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Calculations of the vacuum-polarization screening corrections to the low-lying energy levels of He-like
highly charged ions are presented. The calculations are carried out for extended nuclei in th& range
=20-100.
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I. INTRODUCTION where
The considerable progress in experimental investigations 1[V2 -1
of multicharged ions has shown the strong necessity for ac- =— 1 \/— . 2
curate calculations of all the QED corrections up to second V3 2

order ina (« is the fine-structure constantn Refs.[1,2] the

two-electron contribution to the ground-state energy of He-Throughout this paper, we use relativistic units<(c=m,

like ions was measured directly by comparing the ionization=1).

energies of heliumlike and hydrogenlike ions. In these mea-

surements the one-electron contributions, which mainly de- Il. FORMULATION

termine the theoretical uncertainty of the energy levels, are

completely eliminated. It provides good perspectives for test- Since some of the states under consideration must be

ing the two-electron QED effects of second orderirsince  treated as quasidegenerate states, we will formulate the per-

at present the two-electron contribution to the ground-statéurbation theory for quasidegenerate levels. The case of a

energy in heliumlike ions is the only measured value whichsingle level can be considered as a simple special case of this

has been calculated up to second orderain The two-  formulation. To formulate the perturbation theory for the cal-

electron contribution of second order in is given by the culation of the energy levels within QED it is convenient to

sum of the two-photon exchange diagrams, the self-energyse the two-time Green functidiiTGF) method proposed in

screening diagrams, and the vacuum polarization screeninigef.[9] and described in detail in RefL0] for a single level

diagrams. For the ground state of heliumlike ions, a calculaand in Ref.[11] for degenerate leveléin this method, the

tion of the two-photon exchange diagrams was presented iiuasidegenerate levels are treated in the same way as degen-

Refs.[3,4] while the self-energy screening and vacuum po-erate levels An application of the method to quasidegener-

larization screening diagrams were evaluated in R&fs7].  ate levels was considered in Rgt2].

A|though the present experimenta| accuracy of the two- FO”OWing the TTGF method to formulate the perturbation

electron contributior1,2] is not high enough, one can ex- theory for the system under consideration we introduce the

pect that it will be significantly improved in the near future. Fourier transform of the two-time Green function projected

It is also expected that the corresponding experiments will b@n the unperturbed quasidegenerate states:

accomplished for excited states of heliumlike ions. This

demonstrates that calculations of the two-electron contribug(E) (E—E’)

tions for excited states of heliumlike ions are necessary. In

the present paper we start corresponding calculations by :EJ

evaluating the vacuum-polarization screening corrections to I

the (1s2s)g 1, (1S2p12)0.1, and (1s2pzp); ., €nergy levels. R , 0 10,
In the full relativistic calculations considered here fhg X 8(E'—p1"=p5")PoG(p1”. P2 P1.P2) ¥175Po.

coupling scheme is natural. Since the states?(l;»),; and 3

(1s2p3,), are strongly mixed for low and middIg they

must be treated as quasidegenerate states and, so, the gfhere Po=3,u;u’ is the projector on the subspace of the

diagonal matrix elements between these states have to b@perturbed quasidegenerate states. The unperturbed wave
taken into account. The transition to the wave functions corfynctions are written as

responding to thé& S-coupling scheme can be performed us-
ing the equatiori8]

|152p3P1>): (I(lsZp%)D)
l1s2pP;)) =" |(1s2p2),) )

dpidp3dp;°dps°S(E—pi—pI)

1
Ui:m%_ <ji1mi1ji2mi2|JM>ﬁ§P: (—1)F|Pi;Pi,),
(1) 1112

4
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wherei, represents theslstate whilei, represents one of |i;i,)=|i,)|i,) is the product of the one-electron Dirac wave
2s, 2pyp, and 2y, statesP is the permutation operator  functions. G(p;°,x;,p5°,%5;p%.X1,p3,%,) is the usual
bl o o o “four-time” Green function in the mixed energy-coordinate
EP: (=1)7|PiyPig)=i1iz)—[iziq), representation. In the interaction representation it is given by

!

1 o0
G(pio,xi,péo,Xé;pg,Xl,pg,Xz): (2 )4j ngngdXiOdXéo exqiploxio_'—ipéoxéo_ipgxg_ipgxg)
7T — o0

<o Twm<x1>wm<x§>%<xz>%n<x1)exp{ i f d“zcint(z)] 0>

X (5
<0Texp{iJ d4z£im(z)H0>
|
Here ;,(x) denotes the electron-positron field operator in ) s Lo Loome Lemua
the interaction representation. The Green functis con- H@ =K@ - EP( KO- EK( P EP( K
structed by Eq(5) according to Wick's theorem. The Feyn-
man rules forG(p;%,x;,p5%.%5;p%.X1,p9,X,) are given in 1 n Do (o (11
Ref.[11]. It can be derivedsee Ref[11] for detail9 that the - EK( P+ §P( POKO+ §K( pWpM
exact energies o_f the states under consideration are deter-
mined by the Schidinger-like equation N %P“’K(O)P(l). (12
Hi=Ee, it = S » (6)
The solubility of Eq.(6) yields the equation for calculation
where of the energy levels:
—_p—1/2 —-1/2
H=P"KP"™ de{E—H)=0. (13)
K = i fﬁ dEEQE), As was noticed in Ref[12], due to nonzero decay rates of
2@ Jr excited states, we should specify Hyin Egs.(6) and(13) its
self-adjoint part:
1
Pzz—ﬂij;rdEg(E). H=(1/2(H+HT).

I is a contour in the compleE plane which surrounds the In the zeroth approximation, using the Feynman rules from
levels under consideration and does not surround other leyRef. [11] one easily finds
els, andg, are the exact energies of the levels. It is assumed

that the contoul” is oriented anticlockwise. Substituting i) (uy|
(0) _ 1 1
9(E)=gE)+gDE)+gDE)+---,  (7) " E-E
P=PO+pM4+p@ 4. .. 8
K=KO4+KD @4 ... 9
where the upper symbol indicates the ordewinwe obtain AN
[12]
HO=K(©), (10)
H(l):K(l)_lp(l)K(O)_EK(O)p(l) (11)
2 2 ' FIG. 1. One-photon exchange diagram.
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whereE(® are the unperturbed energies of the states undeFhe transition to the wave functions defined by E4). can
consideration. They are equal to the sum of the one-electrogasily be accomplished in the final formulas. In what fol-
Dirac-Coulomb energies: lows, we will use also the notatidri.0]

0)_
EO=ey e, l(@)=4maat D (@) (19

Substituting Eq.(14) into the definitions ofK, P, and H

given above, we find Herea*=y"y*=(1l,a), D,, is the photon propagator given

by
KQ=E® s, (15
e 5 Cexplio?— L7 i0x-y)) 2
PR)= S, (16) p @ X=Y) =G Am|x—y| 20
0)_ (0
Hi(k)— Ei( e 17 in the Feynman gauge (lffw?— x2+i0>0). Below we will
employ the following symmetry properties of the photon
A. One-photon exchange diagram propagator in Feynman gauge:
Before deriving the contributions from the vacuum polar- _
ization screening diagrams, we consider in detail the deriva- H(w)=1(-w),
tion of the contribution due to the one-photon exchange dia-
gram depicted in Fig. 1. All the derivations for higher-order '(w)=—1"(—w).

contributions can be done in analogy to the derivation pre-
sented in this section. In order to compactify the formulas;To derive the formulas foH(l) we will assume tha€&(®

determinant wave functions also for the cas&®=E{”, which was considered in detail
1 in Ref.[10]. According to the Feynman rules and the defini-
U=—o Z (—1)P|Pi,Pi,). (18) tpn of g(E), the contrlputlon of the one-photon exchange
V2 F diagram(Fig. 1) to g(E) is

gP(E)= ( | )Zf dpldp,°S (—1)
on ) 9P P1 =
1

1 1
*—=0 ; 10 ' O ; 0
p1 —spi1+|0 E—p; —spi2+|0 p1_8k1+|0 E—pl—sk2+ 0

(PisPil(p°—pYlkiko).  (21)

Transforming

1 1 _ 1 1 1
pi°—epi, Ti0 E-pi®—ep +i0 E—E® | p®—ep + |O E-p;i®—epi,+i0)’

1 1 1 1 1
+ (22)
pY—zy, +i0 E—pi- gk+|o E-EQ | pY—sy, +i0 E—pi—g,+i0]’

we obtain

E

W L E i)\?
= O dE _
k"2 It (E— Ei(O))(E— E(kO)) 2m

1 1
f dpdpl (_1)P 10 . + 10 .
pl _8pil+|0 E_pl _8pi2+|0

1
X + Pi,Pi,|1(p!°—p?)|k.k,) b . 23
(pg—skl-l-io E_p?_8k2+io < 1 2| (pl p1)| 1 2>} ( )
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The expression in the curly brackets of Eg3) is an ana-

PHYSICAL REVIEW A 62 022116

plex plane. The branch points of the photon propagators are

lytical function of E inside the contouF, if the photon mass moved outside the contodr due to the nonzero photon

wu is chosen properlysee Refs[11,12). This follows ob-

mass. Calculating thE residues and taking into account the

serving that the integrand in this expression is the sum oidentity

terms which contain singularities it (p;°) from the elec-
tron propagators only above or below the real axis. There- i
fore, in each term we can vaify in the complexE plane (—
within the contourl” keeping the same order of bypassing 2
the singularities in thep? (p;° integration by moving
slightly the contour of the? (p;°) integration in the com-

! +
X+i0

—x+i0 =5(%) 24

we obtain

_(0) ; ; - _ 0
K-(l)Z—f dp? E (—1)° Ei <P|1P|2|I(8P|1 p1)|kikz) 1 . 1
A E@—g© pi— ek, +i0 EO—pl—g, +i0
i [ EO(PILPi,| 1 (p1°— sy, )| kika)
I k 171211 (P kJ1K1K2 1 1
+—| dp’> (—1)P + )
wa"” > ; Y- pio_spilﬂo E(ko)_pio_spizﬂo
In the same way we find
o f WS (- 1)P<Pi1Pi2|I(s%—p?)lklkz) 1. 1
Pik Pr EQ-gQ Pl -2y +i0 EP—pl—g +i0
i (Pi1Pi2|I(p10—sk)|k1k2> 1 1
+_J dp'°S (—1)P : + . (26)
27) APEZ D EP—E PO ep, 10 EP—p’—ep, +i0

Equations(25), (26) can easily be transformed to yield

<1>—2< 1){ =[(Pi1Pi,|1(A1)[kiko)

+{Pi Piy|l (Ay)|kiky)]
EPHER) [
_TZfixdw<P|lP|2|l(w)|k1k2>

1
X (ot A,-10)(0—A,—10)

1
+(w+A2—i0)(w—A1—i0)H’ @7

PP=-3 (- 15 [ du(PisPidi()lkske)

1
X (0t A,—10)(@—B,-10)

1
+(w+A2—i0)(w—Al—iO)} (28)

WhereA]_:Spil_Skl and A2:8pi2_8
(27), (28) into (11), we get[12,13

Ky Substituting Egs.

.(k”= E( 1)PL(PiyPiyl1(Ay)|kyky)

+(Pi1Pis|1(A)[kqko)]. (29

The numerical results for the one-photon exchange cor-
rections are given in Tables | and Il. The calculations are
performed in the Feynman gauge for the Fermi distribution
of the nuclear charge density,

o ot Ho oH
o

(b)

FIG. 2. Vacuum-polarization screening diagrams.
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TABLE I. One-photon exchange corrections for thes?.and

(1s2s) ; states of heliumlike ions. Energies are given in eV.

Z  (r)Y2[fm] AE (142 AE(1s2), AE(1s25),
20 3.478 345.7624) 128.1561 103.1786
28 3.769 491.7682) 182.16571) 145.69211)
30 3.928 529.4192) 196.08181) 156.50691)
32 4.072 567.6092) 210.19371) 167.40961)
40 4.270 726.6365) 268.92891) 212.04561)
47 4.542 875.753) 324.00872) 252.74502)
50 4.655 943.092) 348.90183) 270.75782)
54 4,787 1036.558) 383.48925) 295.39043)
60 4914 1185.728) 438.821729) 333.849%95)
66 5.224 1347.448) 499.0722) 374.4431)
70 5.317 1463.43) 542.4973) 402.90%1)
74 5.373 1586.92) 588.9684) 432.6642)
79 5.437 1753.3@) 652.0387) 471.96@3)
80 5.467 1788.43) 665.3988) 480.1304)
82 5.505 1860.5B) 692.9429) 496.8124)
83 5.533 1897.558) 707.1461) 505.33146)
90 5.802 2178.00) 815.732) 568.7Q1)
92 5.860 2265.88) 850.135%4) 588.1702)
100 5.886 2659@) 1006.986) 673.623)
p(r)= (30)

1+exd(r—c)lal

The parametea is chosen to be=2.30/(4 In 3) fm[14].
The parametec, to a very high accuracy, is calculated by the other contributions té1 must be taken in the Feynman gauge
formula (see, e.g., Ref15])

PHYSICAL REVIEW A 62 022116

c=(5/3)(r?)—(7/3)a%x?. (3D

The values of the root-mean-squarens) charge radii are
taken from[14,16—18. Except forZ=83,92, theuncertain-

ties indicated in the tables are obtained by a 1% variation of
the root-mean-square charge radii. In the case Zof
=92((r?)'?=5.860(2) fm[18]), the uncertainty is esti-
mated by taking the difference between the corrections ob-
tained with the Fermi model and the homogeneously charged
sphere model of the same rms radjd9]. For Z=83, the
uncertainty results from both a variation of the rms radius by
0.020 fm(it corresponds to a discrepancy between the mea-
sured rms valuegl4]) and the difference between the Fermi
model and the homogeneously charged sphere model. If no
error margin is specified, it is smaller than the last digit
given. The fundamental constants used in the calculation are
hcR,=13.605698140) eV anda=1/137.035989%1).

In the calculation of the off-diagonal matrix elements, the
one-electron wave functions of th@g, and 25, states are
chosen to have the same overall sign in the nonrelativistic
limit since only these functions must be used in the transition
to the LS coupling according to Eq(l). It should also be
noted, that the off-diagonal matrix elements are gauge de-
pendent. However, the relative value of the difference be-
tween the off-diagonal elements calculated in the Feynman
and the Coulomb gauges amounts t& 20~ ° for Z=100
and decreases with decreasiigSince our calculations are
performed in the Feynman gauge, strictly speaking, all the

as well.

TABLE Il. One-photon exchange corrections for thes2b,,,)o 1, (152p3/,)1,, States of heliumlike ions. For the $2p,,,); and
(1s2p3,)4 States, the valuest(lszpllz)l andAE(lszpyz)1 denote the matrix elements bif[see Eq(6)] while AE_4iag iS the off-diagonal
one. Energies are given in eV.

z AE(lsZpllz)0 AE(132p3,2)2 AE(:LsZpllz)1 AE(152p3,2)1 AEoff-diag
20 125.4308 123.3179 130.5997 135.8537 8.4614
28 179.17261) 173.27651) 184.99311) 191.03401) 11.4485
30 193.14681) 185.85751) 198.91641) 204.95211) 12.1381
32 207.37611) 198.48061) 212.9935%1) 218.92741) 12.8014
40 267.28081) 249.45011) 271.1035%1) 275.48211) 15.1592
47 324.52461) 294.77761) 324.86041) 325.98211) 16.7746
50 350.749(1) 314.44341) 348.9185%1) 347.96381) 17.3214
54 387.557R) 340.91091) 382.10692) 377.62601) 17.90231)
60 447.3338) 381.18722) 434.64062) 422.95281) 18.432%1)
66 513.6557®) 422.22203) 491.12184) 469.396%2) 18.52002)
70 562.2258) 450.04084) 531.403%5) 501.04702) 18.31393)
74 614.8981) 478.25886) 574.15868) 533.29672) 17.88424)
79 687.478) 514.13333) 631.6781) 574.51722) 17.017@5)
80 703.0063) 521.39269) 643.7972) 582.88922) 16.79906)
82 735.20() 536.00Q1) 668.7172) 599.76672) 16.315Q7)
83 751.890(b) 543.34842) 681.536%4) 608.27362) 16.04961)
90 881.45%8) 595.675%2) 778.9925) 669.15773) 13.7421)
92 923.1981) 610.92714) 809.70479) 687.00342) 12.934@2)
100 1117.48B) 673.4334) 949.2@2) 760.53984) 9.0083)
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B. Vacuum-polarization screening diagrams

Let us now consider the vacuum-polarization screening H
diagrams in Fig. 2. The contributions of these diagrams to
H(? can be derived in the same way as for the one-photon
exchange diagram. However, the simplest way to derive the
formulas consists in using the fact that the diagrams shown
in Fig. 2(a) can be obtained as the first-order correction in the

PHYSICAL REVIEW A 62 022116

(=Y

K%=5 2 (D[P UTIPiL) — (ke Uelka)]

X(PiPiy[l" (Ap)|kiko) +[(Piy|UGe| Pip)

—(ko| UG pl ko) I(PigPio|1 " (Aj)[keko)}. (42)

vacuum polarization potential to the one-photon exchange 1he contribution of the diagram shown in Fig(b2 is
contribution derived above while the diagram shown in Fig.0btained from the expressi¢@9) by the replacement df(¢)

2(b) is obtained from the one-photon exchange diagram b)YVith

modifying the photon propagator. So, to find the contribution

from the diagrams shown in Fig(& we make the following
replacements in Eq29):

[kp)—[k)+ Slky), (32)
|kz)—[kz) + dka), (33)
|Piy)—|Piy)+ 8| Piy), (34
Pis)—|Piy)+8|Piy), (35
I(ea—ep)— | (ea+ Sea— £p— Bep), (36)

where to first order in the vacuum polarization potential

5 Iny(n|Ufela)
o= 3 e,

€a~ €n

(37

de,=(alU¥pla), (38)

The vacuum-polarization potential is given by

l o
ui‘,p(x)zﬁf dymfwdwTr[G(w,y,y)], (39

where G(w,x,y)=3,4(X) ¢ (y)/[o—e,(1—i0)] is the

2 rw
b a
va(s,x,y)zﬁ B dwf dzlf dz,

ay, expi le]|x—2z1|) ayp, expi|e||ly—2|)
|x=2| ly— 2z,

XTr

e
a“G( w— E'Zl' 22) a’

€

X G o+ =, 22,21) . (43)

2

Thus, we have

=

HIE=5 20 (- DFI(PILPIZUp(A 1) [kaky)

N

+(Pi1Pi5]Uyp(A2) [ kako)]. (44)
Equations(41), (42), and (44) provide the matrix elements
between the one-determinant wave functions defined by Eq.
(18). To get the matrix elements between the wave functions
defined by Eq(4), we have to multiply these equations with
the Clebsch-Gordan coefficients and sum over projections of
the one-electron angular momenta.
Contributions(41), (42), and (44) are ultraviolet diver-

gent. The renormalization of these contributions is per-

Coulomb Green function. Decomposing the modified expres‘formed in the same way as in Ref§,20].

sion for the one-photon exchange diagram to the first order
in the vacuum polarization potential we find that the contri-

Ill. CALCULATION

bution from the diagrams shown in Figia2is the sum of the
irreducible and reducible parts
Hik: Hi(lfa,irred)_’_ Hi(lfa, red), (40)

where

. 1
HIEH™ =3 2 (= DP(SPIPill (A1) +1(A2)kaky)
+(Pi1oPiall (A1) +1(Az)|kikz)
+(Pi1Pia|l (A7) +1(Az)| Skikz)
+(PiaPiall (A1) +1(A5) ki ko)1, (42)

and

The calculation of contribution$41), (42), and (44) is
performed in the same way as in our previous pap&0].
The formulas for the Uehling and the Wichmann-Kroll po-
tentials in the case of the diagrams shown in Fi@) 2re
well known:

EEIJehI(r)

zzafwdw ’(’)J’wdt 1+t
=—al— ramr r —
37Jo P 1 2t2

" Vt2—1 {exp(—2m|r —r’[t)— exg —2m(r +r')t]}
t2 4mrt '

(45)

022116-6
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TABLE Ill. Vacuum-polarization screening corrections for the ~ TABLE IV. Vacuum-polarization screening corrections for the
(1s)? and (1s2s) 4 states of heliumlike ions. Energies are given in (1s2py5)01, (152p3;)1, states of heliumlike ions. For the

ev. (1s2pq0)1 and (1s2ps.), States, the vaIuesAE(lszpm)1 and

AE(1s2p,,), denote the diagonal matrix elementstbfsee Eq(6)]
z AE(1s)2 AE(1s29), AE(1525), while AE qiag is the off-diagonal one. Energies are given in eV.
20 0.0100 0.0021 0.0014

Z AEqusp,,y, AEaswp,,), AE(sp,y, AEaszp,y, AEofdag
28 0.0298 0.0061 0.0039 20 0.0006 0.0006 0.0004 0.0001 0.0004
30 0.0348 0.0076 0.0048 28 0.0017 0.0015 0.0011 0.0004 0.0010
32 0.0427 0.0093 0.0058 30 0.0022 0.0019 0.0013 0.0005 0.0012
40 0.0887 0.0199 0.0118 32 00027 00023 00017  0.0006  0.0015
a7 0.1610 0.0354 0.0202 40 0.0060 0.0044 0.0036 0.0012 0.0029

47 0.0110 0.0073 0.0067 0.0019 0.0048
50 0.1920 0.0447 0.0250

50 0.0141 0.0089 0.0086 0.0024 0.0058
54 0.2550 0.0602 0.0328

54 0.0195 0.0113 0.0119 0.0031 0.074
60 0.3800(1) 0.0923 0.0484

60 0.0312 0.0159 0.0190 0.0044 0.0105
66 0.5570(1) 0.1393 0.0702 66  0.0494 00219 00302 00062  0.0144
70 0.7130(2) 0.1819 0.0893 70 0.0669 0.0267 0.0410 0.0075  0.0176
74 0.9080(2) 0.2372 0.1133 74 0.0906 0.0324 0.0556 0.0092 0.0213
79 1.2330(3) 0.3296(1) 0.1523 79 0.1324 0.0409 0.0814 0.0115 0.0269
80 1.2980(3) 0.3520(1) 0.1615(1) 80 0.1429 0.0428 0.0879 0.0120 0.0281
82 1.4660(4) 0.4014(2) 0.1817(1) 82 0.1666(1) 0.0468 0.1026 0.0130 0.0308
83 1.5500(7) 0.4286(2) 0.1927(2) 83 0.1799(1) 0.0489 0.1109(1) 0.0136 0.0321

90 0.3112(2) 0.0663 0.1929(1) 0.0176  0.0433
90 2.338(1) 0.6810(3) 0.2921(2)

92 0.3647(3) 0.0721 0.2262(2) 0.0188 0.0471
92 2.630(2) 0.7770(4) 0.3287(3)

100 0.7067(6) 0.1009(1) 0.4408(5) 0.0234  0.0649
100 4.248(4) 1.3404(8) 0.5366(5)

The contribution of the diagram shown in FighRis also
oo divided into two parts: the leadin@Jehling) contribution
U2, (X) = 2?0‘ 2 |K|f;dwf:dyy2f:dzzz and the remainingWichmann-Krol) term. The expression

K=t1 for the Uehling operator reads
2 . @y, ab 2a (= N
XWV(Z)iél Re{F¥(iw,y.2) ukg,em(s,x,y):a|X1’+y|2 ﬁfl dt(1+ﬁ) -
X[G{(iwy,2)~F(ioy,2]} (46) xexp(—2mHZ-e2x—y]), (47

wheree is the energy of the transmitted photon. This contri-

whereV is the nuclear potentiah is nuclear charge density, bution is also calculated using the Fermi-like nuclear charge
and G'* and F'* are the radial components of the partial- distribution.
wave contributions to the bound and free electron Green The Wichmann-Kroll contribution to the diagram in Fig.
functions, respectively. 2(b) is calculated utilizing the partial differences between

For the Uehling contribution, a Fermi-like nuclear chargeexpression(43) and the corresponding equation with the
distribution is assumed. The wave function and the reducetiound-electron Green functions replaced by those of free
Green function for this charge distribution are obtained usinglectrons. In this calculation some large terms appear which
the B-spline method for solving the Dirac equatifil]. The  almost cancel each other. To avoid a loss of precision caused
remaining Wichmann-Kroll potential charge density is calcu-by this cancellation we employ the same procedure as in
lated for a spherical shell model of the nuclear charge distriRefs.[6,20]. We divide the product of two relativistic Cou-
bution. For this model, the exact solutions for the radial comdomb Green functions contained in the vacuum polarization
ponents of the Green function can be emploj/22. loop into two parts, each containing only even or only odd
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powers of the nuclear charggé! According to the Furry V. CONCLUSION

theorem, only the part containing even power& a§ used in

the calculation. This contribution is calculated for the point- In this paper we derived calculation formulas for the one-
nucleus case. The finite-size effects on this contribution caRhoton exchange and vacuum polarization screening dia-

be neglected due to its smallness compared to the other coflfams in the case of quasidegenerate states of He-like ions.
tributions. The calcuations of corrections to the energy levels of He-like

The numerical results of our calculation of the Vacuum_ions due to these diagrams were performed for the Fermi-like
polarization screening diagrams are presented in Tables Inuclear charge distribution. Calculatuor;s of the self-gnergy
and IV. In the second column of Table Il we also list the S¢'¢€MNY and two-photon exchange diagrams remain to be

results from Ref[6] for the ground staté The values of the accomplished to obtain the total two-electron contribution up

. . . to second order i for excited states of He-like ions.
root-mean-square charge radii used in the calculation are the

same as those in Table I.
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