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Concatenated coding in the presence of dephasing
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We investigate the use of concatenated coding to protect against dephasing in the absence of other types of
error in order to carry out large quantum computations. This analysis is based on a well-known three-bit
guantum code. Fault tolerant methods for carrying out gate operations, ancilla preparation, and syndrome
identification are discussed and the maxim(n threshold error rate which can be toleratdd quantum
coherence is to be maintained for arbitrarily long computajiestimated. The methods for performing fault
tolerant gate operations are compared to the methods appropriate for the seven-bit code and it is concluded that
the three-bit code is not likely to be useful for large-scale quantum computation.

PACS numbsd(s): 03.67.Lx, 89.80+h

. INTRODUCTION |\I,qubit+environmen}:a|0>|EO>+b|1>|E1>1 )

_ If quantum computing is to become a reality, the MOStyhere |E,) and |E;) are not necessarily orthogonal. 4f
significant obstacle from both a theoretical and experimental. , andp~ B then the reduced density operator describing

perspective is that of errors introduced by inaccurate galghe qubit statgobtained by tracing over environmental de-
operations and interaction with the environment. In classicayrees of freedoinis

computation, error correction has been studied extensively

and powerful methods of dealing with errors have been de- N 2 2 *
; ; : ~ + +

vised. Ideally, it would be possible to extend these results ~ * |a|*10)0[+ [ B 1)(LI+ B™ (E4[Eq) 01|

and devise error correction schemes for quantum computa- +a* B(Eo|Eq)[1)(0]. 3)

tion. This problem has been studied extensively and initial

theoretical results were not encouragifig2]. However,  Note that if(Eo|E4) is real then the density operator in Eq.

since then significant progress has been made in the field @§) can be written(in matrix notation as

guantum error correctiof8—8]. Recent results indicate that
under certair(restrictive conditions, arbitrarily long compu-

2 *
tations could, in principle, be performed reliably if the error A_,w( |al® ap )

probability per quantum gate is below a certain value, the 2 a*B |BI?
threshold error ratf4—8]. 2 o

Quantum error correction codes exploit the fact that if a + W( lof ap ) (4)
qubit (two-level quantum systenexperiences an error, the 2 —a*B  |BJ?

Pauli spin matrices in conjunction with the identity from a
complete basis set with which to describe the error. Hencejence if(Ey|E,) is real then we can describe this situation
the qubit can undergo a bit-flip errofr{), a sign-flip error by saying that with probabilitfp = (1+(E|E1))/2 the qubit
(02, a bit-flip and a sign-flip error&,), or no error(the s error free after the gate operation and with probability 1
identity). — P the qubit suffers a sign-flip error. Dephasing can also
For many physical systems, the dominant type of error issccur on a stored qubifi.e., when no gate operations are
dephasing, whereby interaction with the environment debeing performepldue to coupling to external degrees of free-
stroys quantum coherence. The environment simply refers tdom. This is the type of error we consider and the following
all external degrees of freedom with which the qubit maysection describes a simple and well-known error correction
interact, including any applied fields which may be used tocode (see[3] for an alternative descriptionwhich can be
implement logic operations. For example, suppose that spinused when storage errors of this type dominate.
1/2 particles are used as qubits and gate operations are per-The existence of a threshold value for the maximum tol-
formed by applying magnetic fieldsote that there are many erable error depends on the useanilt tolerantcomputation
other possible representations of qubits but the same sort @hdconcatenated codindn Sec. llI, the error model used is
argument still appligs In a fully quantum description it is described and all assumptions are detailed. The concepts of
clear that the qubit and the field become entangled. If théault tolerance and concatenated coding are discussed in Sec.

ideal output of a single bit gate for a particular inputis 1V, where fault tolerant methods for performing gate opera-
tions for the dephasing error correction code are described in
detail. In Sec. V some significant differences between fault
|\I’qubit>:a'|0>+:8|1>1 (1 9

tolerant computation using the 3-bit code and fault tolerant

computation using the much studied seven-bit cpdeare
then the actual state of the system (qui@tvironment) will  discussed. This is followed by an approximation of the
be of the form threshold error rate for computation using the three-bit code.
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Input amard(H) gates, which encode the input state. Hence if the
input state isx|0) + B|1), then after the encoding part of the
circuit the state isx|0¢)+ B|1c). In the second part of the
circuit, the encoded state is stored, with no gate operations
being performed. It is assumed that errors can occur during
this time, such that each bare qubit is flipped in feasis
with probability e and remains error free with probability
The first twocNoT operations and the first thred operations en- L~ &s- 1he third part of the circuit is the correcting and/or
code the qubit. The qubit is then storétliring which time errors ~ decoding part. Théd gates and theNoT gates decode the
occu, followed by the correction and decoding part of the circuit. State and disentangle the three qubits. If a single error has

LEL T
A A
o—1H] L H—D

FIG. 1. Quantum error correction circuit for dephasing errors.

Il. THREE-BIT QUANTUM CODE

occurred in the first qubitthe initial input statgduring stor-
age, then the other two qubits are in the staeprior to the
final gate in the circuit, a controlled-controlleT or Tof-

The previous section explained the manner in whichyo|i gate This gate then corrects the first qubit, leaving the
dephasing may arise as a result of gate operations. Quantu&ljtput error free.

coherence can also occur on a stored qubit due to interactions Note that the circuit in Fig. 1 fails if two or more errors
with the environment, so that a qubit beginning in the statgccyr during storage. To second order, the probability that

(1) evolves as follows:
p=|al?[0)(0] +|BI|1)(1|+ aB* f(1)|0)(1
+a* Bf*(1)|1)(0], (5)

where typically(in the Markov regimg f(t)=e""d [9]. The

decoherence timey is a good indication of the time scale

two qubits experience errors during storageéé.aﬂence, if

the storage time is long enough so that storage errors domi-
nate over errors in encoding, decoding, and correction and in
addition errors on different qubits are not correlated then the
probability of error after correction is given by

P(erron=3s2+0(&d), (10

over which decoherence occurs. Here, entanglement with ex-
ternal degrees of freedom could result in a state of the formyhich is a significant improvement as if £s<1.

given in Eq.(3), so thatf(t) =(E;|Ey). The probability that

a sign-flip error occurs is then

1_ e* (ts/Td)
e 5 (6)

wheret, is the storage time.

Suppose we choose to work in the bag),|1) (from
this point referred to as the basig where

1 1
|O>ZE(|O>+|1>)' |>:5(|O>_|1>)' @)

Transforming between th@0),|1) (the z basig and thex
basis is done by performing the single qubit Hadam&tyl

If gate errors dominate then the circuit shown in Fig. 1 is
not effective in reducing errors since the information is vul-
nerable during encoding and decoding. Ideally the qubit
would be encoded only once and thereafter all operations
performed on the encoded data. Particular care must be taken
to prevent errors spreading in an encoded qubit in such a way
as to render the information unrecoverable, i.e., operations
must be fault tolerant. This point is clarified in Sec. IV.

IIl. ERROR MODEL

The purpose of this section is to outline the error model
and specify the assumptions made. It is assumed that single
qubit gate errors can be modeled by assuming that after each
gate, there is a probabilityy that a bit-flip error occurs in

gate. In the new basis, the errors are bit flips rather than sigie x basis. The error only affects the qubit involved in the
flips and this can be exploited to devise a simple error corgate. For two-bit gates, it is assumed that both qubits can be
rection procedure. We encode our qubit in the basigffected and all three possible errére., either of the qubits

{10¢),|1c), where

|0c)=1000, |1c)=|111). 8

Suppose a single bit-flip error occurs during storage, e.g.,

a|0¢)+ B|1c)— a|001) + B|110). )

flip or both of them flip are equally likely. Following the
example of Zalkd 6], the error probability is chosen so that
the overall probability of a given bit experiencing an error is
the same as in the case of the single qubit gate. Hence, each
of the errors has a probability,/2 of occurring. Storage
errors are neglected for the purposes of calculating the
threshold value, with the following justification.

(1) It is assumed that it is possible to carry out operations

Errors of this type can be detected and corrected. The conwith an arbitrary degree of parallelism. This may be unreal-
plete encoding, decoding, and correction circuit is shown iristic for many possible implementations but the question of
Fig. 1. Note that all gates operating between bare qubithow much parallelism is possible is an important one in as-

(where a bare qubit is simply an unencoded single ¢jaié
drawn in thez basis (this applies to all the figures This

sessing the value of a given approach to implementing large-
scale quantum computation.

circuit consists of three parts: the first part consists of two (2) It is assumed that the time interval between gate op-
controllednoT (CNOT) gates and three single qubit Had- erations on a givetbare qubit can be made small compared
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FIG. 2. Pictorial representation of the concept of code concat

arrow, viewing left to right, is itself an encoded qultits are the
other two qubits in the encoded stat8imilarly, the upper qubit in
this encoded staténdicated by the second arrgvis an encoded

state. This hierarchical system can have as many levels as are né

essary to protect the qubit sufficiently from unrecoverable errors.

to the gate operation time. Hence, storage errors are likely t

be much smaller than gate errors.

Note that the error model describes stochastic uncorre
lated errors as a result of single qubit operations, with corre

lated errors only occurring due to two-lfdr three-bif gates.
As pointed out by Steanld], this may be physically unreal-
istic since in a real system there is likely to be some corre
lation of errors on different qubits. For example, in the cold
trapped-ion methodinitially proposed by Cirac and Zollgr
[10,11], the individual qubits are coupled via the vibrational

likely to be correlated. However, it is assumed here that a

G PHYSICAL REVIEW @2 022308
ond level of concatenation. It is clear how this procedure is
generalized to any level of concatenation desired.

It turns out that this is, in principle, a very powerful
method of encoding in the following sense: given the error
model discussed in Sec. I(or a similar error model, allow-
ing for &, and &, errors but using a code which also corrects
for these erronsand using fault tolerant methogisee below
it is possible to perform arbitrarily long computations with a

enation. The upper qubit in the encoded state, indicated by the ﬁrsl%ounded overall error probability the error probability per

gate is small enoughThe basic idea is that every time the
level of hierarchy is increased by one, each bare qubit in the
code undergoes more operations and is consequently more
[kely to experience an error. On the other hand, more errors
can be tolerated before an unrecoverable error occurs. If the
probability of an unrecoverable error on a qubit encoded on
e Lth level is §, thenas long as errors on bare qubits
elonging to the same encoded qubit are uncorreldtst
he definition of fault tolerance belgwthe probability of

il
error on the [+1)th level isO(6?) since two of the three
Lth level qubits would need to experience unrecoverable er-
rors. If the gate error rate is too large then the additional gate
operations needed result in an increase in the overall error
probability as the level of hierarchy is increased. However, if
the gate error probability is smaller than a particular thresh-
old value, then the increase in error probability due to per-

motion of the whole ion string and in this case errors argrMing more gate operations is outweighed by the decrease

¢h error probability due to the increase in level of hierarchy.

implementation is used which has the property that any such In devising methods for performing operations on en-

correlation is small enough to be negligible. In addition, the i ) : )
&f errors. To clarify this point, suppose we wish to perform

m’iﬁ encoded Hadamard operation, i.e.,

model assumes that there are no systematic errors. Howe
systematic errors are not likely to be such a serious proble
since their existence could be detected by test runs of
simple computation. In addition, it is likely that their effect
would not accumulate in a long computation as the effect o
random errors wouldl6]. With this error model in mind, the

V

coded qubits, it is of critical importance to control the spread

a

1001 (100)+[1)), 110 (10g)~|1e))
f C \f2 C Cc/) C ‘/2 C c/)-

(12

concepts of fault tolerance and concatenated coding are now

discussed.

IV. FAULT TOLERANCE
AND CONCATENATED CODING

Before discussing fault tolerance, it seems appropriate t

The simplest method to perform this gate is to decode the
data, perform the Hadamard operation, and then re-encode
the data. The problem with this method is that it is not fault
tolerant, where we define fault tolerance as follows.
Suppose performing a gate operation involving a q(dit
gubits encoded on th&th level of concatenation introduces

describe concatenated coding, since this allows for a clegd" unrecoverable error to the qukdubity with probability

definition of fault tolerance. Concatenated coding, as it ap

O(e). The operation is fault tolerant if and only if the prob-

plies to the three-bit code, can be explained as follows. Ad&bility of an unrecoverable error for the same operation per-

described previously we can encode a single qubit into thre

qubits, so that0)—|0c)=|000) and|1)—|111). This can
be extended further by encoding each of the three qubits i
the encoded state, so that

11

|0c)—10c0c0c), [1c)—|1lclclc).

formed on qubits encoded on the+ 1)th level is no worse
thanO(&?).

n It is clear that performing the Hadamard operation in the
manner described above does not satisfy this condition.
There are two points worth makir@ relation to the above
examplé regarding this point. Firstly, it is necessary to avoid
decoding information in order to perform logic operations,
since an error on a bare qubit is unrecoverable. Secondly,

The concept of concatenated coding is pictorially representedote that in the above example gates are operdieigeen
in Fig. 2. We consider a bare qubit to be the zeroth level ofjubits in the same codewor@enerally this is a bad idea as

concatenation. When the qubit is encodedthis case into

three qubity this corresponds to the first level of concatena-

tion. When each of the qubits in the codeword are them

it allows errors to spread so that an error can affect more than
one qubit in the codeword.
For this error correction code, there is another source of

selves encoded into three qubits, this corresponds to the segnrecoverable errors, which is clarified by the following ex-
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ample of a methodwhich is not fault tolerantfor perform- N
) i (N
ing the operatiorP, where
N
_ N
Pl0c)=[0c), Pllc)=il|lc). (13 T
LV
The operation can be carried out by performing the operation PR
R on the first qubit in the encoded state, where
®
ei71'/4 0 +e*iﬂ'/4 1
rioy— (710 e L) .
V2
(14) FIG. 3. A fault tolerant encodedNoT operation. Note that the

—iml4 i /4 operation exploits the fact that@oT operation on a bare qubit is
(e”'™0)+e'™1)) . o )
) the same in th¢|0),| 1) basis as in th|0),|1)} basis, except that the

R|1)=
| ) V2 control and target bits are interchanged.

Suppose there is a bit-flip error in the first qubit before thejy the 7z basis, this means a measurement, represented by an

loperation is performed. In that case, the state evolves as fohperatorM ,, satisfying the following eigenvalue equations:
ows:

ERROR _____ - M2|0c)=(—1)|0c), My|0c;)=(—1)|0¢ ),
a|0¢)+ Bl1c) —— o[100)+ p[011) 210¢) [0c), Mz|0c,) 0. .

—P>i“|m+,3|61—1>- (15 Mz|1c)=(+1)|1lc), Mz|lci)=(+1)[1c).

This error cannot be corrected, since the code is only capable
of correcting bit-flip errorgin the x basig, not phase errors. Hence if a measurement is made to distinguish betW@gn
This is a critical problem in constructing fault tolerant gatesand|1¢), the result is not affected by a single error.
for the three-bit code rather than a code which corrects for The X andY bases are defined in a similar way. TKe
arbitrary single qubit errors. basis consists of the vector$Og)+|1c))/v2=|0x) and
In order to be able to perform arbitrary quantum compu-(|0c) —|1c))/v2=|1x) and the erroneous versions of these
tations fault tolerantly, it is necessary to be able to perform gin the same sense as for tAéasis. A measurement in the
complete set of operations, i.e., a set of operations that cax basis refers to a measurement represented by an operator
be used to efficiently approximate any quantum operatiotMy, such thajOy) and the erroneous versions have eigen-
(with the qubits remaining in states spanned by the codevalue —1, whereagly) and the erroneous versions have an
wordg. The set of operations considered here iseigenvalue+1. Finally, theY basis consists of the vectors
{Q,P,cNoT,T} although there are a number of other possi-(|0¢c)+i|1c))/v2=|0y) and (0c)—i|lc))/v2=|1y) and
bilities [8] (another possibility is to replad@ with H, a more  the erroneous versions of these. A measurement inYthe
appropriate choice for the seven-bit code discussed in Sebasis refers to a measurement represented by an operator
V), whereP is described above is introduced belowgNOT My, such thaiOy) and the erroneous versions have eigen-
is the controlledNoT operation and is the Toffoli gate, i.e., value —1, whereas|1y) and the erroneous versions have
; eigenvalue+1.
In discussing encoded fault tolerant operations,akeT
[)[b)|c)—[a)|b)labec). (16) operation is considered first as it is the simpl@dtthe four
In constructing the complete set, it is assumed that we caoperations in the sgto perform fault tolerantly. In perform-
make measurements on bare qubits inzhasis, thex basis, ing this operation, we can exploit the following trick: If a
and they basis[{(|0)+i|1))/v2,(|0)—i|1))/v2]. In addi- cNoOT operation is performed in th& basis between bare
tion, errors introduced by measurements are assumed to logibits, then this is also anOT operation in thex basis, the
negligible. This only slightly affects the threshold estimation,only difference being that the control and target bits are in-
since only a few measurements are made compared to therchangedi.e., the control bit in the basis is the target bit
number of gate operations. in the x basig. With this in mind, thecNOT gate can be
Having introduced the, y, andz bases, it seems appro- performed transversally on encoded qubits as shown in Fig.
priate to introduce the following eigenbasespanning the 3. Note that two independent errors must occur in order to
eight-dimensional Hilbert space of three qupitwhich are  produce an unrecoverable error when this gate is performed,
useful in describing fault tolerant methods for the gates irsince thecNOT gate does not produce phase err@nsthe x
the universal set introduced above. Let thbasis consist of basig from bit-flip errors[unlike R, see Eq.(14) and the
the vectors|O¢),|1c) and the erroneous versions of theseaccompanying discussign
obtained when a single bit-fliin the x basig occurs. We The P operation can be performed fault tolerantly using
refer to the erroneous versions|ag ;) and|1¢ ;), where the the following method described by Gottesmgit?]. Note
i is 1, 2, or 3 and denotes which of the three qubits hashat this implementation is rather complesee Fig. 4 for the
experienced an error. Whenever we refer to a measuremeabmplete constructiorand care must be taken to ensure fault
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D

N s
N \

Data 4

FanY
3

Ancilla

FIG. 4. Fault toleranP gate. The box labele¥ is the circuit for
measuring in theY basis(shown in Fig. 8. A NOT gate is then
performed on one of the data bits, conditioned on the result ofthe
measurement. Hence|idy) is observed, then theoT operation is
performed. Note that the ancilla is initially in the st3€g).

tolerance, given the additional constraifmver codes that
correct arbitrary single bit errorghat bit-flip error(in the z
basig cannot be tolerated.

PHYSICAL REVIEW @2 022308

N

N

N

FIG. 5. Circuit for preparing the cat stat€000) +|111))/v2.
The initial state(prior to the circui} is |000.

1
|0x>:‘5(|0c>+|1c>)- (21

Next perform acNOT gate, with the ancilla as the control bit
and the data as the target. If the initial state of the data is
| W) qatathen the new state is

1
‘E(Q|‘I’data>|ov>+QT|‘I’data>|1Y>)- (22

First, prepare an encoded ancilla bit in the stg). inall fault tol ; i i
Next, perform acNOT gate, with the data as the control bit Finally a fault tolerant measurement is made in thbasis

and the ancilla as the target bit. If the initial data state is2d @NOT operation performed on the data if the stte) is
|¥) gar= @|0c) + B|1c), then the overall state is now observed. All that remains to complete the universal set of
ata 1

gates is to describe fault tolerant methods for performing the
Toffoli gate, making measurements in tkeandY bases and
preparing the ancilla sta{®y).

We use the construction suggested by SH& for the

| q’)data&anc.: 0(| 0C>dateloc>anc.+ ,8| 1C>datei 1C>anc.

( | OC> anc+ [ | 1C> anc)

=P W) gara Toffoli gate. Note that it is necessary to prepare the ancilla
v2
state
(|OC>anc_ i|1C>anc) 1 1
+P|¥ ' 1 SNTIRAIT
V) data V2 ’ (18 |ANC1)= Ei:EO IZO liciciic)- (23
wherePT is the Hermitean conjugate & Hence, if a fault Noting that

tolerant measurement can be made inYhgasis then thé

gate can also be performed fault tolerantly with the following 1 ! . 1
procedure completing the operation. ﬁzo ,ZO kZO lic)ic)ke)= EdANClH |ANC2)),

We measure the ancilla bit in thébasis, performing on IR (24)
the data if the result i0y), where

where
Z[0c)=(0¢c), Z[1c)=—|1c). (19 .
1 . .

TheZ gate is carried out simply by performing\aT opera- |ANC2) = 520 1240 lic)ic)INOT(ij)c), (29

tion on the first bare qubitor any one of the qubits in the

encoded bjt Note that performing this operation is fault j; g possible to prepare the state given by E) by making
tolerant, since although a single error before the gate results 5t tolerant measurement in thEANC1),|ANC2) basis
in the sign of the statfdc) being flipped rather than the sign gnq performing theloT operation on the third encoded qubit

of |1c), this is in fact equivalent, since an overall phaseit the observed state {ANC2). This measurement is carried
factor is physically meaningless. Hence the problem of pery i a5 follows.

forming P fault tolerantly is reduced to finding a way to  Fjrst the following cat state is prepared:
perform fault tolerant measurements in tfidasis(see be-
low).

The operatiorQ, where

1
|CAT)= E(|OOO}+|111}). (26)

The circuit required to construct this state is shown in Fig. 5.
A controlled-controlledZz gate is now performed, with the
cat state and the first encoded andjila in Eq. (24)] as the
control bits and the second ancilla bjt in Eq. (24)] as the
target. This operation can be carried out by Hadamard trans-
forming the first ancillathat is a Hadamard transform on the

1 1
Q|Oc>:E(|Oc>_i|1c>)'|1c>:E(_i|0c>+|1c>)
(20

can be carried out as followd2]. Prepare an ancilla in the
state
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Cat state — Data bit

Ancillla bit o EE

Ancilla bit Ancilla NPANPANY;

Anci211abit FIG. 7. Measurement in thf0y),|1x)} basis. The ancilla bit
3 N begins in the stat®). If the ancilla is observed in the std@® at the

output then the data bit has been collapsed ¢d§9, while if the
FIG. 6. The controlled-controlled-gate used in the preparation ancilla is observed in the staj&) then the data bit has been col-
of JANC1), where the cat state and encoded ancilla bit 1 are théapsed onto the stafdy).
control bits, followed by the controlled-gate, where the bits in

ancilla bit_3 are flipped in th@_0>,|1>} basis, conditioned on the cat state is destroyedby performing the bitwise Hadamard
state qubits(in the same basis The gates labeled H denoted the {ransform on the individual qubits in the cat state and then
encodecH operation, wherdd =PQP. measuring each of them in thebasis. If an even number of

i ) o qubits is observed in the stat&) then the ancilla is in the
logical bit, not a bitwise Hadamard transform on the barestate|ANCl). Otherwise it is in the statANC2).

qubity then using bitwise Toffoli gates and finally Had-  Note that a single error in this procedure can result in an
amard transforming the first ancilla again. Since this operagyeral| error in the identification of the ancilla state. This
tion is not performed using operations from the fault tolerantyc,rs for errors of the form111)— —|111) on the cat

set described, we must be careful to ensure t_hat. it is faulliate the only part of the above procedure that is not fault
tolerant. The gate can be regarded as follows: First an eng|erant as described above. However, the procedure can be

coded Hadamard transform is perfo_rmed on the first a_ncillal,mde fault tolerant by performing the same operations with
followed by an encodedNoT gate (with the second ancilla  yo more cat states and taking a majority vote. The impor-

as the control bit and the first ancilla as the taygethich tant point in both the controlled- and the controlled-

only operates when the cat state bits are in the sfte  cgnirolledz gates is that uncorrectable single errors are con-
Finally another encoded Hadamard transform is performe@neq 1o the cat states. In this case, two independent errors

on the first ancilla. A single phase error on one of the ancillayy|g need to occur to cause an error in identification of the
bits (causing it to flip in thex basig is then correctable inthe 5 cilla state.
usual way. The only other type of error that can occur is @ ag shown by Shor, once the std®&NC1) has been pre-
phase error on the cat state of the fdtth )~ —|111). This  yareq, the Toffoli gate can be carried out using the opera-
type of error is recoverable if more cat states are Usee  {jons already discussed. For more details see, for example,
below). In that case th_e procedure is _fault tolerant. [4]. In order to prepare the stal@y), it is sufficient to make
_The next step consists of performing a controlledate 5 nondestructive measurement in tevasis and then per-
with the cat state as the control and the third ancilla as the,., 547 gate if the result i$1,). This measurement can be
target. This gate is performed using bitwiSEOT gates. AS  harformed using the circuit shown in Fig. 7. This is simply a

before, a single error affecting only one of the ancilla bits iSparity check in the basis, sincé0y) is a superposition of alil
recov«_arable in the usual way, while the only other type Ofihe states containing an even number sfdnd |1,) is a
error is a cat state error of the forfill)— —[111). This g hernosition of all the states containing an odd number of
procedure (controlled-controlledZ then controlledZ) is 15 |t may seem somewhat surprising that this method of
shown in Fig. 6. The evolution resulting from these operaerforming thex-basis measurement is indeed fault tolerant,
tions is shown in Eq(27), since the ancilla bit interacts with all the data bits and it

1 1 1 might be expected that phase errors could thereby propagate
iz 2 2 lio) i) ke) and cause an unrecoverable error. This turns out not to be the
81 S & T case. The possible errors can be classified as follows.

(1) A phase errofin the z basig occurs on one of the data

|CAT)®

1 14 4 S o bits prior to the X-basis measurement. This results in the
- 5(|000>® ﬁZ Z Z lic)ic)ke) same(correctablgerror in the output state after the measure-
i=0 j=0 k=0 ment
1 Lt ) (2) An error occurs in the firstNOT gate. If this affects
+H11he —> > > (—1)1Kid)jc)ke)) the first data bit only or the ancilla bit only, then the result is
V8150 {=0 =0 a phase error on the first qubit after the measurement is com-

1 pleted. If the error affects both the ancilla and the data, then
_ no overall error occurs.
CAT)ANCL) + V2 (/000 = [11H)ANC2). @7 (3) An error occurs in the secor@NOT gate. If this affects
the data only, then the result is a phase error on the second
Hence by performing a measurement in the basiglata bit after the measurement is completed. If it affects both
{|CAT),|CAT")}, where |CAT')=(|000—|111)/v2 the the data and the ancilla, then the result is a phase error on the
ancilla state is collapsed into eith@NC1) or |JANC2). This  first data qubit after the measurement is completed. If it af-
measurement can be performed destructiyiglythat the cat fects the ancilla only, then letting the initial state be
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FanY
v
Cat state D Data () C
1Y Vo
Z] v )
Data (Z] Ancilla
Z] M
FIG. 8. Circuit for performing a measurement in thebasis.

The box labeled denotes the disentanglement circuit, which dis-
entangles the cat state, so tha{0q0 =i|111)/v2—(]O)
+i|1))00)/v2. After this circuit, the first(uppermost in the dia- . )
gram cat state bit is measured in tidbasis. The procedure is then represents_the syndr_ome measurem_ent, yvhere the ancnla_ bits are
repeated, with the difference that theoT operation in the above measured in the basis. If _aII the ancilla bits are observed in the_
diagram is performed between the second qubits in the cat state angme state then_the de_lta is assumed to be error free. If one ancilla
the data. The procedure is then carried out a third time, with th It s obser.ved n-a dlfferent state from the other ,tWO’ then the
CcNOT operation being performed between the third qubits in the Cagorrespondlng data qubit is assumed to have experienced an error.

state and data. A majority vote is then taken on the measuremeﬂ_p_e box labeledC represents the correction of any such error, con-
results to obtain the overall measurement result. ditioned on the result of the syndrome measurement.

FIG. 9. Fault tolerant error correction circuit. The ancilla is
prepared in the initial state if@c)+|1c))/v2. The box labeledv

(a|0x)+ B|1x))|0), the state prior to the measurement of made, using different qubits in the finahoT operation each
the ancilla at the end of the circuit isy|Oy3)|0) time. A majority vote is then taken to determine whether the
— B|1xs)|1), where the 3 indicates a phase error on the thirdneasurement result |8y) or |1,). This is shown in Fig. 8.

qubit. The additional phase shifbetween thg0y3)[0) and It is important to note that, due partly to the problems
|1x3)|1) states is harmless as the ancilla is measured at thisntroduced when only phase errors of the type discussed can
point. be corrected and partly to the structure of the code, the set of

(4) An error occurs in the thirdNoT gate. If this affects  njversal gates consists of a fairly complex set of operations
the data, then the result is an error in the data after the Meompared to some of the other codes. The fault tolePant
surement 'z comple:cfe. An ancilla elrr(xmthl or w;]thout a ;gate construction in Fig. 4 emphasizes this point. By com-
data erroy has no affect, as it results only in the type of parison for the seven-bit code discussefipthe same gate

harmless phase error discussed3habove. . . . L )
The effects of single errors described above can easily b{c%an be carried out simply by performing, bitwise, the opera

1 o . .

verified by the reader and demonstrate the fault tolerance of" P .r?'—hrlf' IS ss a reslult of the Fartlculir str:ucture of this

this procedure. Note that this measurement can be used de, whic 'S.t € simp est QSSa derbank, Shor, .and. Ste-.

produce the ancilla state needed in the error correction circu ng code. A discussion of this category of codes is given in

(see belowfrom the statdOc). Measurements in thé basis - o ) ,

can be carried out fault tolerantly using the following The final ingredient needed for fault tqleraljt cc_)mputanpn

method. is of course a fault tolerant error correction circuit. The cir-
First prepare the cat state described by E2f). Next cuit for this is quite simplécompared to the correction pro-

perform a bitwise controlled@-gate with each bare qubit in cedure for other codesnd is shown in Fig. 9.

the cat state as a control bit and the corresponding qubits in

the state to be measurétbt this be|,)) as a target bit.

Next, acNOT gate is performed with one bit in the cat state V. COMPARISON WITH SEVEN-BIT CODE

as a control bit and the corresponding bit |i,) as the

target. As a consequence the overall system evd(ifgso In this section the three-bit code is compared to the seven-

errors occur as shown below bit code (described beloyand it is noted that performing
’ encoded operations requires many more primitive operations
|y)|CAT) = (a|Oy) +b|1y)) |CAT) in the case of the three-bit code. The seven-bit code is ca-
pable of correcting arbitrary single qubit errors and the code-
a 10,)(/000 +i[111) words are
—— i
V3 Y
b [1y)(|000) —i|111)) (28 [0ci7)) ! (/0000000 +|101010%
+— —i . =—
v Y C(7) \/§
By disentangling the qubits in the cat state and measuring +/0110013+(1100110
qubit 1 in they basis, the statpy,) is collapsed ont_o either +]000111}+|1011010
|0y) or|1y). In order to ensure fault tolerance, this process
is repeated three times prior to any measurements being +]0111100+]1101003}), (29
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1 the requirement thaP,<ey. Hence, the threshold is esti-
|1c7))=—=(]111111}+|0101010 mated by finding the value of, which satisfiesP,=¢.

V8 This is the estimated threshold value.

+]1001100+|001100} The .mc')st co.mplex part of this procedurg2s, estimating
P, . This is estimated as follows.

+/1110000+|0100103 (i) We estimate the probability that the gate is per-
formed without error and an unrecoverable error occurs in

+/100001} +|0010119). the final error correction circuit. This is estimatedQge?).

In performing this calculation, it is noted that at least two
The codeword representing a logical zero is a superpositioindependent errors must occur for an overall error to occur
of all the even parity(classical Hamming codewords while but that not all sets of two errors correspond to an unrecov-
the codeword representing a logical one is a superposition afrable error.
all the odd-parity Hamming codeword3]. (i) Similarly, the probability that an unrecoverable error
As mentioned in Sec. IV, the most appropriate universabccurs in one of the other error correction circiasting on
set of gates for the seven-bit code{id,P,cNOT,T}. It is  the ancilla is estimated and it is assumed that all such errors
possible to carry out the Hadamard operation simply by perresult in an unrecoverable error in the dfadthough this is
forming this operation on each individual qubit making up not necessarily the case, see comment at the elfis )gf
the encoded state. TlmnOT gate can be carried out bitwise, (i) Similarly, the probability that an unrecoverable error
simply by performingCNOT gates between corresponding results due to an uncorrected error in the ancilla, prior to one
bits in the encoded control and target bits. Th@ate can of the error correction circuits and a further error during the
also be performed bitwise although in this case, the operatiotorrection circuit, is estimated 1@(83)_
performed on each individual qubit is actualy. The Tof- (iv) The probability that an unrecoverable error occurs
foli gate can be performed in the same way as for the threeduring a single measurement trial in tiebasis measure-
bit code. In this case the staf@NC1) is produced using a ment (i.e., between error correction cycleis estimated to
seven-bit cat state, as discussed4n O(e3). In order to simplify the calculation, it is assumed that
It is clear that the seven-bit code is significantly morejf two independent errors occur during such a measurement
efficient than the three-bit code in terms of number of gatesial then the result is an unrecoverable erfwith the ex-
required to perform encoded operations due to the possibilitgeption that two errors affecting a single cat state but not
of performing all one- and two-bit gates in the universal sefaffecting the data are neglected as they clearly do not result
given bitwise. For example, the gate requires only seven in an unrecoverable errprSince certain pairs of errors do
single-bit operations in the case of the seven-bit gate, Whil@ot result in an unrecoverable error, this results in a slightly
for the three-bit code, sixbest casgor seven(worst casg essimistic threshold estimate.
single-bit operations and 27 two-bit operations are needed, The contributions froni), (ii), (iii), and (iv) are added

even the absence of any error correction. However, the thregjiying an approximate expression f&,. The expression
bit code has the advantage that less qubits are needed {@tained in this way is

encode information. In addition, the error correction proce-

dure is much simpler. There follows an estimation of the pu%85(421_75_ (30)
threshold value, i.e., the error rate that can be tolerated if

arbitrarily long computations are to be possible with Hence, we obtain

bounded error using concatenated coding.

1
e~ =~ 2.4x 10 8. (31)
VI. THRESHOLD ESTIMATION th 421.75

The threshold error rate is estimated using the error modefhis is better than the threshold value estimates obtained for
described in Sec. Ill. We estimate the threshold as follows.the seven-bit code if4—6].

(1) Consider a qubit encoded on the first level of concat-
enation. An encode® operation is performed on the qubit
and this is followed by an error correction cycle. In addition,
error correction is performed on the ancilla, prior to the According to the above results it seelfa least superfi-
Y-basis measurement and after each of the first two measureially) that it would make sense to use the three-bit code for
ment trials in they-basis measurement. TRegate is chosen quantum computations using physical systems where
as it includes theY measurement, the most complicated dephasing is the dominant source of errors. The encoding
single procedure used to construct any of the one-bit gates iprocedure is simple¢simply Hadamard transform three qu-
the universal set. bits all initially in the statd0)) and the error correction pro-

(2) An approximate expression is obtained for the prob-cedure is also simpler. As shown in Sec. V, it is clear that
ability that an unrecoverable error has occurred after theperforming operations on encoded qubits is simpler in the
computation described iflL). Let this probability beP,, . case of the seven-bit code than for the three-bit code. How-

(3) The probability of error per gate is thé?,. This is  ever, it is possible that there are more efficient methods of
compared ta (the error rate per gate for a bare qubiith performing a universal set of fault tolerant operations for the

VII. CONCLUSIONS
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three-bit code than the methods proposed here. If this is the The above argument strongly suggests that it would not
case then the threshold value may be larger than the esthe appropriate to use the three-bit code for large-scale quan-
mated value in the preceding section. However, there is &um computations. However, noting the relative simplicity of
compelling argument in favor of choosing the seven-bit codahe error correction circuit, it may be useful for storage
even in systems where dephasing errors dominate. This agnd/or transmission of quantum information, particularly if
gument is as follows. the states being stored were quite simple to prefstieough
Suppose that in addition to phase-flip] errors in thez this in itself is a significant restrictionin addition, it may be
basis,a, and &, errors also occur. Let the probability of j |ess daunting task to experimentally perform a very simple
either ao or oy error occurring as the result of a quantum fayt tolerant computation and error correction using the
gate bes<gq. For convenience it is assumed that the errorihree-bit code rather than the seven-bit co@ssuming
probability is the same for single-bit and two-bit gates. '”dephasing was the dominant source of ejrdeer example,
addition, suppose that any such error results in an unreco\sreparing the stattc), storing the data for some time in-
erable error. Since this is usually the case, this only introterya| and performing fault tolerant error correction requires
duces a slight error. What valueoughly) can 6 be if such 5y |ess operations for the three-bit code than for the seven-
errors are to be negligible relative &, errors? Clearly this  pit code.
depends on the level of concatenation: the more levels of |y conclusion, it seems that the structure of the seven-bit
concatenation, the more likely an unrecoverableor 6,  code gives it a significant advantage over the three-bit code:
error is to occur. We can get a fairly good impression of themany operations can be performed bitwise for the seven-bit
constraints ond by considering the following case. Suppose code whereas for the three-bit code only theoT operation
aP gate is performed on a qubit encoded on the first level otan pe performed in this way. In addition, the uncorrected
concatenation, incorporating the same error correction steps or &) errors would accumulate rapidly over the course of
as in the threshold estimate in the previous section. We imy |arge’ computation. However, the three-bit code may lend
pose the condition that the probability ofdg or o, error jtself more readily to experiments which are likely to be

occurring is much less thagy . PerformingP requires(in-  feasible in the short term for physical implementations where
cluding ancilla preparation and all the error correction cir-dephasing errors dominate.

cuits) at most 64 primitive operations. Hence the requirement

becomes 6F<e4. Note that this is just for a gate at the first

level of concatenation. For a large-scale computation, h|gh_er ACKNOWLEDGMENT

level concatenation would be needed to combat dephasing

errors and the constraints on gate errors would become even The authors would like to thank Dr. A. Ekert for useful
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