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Maximally entangled mixed states under nonlocal unitary operations in two qubits
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We propose mixed states in two qubits that have a property that the amount of entanglement of these states
cannot be increased by any unitary transformation. The property is proven when the rank of the states is less
than 4, and confirmed numerically in the other general cases. The corresponding entanglement of formation
specified by its eigenvalues gives an upper bound of that for density matrices with the same eigenvalues.
Further, as a simple application of the upper bound of the entanglement of formation, we analyze the entangle-
ment of formation of the state generated by a decohered contratiedrate in the spin-boson model.

PACS numbgs): 03.67.Lx, 03.65.Bz, 03.67.Hk

Entanglementor inseparability is one of the most strik- not be increased by anylocal or nonlocal unitary
ing features of quantum mechanics and an important retransformation. The property is rigorously proven in the case
source for most applications of quantum information. Inin which the rank of the states is less than 4, and confirmed
quantum computers, the quantum information stored irmumerically in the case of rank 4. The corresponding en-
quantum bits(qubits is processed by operating quantum tanglement of formation specified by its eigenvalues gives an
gates. Multibit quantum gates, such as the contralled- upper bound of that for density matrices with the same ei-
gate, are particularly important, since these gates can crea@@nvalues.
entanglement between qubits. The entanglement of formatiditOPF [1] for a pure state

In recent years, quantification of the amount of entangleis defined as the von Neumann entropy of the reduced den-
ment has attracted much attention, and a number of meaity matrix. The EOF of a mixed state is defined&sp)
sures, such as the entanglement of formafibjp negativity =~ =minZipEx(1), where the minimum is taken over all pos-
[2,3], and relative entropy of entangleme], have been sible decompositions gf into pure stategp=3;p;| ;){ .
proposed. When the system of the qubits is in a pure statdhe analytical form for EOF in 2 2 systems is given bj6]
the amount of entanglement can be changed through the gate
operations from zero in separable states to unity in maxi- 1+J1-C?
mally entangled states. Most of the quantum algorithms are Er(p)=H T)
designed for such ideal pure states. When the system is
maximally mixed, however, we cannot receive any benefiyi 1 (x) being Shannon’s entropy function. The concur-
from entanglement in the quantum computation, since thggncec is given by
density matrix of the systerfunit matrix is invariantly sepa-
rable under any l_Jnitary transformation or gate operations. C=max0A;—Ay—As— g}, @)
Recently, a question about NMR quantum computation has
been proposed5], since the states in the vicinity of the , : ~ .
maximally mixed state are also always separable, as is th\ghere)\ s are the square root of e|genvalue~smf in de-
case of the present NMR experiments. creasing order. The Spln-fllpped density maWIXS defined

In all realistic systems, the mixture of the density matrix @S
describing the qubits is inevitably increased by the coupling 5
between the qubits and its surrounding environment. There- p=oy0 p*ah®0y, 3)
fore, it is extremely important to understand the nature of
entanglement for general mixed states between two extremgghere* denotes the complex conjugate in the computational
of pure states and a maximally mixed state. basis. Sinc&r is a monotonic function o€, the maximum

In this paper, we try to answer a simple question of howof C corresponds to the maximum &- .

much the increase of the mixture limits the amount of en- The states we propose are those obtained by applying any
tanglement to be generated by the gate operation, or equivgycal unitary transformation to
lently, by unitary transformation. To this end, we propose a

()

class of mixed states in bipartitex2 systemgtwo qubits. M = p4| W (W |+ p,|00)(00| + ps| ¥ ) (W |
The states in this class show a property of having a maxi-
mum amount of entanglement in the sense that the entangle- +pa|11)(11], (4)

ment of formation(and even negativijyof these states can-
where|¥ =)= (|01)+|10))/2 are Bell states, an®0) and
|11) are product states orthogonal & ). Here, p;’s are
*Email address: isizaka@frl.cl.nec.co.jp eigenvalues oM in decreasing ordem;=p,=p;=p,), and
"Email address: tohya@ftl.cl.nec.co.jp p1+p.+pst+ps=1. These include states such as
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p=p1|® " }(D |+ p,|01)(01 + pg| D" )(D T+ py 10><1(()l_;)

where|®*)=(]00)+|11))/2 are also Bell states, and in-
clude those that are obtained by exchandiig )« |V ™),
[00)«|11) in Eq. (4), or |® )« |PT), |01)«|10) in Eq.

(5). Since entanglement is preserved by local unitary trans-
formation, all these states have the same concurrence of

*=max0,C*(p))},
(6)
C*(pi)=p1—P3—2VP2P4.

max C
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FIG. 1. Numerically obtained maximum concurrence for ran-

dom density matrices as a function of the participation ratio@hd

The concurrenc&C* is maximum among density matrices (inseb.

with the same eigenvalues, at least when the density matrices
have a rank less than $(=0). The proof is as follows:
(1) Rank 1 caseff,=p3=p4=0). In this case, Eq4) is

Here, we have used that, as shown above, the maximum
concurrence of rank 2 density matrices is its maximum ei-

reduced toM =W ")(W"|, which obviously has the maxi- ganyalue. The upper bound in EA3) again coincides with

mum concurrence of unity. C* for p,=0

(2) Rank 2 case [f3=p4=0). Any density matrices of
two qubits(not necessarily rank)Zan be expressed 88|

p=a| ) (Y +(1—0q)psep: ()

where|y) is an entangled state ande, is a separable den-
sity matrix. The convexity of the concurren¢8] implies
that

In order to check whethe€* is maximum, even in gen-
eralp,# 0 cases, we have performed a numerical calculation
whose scheme is similar to that in Ref9,3,10. We have
generated 10000 density matrices in a diagonal form with
four random eigenvalues distributed uniform[g]. The
maximum concurrence has been obtained among 1 000 000
density matrices generated by multiplying random unitary

matrices in the circular unitary ensemtl&l] to each of

C(p)=aqC(|¥)(¢)+ (1= q)Cpsep =aC(| ) (¥]). (8) 10000 diagona_\l matrices. The results are shown in I_:ig. 1
where the maximum concurrence is plotted as a function of

Sincepsepis a positive operatoq is equal to or less than the the participation ratio R= 1Trp?).

maximum eigenvalue g, and thus

When the density matrix is close to the pure staRe (

=1), the maximum concurrence is also close to unity, as

C(p)<p;. (99  expected. FolR=3, the states are always separafit.

(12)] and the maximum is zero. In the region okR<3,

The equality is satisfied whemy) is a maximally entangled the maximum tends to decrease with an increas® biit the
pure state and an eigenvector efwith the eigenvalue op;. points are rather broadly distributed. The same data are plot-

The upper bound in Eq9) coincides withC* for ps=p, ted as a function o€* in the inset of Fig. 1. All points are

=0. very closely distributed along the straight line@# C*, and
(3) Rank 3 caseff,=0). Any rank 3 density matrices can none of the points are present on the higher side of the line.
be decomposed into two density matrices by simply decomThis numerical result strongly supports the hypothesis that

posing their eigenvalues as

C* gives an upper bound of the concurrence, even in the
general cases qi,#0.

p=(1-3p3)p2+3paps, (10 Accepting the hypothesis implies that all the states satis-
fying C* (p;)<0 become automatically separable. This con-

where the eigenvalues of, are

dition of separability is looser than Eq.l2). In fact,

C*(p;)=<0 is only a necessary condition of g¥<1/3. The

P17 Ps P2~ Ps 0.0 (11  difficulty with the rigorous proof of the hypothesis, if it is
1-3p3’1-3ps’ ")’ true, might relate to the difficulty in completely understand-
ing the separable-inseparable boundary in the 15-

and eigenvalues opg are {1/3,1/3,1/3,9. According to  dimensional space of the density matrices due to its complex
Lemma 3 in Ref[3], structure. We emphasize again that the numerical result
strongly supports the truth of the hypothesis.

1
Trp?< 3=P is separable. (12

It should be noted here that, when the eigenvalues of a
density matrix satisfy a relatiorC* is indeed maximum,

even for p,#0. The rank 4 density matrices satisfying
Since the purity ofps is 1/3, p3 is always separable. There- C(p,)=0 are decomposed as

fore, convexity of the concurrence implies that
C(p)=(1-3p3)C(p2)=<p1~—Ps- (13
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1 7 As mentioned in the introduction, it will be natural to
i e attribute the upper bound of entanglement, which is well
- [ described byC* (p;) andE{(p;), to the increase of the de-
oL gree of the mixture of the states. In this senS&(p;) and
é 0.5} 1 2E} (p;) (both are distributed in the range[of 1/2,1]) each

can be considered as one of the measures characterizing the
degree of mixture, such as the purityr participation ratig,
von Neumann entropy, Renyi entropy, and so on.

0 : Finally, as a simple application of the upper bound of
1 2 3 4 EOF
1/TI'p ’
FIG. 2. The same as Fig. 1, but negativity is plotted. 1+/1—C*?2
Er(p)<H| ————/, (18)

where|1) is an eigenvector op, and the eigenvalues of,
(not normalizegiare{ps+2vp,Pa,P2,P3,P4}- When the ei-  we consider the situation generating entangled states by us-

genvalues op satisfy ing the quantum gate consisting of two qubits, more con-
cretely a controlleddoT (CNOT) gate. In realistic situations
P3=P2tPs— VP2P4, (159  the coupling between the gate and its surrounding environ-

_ ) ) ment is inevitably present. The entire system consisting of
the purity of(normalized p, is equal to 1/3 angh, becomes  the gate plus its environment happens to be entangled by the
always separable. Therefore, using the convexity of the congoypling, and the mixture of the reduced density matrix de-
currence again, the upper bound of the concurrence is proveg¥riping the gate will inevitably be increased.

to be C* for density matrices satisfying EG15) (and p; In order to treat such decoheredoT gates, we adopt the
—P3—2Vp2ps=0). When p,=p3=ps(<1/4), M is re-  spin-boson moddll5,16, where each qubit is described as a
duced to the Werner stafé2]: spin4 system, and the environment is expressed as an en-
1 semble of independent bosons. As the model of akeT
M = py| W)W |+ 3p1(|q,+><q,+|+|®_><q)_| gate, we choose the simplest Hamiltonian:
+ + R
+H@TNPT)), (16) He=—7(1-0)® 0, (19

whose eigenvalues satisfy Hd.5). Therefore, it was proven
that the EOF of the Werner state cannot be increased by a
unitary transformation.

It is worth testing whether the states we propose hav
maximum entanglement in the other entanglement measures.
It has been shown that a positive partial transpose is a nec-

herec andt denotes the control-bit and target-bit, respec-
K/ely. The state change aftérh/(2R) corresponds to the
hange in theeNoT operation. In this paper, we demonstrate
&gvo types of gate-environment couplings. These are

essary condition for separabilify2], and that it is also a Hg%:_gczz Bu(aj+ay),

sufficient condition for 242 and 2<x3 systemq13]. In 2 k

X 2 systems, when the density matrix is entangled, its partial (20
transpose has only one negative eigenval4B. The modu- @ _ T

lus of the negative eigenvalug&() is a kind of entanglement Hee=— E(l_ Te2)® UtX; Bu(ax+aw,

measure, and two timdsy agrees with the negativity intro-
duced in Ref[3]. We have performed a numerical calcula- wherea, is an annihilation operator of a boson in the envi-
tion similar to that for Fig. 1, and obtained a maximun&qf  ronment. H{) describes the situation in which only the
for 10000 random density .matrices. In the inset of Fig. 2.4ntrol-bit couples with the environmertd{2 may describe
those are plotted as a function of the situation in which the gate operation is achieved by irra-
diating a optical pulse that contains a noise coherent over the
qubits as well as the pulse itself. For these phase-damping
(17 couplings, the time evolution of the reduced density matrix
2EX(P))="—P2—Pat V(P1—P3)*+ (P2~ Pa)?, describing the gate is analytically solvéti7] by assuming
the product initial state for the entire density matrix:

2B} =max0,2E{(pi)},

which is the negativity oM. None of the points are present

on the higher side of a straight line B, =E}; , as in the case pot(0)=p(0)® pg, (21)

of the concurrence. While it has been shown that two mea-

sures(EOF and negativitydo not induce the same ordering where pg is the thermal equilibrium density matrix of the
of density matrices with respect to the amount of entangleenvironment. Since we pay attention only to the generation
ment[9], the above numerical results suggest fHalhas the of the entangled state, the initial state of theOT gate is
maximum amount of entanglement in both measures. chosen to be the pure state ¢0f.+|1).)®|0),.
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FIG. 3. EOF as a function of time in a decohemT gate for
several values of the coupling strengthy, is the cut-off frequency
of the ohmic environmental mode, agds the inverse temperature.
(@ HEL coupling and(b) H&) coupling.
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Bell pairs required to prepare the state by using only local
quantum operations and classical communicatio@CC),
comparing the difference in the EOF will make sense. In Fig.
3(a), the EOF is considerably lower than the corresponding
upper bound, while the EOF almost agrees with the upper
bound in Fig. 8b). Therefore, with respect to the function
generating entangled states, the performance ofctier
gate shown in Fig. ®) is already optimalor saturategin

the sense that there is no other way to further increase the
amount of the entanglement than to avoid an increase of the
mixture of the output density matrix, and thus avoid the de-
coherence itself. On the other hand, for theoT gate shown

in Fig. 3(a), there is room for improvement of the perfor-
mance in principle, although we cannot show the detailed
methods here.

To conclude, we propose mixed states in two qubits,
which have a property that the amount of entanglement of
these states cannot be increased by any unitary operation.
The property is proven when the rank of the states is less
than 4, and when the states satisfy a special relation such as
the Werner state. The results of the numerical calculations

The time development of the EOF for several values ofstrongly support a hypothesis that these mixed states are in-

the coupling strength[ocEkB§5(w— wy)] is shown in Fig.
3 for the (a) HY} and (b) HZ coupling. The values of the

deed maximally entangled even in general cases. It should be
noted finally that a class of mixed states, whose probabilistic

coupling strengthK are chosen such that the values of theincrease of the EOF of the single copy cannot be achieved by
fidelity of the output state to the desired state in the absencany LQCC protocol, has been propogé8,19. The Werner
of the decoherence are roughly 0.95, 0.9, and 0.8, which argtate belongs to this class, and at the same time belongs to

common to Figs. @) and 3b). It is interesting to note that,

the class we propose in the present paper. Therefore, the

while the fidelity is the same in two cases of coupling, theWerner state has the property of having a maximum amount

amount of the entanglement is significantly different.
The upper bound of the EQIEQ. (18)] for each coupling

of entanglement in both nonlocal unitary transformation and
LQCC protocol. It will be extremely important to seek out

strength is shown by an arrow on the right-hand side of eacthe maximally entangled mixed statas well as the measure
panel for comparison. In the present model, the rank of thén systems with a larger dimension, for understanding the
resultant reduced density matrix is always less than 4, andature of entanglement of general mixed states and for the
Eq. (18) gives the stric{proven bound. Since the EOF of a progress of the quantum information science and its applica-
state has the physical meaning of the asymptotic number dfons.
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