PHYSICAL REVIEW A, VOLUME 62, 022306
Unambiguous state discrimination in quantum cryptography with weak coherent states
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The use of linearly independent signal states in realistic implementations of quantum key disti(Q&Dn
enables an eavesdropper to perform unambiguous state discrimination. We explore quantitatively the limits for
secure QKD imposed by this fact taking into account that the receiver can monitor, to some extent the
photon-number statistics of the signals even with todays standard detection schemes. We compare our attack to
the beam-splitting attack and show that security against the beam-splitting attack does not necessarily imply
security against the attack considered here.

PACS numbgs): 03.67.Dd, 03.65.Bz, 42.79.Sz

[. INTRODUCTION In this paper we are looking into much simpler eavesdrop-
e . . ing strategies that make use of the opportunities arisin

~ Quantum key distributiofQKD) is a technique to pro- ?ror% Iossy%ines and nonideal signals. SpL[J)Ch an attack ha%
vide two parties with a secure, secret, and shared key. Suchisen proposed by Bennétt4] and Yuen[9]. It uses the fact
key is the necessary ingredient in the oplpvably secure  that Eve can, with finite probability, discriminate the four
way to communicate with guaranteed privacy, the one-timaignal states unambiguously. Whenever such a discrimina-
pad or Vernam ciphefl]. The first complete protocol was tion is performed successfully, the eavesdropper knows im-
given by Bennett and Brassafd] (BB84) following ideas mediately which of the four signal states was sent and can
by Wiesner[3]. It uses the fact that any channel that trans-send this information, via a classical channel, to Bob’s de-
mits two nonorthogonal states perfectly automatically makegector, in front of which she places a state preparation ma-
eavesdropping on this channel detectable. chine to prepare the identified state. This way this state does

We consider the BB84 protocol in a typical quantum op-not experience the losses of the actual quantum channel,

tical implementation. Ideally, Alice sends a sequence ofvithout which Eve has to invest into a perfect quantum chan-
single photons that are at random polarized in one of th&el. ) o ) ) ]
following four states: right or left circular polarization, or Th,e investigation of this scenario refines Benneit's and
vertically or horizontally polarization. Bob chooses at ran- YUeN's analysis since it takes into account that, to a certain
dom between two polarization analyzers, one distinguishin xtent, the photon statistics of the S|gnqls arriving at BOb.S
the circular polarized states, and the other distinguishing th etectors can be momtored. The results |IIum|nate_the restric-
linear polarized states. Following a public discussion abou lons placed on implementations of QKD on lines W'th
the basis of the sent signals and the measurement apparaﬁf%ong Ioss_e_s. Thereby_we can show that the curre_ntly widely
applied to them, sender and receiver can obtain a shared k (?d. conditional sec_url_ty standard of Sec‘.mty against beam-
made up from those signals where the measurement devi litting atta_cks[14] IS mcomplete_. Especially, contrary 1o
gives deterministic results. This is tlséted key{4]. Proofs common belief, the use of unamblguogs state discrimination
of security of this scheme against the most general attaclﬁan be a more efficient eave;droppmg strategy than the
even in the presence of noise, have been obtdified]. In eam_-spllttlng_ attack, even for dim coherent states. .
this paper we follow another goal: we would like to illumi- This paper is organized as follows. In Sec. Il we recapitu-

nate to what extent very simple attacks can render QK ate the principles of unambiguou; state disr_:rimination.
impossible once realistic imperfections like lossy lines and hese are .appll|ed in Sec. lll to the signal states in the 8384
I‘E)rotocol with dim coherent signal states. In Sec. IV we in-

nonideal signal states are taken into account. The difficultie q d . ttack based bi tat
implied, for example, by the use of weak coherent states i foduce an eavesdropping attack based on unambiguous state
Idlscrlmlnatlon(USD attack and analyze it in detail, taking

combination with lossy lines has been pointed out earlieth hot ber distributi f the sianal o t
[8—10] and this subject has been illuminated in depth in Ref, e ,p oton number distribution of the Signals arrving a
léob s detectors into account. In Sec. V we discuss the rela-

[11], where bounds on coverable distances are given. Posr: o
tive security proofs for sufficiently short distances, takingtlon petween the beam-sphtt'mg at.tack and the USD attack.
into account the realistic signals are given for individual at-SeCtlon VI concludes the article with a short summary.
tacks[12] and coherent attacK43]. The eavesdropping at-
tacks that crack the secrecy of the key for setups exceeding
these secure distances are still quite complicated. The eaves-
dropper needs to perform a quantum nondemolitiQiND) Unambiguous state discrimination is possible whenever
measurement on the total photon number of the signal, thethe N states in question are linearly independent. The prob-
he has to split a photon off the occurring multiphoton signaldem can be described by a measurement that can give the
[11], store that photon, and then, finally, measure it after theesults “state 0,”“state 1;...,“state N—1,” and the re-
public discussion. sult “do not know.” The constraint is that the measurement

II. UNAMBIGUOUS DISCRIMINATION OF SIGNAL
STATES
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results should never wrongly identify a state, and the goal ishe description of a dimmed laser pulse. The coherent state is
to keep the fraction of “do not know” results as low as given by

possible. This problem has been investigated by Ivanovic

[15] for the case of two equally probable nonorthogonal eSS “ (a@h)"

states. Peregl6] solved this problem in a formulation with |ay=e"l nZO nl 0), )
probability operator measures. Later Jaeger and Shimony - '

[17] extended the solution to arbitragypriori probabilities. \\herea’ is the creation operator for one of the four BB84

Peres'’s solution has been generalized to an arbitrary numbgpai7ations that can be expressed in terms of two creation
of equally probable states that are generated from each OthSBeratorst and bl (corresponding, e.g., to two linear or-
by a symmetry operator by Chefles and Barh&8]. Their thogonal pglarizatizor)sas ' '

result can be summarized as follows: the symmetry allows

one to write the input states in the form

p_ Lo
N-1 . ag=—=(by+by), (6)
kj V2
W)= 2> cjex 2m g |5, 1)
]=0
1 .
where the state$¢;) represent some set of orthonormal aJ{=E(bJ{+|b£), (7)
states. Note that the states
N—1 .
~ 1 [j T
Vhy=— exp 27 — || @ a,=—=(b;—b,), 8
W) \/szo X 7T|N)|d)]> 2 \/E( 1~ b2) (8
form another orthonormal set. It turns out that the optimal 1
strategy for unambiguous state discrimination consists of two a§=—(b1— ibz). ©)]
steps. In the first step a filter operation is performed such that V2

the output states are either the orthonormal stfigs or
some linear dependent states. This step can be described b
complete positive map with the two Kraus operators. They

Inaterms of these two modes the signal states become there-
ore

are defined with the help of the minimum coefficient;, o N
=minjlc;| as |Wo)= —> —> (10
Ayes: 2 njln|¢j><¢j|, 2
=0 6 W)= | =) |i = (11)
=|— | — ,
N1 N2/ 2
Ano= JZO V= (chmleiD) (il 3
- o a
|‘1’2>= _> ——>, (12)
The conditional state in the event of successful filtering is V2 V2
now given as
~ o L«
|‘l’(ky65)>: \/Ncminm;'k) . |\P3>: E> - E> : (13

In a second step, we can perform a von Neumann projec- .
tion measurement on this state to identify unambiguously thd/€ can calculate the values of thgin terms of the overlaps

statek via the orthonormal statéjfk>. The probability of of the four states according to the form{lg]

this successful identification is given by 2] (k—1)

1
Pp=N min|c;|2. (4) |Cj|_ﬁ% ex;{ N
j

(Wil wy)

and find as a function of the expected photon numpber

For the case of two equal probable nonorthogonal polariza-_ o2

tion states of a single photon a quantum optical implementa- '

tion following this two-step idea has been given by Huttner 1

et al.[19] and by Brand{20]. ICo| = ——e~ #'*\/ coshie + cose (14)
J2 2 2’

Ill. SIGNAL STATES

A first description of realistic signal states is that of a oy = %e ul4 | /sinhg+sin%, (15)

coherent state with a small amplitude This corresponds to
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4 - ‘ biguous state discriminatioBRp, is given in terms of the re-
- 4*~|<;0|2 spective probabilities for each photon number subsﬁé_@e
3l 4*|c1|z as
----- 4’[c,|
« '\ L 4leyl” ——r
o ol Pp=2> e “—P. (19
% n=0 n
s T:""‘*gj_.,,,_-_- i The conditional states resulting from the QND measurement
; and corresponding tm photons in total satisfy again the
/ symmetry condition that allows to apply the results by
00" 5 10 15 Chefles and Barnett. We find for the four coefficiefds a
Mean photon number 1. function of the photon numbear>0) the expressions
FIG. 1. The fourfold weight #&;|? of the four canonical states
|#;) as a function of the mean photon numherThe lower bound |col \/ 2 ”*”’%os(—n) (20)
of these four curves gives the optimum probability for unambiguous

state discrimination.

1 T
lc,|= \/Z+2(1*”’2)sin(zn> , (21)
Loty costt — cos™
|c2|zﬁe H coshE—cosg, (16)
1
|c2|=\/z—2(””’2)cos< ) (22)
1
|c3|=ﬁe‘ “"H/sinh%—sin%. 17

1 T
lcs|= \/Z—Z(l*”’z)sm(z ) (23)
The minimum of these four functions depends on the value

. 2 . .
of . The four functions {t|* are plotted in Fig. 1 from Therefore the maximum probability of unambiguous state

where we can read ofp as the minimum. iscrimination for a fixed value af is given b
It turns out, however, that for realistic sources these stateg 9 y

are not the correct description of the situation. The reason is 0 n<2
that Eve does not have a phase reference, which means that -

for a given polarization she does not see the coherent state PM={1-2"""2 n even (24)
|@) but the phase averaged density matrix 1—21-M2 1 odd.

SE

LJ |e‘¢’a)<ei¢a|d¢ It is possible to sum up the contributions from different pho-
' ton numbers from the Poissonian distribution and we obtain
the expression

This results in signal states that are mixtures of Fock states .
with a Poissonian photon-number distribution described by 2 ,u_ ")
“ n!

the density matrix Po
p=e MZ |n><n| (19) —1-e# \2sinh’=+2cosh’=—1|. (25
n V2 V2
Here the statén) denotes the Fock state withphotons in This result is compared to the result for coherent states in

one of the four BB84 polarization states. The optimal strat+ig. 2. As expected, the probability for unambiguous state
egy to discriminate between the four possible density matriidentification is lower for the mixture of Fock states than for
ces can be logically decomposed into a QND measuremeithe coherent states. An expansion in terms of the photon
on the total photon number in the modesandb, together numberu givesPp= 5 u3+O(u?) for both situations. For
and a following measurement that unambiguously discrimilower than third order the signal states are not linearly inde-
nates between the four resulting conditional states for eacpendent, so that no unambiguous state discrimination is pos-
total photon number. The justification for this is that the totalsible. Note that an actual implementation does not necessar-
photon number via the QND measurement “comes free,”ily need to follow the decomposition into a QND and another
since the execution of this measurement does not change theeasurement. We just need to implement one generalized
signal states. However, given the resulting information, wemeasurement. Actually, Bennett al. [14] and Yuen[9]
know the optimal strategy on the conditional states accordingave a simple beam-splitter setup that obtains a discrimina-
to [18]. Therefore we find that the total probability of unam- tion probability of Pp= 4 u3+O(u%).
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D
-

when Alice and Bob use different bases, independently of

o W00 o= ==""

Z PPt the presence or absence of an eavesdropper. Eve’s aim is to

208 e ] reproduce these two observables with the minimum number

g / of nonvacuum signals to make efficient use of the success-

<06 ] fully identified signals.

£ / In the absence of Eve, whenever Alice and Bob use the

E / same polarization basis, Bob’s expects to find at most one

£o0.4; ’ ] L ™ o

5 J detector clicks; the probability of a click is

S 7

€ 0.2t [/ i =

E 4 —— (Coherent states Pi=1—exp(— 7 7gu), (26)

= ---- Number state mixtures

= 9 5 10 15 20 as follows from the Poissonian photon-number statistics of
Mean photon number p coherent states.

. . - . Whenever Alice and Bob use different bases, a double
FIG. 2. Comparison of the optimum probability of unambiguous . . s
%Ilck may occur; its probability is

states discrimination for coherent states and for the correspondin

mixture of Fock states. Both have the same Poissonian photon- 5

number distribution with mean photon number P.— 1—exr{ I 7781“')
2 2

(27)

IV. UNAMBIGUOUS STATE DISCRIMINATION AS . )
EAVESDROPPING STRATEGY What happens in the presence of Eve depends on the sig-

nals Eve sends for the successfully detected Alice’s signals.

We now consider the realistic situation that Alice uses thet is clear that Eve can avoid the occurrence of double clicks
phase-averaged coherent states as signal states that are @Waen Alice and Bob measure in the same basis, since she
scribed by a Poissonian photon-number distribution withunambiguously determined the signal. Therefore it is not
mean photon numbeg. In this scenario we fix our eaves- useful to monitor the double-click rate when Alice and Bob
dropping strategy, to which we refer to as thheambiguous use the same basis.
state discrimination attackUSD attack as follows: The un- Note that we do not need to include detector dark count
ambiguous state discrimination allows Eve to identify a frac-rates or take errors due to misalignment into account. The
tion of the signals without error. For this fraction, she canreason for that is that we will investigate the limit when the
prepare a corresponding state close to Bob’s detectors su¢JSD attack gives complete information to Eve while it re-

t_hat no errors appear for these signals. Whenever the_ idemﬂ)'roduces the expected probabilit§§and32. The values of
fication does not succeed, she sends the vacuum signal fRese probabilities in the absence of an eavesdropper and the
Bob to avoid errors, which therefore will not be relevant in reproduced values resulting from a successful USD attack

the considered scenario. will be affected in the same way by the error mechanisms of

We need to study this strategy under realistic constraintgark counts and misalignment, etc., so that the resulting real
An important constraint is that the transmittance of the quangpserved rates will still be indistinguishable.

tum channel connecting both parties is given by the trans-
mission efficiencyn, . We consider a detection setup where
Bob monitors each polarization mode in the chosen basis by
one detector. These detectors have a finite detection effi- Let us suppose now, that whenever Eve succeeds in the
ciency zg, in which we include any additional loss on Bob’s unambiguous state discrimination she sends a number state
side, e.g., from a polarizing beam splitter. The detectors aréwith correct polarization containingN photons to Bob. If
modeled as “yes/no” detectors, which either fire, or they doshe fails she simply sends no photon.
not fire; they cannot distinguish the number of impinging If Alice and Bob use the same basis, at most one of two
photons. Bob’s detectors will click. The probability of this event is

It is clear that once Eve identifies a signal she is interestediven by
to produce a signal in the corresponding polarization such 0
that Bob will detect it despite his inefficient detectors. One N) 0 Nl N
strategy is to send a stronger signal than the original one in P(l '=Pp 1_< O) 7g(1=7p)" |=Pp[1—(1-7g)"].
the correct polarization. This will work as long as Bob mea- (29
sures in the polarization basis, which includes the signal po-
larization (sifted key, but it will lead to an increased coin- This is the probability that one detector clicks if a stEtg
cidence rate of clicks in both of Bob's detectors otherwise.comes, multiplied by the probability that Eve succeeds in
Our analysis extends the previous analysis to include th&SD (and send$N)).
additional constraint put on the eavesdropping strategy by If Alice and Bob use different bases, we can think of the
the fact that Bob observes not only the rate of clicks of ongphotons as being equally and independently distributed to
or the other detector, but also the rate of events when bothoth Bob’s detectors. The probability to fikkgphotons at the
detectors fire, each monitoring one of the orthogonal polarfirst detector and photons at the second ofwith included
ization modes. The latter event will be observed ideally onlydetection efficiencigsis given by the formula

A. Eve sends n-photon states
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s 3

m=k \M

m k —k
K 7g(1—7g)"

N—m

X
[

ng(l—nsw—m-'},

where the summation limits stem from obvious constraints
m=k, N—m=|. Thus the probability of double click in
Bob’s “yes-no” detectors when Eve is active and while Al-
ice and Bob use different polarization bases reads

Double-click probability (y)

N N

P =Py 1—240 Hm_kzo I+ 1Tgg

(note thatlly, would be subtracted two timgsBecause of
the symmetry of the configuration, obviously, Single-click probability (x)

N N FIG. 3. Diagram displaying relations between “single-click”

> Ig=2, M. and “double-click” probabilities. The highlighted area contains all

I=0 k=0 possible combinations of Bob’s detection probabilities stemming
from Eve’s activity (described in the textfor a given detection

With the expressions efficiency (here, particularly,7g=0.5) and a given mean photon
N number in states sent by AliceuE4). It is a region ofinsecure
Moo= Pp(1=7p)", key generation. The shape of the area dependggnthe scaling

on u [through discrimination probabilitPp(x)]. The separate

N NN N ™ /m ‘ N_K dotted curve represents a set of all possible “working points” with-
kgo o= PDmE:O (m) 2 IZO ( k) 78(1— 78) out an eavesdropper, i.e., a set of all possible pairs of expé_Qted
andP,. Any particular position of a working point depends on the
7B N values of the line transmittance(), the detection efficiencyg),
= PD( 1- 7) and the mean photon numbeg). The value ofu=4 is chosen to

make the diagram well readable. The structure is the same for

we obtain finally for the double-click probability lower, realistic values.

L The situation where Eve sends number states to Bob is
P(ZN)= Ppl1— 2( 1- > +(1- UB)N}- (29 represented by a dot for each value of the photon nuriNber
The positions of these dots have been calculated for fixed

values ofp_ andu. Coordinates of a point corresponding to
B. Eve sends a mixture of number states any mixture of number states can always be expressed as a
éinear convex combination of coordinates corresponding to

use of number states. After successful state discriminatioffdividual number states. Because of the convexity of the
she can send to Bob any pure state or mixture. Howeve'above—mentloned curve all sugh pomj[s must lie |n$'mieon
from Bob’s point of view these signals are effectively mix- the bour_ldaryof the polygon_wnh_ vertices at the points cor-
tures of photon-number states because of the nature of h sponding to number statése., in the area highlighted in

detectors(th be described by the pair of projectors:"'9- 3- » .
Pe ic|8>r<sé| (;)r/]dmay © described by the pair ot projectors We can explicitly prove the convexity of the boundary
no

formed by the points for fixed photon number. The points
® with x coordinateP{") [Eq. (28)] andy coordinateP¥) [Eq.
Pyes= E In){nl). (29)] lie on a continuous curve that can be expressed with the
n=1 help of Eq.(28) by a real continuation of the parametémls

Of course, there is no reason to restrict Eve only to th

Therefore, it is sufficient to analyze only a mixture of In(1—x/Pp)

photon-number states in the polarization of the identified sig- =
nal, so that only the photon-number statistics remains to be (1= 7g)
chosen by Eve.

As already mentioned, Bob is interested only in the num_Substituting into Eq(29) we obtain the explicit equation of

ber of single clickgin case his and Alice’s bases coincide the curve

and double clickgif the bases differ One can plot a very p

illustrative diagram displaying relations between correspond- yz[z_z( 1— XX Pp (30)
ing single-click and double-click probabiliti€see Fig. 3. Po/ Pol 7

022306-5



MILOSLAV DUéEK, MIKA JAHMA, AND NORBERT LU TKENHAUS PHYSICAL REVIEW A 62 022306

where ool
0.293
_ In(l_ 7]B/2) ;_in 0.25+
IN(1—ng) = 020
2
Calculating the second derivative of H80) with respect to é 0181
x and using the fact thay,_, g, andx/Pp take values in = 0101
the interval between 0 and 1, it follows that the curve given L oos)
by Eg.(30) is convex. This proves that the highlighted area '

in Fig. 3 is indeed convex. 0.00 . ; ; ;
0 2 4 6 8 10 12
Mean photon number p
C. Insecure parameter regime

The convex area defined in the previous section can be FIG. 4. If the value of expected single-click probability is
P greater then the discrimination probabilit {>Pp) the described

called a region of_insecurity. we (_1efine the W_orking point OfU D attack can be, in principle, detected. The plot shows an ex-
a setup.as the point whose coordinates are given k?y eXpe.Ct%(riple of a curve separzting F;he set of values OF]: total efficiencies
val_ues In .the absenqe of an eavgsdropper. If this Work'”%ms) and mean photon numbefis states sent by Aligesatisfy-
point falls into the region of insecurity, Eve can get completeing the above constraifisee inequality32)].

information on the key without a risk of being disclosed.

The set of all possible working points is represented by jetely by the USD attack forll values of the expected
the dotted curve in the diagram. Expected single-click probyqton numbe as long as the total transmission satisfies
ability Py [Eq. (26)] represent thex coordinate, expected  p,=1—2"12
double-click probabilityP, [Eq. (27)] represents thg coor-
dinate. From Eq(26) the exponential can be expressed and 2. Sufficient condition of insecurity
substituted into Eq(27). Thus the explicit equation of the | this section we will derive precise conditions determin-
working point curve reads ing when a working point falls into the region of insecurity.

y=[1—(1-x)422 (31) In a.firs.t step we wiII. ;how that fo_r parameters of practical
' applications it is sufficient to consider the scenario that the
iWorking point falls below the straight line going through the

We have to answer the question: For which values o . ; .
d origin and the vertelN=2. This condition corresponds to

parametersy, , 7g, andu does the working point lie in the

region of insecurity? X,
X =Y — - (34)

1. Necessary condition for insecurity Y2

If the expected probability of single clicks satisfies ~ The coordinates of points used in this condition are defined
> P for all N, then the working point will certainly not fall in Table I. In the second step we can then determine whether

to the region of insecurity, which is clearly illustrated in Fig. in this scenario the working point lies inside or outside the
3. This leads to the necessary condition for insecurity giveriegion of insecurity by checking on which side of the line

by P,<Pp. To evaluate the implication for the experimen- 90INd through the verticei=1 andN=2 it lies (see Fig.
teﬁ p;ram?aters we substitute E(ZB) P 3). If it lies on the left, QKD is insecure. This corresponds to

the inequality
—In[1-Pp(u)]

- - e Xo—X
(O ' 32 K=Yy . (35)

An analysis of this expression shows that for a fixed ex- First, let us turn to the inequalit{34). Substituting ex-
pected photon numbgr a system cannot be cracked by an y esgjons for all coordinates according to Table I one obtains
USD attack if the .totaI transmission efficiency, 7 is 5, inequality that is quadratic in the variabl®
higher than a certain threshold that depends on the the ex-

pected photon numbgr. This dependence is evaluated nu-  TABLE |. Coordinates of selected points in the parameter space
merically in Fig. 4. The surprising aspect is, that the threshyf “observables,” which are the probabilities of single clicke

old does not go to 1 ag goes to infinity. Instead we find  and double clickgy) in Bob’s detectors.

~ —In[1-P Worki int _ _
(m )= tim PRy ooy 203, Orng oI Yw 2
pe K —exp(— nL7sM) [19 F{* mnwﬂ
(33 2
VertexN=1 X1=Pp7g y1=0

This shows, that that the implementation of quantum crypertexN=2 X=Pp(275—13)  Yo2=Pp7n3/2
tography with weak coherent states cannot be cracked com
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0.02 ir ‘\
n,=0.1; ng=0.5 \
000 \ :
w o 087 5\ secure for Y
S 0024 i X physical rea-
g : & . sons
5 : o 067 \
2 | O \\ '
5 -0.044 ; o .~ :
] ; 2 ~ :
& ' S 047 ~~ :
-0.06 : @ ~ao '
g | § secure Seeel >ty
: 3 R oL PO
) I < 02 F>0 Mty
0 2 4 6 8 10 120 W, F<0
Mean photon number u 0 . . . Jnsecure
0 1 2 3 4 5
FIG. 5. The sign of the functiof (u«, 7. ,7g) is a criterion for Mean photon number p

the security(positive) or insecurity(negative of the quantum key ) )
distribution with respect to the USD attack. The line transmittance  FIG- 6. The secure parameter regime for the losses accessible to
and Bob’s detection efficiency are fixegj =0.1, »g=0.5. Mean I_Eve for large Bob's Ios_sesn(g_<1) is the region above the so_hd
photon numberyx goes from zero tqu, limit. If F is negative the i@ (F>0). In the region withF<0 and u<u, the system is

transmission is totally insecure. The zero point lieg.at2.07 pho- ~ iNSécure. In the remaining region we haffe<0, but sinceu
tons. > u,, We cannot make any definitive statements about security.

the security against the USD attack. Fortunately, it is pos-
sible to get some analytic results in a situation that is relevant
to applications.

=exp(— n_ngu/2) with the parameterz . We find that the
working point lies below the line connecting vertichis= 0

and N=2 if Re((4—3%g)/(4— 7g),1). Thus the mean
photon number in coherent states sent by Alice must be

. 3. Partly accessible loss in a system with large loss
lower than a thresholg., given by Y Y 9

The results of the preceding sections illuminate to what
-2 4—3 g extent Eve can achieve perfect eavesdropping by making an
m 7IB| ( . ) (36) unambiguous state discrimination measurement followed by
sending the identified signals directly to Bob’s detectors,
We find thatu,e[1/5,,2 In3/p] for any 5g and, espe- thereby bypassing the lossy quantum channel.
cially, alwaysu,=1. As we can see, this condition is satis- However, Eve does not necessarily need to access the
fied in all current experiments and does not pose a serioughole lossy quantum channel to be successful. By accessing
restriction to the validity of our analysis especially for non- We mean that Eve can avoid these losses either by replacing
negligible loss. a quantum channel by a perfect, loss-free one, or by replac-
Now let us turn our attention to the conditi¢é85) which,  ing it by classical communication and state preparation. The
whenever conditior{36) is fulfilled, determines whether the formulas of the previous sections still apply if we collect in
working point is in the region of insecurity. It can be ex- the quantityng all those losses on the way to Bob’s detector
pressed in the following form: that are not accessible to Eve, whitg denotes now only
that loss that is accessible to her. It is instructive to look at
F(u,m,m8) ==Xy~ 2Yw(1l— 78) — PDnés 0. (37)  the limit of high nonaccessible lossegg<1). In that case
we can approximate the functidhof Eq. (37) by

M<pr=

Due to the complicated dependenceRgf on u we failed to

find its analytical solution. The analytical statement we can F~na(npu—3mim?—Pp). (39
do without any extra approximation is based on the observa-, . ) L ) :
tion that The insecurity criterior-<0 in the regionu<u, [from Eq.
(36)] then leads to the condition
s 2>0 and F(0 )=0 1
— = an L, me)=0.
o, o T (0778 n=(1-1-2Pp), (39

This implies that there exists always a range of valuesufor \which is independent ofyg . It can be approximated by
starting fromu=0 for which we have=>0, i.e., the secu-

rity of the key distribution cannot be cracked completely by gt Po 1,
the USD attack. M Tk (40)
It is easy to evaluate conditidi37) numerically. In Fig. 5
we give an example for the values of line transmittamge Condition(39) is shown in Fig. 6 as a solid line. To make

=0.1 and detection efficiencyng=0.5 (so that u, statements about security against the USD attack, we need to
~13.46). In this particular case, the transmission becomesonsider additionally conditio36), which can be approxi-
insecure in about 2.07 photons. It is not completely satisfymated byu<1/7, in leading order ofpg and is shown as a
ing to have to fall back to numerical methods to investigatedashed line. We now can conclude that the system is secure
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against USD attacks in the regime of small detection effieven for large average photon numbers. In the absence of
cienciesyyg if we are in the parameter region with>0 and  errors, the gain rate of secure key bits per signal bit can be
n<u,. Furthermore, the system is insecure in the regiorapproximated in a way similar to that used in Rf2] for
F<0 andu<pu,. For the region withu>u,, we can only the optimal individual attack. This approximation is given by
make indirect statements. One is, that if the system is secure

for a pair of values {,7,), then it must be secure for all Ggs= 7 (Pexp— Pspiit)» (41)
values (,7,) with 7> 7 _, otherwise Eve could gain an . . ) .
advantage by not accessing all the loss available to hetvhere the factor 1/2 stems from discarding signals with un-
Therefore the only region about which we cannot make £dual polarization basis. Them,,is the probability that Bob
statement with the present calculation is the region with receives a signal, whilpgy; is the joint probability that Eve
>4.1 andy,_ > 1/u. Here more detailed calculation would be Iea_\rned the bit value_of a signal ar_ld that the signal is re-
necessary. ceived by Bob. To point out the basic problem of the beam-

Note that these considerations are valid fgg<1 and splitting attack it is sufficient to consider the casengf=1
only in this limit doeszg no longer play any role. For higher and of coherent states. Then we find for Poissonian photon

values ofg this changes. statistics and a transmission rageof the system
D. Comment on the statistical nature of the problem Pexp=1—€Xxp(— 7p), (42)
One should keep in mind that all of Bob’s measurements
- o it= l—-exg—(1- , 43
have a statistical character. Bob does not measure probabili- Pspic= Pexpt A==l (43
ties but finite numbers of clicks, which naturally fluctuates. 1 o B B
In practice Bob must set certain limits of a “confidential Ges=z exf —(1-n)ul[1-exp—yu)], (44)

interval” of acceptable numbers of detector clicks. The ef-WhiCh is alwavs positive. Actuallv. the ootimum is obtained
fect of this is that in some cases Bob will reject the trans- ys p ' Y, P

mission even if no eavesdropper is present. A more serio | : '“tll It is clena:jr tfroim Iolur arr1atIyS|st,hhoL\jvSe|\:/)er:[tthitV:‘/(i)"r
implication is that there is always some nonzero probabilit arge values of and typical loss rates, the attac

that Eve will not be detected even if the working point lies render the quantum key distribution protocol completely in-

outside the insecurity region. secure.

Note that Eve does not need to eavesdrop all the time— The awareness of this problem is I.OW’ and it is thogght
: L}pat it can be avoided by complementing the beam-splitting

attack with the additional requirement of keeping the average
cphoton number low, much lower than 1, to keep the setup in
the quantum domain. This seems rather odd, since there is no
obvious justification for this requirement. More importantly,
even for photon numberg<1, we find that for sufficiently

any intervention. Hefdeterministig information on the key
decreases with this strategy. But both Bob’s single an
double-click probabilities also change. The point correspond
ing to such an eavesdropping stratégy the diagram as in

Fig. 3 shifts along the straight line connecting “full time” | I the t ission b . ding t

Eve’s strategy point with Alice’s and Bob’s working point. tﬁrg?JSOSS tte kranhsllml?ﬁlon eico_mes ms(;a_cur? atilcorblng 0
The relative shift equals the fraction of transmission during e attack while the analysis according to the beam-
which Eve is active. splitting attack makes us believe that we are dealing with a

For practical purposes it would be necessary to determingScure key. It seems that the USD attack is underestimated

the probability that Eve's information on the kégue to the ~ SN¢€ the probability (.)f Sg‘c‘?ess in the unambiguous state
USD attack will be smaller than a certain chosen limit, as ad|scr|m|nat|on goes withu” since only for _three. or more
function of the limits of the confidential interval and of the photons the four signal states are actually linear independent.

length of the key. This represents a challenge for the furthe-rrh_e_ beam-splittizng _attack, however, succeeds with a _prob-
research in this field. ability of orderu?, since already two photons can be split by

the beam splitter.

This seems to imply that beam splitting is the more pow-
erful attack. However, this is not the case since the two at-

Traditionally, security against the beam-splitting attacktacks vary in their power differently as the loss of the system
[14] has been used as a practical level of security. In théncreases. In the USD attack the probability to identify a
beam-splitting attack the lossy line is replaced by an idea$ignal depends only on the average photon numbeand
loss-free line complemented by a beam splitter such that thence this probability is high enough to generate the expected
total loss of the original line is reproduced. The eavesdroppenumber of signals for the receivéwhich depends on the
stores any photons coming out of the free arm of the bearamount of lossthen the transmission becomes insecure. In
splitter. Whenever the eavesdroppedthe receiver obtain a the beam-splitting attack, on the other hand, the total prob-
photon, which is possible for multiphoton signals, Eve canability of identified signalspg;; depend onw and on the
measure her signal after she learns the polarization basis transmission coefficienyy, and this probability goeslown
the public announcement and she will learn thereby the biwith increasing loss for fixegk. And indeed, we find that
value of these signals completely. Pexp™ Pspiit- 1IN other words, the beam-splitting attack be-

It is interesting to note that security against a beam-<omes less efficient with increasing loss. This is easy to see
splitting attack suggests that one can obtain a secure kep a simple example of a two-photon signal. The probabili-

V. USD ATTACK VERSUS BEAM-SPLITTING ATTACK

022306-8



UNAMBIGUOUS STATE DISCRIMINATION IN QUANTUM.. .. PHYSICAL REVIEW A 62 022306

ties p(n,2—n) thatn=0,1,2 photons arrive at Bob’s detec- VI. CONCLUSIONS
tors a_n(h— 2 photons go to Eve in the beam-splitting attack, \ye nave quantitatively analyzed an attack against realis-
are given by tic quantum crypto systems that enables an eavesdropper to

gain information on the key without causing any errors in
case of a lossy channel or poor detection efficiencies. It uses
_ unambiguous discrimination of linearly independent signal
p(1,)=2n(1=17), (46) states. This attack does not require the ability to store quan-
(2,0 = 7 47) tum states or to perform complicated quantum dynamics.

Moreover, the attack does not require to substitute the lossy
This means, that for high losses;€1) most likely both

quantum channel by a perfect one.
photons are sent to Eve. The probability of this event is

We have derived a set of conditions that allow one to
0(0,2)~1— 2, while the splitting probability goes down as Judge whether a given system can be totally insecure under
p(1,1)=~27. The respective probabilities farphoton sig-

the USD attack. We have shown a secure parameter regime
nals are of the same order of magnituden Therefore,

in terms of the total transmission efficiency and the mean
: - photon number. In the important limit of small detection ef-

clearly, there is a crossover as a functionpfwhere for — ficienciesy,, we have obtained an analytic result so that we
fixed average photon numbeyr the USD attack is more ef- can give explicitly a set of parametefine transmittances,
ficient than the beam-splitting attack. detector efficiencies, and mean photon numbers in coherent

We would like to stress again that from a technologicalstates sent by Aligefor which the transmission is secure/
point of view the USD attack seems to be easier to impleinsecure under the USD attack. In theory, the signal can al-
ment than the beam-splitting attack. This is based on twavays be chosen to be weak enough to allow secure commu-
points. First, experience indicates that complete measuratication. In practice, however, the detector noise places
ments which destroy the quantum state completely, as is posestrictions on that end 1]. Finally, we showed that security
sible by the USD attack, are easier to realiaeleast in some against beam-splitting attacks does not necessarily imply se-
approximation than the realization of a quantum channel curity against the USD attack. This implies that we need to
with reduced loss, as required by the beam-splitting attacksearch for a better ponditjonal security crjterion against at-
Second, the beam-splitting attack implies the use of quanturi®cks deemed practical with currently available technology.
memory, which could store the split-off signal photons until
the polarization bases for each signal are announced. ACKNOWLEDGMENTS
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p(0,2=(1-7)? (49)
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