmenfd4] and in such cases retrodiction o
using the above correspondence will involve changing the ﬁgre"(out)=G*12 (1-1/G)"|n){n|. (4.4b
initial environment state to its “conjugate” state. n=0

n) (G—-1nm

m WW(”L 4.3

prouy =623, n(1-1/6)" n)(n|, (4.43

Hence the retrodictive density operators calculated for the
attenuating channel are

As a very simple example of the attenuator-amplifier cor-
respondence, consider an attenuating channel with an envi-
ronment prepared in its ground state so that light will only be
absorbed. Both Alice and Bob know that Alice sends some
photon number state. They also know that Bob’s detector o
perfectly counts photons. If Alice prepares a one-photon f)[)e"(tp)zKE (1—=K)"n){n|. (4.5b
state to send through the channel, then she predicts that Bob n=0
will detect either one or zero photons. Similarly, if Bob de- R -
tects a single photon at the output of an ideal amplifier Combining these with Aq=P(A()[0)(0] and A,
which there is no absorptionthen he can retrodict that ei- =P(A1)[1)(1], in accord with Eq(2.3), gives the probabili-
ther one or zero photons were sent. ties that Alice prepared either one or zero photons condi-

Let Alice choose to prepare either the vacuum state wittiioned on the result of Bob’s measurement:
probability P(Ag) or a one-photon state with probability
P(A;)=1-P(Ap). She sends her signal to Bob through an P(Aq|Bo) = P(AgK (4.63
attenuating channel with attenuation fadkorShe can calcu- P(Ag)K+P(A)K(1-K)’ '
late the two corresponding predictive density operators:

IV. AN EXAMPLE

i)rf“up):KZn; n(1—K)"n)(nl, (4.59

_ P(ADK(1-K)
B Atm)=10)(0], (4.1a P(ABo) = BrasKF PIATKA=K): (489
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P(A|B;)=0, (4.60 time asymmetry in quantum mechanidg. With the rapid
development of quantum communications, however, it is
P(A,B;)=1. (4.60 likely that retrodictive quantum mechanics will become in-

creasingly important. It is the receiver’s natural approach to
It is straightforward to show that these probabilities arethe communication problem of establishing the signal sent
the same as would be obtained by use of conventi(pra:  on the basis of the message received. Equati@r® and
dictive) quantum mechanics for the attenuator in conjunction2.7) provide all that is needed, for both closed and open
with Bayes’ theorem, which states systems, to perform retrodictive calculations of the probabili-
ties that any one of a known set of quantum states was pre-
P(B;,A)=P(Bj|A)P(A)=P(A(B)P(B)), (4.7 pared given the outcome of a subsequent measurement. The
first implementations of quantum communications have been
optical and it is likely that quantum optical communications
will continue to play a leading role. Any quantum optical
communications channel will involve losses and perhaps also
some amplification. For this reason we have concentrated, in
P(B;)=P(B;|Ag)P(Ap) + P(B4|A)P(A)=KP(A,), this paper, specifically on the problem of retrodiction for
(4.89  optical attenuators and amplifiers.
We have established a remarkably simple correspondence
P(Bg) =P(Bg|Ag) P(Ag) + P(Bg| A1) P(A;) between predicting the output of a quantum optical attenua-
tor (amplifien and retrodicting the input for an amplifiéat-
=P(Ag) +(1=K)P(Ay). (4.8 tenuatoy. Moreover, Eqs(2.3) and(2.7) apply generally to
retrodiction for open systems and have important applica-
tions beyond single-mode amplifiers and attenuators includ-
ing multimode devices and decohering qubits. We shall ex-
plore some of these applications elsewhere.

where the comma means “and.” In order to show this, we
require thea priori probabilities that Bob detects one and
zero photons. From the conditional probabilitigs2), these
are

Substituting these and the conditional probabilit¢®) into
Bayes’ theoren(4.7) gives precisely the retrodictive condi-
tional probabilities4.6). We have previously established the
more general result that all conditional probabilities calcu-
lated within the retrodictive formalism are in accord with
Bayes’ theorenj7]. ACKNOWLEDGMENTS
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