PHYSICAL REVIEW A, VOLUME 62, 022309
Broadband teleportation

P. van Loock and Samuel L. Braunstein
Quantum Optics and Information Group, School of Informatics, University of Wales, Bangor LL57 1UT, United Kingdom

H. J. Kimble
Norman Bridge Laboratory of Physics 12-33, California Institute of Technology, Pasadena, California 91125
(Received 1 February 1999; published 18 July 2000

Quantum teleportation of an unknown broadband electromagnetic field is investigated. The continuous-
variable teleportation protocol by Braunstein and Kimfitays. Rev. Lett80, 869 (1998] for teleporting the
guantum state of a single mode of the electromagnetic field is generalized for the case of a multimode field
with finite bandwith. We discuss criteria for continuous-variable teleportation with various sets of input states
and apply them to the teleportation of broadband fields. We first consider as a set of inpufifieids/hich
an independent state preparer draws the inputs to be telepartsttary pure Gaussian states with unknown
coherent amplitudésqueezed or coherent statebhis set of input states, further restricted to an alphabet of
coherent states, was used in the experiment by Furusaala[ Science282 706 (1998]. It requires unit-gain
teleportation for optimizing the teleportation fidelity. In our broadband scheme, the excess noise added through
unit-gain teleportation due to the finite degree of the squeezed-state entanglement is just t(eceatingle-
men) source’s squeezing spectrum for its “quiet quadrature.” The teleportation of one half of an entangled
state (two-mode squeezed vacuum sjatee., “entanglement swapping,” and its verification are optimized
under a certain nonunit gain condition. We will also give a broadband description of this continuous-variable
entanglement swapping based on the single-mode scheme by van Loock and Brg@istsirRev. A61,
10302(2000].

PACS numbd(s): 03.67—a, 03.65.Bz, 42.50.Dv

[. INTRODUCTION teleported is not independently coming from the out$igle
or destructive detection of the photons in the teleported state
Teleportation of an unknown quantum state is its disemis employed as part of the protodd]. In the latter case, a
bodied transport through a classical channel, followed by itdeleported state did not emerge for subsequent examination
reconstitution, using the quantum resource of entanglementr exploitation. This situation has been termeal gosteriori
Quantum information cannot be transmitted reliably via ateleportation,” being accomplished via post selection of pho-
classical channel alone, as this would allow us to replicatéoelectric counting events/]. Without postselection, the fi-
the classical signal and so produce copies of the initial statejelity would not have exceeded the valfigequired.
thus violating the no-cloning theorefi]. More intuitively, The teleportation of continuous quantum variables such as
any attempted measurement of the initial state only obtainposition and momentum of a partic|&] relies on the en-
partial information due to the Heisenberg uncertainty prin-tanglement of the states in the original Einstein, Podolsky,
ciple and the subsequently collapsed wave packet forbidand RosedEPR paradox9]. In quantum optical terms, the
information gain about the original state from further inspec-observables analogous to the two conjugate variables posi-
tion. Attempts to circumvent this disability with more gener- tion and momentum of a particle are the quadrature ampli-
alized measurements also fg#]. tudes of a single mode of the electromagnetic fldld]. By
Quantum teleportation was first proposed to transport aconsidering the finiténonsingular degree of correlation be-
unknown state of any discrete quantum system, e.g., a spitween these quadratures in a two-mode squeezed $@ia
1 particle[3]. In order to accomplish the teleportation, clas- realistic implementation for the teleportation of continuous
sical and quantum methods must go hand in hand. A part auantum variables was proposgtil]. Based on this pro-
the information encoded in the unknown input state is transposal, in fact, quantum teleportation of arbitrary coherent
mitted via the quantum correlations between two separatestates has been achieved with a fidekty 0.58+0.02[12].
subsystems in an entangled state shared by the sender awdithout using entanglement, by purely classical communica-
the receiver. In addition, classical information must be sention, an average fidelity of 0.5 is the best that can be
via a conventional channel. For the teleportation of a spinachieved if the set of input states contains all coherent states
1-particle state, the entangled state required is a pair of spirffd3]. The scheme with continuous quadrature amplitudes of a
in a Bell state[4]. The classical information that has to be single mode enables am priori (or “unconditional”) tele-
transmitted contains two bits in this case. portation with high efficiency[11], as reported in Refs.
Important steps toward the experimental implementatiori14,17. In this experiment, three criteria necessary for quan-
of quantum teleportation of single-photon polarization statesum teleportation were achieve@t) An unknown quantum
have already been accomplisHé&g6]. However, a complete state enters the sending station for teleportati@n A tele-
realization of the original teleportation propo$&l has not ported state emerges from the receiving station for subse-
been achieved in these experiments, as either the state to faent evaluation or exploitatioi3) The degree of overlap
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between the input and the teleported states is higher than that
which could be achieved if the sending and the receiving
stations were linked only by a classical channel.

In continuous-variable teleportation, the teleportation pro- RN N
cess acts on an infinite-dimensional Hilbert space instead of
the two-dimensional Hilbert space for the discrete spin vari-
ables. However, an arbitrary electromagnetic field has an in-
finite number of modes, or in other words, a finite bandwidth
containing a continuum of modes. Thus, the teleportation of
the quantum state of a broadband electromagnetic field re- n
quires the teleportation of a quantum state which is defined
in the tensor product space of an infinite number of infinite- . EPR
dimensional Hilbert spaces. The aim of this paper is to ex-
tend the treatment of Refl1] to the case of a broadband
field, and thereby to provide the theoretical foundation for < >
laboratory investigations as in Refgl4,12. In particular,
we demonstrate that the two-mode squeezed state output of a

nondegenerate optical parametric amplifidOPA) [15] is a FIG. 1. Teleportation of a single mode of the electromagnetic
suitable EPR ingredient for the efficient teleportation of afield as in Ref.[11]. Alice and Bob share the entangled state of
broadband electromagnetic field. modes 1 and 2. Alice combines the mode “in” to be teleported

In the three above mentioned teleportation experiments, iwith her half of the EPR state at a beam splitter. The homodyne
Innsbruck[5], in Rome[6], and in Pasadend?2], the non-  detectorsD, and D, yield classical photocurrents for the quadra-
orthogonal input states to be teleported were single-phototuresx, andp, , respectively. Bob performs phase-space displace-
polarization stategqubity [5,6] and coherent stateld2]. ments of his half of the EPR state depending on Alice’s classical
From a true quantum teleportation device, however, weesults.
would also require the_capablllty of teleporting the entangleinput mode she wants to teleport with her “EPR mode” at a
ment source itself. This teleportation of one half of an en

; ‘beam splitter. The “Bell detection” of the quadrature at
tangled state(entanglement swappinfl6]) means to en- ,nq heam splitter output, and of theguadrature at the other

tangle two quantum systems that have never directly, ¢ vyields the classical results to be sent to Bob via a
interacted with each other. For discrete variables, a demonsjassical communication channel. In the limit of an infinitely
stration of entanglement swapping with single photons hagq eezed EPR source, these classical results contain no in-
been reported by Paet al. [17]. For continuous variables, f5mation about the mode to be teleported. This is analogous
experimental entanglement swapping has not yet been regls ihe Bell-state measurement of the spiparticle pair by
ized in the laboratory, but there have been several theoreticaljice for the teleportation of a spih-particle state. The
proposals of such an experiment. Polkinghome and Ralpfheasyred Bell state of the spimparticle pair determines
[18] suggested teleporting polarization-entangled states Qfather the particles have equal or different spin projections.
single photons using squeezed-state entanglement where tpge spin projection of the individual particles, i.e., Alice’s
output correlations are verified via Bell inequalities. Téa8]  gpg particle and her unknown input particle, remains com-
and van Loock and Braunstej@0] considered the uncondi- pletely unknowr[3]. According to this analog);, we call Al-
tional teleportation(withoqt postselection of “successful” ;. ..q quadrature measurements for the teleportation of the
events by photon detectionsf one half of a two-mode  giate of a single modéand of a multimode field in the fol-
squeezed state using different protocols and venﬂcaﬂonlowing sections “Bell detection.” Due to this Bell detec-
Based on the single-mode scheme of R2a], we will also 45 the entanglement between Alice’s “EPR mode” and
present a broadband description of continuous-variable eBob’'s “EPR mode” means that suitable phase-space dis-
tanglement swapping. placements of Bob’s mode convert it into a replica of Alice’s
unknown input modda perfect replica for infinite squeez-
ing). In order to perform these displacements, Bob needs the
classical results of Alice’s Bell measurement.

In the teleportation scheme of a single mode of the elec- The previous protocol for the quantum teleportation of
tromagnetic fieldfor example, representing a single pulse orcontinuous variables used the Wigner distribution and its
wave packet the shared entanglement is a two-modeconvolution formalism[11]. The teleportation of a single
squeezed vacuum stdtEl]. For infinite squeezing, this state mode of the electromagnetic field can also be recast in terms
contains exactly analogous quantum correlations as does tloé Heisenberg equations for the quadrature amplitude opera-
state described in the original EPR paradox, where théors, which is the formalism that we employ in this paper.
guadrature amplitudes of the two modes play the roles oFor that purpose, the Wigner functidhlzpr describing the
position and momenturfil1]. The entangled state is sent in entangled state shared by Alice and Ba#] is replaced by
two halves: one to “Alice” (the teleporter or sendeand the  equations for the quadrature amplitude operators of a two-
other one to “Bob” (the receivey, as illustrated in Fig. 1. In mode squeezed vacuum state. Two independently squeezed
order to perform the teleportation, Alice has to couple thevacuum modes can be described[t]

Il. TELEPORTATION OF A SINGLE MODE

022309-2



BROADBAND TELEPORTATION

;‘l: er;‘JlO) , B‘l: efr3(10) ,
N N 1
Xp= eir;?(zo), po= erB(ZO) '

PHYSICAL REVIEW A62 022309

;(ZH;(telz ;(2 + F \/EXU y

e (5
Po— Pre=P2+1'V2p, ,

thus accomplishing the teleportatiphl]. The parametel

where a superscript (0) denotes initial vacuum modesrand describes a normalized gain for the transformation from clas-
is the squeezing parameter. Superimposing the two squeezgftal photocurrent to complex field amplitude. FBe=1,
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(4) after the collapse ok, andp, due to the Bell detection.
The teleported field then becomes
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o N ©
Pter= Pint \/EeirplO) .

For an arbitrary gaid’, we obtain

r-1 r+i
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The output modes 1 and 2 are now entangled to a finit@ste that these equations take no Bell detector inefficiencies
degree in a two-mode squeezed vacuum state. In the limit Qfto account.

infinite squeezingy —, both output modes become infi-

Consider the casé@' =1. For infinite squeezing— o,

nitely noisy, but also the EPR correlations between thenkqs (6) describe perfect teleportation of the quantum state of

become ideal: X;—X,)—0, (p;+p>)—0. Now mode 1 is

the input mode. On the other hand, for the classical case of

sent to Alice and mode 2 is sent to Bob. Alice’s mode is therr =0, i.e., no squeezing and hence no entanglement, each of
superimposed at a 50/50 beam splitter with the input modehe teleported quadratures hawo additional units of

“in’

- 1. 1. - 1. 1.
X :—X ——X s = —_— b ——— s
u /—2 in r—2 1 Pu /—2 Pin /—2 P1
()
ol 1. 1. 1.
X, =—=X; —X1, v— =R —— .
VT R 1. P 5 Pin 5 P1

Using Eqgs.(3) we will find it useful to write Bob’s mode 2
as

;(2:;(in_ (;(1_;(2)_ \/E;(u:;(in_ \/Ee—r%O)_ \/E;(u ,
(4)
P2=Pint (P1+P2) — V2P, =Pin+ v2e PV 2, .

Alice’s Bell detection yields certain classical valugsand

p, for X, andp, . The quantum variables, andp, become
classically determined, random variables. We indicate this b
turning x, andp, into x, andp, . The classical probability
distribution ofx, andp, is associated with the quantum sta-
tistics of the previous operatofd1]. Now, due to the en-
tanglement, Bob’s mode 2 collapses into states thatr for
—oo differ from Alice’s input state only infrandom classi-

vacuum noise compared to the original input quadratures.
These two units are so-called quantum duties or “quduties”
which have to be paid when crossing the border between
guantum and classical domaifikl]. The two quduties rep-
resent the minimal tariff for every “classical teleportation”
schemg[13]. One quduty, the unit of vacuum noise due to
Alice’s detection, arises from her attempt to simultaneously
measure the two conjugate variablgsand p;, [21]. This is

the standard quantum limit for the detection of both quadra-
tures[22] when attempting to gain as much information as
possible about the quantum state of a light fig2@]. The
standard quantum limit yields a product of the measurement
accuracies which is twice as large as the Heisenberg mini-
mum uncertainty product. This product of the measurement
accuracies contains the intrinsic quantum lirfkiteisenberg
uncertainty of the field to be detecjgulus an additional unit

of vacuum noise due to the detectipd2]. The second
quduty arises when Bob uses the information of Alice’s de-
tection to generate the state at amplitu@®,+i+2p, [11].

It can be interpreted as the standard quantum limit imposed

%n state broadcasting.

Ill. TELEPORTATION CRITERIA

The teleportation scheme with Alice and Bob is complete
without any further measurement. The quantum state tele-

cal phase-space displacements. After receiving Alice’s clagported remains unknown to both Alice and Bob and need not

sical resultsx, andp, , Bob displaces his mode

be demolished in a detection by Bob as a final step. How-
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the teleported mode has an excess noise of two units of
vacuums + 3 compared to the input, as also discussed in the
previous section. Any>0 beats this classical scheme, i.e.,
if the input state is always recreated with the right amplitude
and less than two units of vacuum excess noise, we may call
this already quantum teleportation. Let us derive this result
using the least noisy model for classical communication. For
the input quadratures of Alice’s sending station and the out-
put quadratures at Bob’s receiving station, the least noisy
(linean model if Alice and Bob are only classically commu-
nicating can be written as

;(out,j = I‘x;(in"_ FxS; 1;(£10) + Sl;Jl)A(EJOI) !
®

Poutj= I‘ppin_ I‘psatp‘gi())"' Sb, | pE)O]) :

This model takes into account that Alice and Bob can only
communicate via classical signals, since arbitrarily many
copies of the output mode can be made by Bob where the
subscripf labels thejth copy. In addition, it ensures that the

FIG. 2. Verification of quantum teleportation. The verifier output quadratures satisfy the commutation relations
“Victor” is independent of Alice and Bob. Victor prepares the

input states which are known to him, but unknown to Alice and [)A( - 1=(i/2)5,
Bob. After a supposed quantum teleportation from Alice to Bob, the out +Poutk jko

teleported states are given back to Victor. Due to his knowledge of R R R R ©)
the input states, Victor can compare the teleported states with the [Xout,j aXout,k]z[pout,j +Poutk] = 0.

input states.

Victor

Since we are only interested in one single copy of the output
ever, maybe Alice and Bob are cheating. Instead of using awe drop the labe|. The parametes, is given by Alice’s
EPR channel, they try to get away without entanglement angheasurement strategy and determines the noise penalty due
use only a classical channel. In particular, for the realistido her homodyne detections. The gaifig andI', can be
experimental situation with finite squeezing and inefficientmanipulated by Bob as well as the parameigdetermining
detectors where perfect teleportation is unattainable, howhe noise distribution of Bob’s original mode. The set of
may we verify that successful quantum teleportation hagnput states may contain pure Gaussian states with a coherent
taken place? To make this verification we shall introduce amplitude, described bg(in:<;(in>+s;1;((o) and E)in:<f)in>
third party, “Victor” (the verifie), who is independent of | ¢ 50 \here Victor can choose in each trial the coherent
Alice and Bob (Fig. 2. We assume that he prepares theympitude and if and to what extent the input is squeezed
initial input state (drawn from a fixed set of statesnd (parameters,). Since Bob always wants to reproduce the
passes it on to Alice. After accomplishing the supposed telernput amplitlL)Jde, he is restricted to unit gain, symmetric in
portation, Bob sends the telgported state back to V_ictor. Vicboth quadratureE, =T ,=1. First, after obtaining the output
tor's knowledge about the input state and detection of theyae from Bob, Victor verifies if their amplitudes match the
teleported state enable Victor to verify if quantum teIeporta—corresponding input amplitudes. If not, all the following con-
tion has really taken place. For that purpose, however, VictoLiqerations concerning the excess noise are redundant, be-

needs some measure that helps him to assess when the sifiiy,se plice and Bob can always manipulate this noise by
larity between the teleported state and the input state exceeﬂad"ng the gain(less than unit gain reduces the excess

a boundary that is only exceedable with entanglement. 550 “if Victor finds overlapping amplitudes in all trialst

_ _ _ _ least within some error rangehe looks at the excess noise in
A. Teleporting Gaussian states with a coherent amplitude each trial. For that purpose, let us define the normalized vari-

The single-mode teleportation scheme from Rgfl]  ance
works for arbitrary input states, described by any Wigner . ~
function W,,. Teleporting states with a coherent amplitude x_ (AXou—Xin)%)
as reliably as possible requires unit-gain teleportatiomit out,in™ %2 '

.. . . N . <AX >vacuum
gain in Bob’s final displacementOnly in this case, the co-
herent amplitudes of the teleported mode always match those b N 5
of the input mode when Victor draws states with differentand analogouslyVv with x—p throughout [(A0%)

(10

out,in

amplitudes from the set of input states in a sequence of trials Var(0)]. Using Eqs(8) with unit gain, we obtain the prod-
For this unit-gain teleportation, the teleported stéig, is a uct

convolution of the inputwW,, with a complex Gaussian of X « oo

variancee™ 2. Classical teleportation with=0 then means VoutinVoutin= (Sa “+Sp ) (Sa+Sp).- 11
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It is minimized fors,=s,, yielding V;c;ut invgut =4 The op- in the classical model. In every trial, Victor must combine
timum value of 4 is exactly the result we obtain for what we his knowledge ofs, with the detected output variances in

. . order to find violations of this sum inequality.
may call classical teleportatioviy, ;,(r =0)VE, i(r=0)=4, ' . :
using Eqs.(6) with subscript out.{el in Eq. (10). Thus, we Ralph and Lanj24] define the classical boundaries
can write our first fundamental limit for teleporting states VA4 VP=2 (15)
with a coherent amplitude as

. - . - and
Vgut,invgut,inz V;(el,in(r = O)VPel,in(r = 0) =4. (12) . .
. . . : TS+ Th
If Victor, comparing the output states with the input states,
always finds violations of this inequality, he may alreadyysing the conditional variance
have big confidence in Alice’s and Bob’s honesitg., that

us1 (16)

they indeed have used entanglemeriiquation(12) may . (A§<2,) |(A§< AX: NG
. . X__ ou out=~Ain
also enable us already to assess if a scheme or protocol is V== - ~ | (17)
capable of quantum teleportation. Alternatively, instead of (AX)vacuum (AXou) (AXin)
i X \P - N
Iookmg;(at the AprOdUCEE/OUt'T\Z/O“"g" er could a'S‘? l_JS(_a the and analogously fov® with x— p throughout, and the trans-
sSumsVy it Vo in=Sa - +Sp “+s5+sp that are minimized  for coefficient
for s,=sp=1. Then we find the classical boundaw,, )
~ ! X
+Vgut,in24' T; = —FS out (18)
However, taking into account all the assumptions made out S ’
I

for the derivation of Eq(12), this boundary appears to be
less fundamental. First, we have only assumed a line nd analogously'f’ with §<—>E)throughout. HereS denotes
model. Secondly, we have only considered the variances ;ie signal to noiguet ratio for the square of the mean ampli-
two conjugate observables and a certain kind of measure- X n 2y A2

ment of these. An entirely rigorous criterion for quantum tUdes, namens g,=(Xoup /(AXguy - o
teleportation should take into account all possible variables, Alice QNd BQb using only Classmal communication are not
measurements and strategies that can be used by Alice aRfle to violateeither of the two inequalities Eq15) and Eq.
Bob. Another “problem” of our boundary Eq12) is that (16). In fact, these boundan_es are tw_o independent limits,
the varianced/q;, are not directly measurable, because theeach of them unexceedable in a classical scheme. However,

input state is destroyed by the teleportation process. HowAlice and Bob can simultaneously approa¢ft VE=2 and

ever, for Gaussian input states, Victor can combine hisrX +TP =1 using either an asymmetric classical detection
knowledge of the input variancag, with the detected vari- and transmission scheme with coherent-state inputs or a
ancesV,, in order to inferVq, ;. With a more specific set  symmetric classical scheme with squeezed-state ifdis

of Gaussian input states, namely coherent states, the legsgr quantum teleportation, Ralph and L§24] require their

noISy mode'l for classical comm“unlcatlon a”O,\,NS. us to deter'classical limits be simultaneously exceeded; VE<2 and
mine the directly measurable “fundamental” limit for the _: ~

normalized variances of the output states Tourt Tgut>.1' This is only possible using more than 3 dB
o squeezing in the entanglement sour24]. Apparently, these
VX VP =09. (13)  criteria determine a classical boundary different from ours in

Eqg. (12). For example, in unit-gain teleportation, our in-
But still we need to bear in mind that we did not consider allequality Eq.(12) is violated for any nonzero squeezimg
possible strategies of Alice and Bob. Also for arbitray  >0. Let us briefly explain why we encounter this discrep-
(set of input states contains all coherent and squeezed)stateancy. We have a priori assumed unit gain in our scheme to

Eqg. (13) represents a classical boundary, as achieve outputs and inputs overlapping in their mean values.
. This assumption is, of course, motivated by the assessment
VENVP = (s, 2+s, 2+ 5,9 (SP+ 82+ SP) (14)  that good teleportation means good similarity between input

o and outpusstates(here, to be honest, we already have some-
is minimized fors,=s,=s,, yielding V5, V5,=9. How-  thing in mind similar to the fidelity, introduced in the next
ever, sinces, is unknown to Alice and Bob in every trial, section. First, Victor has to check the match of the ampli-
they can attain this classical minimum only by accident. Foitudes before looking at the variances. Ralph and Lam permit
s, fixed, e.g.,s,=1 (set of input states contains “only” arbitrary gain, because they are not interested in the similar-
coherent stat¢sAlice and Bob knowing this, can always ity of input and outpustates but in certain correlations that
satisfy V3, Vb ,=9 in the classical model. Alternatively, the m?”'feSt separa_te_ly in the individual quadratui2s]. This

S D D -2, 2, 2,2, 2 - point of view originates from the context of quantum non-
SUMS Vout Vou=$, "8, “ 18, “+5,+ 53-8, are mini-  4emolition (QND) measurement6], which are focused on
mized with s;=s,=1. In this case, we obtain the j single QND variable while the conjugate variable is not of
s,-dependent boundaryX .+ VB =s, >+s>+4. Without interest. For arbitrary gain, an inequality as in Etg), con-
knowings, , Alice and Bob can always attain this minimum taining the input and output mean values, has to be added to
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an inequality only for variances as in E(L5). Ralph and Let us illustrate these nontrivial results with our single-mode
Lam’s best classical protocol permits output states com-teleportation equations. Up to a factar, the fidelity F
pletely different from the input states, e.g., via asymmetric=(q, | po|a;,) is the Q function of the teleported mode
detection where the lack of information in one quadraturesyaluated fora;, :

leads on average to output states with amplitudes completely

different from the input states. The asymmetric scheme 2 2
means that Alice isiot attempting to gain as much informa- g— 7Qel i) = —ex;{ _(1_1~)z( in_, T )
tion about thequantum stateas possible, as in an Arthurs- ¢ Voo, 204 20y
Kelly measuremenf21]. The Arthurs-Kelly measurement, (22
however, is exactly what Alice should do in obestclassi-

cal protocol, i.e., classical teleportation. Therefore, our besfvherel is the gain from the previous sections amg and
classical protocol always achieves output states already are the variances of th@ function of the teleported mode
pretty similar to the input states. Apparently, “the best” that for the corresponding quadratures. These variances are ac-
can be classically achieved has a different meaning frongording to Egs. (7) for a coherent-state input and
Ralph and Lam’s point of view and from ours. Then it is no ;4 ;2 —/AR2 1

surprise that the classical boundaries differ as well. Apart<AX Ivacuuni= (AP )vacuur=3 given by

from these differences, however, Ralph and Lam’s criteria do 1 2 P

have something in common with our criterion given by Eq. o=0,=—(1+T2)+ —(I'—1)%+ (T+1)2
(12): they also do not satisfy the rigor we require from cri- P4 8 8

teria for quantum teleportation taking into account every- (23

thing Alice and Bob can do. By limiting the set of input _ _ .
states to coherent states, we are able to present such a righer classical teleportationr €0) andI'=1, we obtainoy

ous criterion in the next section. =0p=3+ Vi1 =0)=3+3Viy(r=0)=3+3=1 and
indeedF=F,,=3. In order to obtain a better fidelity, en-
B. The fidelity criterion for coherent-state teleportation tanglement is necessary. Then,li=1, we obtainF=F,,

_ o _ _ >1 for anyr>0. Forr=0, the fidelity drops to zero aB
The rigorous criterion we are looking for to determine the _, . gince the mean amplitude of the teleported state does
best classical teleportation and to quantify the distinction beg ot match that of the input state and the excess noise in-
tween classical and quantum teleportation relies on the fideleases. Forr=0 and I'=0, the fidelity becomesF
ity F, for an arbitrary input staty;,) defined by[13] =exp(—|a;|?). Upon averaging over all possible coherent-
~ state inputs, this fidelity also vanishes. Assuming nonunit
F=(4inl Poud ¥in)- (19 gain, it is crucial to consider the average fidelfy,+F.
When averaging across the entire complex plane, any non-
It is an excellent measure for the similarity between the inpuunit gain yieldsF,,=0. This is exactly why Victor should

and the output state and equals one on|g,0m:|¢m><,r/,m|_ first check the match of the amplitudes for different input
Now Alice and Bob know that Victor draws his states,) states. If Alice and Bob are cheating and fiddle the gain in a
from a fixed set, but they do not know which particular stateclassical scheme, a sufficiently large input amplitude reveals

is drawn in a single trial. Therefore, an average fidelitythe truth. These considerations also apply to the asymmetric
should be considered 3], classical detection and transmission scheme with a coherent-

state inpuf24] discussed in the previous section. Of course,
the asymmetric scheme does not provide an improvement in
Fav:f P o)) tinl poud ¥in)A| i) (200  thefidelity. In fact, the average fidglity drops to zero, if A_Iice
detects only one quadratufend gains complete information
about this quadratuyeand Bob obtains the full information
where P(|¢,)) is the probability of drawing a particular about the measured quadrature, but no information about the
state| ¢;,), and the integral runs over the entire set of inputsecond quadrature. In an asymmetric classical scheme, Alice
states. If the set of input states contains simply all possibl@nd Bob stay far within the classical domaf,<3. The
quantum states in an infinite-dimensional Hilbert spaee,  best classical scheme with respect to the fidelity is the sym-
the input state is completely unknown apart from the Hilbert-metric one(*classical teleportation) with F,,= 3.
space dimensionthe best average fidelity achievable with- ~ The supposed limitation of the fidelity criterion that the
out entanglement is zero. If the set of input states is restrictegiet of input states contains “only” coherent states is com-
to coherent states of amplitudey,=x;,+ip;, and F pensated by having an entirely rigorous criterion. Of course,
:<am|;)out| i), on average, the fidelity achievable in a the fidelity criterion does not limit the possible input states

purely classical schemévhen averaged across the entire for which the presented protocol works. It does not mean we

complex plangis bounded by13] can only t.eleport coherent stat(eas we will cIearIy.seg in the
next section However, so far, it is the only criterion that
enables the experimentalist to rigorously verify quantum
Fo< E 21) teleportation. That is why Furusavea al.[12] were happy to
a2 have used coherent-state inputs, because they could rely on a
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Claire not allowed to receive any classical informatio®therwise,
Victor's coherent-state input could be teleported step by step
from Alice to Claire(with unit gain and from Claire to Bob
(with unit gain. This protocol, however, requires more than

3 dB squeezing in both entanglement sourGésequally
squeezepto ensureF ,,> 3 [20]. Using entanglement swap-
ping, Alice and Bob can achieve, >3 for any squeezing,

but one of them has to perform local displacements based on
Claire’s measurement results. Any gain is allowed in these
displacements, since in entanglement swapping, we are not

interested in the transfer of coherent amplitutiesd the two

FIG. 3. Entanglement swapping using the two entangled two- ... )
mode squeezed vacuum states of modes 1 afshared by Alice initial two-mode squeezed states are vacuum states anyway

i . > s
and Clairg and of modes 3 and &hared by Claire and Bolas in But only the opumum gald‘§wap— tanh 2 _ensure;Fav> 2
Ref. [20]. for any squeezing and provides the optimum fidelid@].

Unit gainI'g,,= 1 in entanglement swapping would require
more than 3 dB squeezing in both entanglement souites
qually squeezedo achieveF ,,> 1 [20], or to confirm the
eleportation of entanglement via detection of the combined
entangled modefl9].
We will also give a broadband protocol of entanglement
C. Teleporting entangled states: entanglement swapping swapping as a “nonunit-gain teleportation.” The verification

From a true quantum teleportation device, we require tha®f entanglement swapping via the fidelity criterion for
it can not On|y te|ep0rt nonorthogona| states very similar toCOherent'State teleportation demonstrates how useful this cri-
classical State&uch as coherent Sta)ebut also extreme|y terion is. Less rigorOUS Criteria, as presented in Sec. “IA,
nonclassical states such as entangled states. When telepdi@nnot reliably tell us if Alice and Bob use entanglement
ing one half of an entangled statéentanglement swap- €merging from entanglement swapping. Furthermore, the en-
ping”), we are certainly much more interested in the presertanglement swapping scheme demonstrates that a two-mode
vation of the inseparability than in the match of any inputSqueezed state enablgsie quantum teleportation for any
and output amplitudes. We can say that entanglement swaflOnzero squeezing. Requiring more than 3 dB squeezing, as
ping is successful, if the initially unentangled modes becomé! is necessary for quantum teleportation according to Ralph
entangled via the teleportation processen, if this is ac- and Lam[24], is not necessary for the teleporation of en-
companied by a decrease of the quality of the initial entanglement.
tanglement In Ref.[20] has been shown, that the single-
mode teleportation scheme enables entanglement swapping IV. BROADBAND ENTANGLEMENT
for any nonzero squeezing¥ 0) in the two initial entangled
states(of which one provides the teleporter’s input and the
other one the EPR channel or vice versa

Let us introduce “Claire” who performs the Bell detec-
tion of modes 2 and 3Fig. 3). Before her measurement,
mode 1(Alice’s mode is entangled with mode 2, and mode
3 is entangled with mode 4Bob’s mode [20]. Due to
Claire’s detection, mode 1 and 4 are projected on entangle
states. Entanglement is teleported in every single projectio

(for every measured value af, andp,) without any further sidebands of the NOPA output have correlations similar to

local dlsplacgmenp?]. How can we verify that e_ntgngle— those of the two-mode squeezed state in E2)s.The optical
ment swapping was successful? Simply, by verifying that : ; ; . R
Alice and Bob, who initially did not share any entanglement,paramemc oscillator is considered polarization nondegener-

) . te but frequency “degeneratdéqual center frequency for

are able to perform quantum teleportation using mode 1 an g ; .

. e orthogonally polarized output mode§he interaction
4 after entanglement swappigo]. But then we urgently o 00 ihe o modes is due to the nonling® medium
need a rigorous criterion for quantum teleportation that un—(in a cavity and may be described by the intﬁraction Hamil-
ambigously recognizes when Alice and Bob have used e ni y y

. onian

tanglement and when they have not. Now, again, we can rely
on the fidelity criterion for coherent-state teleportation. Alice . Atrt o giet A A e
and Bob again have to convince Victor that they are using Hi=ifk(a,ae” 7“0 —a;a,7 o). (24
entanglement and are not cheating. Of course, this is only a
reliable verification scheme of entanglement swapping, ifThe undepleted pump field amplitude at frequenay,ds
one can be sure that Alice and Bob did not share entangledescribed as & number and has been absorbed into the
ment prior to entanglement swapping and that Claire is notoupling« which also contains thg®) susceptibility. With-
allowed to perform unit-gain displacemerits that Claire is  out loss of generalitk can be taken to be real. The dynam-

strict and rigorous criteriofiand not only because coherent
states are the most readily available source for the state pr
parer Victo).

In this section, we demonstrate that the EPR state required
for broadband teleportation can be generated either directly
by nondegenerate parametric down conversion or by com-
bining two independently squeezed fields produced via de-
generate down conversion or any other nonlinear interaction.

First, we review the results of Refl5] based on the
i@put-output formalism of Collett and Garding28] where a
nondegenerate optical parametric amplifier in a cavity
r(‘NOPA) is studied. We will see that the upper and lower
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b0 ¥Vith the functionsG({2) andg({2) of Eq. (27) simplifying
0
K>+ y?14+ Q2
GQ)=—o—,
(y[2—iQ)%°—k?
(29)
KY
O)y=—7—"—7.
9() (y[2—iQ)%—k?

Here, the parameter is a damping rate of the cavitfig. 4

and is assumed to be equal for both polarizations. Equation
(28) represents the input-output relations for a lossless
NOPA.

_ _ . Following Ref. [29], we introduce frequency resolved
FIG. 4. The NOPA as in Ref15]. The two cavity modea; and quadrature amplitudes given by

a, interact due to the nonlineg® medium. The modeb{” and
b are the external vacuum input modés,andb, are the exter-

nal output modes;{”) andc{® are the vacuum modes due to cavity
losses,y is a damping rate angd is a loss parameter of the cavity.

N| =

X;(Q)=5[B;(Q)+B](-0)],

1

- - B - 1R _Rt_
ics of the two cavity modea,; anda, are governed by the P;(Q)= 2i [B;()—Bj(=)],
above interaction Hamiltonian, and input-output relations (30)
can be derived relating the cavity modes to the external
vacuum input mode${? and b{®, the external output
modesb; andb,, and two unwanted vacuum mode§’ and
6(20) describing cavity lossed~ig. 4). Recall, the superscript
(0) refers to vacuum modes. We define uppercase operators
in the rotating frame about the center frequeiagy

5<}°><Q>=%[B§°)<m+é}"”(—m],

Pi(Q)= %[éf")(m—é}o”(—m],

provided(Q) < wg. Using them Eq(28) becomes

O(t)=o(t)e'“d, (25) . . .
Xi(0)=6(Q)X{V(Q)+g(M)X (),
with O=[A, ,;B,,;B{%;C{%] and the full Heisenberg op- X ) i (31)
eratorso=[a, »;b; ,;b{%;c{%]. By the Fourier transforma- P;i(Q)=G(Q)P?(Q)-g(Q)PL(Q).
tion
Here, we have usedG(Q)=G*(—-Q) and g(Q)
A Lo =g* (- Q).
o) = \/?f dt O(t)e'™, (26) At this juncture, we show that the output quadratures of a
aa

lossless NOPA in Eqg31) correspond to two independently

. . . . squeezed modes coupled to a two-mode squeezed state at a
the fields are now described as functions of the mOdUIat'OT)eam splitter. The operational significance of this fact is that

frequency Q. with commutation relationfO(2),07(2")]  the EPR state required for broadband teleportation can be
=8(Q—Q') for By,, B{% and C{% since[O(t),07(t")]  created either by nondegenerate parametric down conversion
=45(t—t"). Expressing the outgoing modes in terms of theas described by the interaction Hamiltonian in Exf), or by
incoming vacuum modes, one obtajis] combining at a beam splitter two independently squeezed
. fields generated via degenerate down conver$Rfj (as
B;(0)=G(0)B(0)+g()BL"(—0)+G(Q)C{P(Q)  done in the teleportation experiment of REF2]).
Let us thus define the superpositions of the two output

+9(Q)CP (-0, (27 modes(barred quantities
wherek=3—j, j=1,2(sok refers to the opposite mode to - 1 . .
i), and with coefficients to be specified later. The two cavity B;=—=(B1+B,),
modes have been assumed to be both on resonance with half V2
the pump frequency ab,,. (32
Let us investigate the lossless case where the output fields -~ 1 . .
become BZ= E(Bl_ BZ):

Bj(Q)=G(M)B®(0)+9(Q)BXT(-Q), (28)  and of the two vacuum input modes
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1 . - B 1
8= (BB, Xi= G (Xt X=X re ),
(33
.1 - s 1
Bo= %(ggm_ BL). Pi= 5 (PitP)= E(e‘ﬁ°’+eff’?>),
2
(38)
- I 1
In terms of these superpositions, Eg8) becomes Xz=E(X1—Xz)= E(erf(lo)_e—r&“(zo))’
BL(Q)=G(Q)BP()+g(2)BP (- ), L
(34 Py=—=(P1=Py)=—(e PP —ePY),

2 2

as the two-mode squeezed state in E@. The coupled

In Egs. (34), the initially coupled modes of Eq28) are modes in Eqs(37) expressed in terms &{” andBY) are
decoupled, corresponding to two independent degeneratte two NOPA output modes of Ed28), if 1—0 and
parametric amplifiers. G(0)=coshr, g(0)=sinhr.

In the limit 0 — 0, the two modes of Eq$34) are each in More generally, folQ) #0, the quadratures corresponding
the same single-mode squeezed state as the two modestoEgs.(34),
Egs. (1). More explicitly, by setting G(0)=coshr and

B,(Q)=G(Q)BY(Q) - g(Q)BP (- ).

g(0)=sinhr, the annihilation operators X1(Q)=[G(Q)+g(V)]X(Q),
B,=coshrB1®+ sinhrBL, P1(2)=[G(Q)-g()TPI(Q),

(35 N (39
5, = cos B sinhr B! Xo(0)=[6(2) - g() IXPA(Q),

P.(Q)= PO
have the quadrature operators P =[G + g JP27(1D),

are coupled to yield
Xq= ergz(lO) . Py= efrﬁ(lO),

N 1
(36 xl(m=ﬁ[e<m+g<m]‘>?§°’<m
-;(_2: e r-;(_(zo) y -52: er-I;(ZO) .
1
— _ X(0)
From the alternative perspective of superimposing two inde- + \/g[G(Q) 9 IX (),
pendently squeezed modes at a 50/50 beam splitter to obtain
the EPR state, we must simply invert the transformation of 1
Egs.(32) and recouple the two modes P(Q)= T[G(Q)_g(ﬂ)]‘ﬁ(lo)(ﬂ)
2
Blzi(gﬁgz):i[coshr(g(lo)ﬁtg(zo)) +i[G(Q)+g(Q)]E(°)(Q)
V2 V2 2 2
+sinhr (-gg-O)T_ _é_(ZO)T)] ) 1 . (40)
R R X5(Q)=—=[G(Q)+g(Q)IXT(Q
=coshrB{?+sinhrB{T, 2(8) \/E[ (D)+g)PGR)
(37
1« - 1 s L [6(0)-g(@) Q)
B,=—(B;—B,)= —[coshr(B{”- B 2 '
2= 5 (B1mB2) = lcostr (B -BY) V2
. “ 1
+sinhr (BY)+B")] Po(00)=—16(0)~g( ) PP(0)
=coshrB{® +sinhrB{»",
1
o - E[G(nwg(mﬁ“(m.
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The quadratures in Eq#40) are precisely the NOPA output . 1 1
quadratures of Eqg31) as anticipated. With the functions X1(Q)= —25+(Q)§(11°)(Q)+ —s ()XP(Q),

G(Q) andg(Q) of Egs.(29), we obtain V2 V2
~ 1 1
_Y2-x+iQ P1(Q)= =S (0)PP(Q)+ =S.(Q)PP(),
GO e V2 2
(41) (44)
N 1 1
(yi2+ k)24 0 %,(0)= E&(m‘i‘f’(m— E&(m‘i&(”(m,
G +9(Q)= —o—.
(y2—1Q) =k
B,(0)= =S (Q)PP(0)- =S, (0)PP(0).
For the limitsQ)—0, x— /2 (the limit of infinite squeez- \/E \/E

ing), we obtain[G(Q)—g(Q)]—0 and [G(Q)+g(Q . )
" 0—0, e (zhegc(lagiical it of 10 )squge(ez?i]lg Before obtaining this "broadband  two-mode squeezed
then[G(Q)—g(Q)]—1 and[G(Q)+g(Q)]—1. Thus for vacuum state,” the squeezing of the two initial modes may
Q—0, Egs.(40) in the above-mentioned limits correspond be generated by any nonllneqr'lnte'racnon,'e.g., apart from
to Eqs.(38) in the analogous limits— (infinite squeezing e OPA, also by four-wave mixing in a cavifg1].

andr — 0 (no squeezing For large squeezing, apparently the

individual modes of the “broadband two-mode squeezed V. TELEPORTATION OF A BROADBAND FIELD

state™ in E(gjs. (40) are \Il.?.ryd DO',[Shy' ,I\lnogeAneral, l;[.he !nputt For the teleportation of an electromagnetic field with fi-
vacuum modes are ampiified In the , FESUing In outy;iq bandwidth, the EPR state shared by Alice and Bob
put modes with large fluctuations. But the correlations be-, hould be a broadband two-mode squeezed state, as dis-
tween th? two modes |[1creaseAS|mu|taneous|y, so th ussed in the previous section. The incoming electromag-
gﬁé(l?l;é?(m]_’o and[P,(0) +P5(2)]—-0 for =0 e field to b.e.telepo_rte&.m(z,t)=Efﬁ?(z,t)féfg)(z,t),.

' traveling in positive-z direction and having a single polariza-

The squeezing spectra of the independently squeez . e
modes can be derived from Eq89) and are given by the L n, can be described by the positive-frequency part

spectral variances . N
P B (20 =[E 0]

- . - 112
(AXIQ)AXL(Q))=(APKQ)APH(Q)) :f dwi(‘m_“’) By (w)e io(t-20),
. w27\ 2CA,
= 5(0_9’)|S+(Q)|2<sz>vacuumi (45)
(42
= -~ -y - The integral runs over a relevant bandwidth W centered on
(AX(D)AX(Q'))=(AP1(Q)AP1(Q)) wg, Ay represents the transverse structure of the fielduand

is a units-dependent constafin Gaussian unitsu=41)
[29]. The annihilation and creation operatdbs,(w) and

bl (w) satisfy the commutation relatiorfd;,(w),bjn(»’)]
here with [S,(Q)|*=|G(Q)+g(M)[* and [S_()I* g and[h,(w),b}(w')]=8(w—w'). The incoming elec-
=|G(2)—g(D)]? ((AX®)yacuun= 7). In general, Eqs(42)  tromagnetic field may now be described in a rotating frame
may define arbitrary squeezing spectra of two statisticallygs

identical but independent broadband squeezed states. The

= §(Q—Q')|S_(Q)|2<A5(2>vacuum’

two corresponding squeezed modes Bin(t):kin(t)-‘riﬁin(t):[;(in(t)+if)in(t)]eiwot:Bin(t)eiwot,
(46)
X1 (Q)=S.(X(Q), Py(0)=S_(Q)PP(Q), as in Eq.(25) with
(43
- -~ 5 1 B iQt
X(0)=S_(DXPA(Q),  P(Q)=S,(Q)PY(Q), Bin()="77= f dtB(t)e'™, (47)

whereS_(Q) refers to the quiet quadratures a8d(Q) to  as in Eq.(26) and commutation relationsB({2),Bin(2")]
the noisy ones, can be used as EPR source for the following O, [Bin(Q),BL(Q’)]: S(Q—-Q").

broadband teleportation scheme when they are combined at a Of course, the unknown input field is not completely ar-
beam splitter: bitrary. In the case of an EPR state from the NOPA, we will
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see that for successful quantum teleportation, the center dfandwidth. Each of them must be viewed as complex quan-
the input field’s spectral rang®/ should be around the tities in order to respect the RF phase. The whole feedfor-
NOPA center frequency, (half the pump frequency of the ward process, continuously performed in the time domain
NOPA). Further, as we shall see, its spectral width should béi.e., performed every inverse-bandwidth timmcludes Al-
small with respect to the NOPA bandwidth to benefit fromice’s detections, her classical transmission and corresponding
the EPR correlations of the NOPA output. As for the trans-amplitude and phase modulations of Bob’'s EPR beam. Any
verse structure and the single polarization of the input fieldrelative delays between the classical information conveyed
we assume that both are known to all participants. by Alice and Bob's EPR beam must be such thet

In spite of these complications, the teleportation protocok< 1/A Q) with the inverse bandwidth of the EPR sourcA @/
is performed in a fashion almost identical to the zero-(for an EPR state from the NOPAt<+y 1). Expressed in
bandwidth case. The EPR state of modes 1 and 2 is producelde frequency domain, the final modulations can be described
either directly as the NOPA output or by the superposition ofby the classical “displacements”
two independently squeezed beams, as discussed in the pre-

ceding section. Mode 1 is sent to Alice and mode 2 is sent to Xo(Q)— X Q) =Xo(Q) +T(Q)V2X,(Q),
Bob (see Fig. 1 where for the case of the NOPA, these (51)
modes correspond to two orthogonal polarizations. Alice ar- Po(Q) =P (Q)=P,(Q)+T(Q)V2P,(Q).

ranges to superimpose mode 1 with the unknown input field
at a 50/50 beam splitter, yielding for the relevant quadrature§ne parameted’ () is again a suitably normalized gain
(now, in general, depending dn).
For I'(Q2)=1, Bob’'s displacements from Eq&1l) ex-
actly eliminateX,(Q) and P,(Q) in Egs. (49). The same
(48) applies to the Hermitian conjugate versions of E49) and
Egs.(51). We obtain the teleported field

~ 1. 1.
Xy(Q)= —ZXm(Q)— —=X1(Q),

2R

N 1. 1.
P, (Q)=—=Pin(2) +—=P1().

V2 V2 Kol ) =Ko ©) ~ V2S_ () XP(Q),
Using Eqgs.(48) we will find it useful to write the quadrature . . =10) (52
operators of Bob’s mode 2 as Piel(Q)=Pin(Q) +2S_(Q)PP(Q).
Ko(Q) =K (Q) —[K1(Q) = Kn(Q)]— \/ES(U(Q) For an arbitrary gaid’((2), the teleported field becomes
=X _ O 0)— /2% N N rQ) -1
Xl )= V28 (OXE(2) = VZX(), Kol ) =T(0) () - ——S.(VX(Q)
(49 V2
P2(Q)=Pin(Q) +[P1(Q)+P2(0)]= V2P, () Mol o
- =0 - - ——=—S_(M)xP(Q),
=Pi(Q)+ V25 (Q)PP(Q) = 2P, (Q). V2
(53)
Here we have used Eq644). How is Alice’s “Bell detec- . R rQ)-1
tion” which vyields classical photocurrents performed? The Pie(Q)=T(Q)P;y(Q)+ —S+(Q)E’72°)(Q)
photocurrent operators for the two homodyne detections, 2
()= |EX|Xy(t) and i,(t)<|ElG|P,(t), can be written r(Q)+1
(without loss of generality we assunfe>0) as + TS_(Q)F(lo)(Q).
RGO E[=N deth(Q)[f(u(Q)e*ier XI(Q)el, In general, these equations contain non-Hermitian operators

with nonreal coefficients. Let us assume an EPR state from
(50 the NOPA,S.(Q)=G(Q)=g(Q). In the zero-bandwidth
- P A —iot, Bt ot limit, the quadrature operators are Hermitian and the coeffi-
1 (D)=|E(ql deth(Q)[PU(Q)e TP, (), cients in Egs.(52) and Egs.(53) are real. ForQ—0 and
I'(Q)=1, the teleported quadratures computed from the
with a noiseless, classical local oscillatdrO) and hg(€) above equations are, in agreement with the zero-bandwidth
representing the detectors’ responses within their electronigesults, given byX, =X, and P,y=P;,, if x— /2 and
bandwidthsAQg:  hg(Q)=1 for Q<AQg and zero oth- hence[G(Q)—g(Q)]—0 (infinite squeezing Thus, for
erwise. We assume that the relevant bandwidth Wzero bandwidth and an infinite degree of EPR correlations,
(~MHz) is fully covered by the electronic bandwidth of the Alice’s unknown quantum state of mode “in” is exactly
detectors - GHz). Thereforehg(2)=1 in Egs.(50). Con-  reconstituted by Bob after generating the output mode “tel”
tinuously in time, these photocurrents are measured and fedarough unit-gain displacements. However, we are particu-
forward to Bob via a classical channel with sufficient RF larly interested in the physical case of finite bandwidth. Ap-
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parently, in unit-gain teleportation, the complete disappearHere we have used that

ance of the two classical quduties for perfect teleportation

requiresQ=0 (with an EPR state from the NOBADoes (A ReX °>(Q)A ReX °>(Q ))=8(0—Q"){A ReX?)yacuum
this mean an increasing bandwidth always leads to deterio-

rating quantum teleportation? In order to make quantitative =(A Im xjo)(Q)A Im xjo)(Q')>: 8(Q—-Q")
statements about this issue, we consider input states with a

coherent amplitudéunit-gain teleportationand calculate the XA 1M XYy acuum (59
spectral variances of the teleported quadratures for a
coherent-state input to obtain a “fidelity spectrum.” and analogously for the other quadrature, and
(A ReX °>(Q)A ImX{9(Q"))

A. Teleporting broadband Gaussian fields

with a coherent amplitude 0)
_ _ =(A ReP™(Q)A Im Pt Q"))=0. (59
Let us employ teleportation equations for the real and

imaginary parts of the non-Hermitian quadrature operatorsThus, for unit-gain teleportation at all frequencies, it turns

In order to achieve a nonzero average fidelity when teleporteut that the variance of each teleported quadrature is given

ing fields with a coherent amplitude, we assuli@)=1. by the variance of the input quadrature plus twice the squeez-

According to Egs(52), the real and imaginary parts of the ing spectrum of the quiet quadrature of a decoupled mode in

teleported quadratures are a “broadband squeezed state” as in E¢83). The excess
noise in each teleported quadrature after the teleportation
ReXe(Q)=ReXin(Q)— V2 RES_(Q)JReXP(Q) process is, relative to the vacuum noiseice the squeezing
spectrum|S_(Q)|? from Egs.(42).
++2 Im[S_(Q)]Ingo)(Q), We also obtain these results by directly defining
ReP () =ReP;,()+ 2 ReS_(Q)JRePL(Q) (A[X( Q) = XL IA Kl 2) = Xin(2)])
<AX2>vacuum
21m[S_(Q)]ImPL(Q),
=5(Q0— Q’)Vtel in(Q). (60)

(59

~ _ A~ _ ‘L(o) ~ A
Im Kiei( ) =1m Xin(2) = V2 IM[S_(2) JReX(Q) We analogously defin\zt';’in(ﬂ) with X— P throughout. Us-

_3 RQS,(Q)]Im%O)(Q), ing Egs.(52), these variances become () =1
. . Vi @)=V Q) =2[S ()], (61)
Im Pe(2) =1m Pio(2) + V2 Im[S_(Q) JRePP(2) )

We calculate some limits fovffe|,in(Q) of Eq. (61), assuming

+V2RdS_(Q)]lm F(lo)(ﬂ). an EPR state from the NOP&, (1) =G(Q)—g(Q). Since
) . tel in(Q) = Vtel in(Q) andI'(2)=1, we can name the limits
Their only nontrivial commutators are according to the criterion of Eq12).

& 50— & Y Classical teleportationk—0. Véllin(Q)zz, which is in-
[ReX;(£2),ReP; (A1) ]=[ImX;(12), Im P;(Q1)] dependent of the modulation frequen@y

=(il4)5(0—-Q"), (55) Zero bandwidth quantum teleportation}—0, «>0.
R R tel in(Q)=2[1-2kyl/(xk+ y/2)2] and in the ideal case of
where we have used Eg&0) and[Bj(Q),BjT(Q’)]= (2 infinite squeezing«— y/2: teI (Q)=0.
-a). _ o Broadband quantum  teleportatiopn Q>0, x>0.
We define spectral variances similar to Ef0), VE () =2{1— 26yll(x+y/2+02]}, and in the ideal

~ A ~ ~ 2 2
<A[Rexte|(ﬂ)_Rexin(Q)]A[Rextel(Q/)_Rexin(ﬂl)]> casexk— ’y/2 - _Vtel,ln(Q) . Z[Q /(’}/ +Q )] Soit tUrnS-OUt
that also for finite bandwidth ideal quantum teleportation can

(A ReX?)yacuum be approached provided<1y.
=5(0-Q") ReX(Q) (56) We can expres¥j () in terms of experimental pa-

telin rameters relevant to the NOPA. For this purpose, we use the
dimensionless quantities from R¢L5],

We analogously defin&?eh(q), VImX(Q), and Vi1 P(Q)

with ReX—ReP, etc., throughout. 2k [P pump 20 QO 2F .,

: = = , o= —— . (62
From Egs.(54), we obtain y+p Pinres y+p 27 vrsm

tRem(Q) t"‘;?i'i(ﬂ)=V{Q'§1(Q)=V{2}ﬁ(ﬂ)=2|S,(Q)|2. Here, P pumpiS the pump powerPy,sis the threshold value,
(57 F.av is the measured finesse of the caviiygg is its free
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spectral range, and the paramepedescribes cavity losses 1 1
(see Fig. 4. Note that we now use as a normalized modu- 0.6
lation frequency in contrast to E¢45) and the following 0.9

commutators where it was the frequency of the field opera- 0.4

tors in the nonrotating frame.
The spectral variances for the lossless case() can be
written as a function ot and w, namely,

0.8} quantum

Fo.7 0.2
X _\yP _ _ -
Vtel,in(e’w)_Vtel,in(flw)_2 1 (E+1)2+w2 . (63) 0.6
Now, the classical limit iss—0 (er“n:AZ, independent of g. o)== — — — — — — = =
©) and the ideal case iss—1 [V (€ 0)=20%(4 classical
+w?)]. Obviously, perfect quantum teleportation is 0.4t . . . . . .
achieved fore—1 andw—0. In fact, this limit can also be -6 -4 f‘2 0 2 4 6
approached for finit€) #0 providedw<1 or Q<vy. Note requency +w

that this condition is not specific to broadband teleportation, o ] )
but is simply the condition for broadband squeezing, i.e., for FIG. 5. Fidelity spectrum of coherent-state teleportation using

the generation of highly squeezed quadratures at nonzeﬁtanglen}ent dfrom dtr;et_NOF A. The fudz:lltl?ﬁheretare funCttIOI‘]S of
mOdU|ati0n frequencie@. e normalized modulation requenq/w or airrerent parameteg

Let us now assume coherent-state inputs with(zo'l’ 0.2, 0.4, 0.6, and 1).

<AXL(Q)A>§m(Q’)> = A<APL(Q)APm(Q’)> =10Q —  -02), Aw~12.4 (€=0.4), Aw~15.2 (€=0.6), andAw
Q') [(A ReXin(Q)A ReX;,(Q")=558(Q2—Q’) etc], atall ~19.6 (e=1). The maximum fidelities at frequenay=0
frequencied in the relevant bandwidthV. In order to ob- are F,,~0.6 (e=0.1), F.,,~0.69 (6=0.2), F
tain a spectrum of the fidelities in E2) with I'—1"(Q) ~0.84 (e=0.4), Fh~0.94 (€=0.6), and, of course,

=1, we need the spectrum of ti@ functions of the tele- F =1 (e=1).
ported field with the spectral variance§(Q)=crp(Q)=%

+ 7 Vigin(€2). We obtain the “fidelity spectrum” B. Broadband entanglement swapping

As discussed in Sec. lll, we particularly want our telepor-

= ) (64) tation device to be capable of teleporting entanglement. We

1+[S_(Q)]? will present now the broadband theory of this entanglement
i ) . o swapping for continuous variables, as it was proposed in Ref.
Finally, with the new quantitieg and w, the fidelity spec- [20] for single modes. Before any detectiofeee Fig. 3
trum for quantum teleportation of arbitrary broadband coher+ice (mode 1 and Claire(mode 2 share the broadband
ent stqtes_ using broadband entanglement from the NOP&, 4 mode squeezed state from Edédd), whereas Claire
(p=0) is given by (mode 3 and Bob(mode 4 share the corresponding en-
1 tangled state of modes 3 and 4 given by

(65

F(Q)

4e
(e+1)°+ w?

F(e,w)=|2

{ $ _1 X0 L X(0)
X3(Q)= ES+(Q)X3 (Q)+ ES-(Q)M (Q),

For differente values, the spectrum of fidelities is shown in

Fig. 5. From the single-mode protodevith ideal detectors

we know that any nonzero squeezing enables quantum tele-

portation and coherent-state inputs can be teleported Rvith

=F,>3 for any r>0. Correspondingly, the fidelity from

Eq.(65) exceeds for any nonzerc at all finite frequencies, 1 1

as, providede>0, there is no squeezing at all only when S _ = 310) = 310)

w—%. However, we had assumddee after Eqs(30): XalO) \/§S+(Q)X3 () \/ES,(Q)X4 (),

< wp] modulation frequencie€) much smaller than the

NOPA center frequencw,. In fact, for ) — wg, squeezing 1 1

becomgs impossible at the frequeri2yf29]. But also wnhln ' PL(Q)= _S_(Q)Eﬂgo)(g)_ _S+(Q)$£10)(Q)-

the regionQ)<w,, effectively, the squeezing bandwith is V2 V2

limited and hence as well the bandwith of quantum telepor-

tation Aw=2w,, Where F(w)~3% (<0.51) for all Let us interpret the entanglement swapping here as quantum

> wmax ANdF(w) >3 (=0.51) for allo< w4 According teleportation of mode 2 to mode 4 using the entanglement of

to Fig. 5, we could say that the “effective teleportation band-modes 3 and 4. This means we want Bob to perform *“dis-
width” is just about Aw~5.8 (¢=0.1), Aw~8.6 (¢ placements” based on the classical results of Claire’s Bell

B _i po) i plo)
P3(Q)—\/§S—(Q)P3 (Q)+\/§S+(Q)P4 (),

(66)
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detection, i.e., the classical determination &U(Q)
=[X2(Q) = X3(Q)1/\2,P,(Q) = [Pa(Q) +P3(Q)]/\2.
These final “displacements{amplitude and phase modula-
tions) of mode 4 are crucial in order to reveal the entangle-
ment from entanglement swapping and, for verification, to
finally exploit it in a second round of quantum teleportation
using the previously unentangled modes 1 an@@. The
entire teleportation process with arbitrary g&i((2) that led

to Egs.(53), yields now, for the teleportation of mode 2 to
mode 4, the teleported modé fwhere in Eqs(53) simply

Xel(Q)=X4(Q),  Pe(Q)—P4(Q),  Xin(Q)—X,(Q),
Pin(Q)—Pa(Q), XI2(0)-XP(Q), PQ)—PY(Q),

PHYSICAL REVIEW A62 022309

V2

. sta;{Q)_l
V2

N Fopad Q) +1
V2

n sta[{Q)_l

2

Pe(Q)=Pin(Q) + S (0)PP(Q)
S, (Q)PR(Q)
S (Q)PY(Q)

S.(Q)PY(Q). (68)

We calculate a fidelity spectrum for coherent-state inputs and
obtain

F(Q)={1+[Tguaf Q) —11%S,(Q)|?/2

HTawad Q) +112S_(Q)Z27F (69

The optimum gain, depending on the amount of squeezing,

that maximizes this fidelit}20] at different frequencies turns
out to be

1S4 (Q)|?—[S_(Q)[?
S, (Q)2+|S_(Q) 2

stap( 0)= (70)

Let us now assume that the broadband entanglement comes

from the NOPA(two NOPA's with equal squeezing spedira

XO(0)-XO(Q), PY(Q)-PO(Q), and T(Q)
Hrswa[(Q)]l
S U swad Q
xa<m=%[&mfi&‘”(m—s_m)%")(m]
—M\/;MSAQ)Y\%O)(Q)
_FS‘L\/;)HLS(Q)YE‘O)(Q),
67)
R IMswad Q
Pa<m=%[s(Q)‘FTS")(Q)—&(Q)I?EO’(Q)J

+ MS,(Q)E%O)(Q)

2
sta Q)_ 1
+&Ts+<m?&°><m.

Provided entanglement swapping is successful, Alice an
Bob can use their modes 1 and #or a further quantum
teleportation. Assuming unit gain in this “second teleporta-

tion,” where the unknown input stat&, (), P;,(Q) is to
be teleported, the teleported field becomes

sta;(Q)_l
V2

Taaf®)+1
V2

. stap(Q)_ 1
V2

Taaf)+1

2

Kol Q) =Xin(Q) + S. ()XQ)
S_(Q)XP(Q)

S (X))

S ()XP(Q),

1S_(Q)*—=[S_(e,0)[*=1-4el[(e+1)*+ w?], |S,(Q)|?
—|S, (€,w)|?=1+4€l[(e—1)?+ w?]. The optimized fidel-
ity then becomes
[(e+1)%+ w?][(e—1)°+ w?] -t
[(e+ 1)%+ w2]2+[(e— 1)24-002]2
(71)

Fopl€,0)=11+2

The spectrum of these optimized fidelities is shown in Fig. 6
for differente values. Again, we know from the single-mode

8rotocol[20] with ideal detectors that any nonzero squeezing

In both initial entanglement sources is sufficient for entangle-
ment swapping to occur. In this case, mode 1 ahedable
quantum teleportation and coherent-state inputs can be tele-
ported withF=F_,> 3. The fidelity from Eq.(71) is 3 for

e=0 and becomeB ,,( €, ) >3 for any >0, provided that

o does not become infinitthowever, we had assumetl
<wg). In this sense, the squeezing or entanglement band-
width is preserved through entanglement swapping. At each
frequency where the initial states were squeezed and en-
tangled, also the output state of modes 1 ahés4ntangled,

but with less squeezing and worse quality of entanglement
(unless we had infinite squeezing in the initial states so that
the entanglement is perfectly telepontd@2]. Correspond-
ingly, at frequencies with initially very small entanglement,
the entanglement becomes even smaller after entanglement
swapping(but never vanishes completglyThus, the effec-

tive bandwidth of squeezing or entanglement decreases
through entanglement swapping. Then, compared to the tele-
portation bandwidth using broadband two-mode squeezed

022309-14
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1 The last two terms in each quadrature in Eq®) represent

additional vacua due to homodyne detection inefficiencies

0.9 (the detector amplitude efficiency is assumed to be con-
stant over the bandwidth of intergstJsing Eqs.(72) it is
useful to write the quadratures of NOPA mode 2 correspond-

0.8 quantum ing to Eq.(27) as

Fon Xa(0)=Xin(2) = [G(Q) ~g( [ XV(Q) ~XP(Q)]
0.6 ] —[G(Q)—g(MIXEYQ) ~XEY )]
0.5 = = = ! \/ <D (Q)+ (0)(9)
classical
0.4 . . X ]
-6 -4 -2 0 2 4 6 _ _XU(Q)

frequency +w
(73
FIG. 6. Fidelity spectrum of coherent-state teleportation using P,(0)=P,(Q)+[G(Q)—g(Q)[POQ)+PP(0)]
the output of entanglement swapping with two equally squeezed

(entangledl NOPA's. The fidelities here are functions of the nor- +[€(Q)—5(Q)][|5(O)(Q)+ IS(O)(Q)]
malized modulation frequency- w for different parametere
(=0.1, 0.2, 0.4, 0.6, and 1).
. . . \/ 9(Q)+
states without entanglement swapping, the bandwidth of tele-

portation using the output of entanglement swapping is ef-

fectively smaller. The spectrum of the fidelities from Eq. ——P (),
(712) is narrower and the “effective teleportation bandwidth” 7

is now aboutAw~1.2 (¢=0.1), Aw=~2.6 (€=0.2), Aw

~4.2 (€=0.4), Aw~5.2 (6=0.6), andAw~6.8 (¢=1). where now[15]

The maximum fidelities at frequencyw=0 are F,a

~0.52 (€=0.1), Fnu~0.57 (€=0.2), Fpa=~0.74 (e , [Y—p Ytp
~0.4), F,,,,~0.89 (€=0.6), and, still,F, =1 (e=1). Kot | HiQ ] =il
G(Q)= — 2 ,
VI. CAVITY LOSSES AND BELL DETECTOR u_m) — K2
INEFFICIENCIES 2
We extend the previous calculations and include losses

for the particular case of the NOPA cavity and inefficiencies g(Q)= <y . ,

in Alice’s Bell detection. For this purpose, we use E2j7) (ﬂ—iﬁ) _ 2

for the outgoing NOPA modes. We consider losses and in- 2

efficiencies for unit-gain teleportatior{teleportation of (74)

Gaussian states with a coherent amplijudtor the case of y+p

entanglement swappin@onunit-gain teleportationdetector \/%( > i Q)

inefficiencies have been included in the single-mode treat- E(Q):

ment of Ref.[20]. By superimposing the unknown input
mode with the NOPA mode 1, the relevant quadratures from
Egs.(48) now become

1_7]2 © E(Q)_ K\/’y_p
0)= 0)— LK)+ \ X0 - z
Xu(Q)= \/— Xin(Q) — 2 1(Q)+ 5 %o ( ) g—lﬂ) 2
+w/1__’75<(0)(9) i —G*(— gt (—
5> RE ) s_t|II Wlth_ G(Q)—G_( Q)_ 9(Q)=g*(—Q), and also
(72) G(Q) G*(—Q), 9(Q)=g*(—Q). The quadratures
[1=7 0 X2(Q) and PO)(Q) are those of the vacuum modes
P.()=—= \/— Pin( Q)+ \/— P1(Q)+ 7 PE(Q) J(O)(Q) in Eq. (27) according to Eqs(30).

Again, X,(Q) andP,(Q) in Egs.(73) can be considered

N [1— 772'5(0)(9)_ as clz_;\ssically determined quantiti®g({) _and PU(Q)_ due
2 ' © to Alice’s measurements. The appropriate amplitude and
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phase modulations of mode 2 by Bob depending on the clas 1

sical results of Alice’s detections are described by

V2

>“<2<m~>”<te|<9>=>‘<z<m+r<m7xu<m,
(75)

V2

P2(Q)—P(Q)= ﬁ>2<m+r<m7pv<m.

ForI'(Q2)=1, the teleported quadratures become

Xiel( ) =Xin(Q) = [G(Q) — g(Q) I[XP(Q) - XP(Q)]

—[G(Q)—g()IXCy Q) - X% 0)]

1- 72, 1- 72,
Y A

Pel(Q)=Pi(Q)+[G(Q)—g(Q) [ PP(Q)+PPI(Q)]

+[G(Q)—g(Q)PZY0)+ PP 0)]

1-7°. 1- 72,
+ /TP,(:O)(Q)Jr \ /TP(GO)(Q). (76)

We calculate again spectral variances and obtain with the

dimensionless variables of Eq$2)

dep +2
(e+1)%+ w?

Vigin(€:0)= Vi i(€,0) =2 1-

where 8= vy/(y+p) is a “cavity escape efficiency” which
contains lossefl5]. With the spectraRQ-function variances
of the teleported fieldr,(Q) = oy(Q) = 3 + 1 Vig,i(Q2), now
for coherent-state inputs, we find the fidelity spectr(umit
gain

4ep 1— 2]t

- +
(6+1)2+w2 7]2

F(e,w)=|2 (78

Using the values=0.77, ®=0.56, andB=0.9, the mea-
sured values in the EPR experiment of Rdf5] for maxi-
mum pump power(but still below threshold and a Bell
detector efficiencyy?=0.97 (as in the teleportation experi-

ment of Ref.[12]), we obtain Vi ;,= Vi »=0.453 and a

PHYSICAL REVIEW A62 022309

0.9 1

6

0.sf quantum /;,
Fo.7
0.6
0.
0.4

-6 -4 -2 0 2 4 6
frequency +w

FIG. 7. Fidelity spectrum of coherent-state teleportation using
entanglement from the NOPA. The fidelities here are functions of
the normalized modulation frequendyw for different parametee
(=0.1, 0.2, 0.4, 0.6, and 1). Bell detector efficiencigh=0.97
and cavity losses witlB=0.9 have been included here.

The amount of squeezing at these frequencies was about 3
dB. The spectrum of the fidelities from E(}.8) is shown in
Fig. 7 for differente values.

VIl. SUMMARY AND CONCLUSIONS

We have presented the broadband theory for quantum
teleportation using squeezed-state entanglement. Our scheme
allows the broadband transmission of nonorthogonal quan-
tum states. We have discussed various criteria determining
the boundary between classical teleportatios., measuring
the state to be transmitted as well as quantum theory permits
and classically conveying the resyland quantum telepor-
tation (i.e., using entanglement for the state transf&e-
pending on the set of input states, different criteria can be
applied that are best met with the optimum gain used by Bob
for the phase-space displacements of his EPR beam. Given
an alphabet of arbitrary Gaussian states with unknown coher-
ent amplitudes, on average, the optimum teleportation fidel-
ity is attained with unit gain at all relevant frequencies. Op-
timal teleportation of an entangled statentanglement
swapping requires a squeezing-dependent, and hence
frequency-dependent, nonunit gain. Effectively, also with
optimum gain, the bandwidth of entanglement becomes
smaller after entanglement swapping compared to the band-
width of entanglement of the initial states, as the quality of
the entanglement deteriorates at each frequency for finite

fidelity F=0.815. The measured value for the “normalized squeezing.

analysis frequency”«=0.56 corresponds to the measured

finesseF.,, =180, the free spectral rang@-gg=790 MHz
and the spectrum analyzer frequerf@y27=1.1 MHz [15].
In the teleportation experiment of R¢1.2], the teleported
states described fields at modulation frequenQy2m
=2.9 MHz within a bandwidth+ AQ/27=30kHz. Due to

In the particular case of the NOPA as the entanglement
source, the best quantum teleportation occurs in the fre-
quency regime close to the center frequefiicgif the NO-

PA’s pump frequency In general, a suitable EPR source for
broadband teleportation can be obtained by combining two
independent broadband squeezed states at a beam splitter

technical noise at low modulation frequencies, the nonclastactually, even one squeezed state split at a beam splitter is

sical fidelity was achieved at these higher frequendies

sufficient to create entanglement for quantum teleportation
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[33,20). Provided ideal Bell detection, unit-gain teleporta- 1/40 Hz and a UV pulse rate of 80 MHI24] yield an overall
tion will then in general produce an excess noise in eaclefficiency of 3x10 1° (events per pulde Note that due to
teleported quadrature of twice the squeezing spectrum of thitering and collection difficulties the photodetectors in this
quiet quadrature in the corresponding broadband squeez&xperiment operated with an effective efficiency of 10%
state (for the NOPA, cavity loss appears in the squeezing 34l.

spectrun. Thus, good broadband teleportation requires good The theory presented in this paper applies to the experi-
broadband squeezing. However, the entanglement source™ent of Ref.[12] where coherent states were teleported us-

squeezing spectrum for its quiet quadrature need not be Ig9 the entanglement built from two squeezed fields gener-
minimum near the center frequenck &0) as for the opti- ated via degenerate down conversion. The experimentally

cal parametric oscillator. In general, it might have large ex_de';ermin(_ed fidelity i_n this experiment wes=0.58< 0.02
cess noise there and be quiet(b# 0 as for four-wave mix- (this f!dellty was achieved at h|.gher frequendé_%O due to
ing in a cavity[31]. The spectral range to be teleporta@ technical noise at low modulation frequengiagich proved

always should be in the “quiet region” of the squeezing the quant.um natgre of the teleporta_tlon process-by exceeding
spectrum. the classical limitF<3. Our analysis was also intended to

The scheme presented here allows very efficient te|epmprovide the theoretical foundation for the_ teleportation of
tation of broadband quantum states: the quantum state at tig/antum states that are more nonclassical than coherent
input (a coherent, a squeezed, an entangled or any oth ates, e.g., squeezed states or, in particular, entangled states
statd, describing the input field at modulation frequeriay two-mode squeezed state$his is yet to be realized in the
within a bandwidthA (), is teleported on each and every trial laboratory.
(where the duration of a single trial is given by the inverse-
bandwidth time 1AQ). Every inverse-bandwidth time, a
guantum state is teleported with nonclassical fidelity or pre- The authors would like to thank C. M. Caves for helpful
viously unentangled fields become entangled. Also the outsuggestions. P.v.L. thanks T. C. Ralph, H. Weinfurter, and
put of entanglement swapping can therefore be used for efA. Sizmann for their help. This work was supported by
ficient quantum teleportation, succeeding every inverseEPSRC Grant No. GR/L91344. P.v.L. was funded in part by
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