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Vacuum-polarization screening corrections to the energy levels of heliumlike ions
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Calculations of the vacuum-polarization screening corrections to the low-lying energy levels of He-like
highly charged ions are presented. The calculations are carried out for extended nuclei in the rangeZ
520–100.

PACS number~s!: 12.20.Ds, 31.30.2i, 31.30.Jv
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I. INTRODUCTION

The considerable progress in experimental investigati
of multicharged ions has shown the strong necessity for
curate calculations of all the QED corrections up to seco
order ina ~a is the fine-structure constant!. In Refs.@1,2# the
two-electron contribution to the ground-state energy of H
like ions was measured directly by comparing the ionizat
energies of heliumlike and hydrogenlike ions. In these m
surements the one-electron contributions, which mainly
termine the theoretical uncertainty of the energy levels,
completely eliminated. It provides good perspectives for te
ing the two-electron QED effects of second order ina, since
at present the two-electron contribution to the ground-s
energy in heliumlike ions is the only measured value wh
has been calculated up to second order ina. The two-
electron contribution of second order ina is given by the
sum of the two-photon exchange diagrams, the self-ene
screening diagrams, and the vacuum polarization scree
diagrams. For the ground state of heliumlike ions, a calcu
tion of the two-photon exchange diagrams was presente
Refs. @3,4# while the self-energy screening and vacuum p
larization screening diagrams were evaluated in Refs.@5–7#.
Although the present experimental accuracy of the tw
electron contribution@1,2# is not high enough, one can ex
pect that it will be significantly improved in the near futur
It is also expected that the corresponding experiments wil
accomplished for excited states of heliumlike ions. T
demonstrates that calculations of the two-electron contr
tions for excited states of heliumlike ions are necessary
the present paper we start corresponding calculations
evaluating the vacuum-polarization screening correction
the (1s2s)0,1, (1s2p1/2)0,1, and (1s2p3/2)1,2 energy levels.

In the full relativistic calculations considered here thej -j
coupling scheme is natural. Since the states (1s2p1/2)1 and
(1s2p3/2)1 are strongly mixed for low and middleZ they
must be treated as quasidegenerate states and, so, th
diagonal matrix elements between these states have t
taken into account. The transition to the wave functions c
responding to theLS-coupling scheme can be performed u
ing the equation@8#

S u1s2p 3P1&
u1s2p 1P1&

D5R S u~1s2p 1
2
!1&

u~1s2p 3
2
!1&

D , ~1!
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where

R5
1

A3
S A2 21

1 A2
D . ~2!

Throughout this paper, we use relativistic units (\5c5me
51).

II. FORMULATION

Since some of the states under consideration must
treated as quasidegenerate states, we will formulate the
turbation theory for quasidegenerate levels. The case
single level can be considered as a simple special case o
formulation. To formulate the perturbation theory for the c
culation of the energy levels within QED it is convenient
use the two-time Green function~TTGF! method proposed in
Ref. @9# and described in detail in Ref.@10# for a single level
and in Ref.@11# for degenerate levels~in this method, the
quasidegenerate levels are treated in the same way as d
erate levels!. An application of the method to quasidegene
ate levels was considered in Ref.@12#.

Following the TTGF method to formulate the perturbati
theory for the system under consideration we introduce
Fourier transform of the two-time Green function project
on the unperturbed quasidegenerate states:

g~E!d~E2E8!

5
p

i E2`

`

dp1
0dp2

0dp18
0dp28

0d~E2p1
02p2

0!

3d~E82p18
02p28

0!P0G~p18
0 ,p28

0 ;p1
0 ,p2

0!g1
0g2

0P0 ,

~3!

where P05( iuiui
† is the projector on the subspace of th

unperturbed quasidegenerate states. The unperturbed
functions are written as

ui5 (
mi 1

mi 2

^ j i 1
mi 1

j i 2
mi 2

uJM&
1

A2
(
P

~21!PuPi1Pi2&,

~4!
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where i 1 represents the 1s state whilei 2 represents one o
2s, 2p1/2, and 2p3/2 states;P is the permutation operator

(
P

~21!PuPi1Pi2&5u i 1i 2&2u i 2i 1&,
in

-

et

e
le
e

02211
u i 1i 2&[u i 1&u i 2& is the product of the one-electron Dirac wav
functions. G(p18

0 ,x18 ,p28
0 ,x28 ;p1

0 ,x1 ,p2
0 ,x2) is the usual

‘‘four-time’’ Green function in the mixed energy-coordinat
representation. In the interaction representation it is given
G~p18
0 ,x18 ,p28

0 ,x28 ;p1
0 ,x1 ,p2

0 ,x2!5
1

~2p!4E2`

`

dx1
0dx2

0dx18
0dx28

0 exp~ ip18
0x18

01 ip28
0x28

02 ip1
0x1

02 ip2
0x2

0!

3
K 0UTc in~x18!c in~x28!c̄ in~x2!c̄ in~x1!expH i E d4zLint~z!J U0L

K 0UT expH i E d4zLint~z!J U0L . ~5!
f

om
Here c in(x) denotes the electron-positron field operator
the interaction representation. The Green functionG is con-
structed by Eq.~5! according to Wick’s theorem. The Feyn
man rules forG(p18

0 ,x18 ,p28
0 ,x28 ;p1

0 ,x1 ,p2
0 ,x2) are given in

Ref. @11#. It can be derived~see Ref.@11# for details! that the
exact energies of the states under consideration are d
mined by the Schro¨dinger-like equation

Hck5Ekck , ck
†ck85dkk8 , ~6!

where

H5P21/2KP21/2,

K5
1

2p i RG
dEEg~E!,

P5
1

2p i RG
dEg~E!.

G is a contour in the complexE plane which surrounds th
levels under consideration and does not surround other
els, andEk are the exact energies of the levels. It is assum
that the contourG is oriented anticlockwise. Substituting

g~E!5g(0)~E!1g(1)~E!1g(2)~E!1•••, ~7!

P5P(0)1P(1)1P(2)1•••, ~8!

K5K (0)1K (1)1K (2)1•••, ~9!

where the upper symbol indicates the order ina, we obtain
@12#

H (0)5K (0), ~10!

H (1)5K (1)2
1

2
P(1)K (0)2

1

2
K (0)P(1), ~11!
er-

v-
d

H (2)5K (2)2
1

2
P(2)K (0)2

1

2
K (0)P(2)2

1

2
P(1)K (1)

2
1

2
K (1)P(1)1

3

8
P(1)P(1)K (0)1

3

8
K (0)P(1)P(1)

1
1

4
P(1)K (0)P(1). ~12!

The solubility of Eq.~6! yields the equation for calculation
of the energy levels:

det~E2H !50. ~13!

As was noticed in Ref.@12#, due to nonzero decay rates o
excited states, we should specify byH in Eqs.~6! and~13! its
self-adjoint part:

H[~1/2!~H1H†!.

In the zeroth approximation, using the Feynman rules fr
Ref. @11# one easily finds

g(0)~E!5(
i

uui&^ui u

E2Ei
(0)

, ~14!

FIG. 1. One-photon exchange diagram.
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whereEi
(0) are the unperturbed energies of the states un

consideration. They are equal to the sum of the one-elec
Dirac-Coulomb energies:

Ei
(0)5« i 1

1« i 2
.

Substituting Eq.~14! into the definitions ofK, P, and H
given above, we find

Kik
(0)5Ei

(0)d ik , ~15!

Pik
(0)5d ik , ~16!

Hik
(0)5Ei

(0)d ik . ~17!

A. One-photon exchange diagram

Before deriving the contributions from the vacuum pola
ization screening diagrams, we consider in detail the der
tion of the contribution due to the one-photon exchange d
gram depicted in Fig. 1. All the derivations for higher-ord
contributions can be done in analogy to the derivation p
sented in this section. In order to compactify the formul
we will construct the matrix elements ofH between the one
determinant wave functions

ui5
1

A2
(
P

~21!PuPi1Pi2&. ~18!
02211
er
on

-
a-
-

-
,

The transition to the wave functions defined by Eq.~4! can
easily be accomplished in the final formulas. In what fo
lows, we will use also the notation@10#

I ~v![4paa1
ma2

nDmn~v!. ~19!

Heream[g0gm5(1,a), Dmn is the photon propagator give
by

Dmn~v,x2y!5gmn

exp~ iAv22m21 i0ux2yu!
4pux2yu

~20!

in the Feynman gauge (ImAv22m21 i0.0). Below we will
employ the following symmetry properties of the photo
propagator in Feynman gauge:

I ~v!5I ~2v!,

I 8~v!52I 8~2v!.

To derive the formulas forHik
(1) we will assume thatEi

(0)

ÞEk
(0) . However, all the final formulas remain to be val

also for the caseEi
(0)5Ek

(0) , which was considered in deta
in Ref. @10#. According to the Feynman rules and the defin
tion of g(E), the contribution of the one-photon exchan
diagram~Fig. 1! to g(E) is
gik
(1)~E!5S i

2p D 2E
2`

`

dp1
0dp18

0(
P

~21!P

3
1

p18
02«Pi1

1 i0

1

E2p18
02«Pi2

1 i0

1

p1
02«k1

1 i0

1

E2p1
02«k2

1 i0
^Pi1Pi2uI ~p18

02p1
0!uk1k2&. ~21!

Transforming

1

p18
02«Pi1

1 i0

1

E2p18
02«Pi2

1 i0
5

1

E2Ei
(0) S 1

p18
02«Pi1

1 i0
1

1

E2p18
02«Pi2

1 i0D ,

1

p1
02«k1

1 i0

1

E2p1
02«k2

1 i0
5

1

E2Ek
(0) S 1

p1
02«k1

1 i0
1

1

E2p1
02«k2

1 i0D , ~22!

we obtain

Kik
(1)5

1

2p i RG
dE

E

~E2Ei
(0)!~E2Ek

(0)! H S i

2p D 2

3E
2`

`

dp1
0dp18

0(
P

~21!PS 1

p18
02«Pi1

1 i0
1

1

E2p18
02«Pi2

1 i0D
3S 1

p1
02«k1

1 i0
1

1

E2p1
02«k2

1 i0D ^Pi1Pi2uI ~p18
02p1

0!uk1k2&J . ~23!
6-3



o

re

ng

are
n
e

A. N. ARTEMYEV et al. PHYSICAL REVIEW A 62 022116
The expression in the curly brackets of Eq.~23! is an ana-
lytical function ofE inside the contourG, if the photon mass
m is chosen properly~see Refs.@11,12#!. This follows ob-
serving that the integrand in this expression is the sum
terms which contain singularities inp1

0 (p18
0) from the elec-

tron propagators only above or below the real axis. The
fore, in each term we can varyE in the complexE plane
within the contourG keeping the same order of bypassi
the singularities in thep1

0 (p18
0) integration by moving

slightly the contour of thep1
0 (p18

0) integration in the com-
02211
f

-

plex plane. The branch points of the photon propagators
moved outside the contourG due to the nonzero photo
mass. Calculating theE residues and taking into account th
identity

S i

2p D S 1

x1 i0
1

1

2x1 i0D5d~x! ~24!

we obtain
Kik
(1)5

i

2pE2`

`

dp1
0(

P
~21!P

Ei
(0)^Pi1Pi2uI ~«Pi1

2p1
0!uk1k2&

Ei
(0)2Ek

(0) S 1

p1
02«k1

1 i0
1

1

Ei
(0)2p1

02«k2
1 i0D

1
i

2pE2`

`

dp18
0(

P
~21!P

Ek
(0)^Pi1Pi2uI ~p18

02«k1
!uk1k2&

Ek
(0)2Ei

(0) S 1

p18
02«Pi1

1 i0
1

1

Ek
(0)2p18

02«Pi2
1 i0D . ~25!

In the same way we find

Pik
(1)5

i

2pE2`

`

dp1
0(

P
~21!P

^Pi1Pi2uI ~«Pi1
2p1

0!uk1k2&

Ei
(0)2Ek

(0) S 1

p1
02«k1

1 i0
1

1

Ei
(0)2p1

02«k2
1 i0D

1
i

2pE2`

`

dp18
0(

P
~21!P

^Pi1Pi2uI ~p18
02«k1

!uk1k2&

Ek
(0)2Ei

(0) S 1

p18
02«Pi1

1 i0
1

1

Ek
(0)2p18

02«Pi2
1 i0D . ~26!
or-
re

ion
Equations~25!, ~26! can easily be transformed to yield

Kik
(1)5(

P
~21!PH 1

2
@^Pi1Pi2uI ~D1!uk1k2&

1^Pi1Pi2uI ~D2!uk1k2&#

2
~Ei

(0)1Ek
(0)!

2

i

2pE2`

`

dv^Pi1Pi2uI ~v!uk1k2&

3F 1

~v1D12 i0!~v2D22 i0!

1
1

~v1D22 i0!~v2D12 i0!G J , ~27!

Pik
(1)52(

P
~21!P

i

2pE2`

`

dv^Pi1Pi2uI ~v!uk1k2&

3F 1

~v1D12 i0!~v2D22 i0!

1
1

~v1D22 i0!~v2D12 i0!G , ~28!
whereD15«Pi1
2«k1

and D25«Pi2
2«k2

. Substituting Eqs.
~27!, ~28! into ~11!, we get@12,13#

Hik
(1)5

1

2 (
P

~21!P@^Pi1Pi2uI ~D1!uk1k2&

1^Pi1Pi2uI ~D2!uk1k2&#. ~29!

The numerical results for the one-photon exchange c
rections are given in Tables I and II. The calculations a
performed in the Feynman gauge for the Fermi distribut
of the nuclear charge density,

FIG. 2. Vacuum-polarization screening diagrams.
6-4
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r~r !5
N

11exp@~r 2c!/a#
. ~30!

The parametera is chosen to bea52.30/(4 ln 3) fm@14#.
The parameterc, to a very high accuracy, is calculated by t
formula ~see, e.g., Ref.@15#!

TABLE I. One-photon exchange corrections for the (1s)2 and
(1s2s)0,1 states of heliumlike ions. Energies are given in eV.

Z ^r 2&1/2 @ fm# DE(1s)2 DE(1s2s)0
DE(1s2s)1

20 3.478 345.7624~1! 128.1561 103.1786
28 3.769 491.7688~2! 182.1657~1! 145.6921~1!

30 3.928 529.4192~2! 196.0818~1! 156.5069~1!

32 4.072 567.6094~2! 210.1937~1! 167.4096~1!

40 4.270 726.6361~5! 268.9289~1! 212.0456~1!

47 4.542 875.753~1! 324.0087~2! 252.7450~2!

50 4.655 943.092~1! 348.9013~3! 270.7578~2!

54 4.787 1036.558~2! 383.4892~5! 295.3904~3!

60 4.914 1185.725~4! 438.8212~9! 333.8499~5!

66 5.224 1347.448~7! 499.072~2! 374.443~1!

70 5.317 1463.43~1! 542.497~3! 402.905~1!

74 5.373 1586.93~2! 588.968~4! 432.664~2!

79 5.437 1753.36~2! 652.038~7! 471.960~3!

80 5.467 1788.43~3! 665.398~8! 480.130~4!

82 5.505 1860.51~3! 692.942~9! 496.812~4!

83 5.533 1897.558~4! 707.146~1! 505.3314~6!

90 5.802 2178.06~7! 815.73~2! 568.70~1!

92 5.860 2265.88~1! 850.135~4! 588.170~2!

100 5.886 2659.8~2! 1006.98~6! 673.62~3!
02211
c5A~5/3!^r 2&2~7/3!a2p2. ~31!

The values of the root-mean-square~rms! charge radii are
taken from@14,16–18#. Except forZ583,92, theuncertain-
ties indicated in the tables are obtained by a 1% variation
the root-mean-square charge radii. In the case ofZ
592(^r 2&1/255.860(2) fm @18#!, the uncertainty is esti-
mated by taking the difference between the corrections
tained with the Fermi model and the homogeneously char
sphere model of the same rms radius@19#. For Z583, the
uncertainty results from both a variation of the rms radius
0.020 fm~it corresponds to a discrepancy between the m
sured rms values@14#! and the difference between the Ferm
model and the homogeneously charged sphere model. I
error margin is specified, it is smaller than the last di
given. The fundamental constants used in the calculation
hcR̀ 513.6056981~40! eV anda51/137.0359895~61!.

In the calculation of the off-diagonal matrix elements, t
one-electron wave functions of the 2p1/2 and 2p3/2 states are
chosen to have the same overall sign in the nonrelativi
limit since only these functions must be used in the transit
to the LS coupling according to Eq.~1!. It should also be
noted, that the off-diagonal matrix elements are gauge
pendent. However, the relative value of the difference
tween the off-diagonal elements calculated in the Feynm
and the Coulomb gauges amounts to 231025 for Z5100
and decreases with decreasingZ. Since our calculations are
performed in the Feynman gauge, strictly speaking, all
other contributions toH must be taken in the Feynman gau
as well.
TABLE II. One-photon exchange corrections for the (1s2p1/2)0,1, (1s2p3/2)1,2 states of heliumlike ions. For the (1s2p1/2)1 and
(1s2p3/2)1 states, the valuesDE(1s2p1/2)1

andDE(1s2p3/2)1
denote the matrix elements ofH @see Eq.~6!# while DEoff2diag is the off-diagonal

one. Energies are given in eV.

Z DE(1s2p1/2)0
DE(1s2p3/2)2

DE(1s2p1/2)1
DE(1s2p3/2)1

DEoff-diag

20 125.4308 123.3179 130.5997 135.8537 8.4614
28 179.1726~1! 173.2765~1! 184.9931~1! 191.0340~1! 11.4485
30 193.1468~1! 185.8575~1! 198.9164~1! 204.9521~1! 12.1381
32 207.3761~1! 198.4806~1! 212.9935~1! 218.9274~1! 12.8014
40 267.2805~1! 249.4501~1! 271.1035~1! 275.4821~1! 15.1592
47 324.5246~1! 294.7776~1! 324.8604~1! 325.9821~1! 16.7746
50 350.7490~1! 314.4434~1! 348.9185~1! 347.9638~1! 17.3214
54 387.5573~2! 340.9109~1! 382.1069~2! 377.6260~1! 17.9023~1!

60 447.3335~3! 381.1872~2! 434.6406~2! 422.9528~1! 18.4325~1!

66 513.6557~6! 422.2220~3! 491.1218~4! 469.3965~2! 18.5200~2!

70 562.2258~9! 450.0408~4! 531.4035~5! 501.0470~2! 18.3139~3!

74 614.893~1! 478.2588~6! 574.1586~8! 533.2967~2! 17.8842~4!

79 687.473~2! 514.1333~8! 631.678~1! 574.5172~2! 17.0176~5!

80 703.006~3! 521.3926~9! 643.797~2! 582.8892~2! 16.7990~6!

82 735.200~3! 536.000~1! 668.717~2! 599.7667~2! 16.3150~7!

83 751.8900~5! 543.3484~2! 681.5365~4! 608.2736~2! 16.0496~1!

90 881.455~8! 595.675~2! 778.992~5! 669.1577~3! 13.742~1!

92 923.198~1! 610.9271~4! 809.7047~9! 687.0034~2! 12.9340~2!

100 1117.49~3! 673.433~4! 949.20~2! 760.5393~4! 9.008~3!
6-5
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B. Vacuum-polarization screening diagrams

Let us now consider the vacuum-polarization screen
diagrams in Fig. 2. The contributions of these diagrams
Hik

(2) can be derived in the same way as for the one-pho
exchange diagram. However, the simplest way to derive
formulas consists in using the fact that the diagrams sho
in Fig. 2~a! can be obtained as the first-order correction in
vacuum polarization potential to the one-photon excha
contribution derived above while the diagram shown in F
2~b! is obtained from the one-photon exchange diagram
modifying the photon propagator. So, to find the contribut
from the diagrams shown in Fig. 2~a! we make the following
replacements in Eq.~29!:

uk1&→uk1&1duk1&, ~32!

uk2&→uk2&1duk2&, ~33!

uPi1&→uPi1&1duPi1&, ~34!

uPi2&→uPi2&1duPi2&, ~35!

I ~«a2«b!→I ~«a1d«a2«b2d«b!, ~36!

where to first order in the vacuum polarization potential

dua&5 (
n

«nÞ«a un&^nuUVP
a ua&

«a2«n
, ~37!

d«a5^auUVP
a ua&, ~38!

The vacuum-polarization potential is given by

UVP
a ~x!5

a

2p i E dy
1

ux2yu E2`

`

dvTr @G~v,y,y!#, ~39!

where G(v,x,y)5(nc(x)c†(y)/@v2«n(12 i0)# is the
Coulomb Green function. Decomposing the modified expr
sion for the one-photon exchange diagram to the first or
in the vacuum polarization potential we find that the con
bution from the diagrams shown in Fig. 2~a! is the sum of the
irreducible and reducible parts

Hik5Hik
(2a,irred)1Hik

(2a, red), ~40!

where

Hik
(2a,irred)5

1

2 (
P

~21!P@^dPi1Pi2uI ~D1!1I ~D2!uk1k2&

1^Pi1dPi2uI ~D1!1I ~D2!uk1k2&

1^Pi1Pi2uI ~D1!1I ~D2!udk1k2&

1^Pi1Pi2uI ~D1!1I ~D2!uk1dk2&#, ~41!

and
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Hik
(2a,red)5

1

2 (
P

~21!P$@^Pi1uUVP
a uPi1&2^k1uUVP

a uk1&#

3^Pi1Pi2uI 8~D1!uk1k2&1@^Pi2uUVP
a uPi2&

2^k2uUVP
a uk2&#^Pi1Pi2uI 8~D2!uk1k2&%. ~42!

The contribution of the diagram shown in Fig. 2~b! is
obtained from the expression~29! by the replacement ofI («)
with

UVP
b ~«,x,y!5

a2

2p i E2`

`

dvE dz1E dz2

3
a1m exp~ i u«uux2z1u!

ux2z1u
a2n exp~ i u«uuy2z2u!

uy2z2u

3TrFamGS v2
«

2
,z1, z2Dan

3GS v1
«

2
, z2,z1D G . ~43!

Thus, we have

Hik
(2b)5

1

2 (
P

~21!P@^Pi1Pi2uUVP
b ~D1!uk1k2&

1^Pi1Pi2uUVP
b ~D2!uk1k2&#. ~44!

Equations~41!, ~42!, and ~44! provide the matrix elements
between the one-determinant wave functions defined by
~18!. To get the matrix elements between the wave functio
defined by Eq.~4!, we have to multiply these equations wit
the Clebsch-Gordan coefficients and sum over projection
the one-electron angular momenta.

Contributions~41!, ~42!, and ~44! are ultraviolet diver-
gent. The renormalization of these contributions is p
formed in the same way as in Refs.@6,20#.

III. CALCULATION

The calculation of contributions~41!, ~42!, and ~44! is
performed in the same way as in our previous papers@6,20#.
The formulas for the Uehling and the Wichmann-Kroll p
tentials in the case of the diagrams shown in Fig. 2~a! are
well known:

UUehl
a ~r !

52aZ
2a

3pE0

`

dr84pr 8r~r 8!E
1

`

dtS 11
1

2t2D
3

At221

t2

$exp~22mur 2r 8ut !2 exp@22m~r 1r 8!t#%

4mrt
,

~45!
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UWK
a ~x!5

2a

p (
k561

6`

uku E
0

`

dvE
0

`

dyy2E
0

`

dzz2

3
1

max~x,y!
V~z! (

i ,k51

2

Re$Fk
ik~ iv,y,z!

3@Gk
ik~ iv,y,z!2Fk

ik~ iv,y,z!#%, ~46!

whereV is the nuclear potential,r is nuclear charge density
and Gk

ik and Fk
ik are the radial components of the partia

wave contributions to the bound and free electron Gr
functions, respectively.

For the Uehling contribution, a Fermi-like nuclear char
distribution is assumed. The wave function and the redu
Green function for this charge distribution are obtained us
theB-spline method for solving the Dirac equation@21#. The
remaining Wichmann-Kroll potential charge density is calc
lated for a spherical shell model of the nuclear charge dis
bution. For this model, the exact solutions for the radial co
ponents of the Green function can be employed@22#.

TABLE III. Vacuum-polarization screening corrections for th
(1s)2 and (1s2s)0,1 states of heliumlike ions. Energies are given
eV.

Z DE(1s)2 DE(1s2s)0
DE(1s2s)1

20 0.0100 0.0021 0.0014

28 0.0298 0.0061 0.0039

30 0.0348 0.0076 0.0048

32 0.0427 0.0093 0.0058

40 0.0887 0.0199 0.0118

47 0.1610 0.0354 0.0202

50 0.1920 0.0447 0.0250

54 0.2550 0.0602 0.0328

60 0.3800(1) 0.0923 0.0484

66 0.5570(1) 0.1393 0.0702

70 0.7130(2) 0.1819 0.0893

74 0.9080(2) 0.2372 0.1133

79 1.2330(3) 0.3296(1) 0.1523

80 1.2980(3) 0.3520(1) 0.1615(1)

82 1.4660(4) 0.4014(2) 0.1817(1)

83 1.5500(7) 0.4286(2) 0.1927(2)

90 2.338(1) 0.6810(3) 0.2921(2)

92 2.630(2) 0.7770(4) 0.3287(3)

100 4.248(4) 1.3404(8) 0.5366(5)
02211
n

d
g

-
i-
-

The contribution of the diagram shown in Fig. 2~b! is also
divided into two parts: the leading~Uehling! contribution
and the remaining~Wichmann-Kroll! term. The expression
for the Uehling operator reads

UUehl
b ~«,x,y!5a

a1ma2
m

ux2yu
2a

3pE1

`

dtS 11
1

2t2DAt221

t2

3exp~2A~2mt!22«2ux2yu!, ~47!

where« is the energy of the transmitted photon. This cont
bution is also calculated using the Fermi-like nuclear cha
distribution.

The Wichmann-Kroll contribution to the diagram in Fig
2~b! is calculated utilizing the partial differences betwe
expression~43! and the corresponding equation with th
bound-electron Green functions replaced by those of f
electrons. In this calculation some large terms appear wh
almost cancel each other. To avoid a loss of precision cau
by this cancellation we employ the same procedure as
Refs.@6,20#. We divide the product of two relativistic Cou
lomb Green functions contained in the vacuum polarizat
loop into two parts, each containing only even or only o

TABLE IV. Vacuum-polarization screening corrections for th
(1s2p1/2)0,1, (1s2p3/2)1,2 states of heliumlike ions. For the
(1s2p1/2)1 and (1s2p3/2)1 states, the valuesDE(1s2p1/2)1

and
DE(1s2p3/2)1

denote the diagonal matrix elements ofH @see Eq.~6!#

while DEoff-diag is the off-diagonal one. Energies are given in eV

Z DE(1s2p1/2)0
DE(1s2p3/2)2

DE(1s2p1/2)1
DE(1s2p3/2)1

DEoff-diag

20 0.0006 0.0006 0.0004 0.0001 0.0004

28 0.0017 0.0015 0.0011 0.0004 0.0010

30 0.0022 0.0019 0.0013 0.0005 0.0012

32 0.0027 0.0023 0.0017 0.0006 0.0015

40 0.0060 0.0044 0.0036 0.0012 0.0029

47 0.0110 0.0073 0.0067 0.0019 0.0048

50 0.0141 0.0089 0.0086 0.0024 0.0058

54 0.0195 0.0113 0.0119 0.0031 0.074

60 0.0312 0.0159 0.0190 0.0044 0.0105

66 0.0494 0.0219 0.0302 0.0062 0.0144

70 0.0669 0.0267 0.0410 0.0075 0.0176

74 0.0906 0.0324 0.0556 0.0092 0.0213

79 0.1324 0.0409 0.0814 0.0115 0.0269

80 0.1429 0.0428 0.0879 0.0120 0.0281

82 0.1666(1) 0.0468 0.1026 0.0130 0.030

83 0.1799(1) 0.0489 0.1109(1) 0.0136 0.032

90 0.3112(2) 0.0663 0.1929(1) 0.0176 0.043

92 0.3647(3) 0.0721 0.2262(2) 0.0188 0.047

100 0.7067(6) 0.1009(1) 0.4408(5) 0.0234 0.064
6-7
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powers of the nuclear chargeZ.1 According to the Furry
theorem, only the part containing even powers ofZ is used in
the calculation. This contribution is calculated for the poi
nucleus case. The finite-size effects on this contribution
be neglected due to its smallness compared to the other
tributions.

The numerical results of our calculation of the vacuu
polarization screening diagrams are presented in Table
and IV. In the second column of Table III we also list th
results from Ref.@6# for the ground state.2 The values of the
root-mean-square charge radii used in the calculation are
same as those in Table I.

1In Ref. @6# this procedure was applied for the zero energy of
transmitted photon, and in Ref.@20# it was extended to the case o
arbitrary photon energy.

2For Z590 we recalculateddE1s
1s with ^r 2&1/255.802 fm@18# ~in

Ref. @6# ^r 2&1/255.645 fm was used!.
t.

ys

ky

s.

s.

re
P.
n

y,

ii,
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IV. CONCLUSION

In this paper we derived calculation formulas for the on
photon exchange and vacuum polarization screening
grams in the case of quasidegenerate states of He-like i
The calcuations of corrections to the energy levels of He-l
ions due to these diagrams were performed for the Fermi-
nuclear charge distribution. Calculatiions of the self-ene
screening and two-photon exchange diagrams remain to
accomplished to obtain the total two-electron contribution
to second order ina for excited states of He-like ions.
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