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Maximally entangled mixed states under nonlocal unitary operations in two qubits

Satoshi Ishizaka* and Tohya Hiroshima†

Fundamental Research Laboratories, System Devices and Fundamental Research, NEC Corporation, 34 Miyukigaoka, Tsuk
Ibaraki 305-8501, Japan

~Received 7 March 2000; published 18 July 2000!

We propose mixed states in two qubits that have a property that the amount of entanglement of these states
cannot be increased by any unitary transformation. The property is proven when the rank of the states is less
than 4, and confirmed numerically in the other general cases. The corresponding entanglement of formation
specified by its eigenvalues gives an upper bound of that for density matrices with the same eigenvalues.
Further, as a simple application of the upper bound of the entanglement of formation, we analyze the entangle-
ment of formation of the state generated by a decohered controlled-NOT gate in the spin-boson model.

PACS number~s!: 03.67.Lx, 03.65.Bz, 03.67.Hk
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Entanglement~or inseparability! is one of the most strik-
ing features of quantum mechanics and an important
source for most applications of quantum information.
quantum computers, the quantum information stored
quantum bits~qubits! is processed by operating quantu
gates. Multibit quantum gates, such as the controlled-NOT

gate, are particularly important, since these gates can cr
entanglement between qubits.

In recent years, quantification of the amount of entang
ment has attracted much attention, and a number of m
sures, such as the entanglement of formation@1#, negativity
@2,3#, and relative entropy of entanglement@4#, have been
proposed. When the system of the qubits is in a pure s
the amount of entanglement can be changed through the
operations from zero in separable states to unity in ma
mally entangled states. Most of the quantum algorithms
designed for such ideal pure states. When the system
maximally mixed, however, we cannot receive any ben
from entanglement in the quantum computation, since
density matrix of the system~unit matrix! is invariantly sepa-
rable under any unitary transformation or gate operatio
Recently, a question about NMR quantum computation
been proposed@5#, since the states in the vicinity of th
maximally mixed state are also always separable, as is
case of the present NMR experiments.

In all realistic systems, the mixture of the density mat
describing the qubits is inevitably increased by the coupl
between the qubits and its surrounding environment. Th
fore, it is extremely important to understand the nature
entanglement for general mixed states between two extre
of pure states and a maximally mixed state.

In this paper, we try to answer a simple question of h
much the increase of the mixture limits the amount of e
tanglement to be generated by the gate operation, or equ
lently, by unitary transformation. To this end, we propose
class of mixed states in bipartite 232 systems~two qubits!.
The states in this class show a property of having a m
mum amount of entanglement in the sense that the entan
ment of formation~and even negativity! of these states can
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not be increased by any~local or nonlocal! unitary
transformation. The property is rigorously proven in the ca
in which the rank of the states is less than 4, and confirm
numerically in the case of rank 4. The corresponding
tanglement of formation specified by its eigenvalues gives
upper bound of that for density matrices with the same
genvalues.

The entanglement of formation~EOF! @1# for a pure state
is defined as the von Neumann entropy of the reduced d
sity matrix. The EOF of a mixed state is defined asEF(r)
5min (ipiEF(c), where the minimum is taken over all pos
sible decompositions ofr into pure statesr5( i pi uc i&^c i u.
The analytical form for EOF in 232 systems is given by@6#

EF~r!5HS 11A12C2

2 D , ~1!

with H(x) being Shannon’s entropy function. The concu
renceC is given by

C5max$0,l12l22l32l4%, ~2!

wherel ’s are the square root of eigenvalues ofrr̃ in de-
creasing order. The spin-flipped density matrixr̃ is defined
as

r̃5sy
A

^ sy
Br* sy

A
^ sy

B , ~3!

where* denotes the complex conjugate in the computatio
basis. SinceEF is a monotonic function ofC, the maximum
of C corresponds to the maximum ofEF .

The states we propose are those obtained by applying
local unitary transformation to

M5p1uC2&^C2u1p2u00&^00u1p3uC1&^C1u

1p4u11&^11u, ~4!

whereuC6&5(u01&6u10&)/A2 are Bell states, andu00& and
u11& are product states orthogonal touC6&. Here, pi ’s are
eigenvalues ofM in decreasing order (p1>p2>p3>p4), and
p11p21p31p451. These include states such as
©2000 The American Physical Society10-1
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r5p1uF2&^F2u1p2u01&^01u1p3uF1&^F1u1p4u10&^10u,
~5!

where uF6&5(u00&6u11&)/A2 are also Bell states, and in
clude those that are obtained by exchanginguC2&↔uC1&,
u00&↔u11& in Eq. ~4!, or uF2&↔uF1&, u01&↔u10& in Eq.
~5!. Since entanglement is preserved by local unitary tra
formation, all these states have the same concurrence o

C* 5max$0,C* ~pi !%,
~6!

C* ~pi ![p12p322Ap2p4.

The concurrenceC* is maximum among density matrice
with the same eigenvalues, at least when the density mat
have a rank less than 4 (p450). The proof is as follows:

~1! Rank 1 case (p25p35p450). In this case, Eq.~4! is
reduced toM5uC2&^C2u, which obviously has the maxi
mum concurrence of unity.

~2! Rank 2 case (p35p450). Any density matrices of
two qubits~not necessarily rank 2! can be expressed as@7#

r5quc&^cu1~12q!rsep, ~7!

whereuc& is an entangled state andrsep is a separable den
sity matrix. The convexity of the concurrence@8# implies
that

C~r!<qC~ uc&^cu!1~12q!C~rsep!5qC~ uc&^cu!. ~8!

Sincersepis a positive operator,q is equal to or less than th
maximum eigenvalue ofr, and thus

C~r!<p1 . ~9!

The equality is satisfied whenuc& is a maximally entangled
purestate and an eigenvector ofr with the eigenvalue ofp1.
The upper bound in Eq.~9! coincides withC* for p35p4
50.

~3! Rank 3 case (p450). Any rank 3 density matrices ca
be decomposed into two density matrices by simply deco
posing their eigenvalues as

r5~123p3!r213p3r3 , ~10!

where the eigenvalues ofr2 are

H p12p3

123p3
,

p22p3

123p3
,0,0J , ~11!

and eigenvalues ofr3 are $1/3,1/3,1/3,0%. According to
Lemma 3 in Ref.@3#,

Tr r2<
1

3
⇒r is separable. ~12!

Since the purity ofr3 is 1/3, r3 is always separable. There
fore, convexity of the concurrence implies that

C~r!<~123p3!C~r2!<p12p3 . ~13!
02231
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Here, we have used that, as shown above, the maxim
concurrence of rank 2 density matrices is its maximum
genvalue. The upper bound in Eq.~13! again coincides with
C* for p450.

In order to check whetherC* is maximum, even in gen-
eralp4Þ0 cases, we have performed a numerical calculat
whose scheme is similar to that in Refs.@9,3,10#. We have
generated 10 000 density matrices in a diagonal form w
four random eigenvalues distributed uniformly@3#. The
maximum concurrence has been obtained among 1 000
density matrices generated by multiplying random unita
matrices in the circular unitary ensemble@11# to each of
10 000 diagonal matrices. The results are shown in Fig
where the maximum concurrence is plotted as a function
the participation ratio (R51/Trr2).

When the density matrix is close to the pure stateR
51), the maximum concurrence is also close to unity,
expected. ForR>3, the states are always separable@Eq.
~12!# and the maximum is zero. In the region of 1,R,3,
the maximum tends to decrease with an increase ofR, but the
points are rather broadly distributed. The same data are p
ted as a function ofC* in the inset of Fig. 1. All points are
very closely distributed along the straight line ofC5C* , and
none of the points are present on the higher side of the l
This numerical result strongly supports the hypothesis t
C* gives an upper bound of the concurrence, even in
general cases ofp4Þ0.

Accepting the hypothesis implies that all the states sa
fying C* (pi)<0 become automatically separable. This co
dition of separability is looser than Eq.~12!. In fact,
C* (pi)<0 is only a necessary condition of Trr2<1/3. The
difficulty with the rigorous proof of the hypothesis, if it i
true, might relate to the difficulty in completely understan
ing the separable-inseparable boundary in the
dimensional space of the density matrices due to its comp
structure. We emphasize again that the numerical re
strongly supports the truth of the hypothesis.

It should be noted here that, when the eigenvalues o
density matrix satisfy a relation,C* is indeed maximum,
even for p4Þ0. The rank 4 density matrices satisfyin
C(pi)>0 are decomposed as

r5~p12p322Ap2p4!u1&^1u1r4 , ~14!

FIG. 1. Numerically obtained maximum concurrence for ra
dom density matrices as a function of the participation ratio andC*
~inset!.
0-2
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whereu1& is an eigenvector ofr, and the eigenvalues ofr4

~not normalized! are$p312Ap2p4,p2 ,p3 ,p4%. When the ei-
genvalues ofr satisfy

p35p21p42Ap2p4, ~15!

the purity of~normalized! r4 is equal to 1/3 andr4 becomes
always separable. Therefore, using the convexity of the c
currence again, the upper bound of the concurrence is pro
to be C* for density matrices satisfying Eq.~15! ~and p1

2p322Ap2p4>0). When p25p35p4(<1/4), M is re-
duced to the Werner state@12#:

M5p1uC2&^C2u1
12p1

3
~ uC1&^C1u1uF2&^F2u

1uF1&^F1u!, ~16!

whose eigenvalues satisfy Eq.~15!. Therefore, it was proven
that the EOF of the Werner state cannot be increased by
unitary transformation.

It is worth testing whether the states we propose h
maximum entanglement in the other entanglement measu
It has been shown that a positive partial transpose is a
essary condition for separability@2#, and that it is also a
sufficient condition for 232 and 233 systems@13#. In 2
32 systems, when the density matrix is entangled, its pa
transpose has only one negative eigenvalue@14#. The modu-
lus of the negative eigenvalue (EN) is a kind of entanglemen
measure, and two timesEN agrees with the negativity intro
duced in Ref.@3#. We have performed a numerical calcul
tion similar to that for Fig. 1, and obtained a maximum ofEN
for 10 000 random density matrices. In the inset of Fig
those are plotted as a function of

2EN* 5max$0,2EN* ~pi !%,
~17!

2EN* ~pi ![2p22p41A~p12p3!21~p22p4!2,

which is the negativity ofM. None of the points are presen
on the higher side of a straight line ofEN5EN* , as in the case
of the concurrence. While it has been shown that two m
sures~EOF and negativity! do not induce the same orderin
of density matrices with respect to the amount of entang
ment@9#, the above numerical results suggest thatM has the
maximum amount of entanglement in both measures.

FIG. 2. The same as Fig. 1, but negativity is plotted.
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As mentioned in the introduction, it will be natural t
attribute the upper bound of entanglement, which is w
described byC* (pi) andEN* (pi), to the increase of the de
gree of the mixture of the states. In this sense,C* (pi) and
2EN* (pi) ~both are distributed in the range of@21/2,1#) each
can be considered as one of the measures characterizin
degree of mixture, such as the purity~or participation ratio!,
von Neumann entropy, Renyi entropy, and so on.

Finally, as a simple application of the upper bound
EOF,

EF~r!<HS 11A12C* 2

2 D , ~18!

we consider the situation generating entangled states by
ing the quantum gate consisting of two qubits, more co
cretely a controlled-NOT ~CNOT! gate. In realistic situations
the coupling between the gate and its surrounding envir
ment is inevitably present. The entire system consisting
the gate plus its environment happens to be entangled by
coupling, and the mixture of the reduced density matrix d
scribing the gate will inevitably be increased.

In order to treat such decoheredCNOT gates, we adopt the
spin-boson model@15,16#, where each qubit is described as
spin-12 system, and the environment is expressed as an
semble of independent bosons. As the model of theCNOT

gate, we choose the simplest Hamiltonian:

HG52
R

4
~12scz! ^ s tx , ~19!

wherec and t denotes the control-bit and target-bit, respe
tively. The state change aftert5h/(2R) corresponds to the
change in theCNOT operation. In this paper, we demonstra
two types of gate-environment couplings. These are

HGE
(1)52scz(

k
Bk~ak

†1ak!,

~20!

HGE
(2)52

1

2
~12scz! ^ s tx(

k
Bk~ak

†1ak!,

whereak is an annihilation operator of a boson in the en
ronment. HGE

(1) describes the situation in which only th
control-bit couples with the environment.HGE

(2) may describe
the situation in which the gate operation is achieved by ir
diating a optical pulse that contains a noise coherent over
qubits as well as the pulse itself. For these phase-dam
couplings, the time evolution of the reduced density mat
describing the gate is analytically solved@17# by assuming
the product initial state for the entire density matrix:

r tot~0!5r~0! ^ rE , ~21!

where rE is the thermal equilibrium density matrix of th
environment. Since we pay attention only to the generat
of the entangled state, the initial state of theCNOT gate is
chosen to be the pure state of (u0&c1u1&c) ^ u0& t .
0-3
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The time development of the EOF for several values
the coupling strengthK@}(kBk

2d(v2vk)# is shown in Fig.
3 for the ~a! HGE

(1) and ~b! HGE
(2) coupling. The values of the

coupling strengthK are chosen such that the values of t
fidelity of the output state to the desired state in the abse
of the decoherence are roughly 0.95, 0.9, and 0.8, which
common to Figs. 3~a! and 3~b!. It is interesting to note that
while the fidelity is the same in two cases of coupling, t
amount of the entanglement is significantly different.

The upper bound of the EOF@Eq. ~18!# for each coupling
strength is shown by an arrow on the right-hand side of e
panel for comparison. In the present model, the rank of
resultant reduced density matrix is always less than 4,
Eq. ~18! gives the strict~proven! bound. Since the EOF of a
state has the physical meaning of the asymptotic numbe

FIG. 3. EOF as a function of time in a decoheredCNOT gate for
several values of the coupling strength.vc is the cut-off frequency
of the ohmic environmental mode, andb is the inverse temperature
~a! HGE

(1) coupling and~b! HGE
(2) coupling.
t-

.
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Bell pairs required to prepare the state by using only lo
quantum operations and classical communication~LQCC!,
comparing the difference in the EOF will make sense. In F
3~a!, the EOF is considerably lower than the correspond
upper bound, while the EOF almost agrees with the up
bound in Fig. 3~b!. Therefore, with respect to the functio
generating entangled states, the performance of theCNOT
gate shown in Fig. 3~b! is already optimal~or saturated! in
the sense that there is no other way to further increase
amount of the entanglement than to avoid an increase of
mixture of the output density matrix, and thus avoid the d
coherence itself. On the other hand, for theCNOT gate shown
in Fig. 3~a!, there is room for improvement of the perfo
mance in principle, although we cannot show the detai
methods here.

To conclude, we propose mixed states in two qub
which have a property that the amount of entanglemen
these states cannot be increased by any unitary opera
The property is proven when the rank of the states is l
than 4, and when the states satisfy a special relation suc
the Werner state. The results of the numerical calculati
strongly support a hypothesis that these mixed states ar
deed maximally entangled even in general cases. It shoul
noted finally that a class of mixed states, whose probabili
increase of the EOF of the single copy cannot be achieved
any LQCC protocol, has been proposed@18,19#. The Werner
state belongs to this class, and at the same time belong
the class we propose in the present paper. Therefore,
Werner state has the property of having a maximum amo
of entanglement in both nonlocal unitary transformation a
LQCC protocol. It will be extremely important to seek o
themaximally entangled mixed statesas well as the measur
in systems with a larger dimension, for understanding
nature of entanglement of general mixed states and for
progress of the quantum information science and its appl
tions.
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