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Concatenated coding in the presence of dephasing

Iain Gourlay and John F. Snowdon
Department of Physics, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, United Kingdom

~Received 3 August 1999; published 18 July 2000!

We investigate the use of concatenated coding to protect against dephasing in the absence of other types of
error in order to carry out large quantum computations. This analysis is based on a well-known three-bit
quantum code. Fault tolerant methods for carrying out gate operations, ancilla preparation, and syndrome
identification are discussed and the maximum~or threshold! error rate which can be tolerated~if quantum
coherence is to be maintained for arbitrarily long computations! is estimated. The methods for performing fault
tolerant gate operations are compared to the methods appropriate for the seven-bit code and it is concluded that
the three-bit code is not likely to be useful for large-scale quantum computation.

PACS number~s!: 03.67.Lx, 89.80.1h
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I. INTRODUCTION

If quantum computing is to become a reality, the mo
significant obstacle from both a theoretical and experime
perspective is that of errors introduced by inaccurate g
operations and interaction with the environment. In class
computation, error correction has been studied extensi
and powerful methods of dealing with errors have been
vised. Ideally, it would be possible to extend these res
and devise error correction schemes for quantum comp
tion. This problem has been studied extensively and ini
theoretical results were not encouraging@1,2#. However,
since then significant progress has been made in the fie
quantum error correction@3–8#. Recent results indicate tha
under certain~restrictive! conditions, arbitrarily long compu
tations could, in principle, be performed reliably if the err
probability per quantum gate is below a certain value,
threshold error rate@4–8#.

Quantum error correction codes exploit the fact that i
qubit ~two-level quantum system! experiences an error, th
Pauli spin matrices in conjunction with the identity from
complete basis set with which to describe the error. He
the qubit can undergo a bit-flip error (ŝx), a sign-flip error
(ŝz), a bit-flip and a sign-flip error (ŝy), or no error~the
identity!.

For many physical systems, the dominant type of erro
dephasing, whereby interaction with the environment
stroys quantum coherence. The environment simply refer
all external degrees of freedom with which the qubit m
interact, including any applied fields which may be used
implement logic operations. For example, suppose that s
1/2 particles are used as qubits and gate operations are
formed by applying magnetic fields~note that there are man
other possible representations of qubits but the same so
argument still applies!. In a fully quantum description it is
clear that the qubit and the field become entangled. If
ideal output of a single bit gate for a particular input is

uCqubit&5au0&1bu1&, ~1!

then the actual state of the system (qubit1environment) will
be of the form
1050-2947/2000/62~2!/022308~9!/$15.00 62 0223
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uCqubit1environment&5au0&uE0&1bu1&uE1&, ~2!

where uE0& and uE1& are not necessarily orthogonal. Ifa
'a andb'b then the reduced density operator describ
the qubit state~obtained by tracing over environmental d
grees of freedom! is

r̂'uau2u0&^0u1ubu2u1&^1u1ab* ^E1uE0&u0&^1u

1a* b^E0uE1&u1&^0u. ~3!

Note that if ^E0uE1& is real then the density operator in E
~3! can be written~in matrix notation! as

r̂→ ~11^E0uE1&!

2 S uau2 ab*

a* b ubu2 D
1

~12^E0uE1&!

2 S uau2 2ab*

2a* b ubu2 D . ~4!

Hence if ^E0uE1& is real then we can describe this situatio
by saying that with probabilityP5(11^E0uE1&)/2 the qubit
is error free after the gate operation and with probability
2P the qubit suffers a sign-flip error. Dephasing can a
occur on a stored qubit~i.e., when no gate operations a
being performed! due to coupling to external degrees of fre
dom. This is the type of error we consider and the followi
section describes a simple and well-known error correct
code ~see@3# for an alternative description!, which can be
used when storage errors of this type dominate.

The existence of a threshold value for the maximum t
erable error depends on the use offault tolerantcomputation
andconcatenated coding. In Sec. III, the error model used i
described and all assumptions are detailed. The concep
fault tolerance and concatenated coding are discussed in
IV, where fault tolerant methods for performing gate ope
tions for the dephasing error correction code are describe
detail. In Sec. V some significant differences between fa
tolerant computation using the 3-bit code and fault toler
computation using the much studied seven-bit code@7# are
discussed. This is followed by an approximation of t
threshold error rate for computation using the three-bit co
©2000 The American Physical Society08-1
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II. THREE-BIT QUANTUM CODE

The previous section explained the manner in wh
dephasing may arise as a result of gate operations. Qua
coherence can also occur on a stored qubit due to interac
with the environment, so that a qubit beginning in the st
~1! evolves as follows:

r̂'uau2u0&^0u1ubu2u1&^1u1ab* f ~ t !u0&^1u

1a* b f * ~ t !u1&^0u, ~5!

where typically~in the Markov regime!, f (t)5et/td @9#. The
decoherence timetd is a good indication of the time scal
over which decoherence occurs. Here, entanglement with
ternal degrees of freedom could result in a state of the fo
given in Eq.~3!, so thatf (t)5^E1uE0&. The probability that
a sign-flip error occurs is then

«s5
12e2~ ts /td!

2
~6!

wherets is the storage time.
Suppose we choose to work in the basis$u0̄&,u1̄& ~from

this point referred to as thex basis! where

u0̄&5
1

&
~ u0&1u1&), u1̄&5

1

&
~ u0&2u1&). ~7!

Transforming between the$u0&,u1& ~the z basis! and thex
basis is done by performing the single qubit Hadamard~H!
gate. In the new basis, the errors are bit flips rather than
flips and this can be exploited to devise a simple error c
rection procedure. We encode our qubit in the ba
$u0C&,u1C&, where

u0C&5u0̄0̄0̄, u1C&5u1̄1̄1̄&. ~8!

Suppose a single bit-flip error occurs during storage, e.g

au0C&1bu1C&→au0̄0̄1̄&1bu1̄1̄0̄&. ~9!

Errors of this type can be detected and corrected. The c
plete encoding, decoding, and correction circuit is shown
Fig. 1. Note that all gates operating between bare qu
~where a bare qubit is simply an unencoded single qubit! are
drawn in thez basis ~this applies to all the figures!. This
circuit consists of three parts: the first part consists of t
controlled-NOT ~CNOT! gates and three single qubit Ha

FIG. 1. Quantum error correction circuit for dephasing erro
The first twoCNOT operations and the first threeH operations en-
code the qubit. The qubit is then stored~during which time errors
occur!, followed by the correction and decoding part of the circu
02230
h
um
ns
e

x-
m

n
r-
is

-
n
ts

o

amard~H! gates, which encode the input state. Hence if
input state isau0&1bu1&, then after the encoding part of th
circuit the state isau0C&1bu1C&. In the second part of the
circuit, the encoded state is stored, with no gate operat
being performed. It is assumed that errors can occur du
this time, such that each bare qubit is flipped in thex basis
with probability «s and remains error free with probabilit
12«s . The third part of the circuit is the correcting and/
decoding part. TheH gates and theCNOT gates decode the
state and disentangle the three qubits. If a single error
occurred in the first qubit~the initial input state! during stor-
age, then the other two qubits are in the stateu1& prior to the
final gate in the circuit, a controlled-controlled-NOT or Tof-
foli gate. This gate then corrects the first qubit, leaving
output error free.

Note that the circuit in Fig. 1 fails if two or more error
occur during storage. To second order, the probability t
two qubits experience errors during storage is 3«s

2. Hence, if
the storage time is long enough so that storage errors do
nate over errors in encoding, decoding, and correction an
addition errors on different qubits are not correlated then
probability of error after correction is given by

P~error!53«s
21O~«s

3!, ~10!

which is a significant improvement on«s if «s!1.
If gate errors dominate then the circuit shown in Fig. 1

not effective in reducing errors since the information is v
nerable during encoding and decoding. Ideally the qu
would be encoded only once and thereafter all operati
performed on the encoded data. Particular care must be t
to prevent errors spreading in an encoded qubit in such a
as to render the information unrecoverable, i.e., operati
must be fault tolerant. This point is clarified in Sec. IV.

III. ERROR MODEL

The purpose of this section is to outline the error mo
and specify the assumptions made. It is assumed that si
qubit gate errors can be modeled by assuming that after e
gate, there is a probability«g that a bit-flip error occurs in
the x basis. The error only affects the qubit involved in th
gate. For two-bit gates, it is assumed that both qubits can
affected and all three possible errors~i.e., either of the qubits
flip or both of them flip! are equally likely. Following the
example of Zalka@6#, the error probability is chosen so tha
the overall probability of a given bit experiencing an error
the same as in the case of the single qubit gate. Hence,
of the errors has a probability«g/2 of occurring. Storage
errors are neglected for the purposes of calculating
threshold value, with the following justification.

~1! It is assumed that it is possible to carry out operatio
with an arbitrary degree of parallelism. This may be unre
istic for many possible implementations but the question
how much parallelism is possible is an important one in
sessing the value of a given approach to implementing la
scale quantum computation.

~2! It is assumed that the time interval between gate
erations on a given~bare! qubit can be made small compare

.

.
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CONCATENATED CODING IN THE PRESENCE OF DEPHASING PHYSICAL REVIEW A62 022308
to the gate operation time. Hence, storage errors are like
be much smaller than gate errors.

Note that the error model describes stochastic unco
lated errors as a result of single qubit operations, with co
lated errors only occurring due to two-bit~or three-bit! gates.
As pointed out by Steane@7#, this may be physically unreal
istic since in a real system there is likely to be some co
lation of errors on different qubits. For example, in the co
trapped-ion method~initially proposed by Cirac and Zoller!
@10,11#, the individual qubits are coupled via the vibration
motion of the whole ion string and in this case errors
likely to be correlated. However, it is assumed here that
implementation is used which has the property that any s
correlation is small enough to be negligible. In addition, t
model assumes that there are no systematic errors. How
systematic errors are not likely to be such a serious probl
since their existence could be detected by test runs o
simple computation. In addition, it is likely that their effe
would not accumulate in a long computation as the effec
random errors would@6#. With this error model in mind, the
concepts of fault tolerance and concatenated coding are
discussed.

IV. FAULT TOLERANCE
AND CONCATENATED CODING

Before discussing fault tolerance, it seems appropriat
describe concatenated coding, since this allows for a c
definition of fault tolerance. Concatenated coding, as it
plies to the three-bit code, can be explained as follows.
described previously we can encode a single qubit into th
qubits, so thatu0&→u0C&5u0̄0̄0̄& and u1&→u1̄1̄1̄&. This can
be extended further by encoding each of the three qubit
the encoded state, so that

u0C&→u0C0C0C&, u1C&→u1C1C1C&. ~11!

The concept of concatenated coding is pictorially represen
in Fig. 2. We consider a bare qubit to be the zeroth leve
concatenation. When the qubit is encoded~in this case into
three qubits!, this corresponds to the first level of concaten
tion. When each of the qubits in the codeword are the
selves encoded into three qubits, this corresponds to the

FIG. 2. Pictorial representation of the concept of code con
enation. The upper qubit in the encoded state, indicated by the
arrow, viewing left to right, is itself an encoded qubit~as are the
other two qubits in the encoded state!. Similarly, the upper qubit in
this encoded state~indicated by the second arrow! is an encoded
state. This hierarchical system can have as many levels as are
essary to protect the qubit sufficiently from unrecoverable error
02230
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ond level of concatenation. It is clear how this procedure
generalized to any level of concatenation desired.

It turns out that this is, in principle, a very powerfu
method of encoding in the following sense: given the er
model discussed in Sec. III~or a similar error model, allow-
ing for ŝx andŝy errors but using a code which also correc
for these errors! and using fault tolerant methods~see below!
it is possible to perform arbitrarily long computations with
bounded overall error probabilityif the error probability per
gate is small enough. The basic idea is that every time th
level of hierarchy is increased by one, each bare qubit in
code undergoes more operations and is consequently m
likely to experience an error. On the other hand, more err
can be tolerated before an unrecoverable error occurs. If
probability of an unrecoverable error on a qubit encoded
the Lth level is d, then as long as errors on bare qubit
belonging to the same encoded qubit are uncorrelated~see
the definition of fault tolerance below! the probability of
error on the (L11)th level isO(d2) since two of the three
Lth level qubits would need to experience unrecoverable
rors. If the gate error rate is too large then the additional g
operations needed result in an increase in the overall e
probability as the level of hierarchy is increased. However
the gate error probability is smaller than a particular thre
old value, then the increase in error probability due to p
forming more gate operations is outweighed by the decre
in error probability due to the increase in level of hierarch

In devising methods for performing operations on e
coded qubits, it is of critical importance to control the spre
of errors. To clarify this point, suppose we wish to perfor
an encoded Hadamard operation, i.e.,

u0C&→
H 1
&

~ u0C&1u1C&), u1C&→
H 1
&

~ u0C&2u1C&).

~12!

The simplest method to perform this gate is to decode
data, perform the Hadamard operation, and then re-enc
the data. The problem with this method is that it is not fa
tolerant, where we define fault tolerance as follows.

Suppose performing a gate operation involving a qubit~or
qubits! encoded on theLth level of concatenation introduce
an unrecoverable error to the qubit~qubits! with probability
O(«). The operation is fault tolerant if and only if the prob
ability of an unrecoverable error for the same operation p
formed on qubits encoded on the (L11)th level is no worse
thanO(«2).

It is clear that performing the Hadamard operation in t
manner described above does not satisfy this condit
There are two points worth making~in relation to the above
example! regarding this point. Firstly, it is necessary to avo
decoding information in order to perform logic operation
since an error on a bare qubit is unrecoverable. Secon
note that in the above example gates are operatingbetween
qubits in the same codeword. Generally this is a bad idea a
it allows errors to spread so that an error can affect more t
one qubit in the codeword.

For this error correction code, there is another source
unrecoverable errors, which is clarified by the following e
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IAIN GOURLAY AND JOHN F. SNOWDON PHYSICAL REVIEW A62 022308
ample of a method~which is not fault tolerant! for perform-
ing the operationP, where

Pu0C&5u0C&, Pu1C&5 i u1C&. ~13!

The operation can be carried out by performing the opera
R on the first qubit in the encoded state, where

Ru0&5
~eip/4u0&1e2 ip/4u1&)

&
,

~14!

Ru1&5
~e2 ip/4u0&1eip/4u1&)

&
.

Suppose there is a bit-flip error in the first qubit before
operation is performed. In that case, the state evolves as
lows:

au0C&1bu1C& ——→
ERROR

au1̄0̄0̄&1bu0̄1̄1̄&

→
P

iau1̄0̄0̄&1bu0̄1̄1̄&. ~15!

This error cannot be corrected, since the code is only cap
of correcting bit-flip errors~in the x basis!, not phase errors
This is a critical problem in constructing fault tolerant gat
for the three-bit code rather than a code which corrects
arbitrary single qubit errors.

In order to be able to perform arbitrary quantum comp
tations fault tolerantly, it is necessary to be able to perform
complete set of operations, i.e., a set of operations that
be used to efficiently approximate any quantum opera
~with the qubits remaining in states spanned by the co
words!. The set of operations considered here
$Q,P,CNOT,T% although there are a number of other pos
bilities @8# ~another possibility is to replaceQ with H, a more
appropriate choice for the seven-bit code discussed in
V!, whereP is described above,Q is introduced below,CNOT

is the controlled-NOT operation andT is the Toffoli gate, i.e.,

ua&ub&uc&→
T

ua&ub&uab% c&. ~16!

In constructing the complete set, it is assumed that we
make measurements on bare qubits in thez basis, thex basis,
and they basis@$(u0&1 i u1&)/&,(u0&2 i u1&)/&]. In addi-
tion, errors introduced by measurements are assumed t
negligible. This only slightly affects the threshold estimatio
since only a few measurements are made compared to
number of gate operations.

Having introduced thex, y, andz bases, it seems appro
priate to introduce the following eigenbases~spanning the
eight-dimensional Hilbert space of three qubits!, which are
useful in describing fault tolerant methods for the gates
the universal set introduced above. Let theZ basis consist of
the vectorsu0C&,u1C& and the erroneous versions of the
obtained when a single bit-flip~in the x basis! occurs. We
refer to the erroneous versions asu0C,i& andu1C,i&, where the
i is 1, 2, or 3 and denotes which of the three qubits
experienced an error. Whenever we refer to a measurem
02230
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in the Z basis, this means a measurement, represented b
operatorMZ , satisfying the following eigenvalue equation

MZu0C&5~21!u0C&, MZu0C,i&5~21!u0C,i&,
~17!

MZu1C&5~11!u1C&, MZu1C,i&5~11!u1C,i&.

Hence if a measurement is made to distinguish betweenu0C&
and u1C&, the result is not affected by a single error.

The X and Y bases are defined in a similar way. TheX
basis consists of the vectors (u0C&1u1C&)/&5u0X& and
(u0C&2u1C&)/&5u1X& and the erroneous versions of the
~in the same sense as for theZ basis!. A measurement in the
X basis refers to a measurement represented by an ope
MX , such thatu0X& and the erroneous versions have eige
value21, whereasu1X& and the erroneous versions have
eigenvalue11. Finally, theY basis consists of the vector
(u0C&1 i u1C&)/&5u0Y& and (u0C&2 i u1C&)/&5u1Y& and
the erroneous versions of these. A measurement in thY
basis refers to a measurement represented by an ope
MY , such thatu0Y& and the erroneous versions have eige
value 21, whereasu1Y& and the erroneous versions ha
eigenvalue11.

In discussing encoded fault tolerant operations, theCNOT

operation is considered first as it is the simplest~of the four
operations in the set! to perform fault tolerantly. In perform-
ing this operation, we can exploit the following trick: If
CNOT operation is performed in thex basis between bare
qubits, then this is also aCNOT operation in thex basis, the
only difference being that the control and target bits are
terchanged~i.e., the control bit in thez basis is the target bi
in the x basis!. With this in mind, theCNOT gate can be
performed transversally on encoded qubits as shown in
3. Note that two independent errors must occur in order
produce an unrecoverable error when this gate is perform
since theCNOT gate does not produce phase errors~in the x
basis! from bit-flip errors @unlike R, see Eq.~14! and the
accompanying discussion#.

The P operation can be performed fault tolerantly usi
the following method described by Gottesman@12#. Note
that this implementation is rather complex~see Fig. 4 for the
complete construction! and care must be taken to ensure fa

FIG. 3. A fault tolerant encodedCNOT operation. Note that the
operation exploits the fact that aCNOT operation on a bare qubit is

the same in the$u0̄&,u1̄& basis as in the$u0&,u1&% basis, except that the
control and target bits are interchanged.
8-4
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CONCATENATED CODING IN THE PRESENCE OF DEPHASING PHYSICAL REVIEW A62 022308
tolerance, given the additional constraint~over codes that
correct arbitrary single bit errors! that bit-flip error~in the z
basis! cannot be tolerated.

First, prepare an encoded ancilla bit in the stateu0C&.
Next, perform aCNOT gate, with the data as the control b
and the ancilla as the target bit. If the initial data state
uC&data5au0C&1bu1C&, then the overall state is now

uC&data1anc.5au0C&datau0C&anc.1bu1C&datau1C&anc.

5P†uC&data

~ u0C&anc1 i u1C&anc.)

&

1PuC&data

~ u0C&anc.2 i u1C&anc.)

&
, ~18!

whereP† is the Hermitean conjugate ofP. Hence, if a fault
tolerant measurement can be made in theY basis then theP
gate can also be performed fault tolerantly with the followi
procedure completing the operation.

We measure the ancilla bit in theY basis, performingZ on
the data if the result isu0Y&, where

Zu0C&5u0C&, Zu1C&52u1C&. ~19!

TheZ gate is carried out simply by performing aNOT opera-
tion on the first bare qubit~or any one of the qubits in the
encoded bit!. Note that performing this operation is fau
tolerant, since although a single error before the gate res
in the sign of the stateu0C& being flipped rather than the sig
of u1C&, this is in fact equivalent, since an overall pha
factor is physically meaningless. Hence the problem of p
forming P fault tolerantly is reduced to finding a way t
perform fault tolerant measurements in theY basis~see be-
low!.

The operationQ, where

Qu0C&5
1

&
~ u0C&2 i u1C&),u1C&5

1

&
~2 i u0C&1u1C&)

~20!

can be carried out as follows@12#. Prepare an ancilla in the
state

FIG. 4. Fault tolerantP gate. The box labeledY is the circuit for
measuring in theY basis ~shown in Fig. 8!. A NOT gate is then
performed on one of the data bits, conditioned on the result of thY
measurement. Hence ifu0Y& is observed, then theNOT operation is
performed. Note that the ancilla is initially in the stateu0C&.
02230
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u0X&5
1

&
~ u0C&1u1C&). ~21!

Next perform aCNOT gate, with the ancilla as the control b
and the data as the target. If the initial state of the data
uC&data then the new state is

1

&
~QuCdata&u0Y&1Q†uCdata&u1Y&). ~22!

Finally a fault tolerant measurement is made in theY basis
and aNOT operation performed on the data if the stateu1Y& is
observed. All that remains to complete the universal se
gates is to describe fault tolerant methods for performing
Toffoli gate, making measurements in theX andY bases and
preparing the ancilla stateu0X&.

We use the construction suggested by Shor@13# for the
Toffoli gate. Note that it is necessary to prepare the anc
state

uANC1&5
1

2 (
i 50

1

(
j 50

1

u i C&u j C&u i j C&. ~23!

Noting that

1

A8
(
i 50

1

(
j 50

1

(
k50

1

u i C&u j C&ukC&5
1

&
~ uANC1&1uANC2&),

~24!

where

uANC2&5
1

2 (
i 50

1

(
j 50

1

u i C&u j C&uNOT~ i j !C&, ~25!

it is possible to prepare the state given by Eq.~23! by making
a fault tolerant measurement in the$uANC1&,uANC2& basis
and performing theNOT operation on the third encoded qub
if the observed state isuANC2&. This measurement is carrie
out as follows.

First the following cat state is prepared:

uCAT&5
1

&
~ u000&1u111&). ~26!

The circuit required to construct this state is shown in Fig
A controlled-controlled-Z gate is now performed, with the
cat state and the first encoded ancilla@i C in Eq. ~24!# as the
control bits and the second ancilla bit@j C in Eq. ~24!# as the
target. This operation can be carried out by Hadamard tra
forming the first ancilla~that is a Hadamard transform on th

FIG. 5. Circuit for preparing the cat state (u000&1u111&)/&.
The initial state~prior to the circuit! is u000&.
8-5
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IAIN GOURLAY AND JOHN F. SNOWDON PHYSICAL REVIEW A62 022308
logical bit, not a bitwise Hadamard transform on the ba
qubits! then using bitwise Toffoli gates and finally Had
amard transforming the first ancilla again. Since this ope
tion is not performed using operations from the fault toler
set described, we must be careful to ensure that it is f
tolerant. The gate can be regarded as follows: First an
coded Hadamard transform is performed on the first anc
followed by an encodedCNOT gate~with the second ancilla
as the control bit and the first ancilla as the target!, which
only operates when the cat state bits are in the stateu1&.
Finally another encoded Hadamard transform is perform
on the first ancilla. A single phase error on one of the anc
bits ~causing it to flip in thex basis! is then correctable in the
usual way. The only other type of error that can occur i
phase error on the cat state of the formu111&→2u111&. This
type of error is recoverable if more cat states are used~see
below!. In that case the procedure is fault tolerant.

The next step consists of performing a controlled-Z gate
with the cat state as the control and the third ancilla as
target. This gate is performed using bitwiseCNOT gates. As
before, a single error affecting only one of the ancilla bits
recoverable in the usual way, while the only other type
error is a cat state error of the formu111&→2u111&. This
procedure ~controlled-controlled-Z then controlled-Z! is
shown in Fig. 6. The evolution resulting from these ope
tions is shown in Eq.~27!,

uCAT& ^
1

A8
(
i 50

1

(
j 50

1

(
k50

1

u i C&u j C&ukC&

→ 1

&
~ u000& ^

1

A8
(
i 50

1

(
j 50

1

(
k50

1

u i C&u j C&ukC&

1u111& ^
1

A8
(
i 50

1

(
j 50

1

(
k50

1

~21! i j % ku i C&u j C&ukC&)

5uCAT&uANC1&1
1

&
~ u000&2u111&)ANC2&. ~27!

Hence by performing a measurement in the ba
$uCAT&,uCAT8&%, where uCAT8&5(u000&2u111&)/& the
ancilla state is collapsed into eitheruANC1& or uANC2&. This
measurement can be performed destructively~in that the cat

FIG. 6. The controlled-controlled-Z gate used in the preparatio
of uANC1&, where the cat state and encoded ancilla bit 1 are
control bits, followed by the controlled-Z gate, where the bits in
ancilla bit 3 are flipped in the$u0&,u1&% basis, conditioned on the ca
state qubits~in the same basis!. The gates labeled H denoted th
encodedH operation, whereH5PQP.
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state is destroyed! by performing the bitwise Hadamar
transform on the individual qubits in the cat state and th
measuring each of them in thez basis. If an even number o
qubits is observed in the stateu1& then the ancilla is in the
stateuANC1&. Otherwise it is in the stateuANC2&.

Note that a single error in this procedure can result in
overall error in the identification of the ancilla state. Th
occurs, for errors of the form,u111&→2u111& on the cat
state, the only part of the above procedure that is not fa
tolerant as described above. However, the procedure ca
made fault tolerant by performing the same operations w
two more cat states and taking a majority vote. The imp
tant point in both the controlled-Z and the controlled-
controlled-Z gates is that uncorrectable single errors are c
fined to the cat states. In this case, two independent er
would need to occur to cause an error in identification of
ancilla state.

As shown by Shor, once the stateuANC1& has been pre-
pared, the Toffoli gate can be carried out using the ope
tions already discussed. For more details see, for exam
@4#. In order to prepare the stateu0X&, it is sufficient to make
a nondestructive measurement in theX basis and then per
form a Z gate if the result isu1X&. This measurement can b
performed using the circuit shown in Fig. 7. This is simply
parity check in thez basis, sinceu0X& is a superposition of all
the states containing an even number of 1s and u1X& is a
superposition of all the states containing an odd numbe
1s. It may seem somewhat surprising that this method
performing theX-basis measurement is indeed fault tolera
since the ancilla bit interacts with all the data bits and
might be expected that phase errors could thereby propa
and cause an unrecoverable error. This turns out not to be
case. The possible errors can be classified as follows.

~1! A phase error~in thez basis! occurs on one of the dat
bits prior to theX-basis measurement. This results in t
same~correctable! error in the output state after the measu
ment.

~2! An error occurs in the firstCNOT gate. If this affects
the first data bit only or the ancilla bit only, then the result
a phase error on the first qubit after the measurement is c
pleted. If the error affects both the ancilla and the data, t
no overall error occurs.

~3! An error occurs in the secondCNOT gate. If this affects
the data only, then the result is a phase error on the sec
data bit after the measurement is completed. If it affects b
the data and the ancilla, then the result is a phase error on
first data qubit after the measurement is completed. If it
fects the ancilla only, then letting the initial state b

e

FIG. 7. Measurement in the$u0X&,u1X&% basis. The ancilla bit
begins in the stateu0&. If the ancilla is observed in the stateu0& at the
output then the data bit has been collapsed ontou0X&, while if the
ancilla is observed in the stateu1& then the data bit has been co
lapsed onto the stateu1X&.
8-6
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(au0X&1bu1X&)u0&, the state prior to the measurement
the ancilla at the end of the circuit isau0X3&u0&
2bu1X3&u1&, where the 3 indicates a phase error on the th
qubit. The additional phase shift~between theu0X3&u0& and
u1X3&u1& states! is harmless as the ancilla is measured at t
point.

~4! An error occurs in the thirdCNOT gate. If this affects
the data, then the result is an error in the data after the m
surement is complete. An ancilla error~with or without a
data error! has no affect, as it results only in the type
harmless phase error discussed in~3! above.

The effects of single errors described above can easily
verified by the reader and demonstrate the fault toleranc
this procedure. Note that this measurement can be use
produce the ancilla state needed in the error correction cir
~see below! from the stateu0C&. Measurements in theY basis
can be carried out fault tolerantly using the followin
method.

First prepare the cat state described by Eq.~26!. Next
perform a bitwise controlled-Z gate with each bare qubit in
the cat state as a control bit and the corresponding qubi
the state to be measured~let this be ucy&! as a target bit.
Next, aCNOT gate is performed with one bit in the cat sta
as a control bit and the corresponding bit inucy& as the
target. As a consequence the overall system evolves~if no
errors occur! as shown below,

ucy&uCAT&5~au0Y&1bu1Y&)uCAT&

→ a

&
u0Y&~ u000&1 i u111&)

1
b

&
u1Y&~ u000&2 i u111&). ~28!

By disentangling the qubits in the cat state and measu
qubit 1 in they basis, the stateucy& is collapsed onto eithe
u0Y& or u1Y&. In order to ensure fault tolerance, this proce
is repeated three times prior to any measurements b

FIG. 8. Circuit for performing a measurement in theY basis.
The box labeledD denotes the disentanglement circuit, which d
entangles the cat state, so that (u000&6 i u111&)/&→(u0&
6 i u1&)00&/&. After this circuit, the first~uppermost in the dia-
gram! cat state bit is measured in they basis. The procedure is the
repeated, with the difference that theCNOT operation in the above
diagram is performed between the second qubits in the cat state
the data. The procedure is then carried out a third time, with
CNOT operation being performed between the third qubits in the
state and data. A majority vote is then taken on the measurem
results to obtain the overall measurement result.
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made, using different qubits in the finalCNOT operation each
time. A majority vote is then taken to determine whether t
measurement result isu0Y& or u1Y&. This is shown in Fig. 8.

It is important to note that, due partly to the problem
introduced when only phase errors of the type discussed
be corrected and partly to the structure of the code, the se
universal gates consists of a fairly complex set of operati
compared to some of the other codes. The fault toleranP
gate construction in Fig. 4 emphasizes this point. By co
parison, for the seven-bit code discussed in@7#, the same gate
can be carried out simply by performing, bitwise, the ope
tion P†. This is as a result of the particular structure of th
code, which is the simplest CSS~Calderbank, Shor, and Ste
ane! code. A discussion of this category of codes is given
@3#.

The final ingredient needed for fault tolerant computati
is of course a fault tolerant error correction circuit. The c
cuit for this is quite simple~compared to the correction pro
cedure for other codes! and is shown in Fig. 9.

V. COMPARISON WITH SEVEN-BIT CODE

In this section the three-bit code is compared to the sev
bit code ~described below! and it is noted that performing
encoded operations requires many more primitive operat
in the case of the three-bit code. The seven-bit code is
pable of correcting arbitrary single qubit errors and the co
words are

u0C~7!&5
1

A8
~ u0000000&1u1010101&

1u0110011&1u1100110&

1u0001111&1u1011010&

1u0111100&1u1101001&), ~29!

nd
e
t
nt

FIG. 9. Fault tolerant error correction circuit. The ancilla
prepared in the initial state if (u0C&1u1C&)/&. The box labeledM
represents the syndrome measurement, where the ancilla bit
measured in thex basis. If all the ancilla bits are observed in th
same state then the data is assumed to be error free. If one a
bit is observed in a different state from the other two, then
corresponding data qubit is assumed to have experienced an e
The box labeledC represents the correction of any such error, co
ditioned on the result of the syndrome measurement.
8-7
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IAIN GOURLAY AND JOHN F. SNOWDON PHYSICAL REVIEW A62 022308
u1C~7!&5
1

A8
~ u1111111&1u0101010&

1u1001100&1u0011001&

1u1110000&1u0100101&

1u1000011&1u0010110&).

The codeword representing a logical zero is a superpos
of all the even parity~classical! Hamming codewords while
the codeword representing a logical one is a superpositio
all the odd-parity Hamming codewords@3#.

As mentioned in Sec. IV, the most appropriate univer
set of gates for the seven-bit code is$H,P,CNOT,T%. It is
possible to carry out the Hadamard operation simply by p
forming this operation on each individual qubit making
the encoded state. TheCNOT gate can be carried out bitwise
simply by performingCNOT gates between correspondin
bits in the encoded control and target bits. TheP gate can
also be performed bitwise although in this case, the opera
performed on each individual qubit is actuallyP†. The Tof-
foli gate can be performed in the same way as for the th
bit code. In this case the stateuANC1& is produced using a
seven-bit cat state, as discussed in@4#.

It is clear that the seven-bit code is significantly mo
efficient than the three-bit code in terms of number of ga
required to perform encoded operations due to the possib
of performing all one- and two-bit gates in the universal
given bitwise. For example, theP gate requires only seve
single-bit operations in the case of the seven-bit gate, w
for the three-bit code, six~best case! or seven~worst case!
single-bit operations and 27 two-bit operations are need
even the absence of any error correction. However, the th
bit code has the advantage that less qubits are neede
encode information. In addition, the error correction pro
dure is much simpler. There follows an estimation of t
threshold value, i.e., the error rate that can be tolerate
arbitrarily long computations are to be possible w
bounded error using concatenated coding.

VI. THRESHOLD ESTIMATION

The threshold error rate is estimated using the error mo
described in Sec. III. We estimate the threshold as follow

~1! Consider a qubit encoded on the first level of conc
enation. An encodedP operation is performed on the qub
and this is followed by an error correction cycle. In additio
error correction is performed on the ancilla, prior to t
Y-basis measurement and after each of the first two meas
ment trials in theY-basis measurement. TheP gate is chosen
as it includes theY measurement, the most complicat
single procedure used to construct any of the one-bit gate
the universal set.

~2! An approximate expression is obtained for the pro
ability that an unrecoverable error has occurred after
computation described in~1!. Let this probability bePu .

~3! The probability of error per gate is thenPu . This is
compared to«g ~the error rate per gate for a bare qubit! with
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the requirement thatPu,«g . Hence, the threshold is est
mated by finding the value of«g which satisfiesPu5«g .
This is the estimated threshold value.

The most complex part of this procedure is~2!, estimating
Pu . This is estimated as follows.

~i! We estimate the probability that theP gate is per-
formed without error and an unrecoverable error occurs
the final error correction circuit. This is estimated toO(«g

2).
In performing this calculation, it is noted that at least tw
independent errors must occur for an overall error to oc
but that not all sets of two errors correspond to an unrec
erable error.

~ii ! Similarly, the probability that an unrecoverable err
occurs in one of the other error correction circuits~acting on
the ancilla! is estimated and it is assumed that all such err
result in an unrecoverable error in the data@although this is
not necessarily the case, see comment at the end of~iv!#.

~iii ! Similarly, the probability that an unrecoverable err
results due to an uncorrected error in the ancilla, prior to o
of the error correction circuits and a further error during t
correction circuit, is estimated toO(«g

2).
~iv! The probability that an unrecoverable error occu

during a single measurement trial in theY-basis measure
ment ~i.e., between error correction cycles! is estimated to
O(«g

2). In order to simplify the calculation, it is assumed th
if two independent errors occur during such a measurem
trial then the result is an unrecoverable error~with the ex-
ception that two errors affecting a single cat state but
affecting the data are neglected as they clearly do not re
in an unrecoverable error!. Since certain pairs of errors d
not result in an unrecoverable error, this results in a sligh
pessimistic threshold estimate.

The contributions from~i!, ~ii !, ~iii !, and ~iv! are added
giving an approximate expression forPu . The expression
obtained in this way is

Pu'«g
2~421.75!. ~30!

Hence, we obtain

« th'
1

421.75
'2.431023. ~31!

This is better than the threshold value estimates obtained
the seven-bit code in@4–6#.

VII. CONCLUSIONS

According to the above results it seems~at least superfi-
cially! that it would make sense to use the three-bit code
quantum computations using physical systems wh
dephasing is the dominant source of errors. The encod
procedure is simpler~simply Hadamard transform three qu
bits all initially in the stateu0&! and the error correction pro
cedure is also simpler. As shown in Sec. V, it is clear th
performing operations on encoded qubits is simpler in
case of the seven-bit code than for the three-bit code. H
ever, it is possible that there are more efficient methods
performing a universal set of fault tolerant operations for
8-8
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CONCATENATED CODING IN THE PRESENCE OF DEPHASING PHYSICAL REVIEW A62 022308
three-bit code than the methods proposed here. If this is
case then the threshold value may be larger than the
mated value in the preceding section. However, there
compelling argument in favor of choosing the seven-bit co
even in systems where dephasing errors dominate. This
gument is as follows.

Suppose that in addition to phase-flip (ŝz) errors in thez
basis, ŝx and ŝy errors also occur. Let the probability o
either aŝx or ŝy error occurring as the result of a quantu
gate bed!«g . For convenience it is assumed that the er
probability is the same for single-bit and two-bit gates.
addition, suppose that any such error results in an unre
erable error. Since this is usually the case, this only in
duces a slight error. What value~roughly! can d be if such
errors are to be negligible relative toŝz errors? Clearly this
depends on the level of concatenation: the more levels
concatenation, the more likely an unrecoverableŝx or ŝy
error is to occur. We can get a fairly good impression of
constraints ond by considering the following case. Suppo
a P gate is performed on a qubit encoded on the first leve
concatenation, incorporating the same error correction s
as in the threshold estimate in the previous section. We
pose the condition that the probability of aŝx or ŝy error
occurring is much less than«g . PerformingP requires~in-
cluding ancilla preparation and all the error correction c
cuits! at most 64 primitive operations. Hence the requirem
becomes 67d!«g . Note that this is just for a gate at the fir
level of concatenation. For a large-scale computation, hig
level concatenation would be needed to combat depha
errors and the constraints on gate errors would become
more stringent.
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The above argument strongly suggests that it would
be appropriate to use the three-bit code for large-scale q
tum computations. However, noting the relative simplicity
the error correction circuit, it may be useful for stora
and/or transmission of quantum information, particularly
the states being stored were quite simple to prepare~although
this in itself is a significant restriction!. In addition, it may be
a less daunting task to experimentally perform a very sim
fault tolerant computation and error correction using t
three-bit code rather than the seven-bit code~assuming
dephasing was the dominant source of errors!. For example,
preparing the stateu0C&, storing the data for some time in
terval and performing fault tolerant error correction requir
far less operations for the three-bit code than for the sev
bit code.

In conclusion, it seems that the structure of the seven
code gives it a significant advantage over the three-bit co
many operations can be performed bitwise for the seven
code whereas for the three-bit code only theCNOT operation
can be performed in this way. In addition, the uncorrecte~
ŝx or ŝy! errors would accumulate rapidly over the course
a large computation. However, the three-bit code may le
itself more readily to experiments which are likely to b
feasible in the short term for physical implementations wh
dephasing errors dominate.
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