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Causal “superluminal” effects have recently been observed and discussed in various contexts. The question
arises whether such effects could be observed with extremely weak pulses, and what would prevent the
observation of an “optical tachyon.” Aharonov, Reznik, and SteARS) [Phys. Rev. Lett81, 2190(1998]
have argued that quantum noise will preclude the observation of a superluminal group velocity when the pulse
consists of one or a few photons. In this paper we reconsider this question both in a general framework and in
the specific example, suggested by Chiao, Kozhekin, and Ku(@KK) [Phys. Rev.77, 1254 (1996, of
off-resonant, short-pulse propagation in an optical amplifier. We derive in the case of the amplifier a signal-
to-noise ratio that is consistent with the general ARS conclusions when we impose their criteria for distin-
guishing between superluminal propagation and propagation at the speledvever, results consistent with
the semiclassical arguments of CKK are obtained if weaker criteria are imposed, in which case the signal can
exceed the noise without being “exponentially large.” We show that the quantum fluctuations of the field
considered by ARS are closely related to superfluorescence noise. More generally, we consider the implica-
tions of unitarity for superluminal propagation and quantum noise and study, in addition to the complete and
truncated wave packets considered by ARS, the residual wave packet formed by their difference. This leads to
the conclusion that the noise is mostly luminal and delayed with respect to the superluminal signal. In the limit
of a very weak incident signal pulse, the superluminal signal will be dominated by the noise part, and the
signal-to-noise ratio will therefore be very small.

PACS numbds): 03.65.Sq, 42.56:p, 42.50.Lc

I. INTRODUCTION 2mwe’f Ni—N,

n(w)=1+ m, (2)

Chiao and co-workergl—3] have shown that certain “su-

perluminal” effects are possible without violation of stan- ynere 1 and 2 designate the lower and upper energy levels,

dard notions of Einstein causality, i.e., without conveyingrespectively, and,=w,;. Close to the transition resonance
information faster than the velocity of light in vacuum. frequencyw,

Such effects have been demonstrated experimentally in opti-

cal tunneling[4—6] and in an electric circuif7]. me’f  N;—N,
It has been suggested by Chiao, Kozhekin, and Kurizki N(w)=1+

(CKK) [1] that an optical pulse can propagate superluminally

in an amplifier whose relaxation times are long comparedyhen we include a dipole damping raée The (rea) refrac-

with the pulse duration. The dispersion relation they deriVQi\/e index near a resonance is then

can be obtained directly, as follows, starting from the for-

()

Mwg wg—w—18’

2

mula for the refractive index of a monatomic gas: 14 we‘f Wy~ W N.— N 4
, N Nr(w)= Mwg (wo—w)2+ﬁ2( 1~ Na). (4)

. 2me 2 2 N;f(i,]) i
n(w)= m 45 w0’ Introducing the inversiomv=(N,—N;)/N, whereN is the

i . : . .-
number density of atoms, and assuming a field sufficiently

for n(w)=1, whereN; is the number density of atoms in far from resonance that— w)?> 8%, we have
statei andf(i,j) is the oscillator strength for absorption on
i it me’Nwf 1
thei—j transition of frequencyn;; . Near a two-level reso- —__
; j np(w)=1-——— : 5
nance this becomes Mwy wo—
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©0 o Te?Nwf 1 ratio can exceed unity even for a one-photon signal pulse, as
k:nR(w)E: E(l_ ) suggested by CKK. We relate the amplified quantum field
fluctuations of ARS to quantum fluctuations of the atomic
® w,ZJW/4wo dipoles in the case of the optical amplifier. In Sec. V, fol-
—< - —) (6) lowing the ideas of ARS, we present some general consider-
ations based on the premises of unitarity and superluminal

mll)o Wo— W

C wWo— w

2 2 propagation. ARS show that, when the group velocity ex-
k—k0=£(w—w0 - QMEE(O)—O)O)— pr/4C, ceeds the speed of light, the superluminal signal is recon-
c C wp—w C W~ w structed from a truncated initial wave packet, and that this

(7)  truncated wave packet has unstable modes. We show that the
truncated wave packet introduced by ARS propagates with
both luminal and superluminal parts, and that, while the su-

02— KcQ + tww?=0, ®) perluminal part is the reconstructed signal, the luminal part
P has the exponentially growing parts corresponding to the un-
whereK =k—ky, Q= w—wy, and the “plasma frequency” Stable modes. In addition, we study the residual wave packet
w, is defined by formed by the difference of the complete and truncated wave
P packets. We show that contributions from the truncated and
wf,=47rNe2f/m=87rNd2w0/h, (9)  residual wave packets cancel in the luminal region, but that,
unlike the signal, thenoise does not cancel, leading to the
with d the electric d|po|e transition moment. Equati@j is conclusion that the quantum noise is mostly luminal rather
the dispersion relation obtained by CKK. than superluminal. In the limit of a very weak incident signal
We refer the reader to the CKK paper for a discussion opulse the signal-to-noise ratio will be very small, consistent
this dispersion relation. Here we simply note that Eg.  With the conclusions reached by ARS.

implies the group velocity It may be worth recalling that a primary reason for reject-
ing the possibility of superluminal transmission of informa-

do wrz,w/4 -1 tion is the requirement that causality be maintained when

V9T gk c|1- —(wo_ )2 (10 Lorentz transformations are made: superluminal transmission

of information would allow an ever causing an everi in
one reference frame to occafter eventB in a different
frame. Considerations of superluminal propagation therefore
cpften raise questions relating to Lorentz invariance. When
£nd how should one include relativistic effects in order to

so that, in the case of an amplifiew$0), a short off-
resonant pulse can propagate with a group velaeify c.
Questions have been raised about the validity of the latt
prediction at the one-photon level, which would correspon . ; .
to what CKK call an “optical tachyon”[1]. Aharonov, ensure that physlcally meaningful results are obtamed?
Reznik, and SterfARS) [8] have presented general argu- . As in all previous treatments of pulse propagation in an
ments, based on the unitary evolution of the state vector, thdfverted medium that we know of, we choose the reference
“strongly question the possibility that these systems may/'@me in which the atoms are at rest. The Lorentz invariance
have tachyonlike quasiparticle excitations made up of £ the fundamental, fully relativistic theory implies, of

small number of photons.” They also consider a particularcPUrse, that our conclusions do not depend on this specific
model as an analog of the CKK system. choice of a reference frame. Working in this frame, we treat

In this paper we address the question of superlumina’ihe response of the atoms to the field in the approximation of

propagation at the one- or few-photon level, and in particulaf’®nrelativistic quantum mechanics. The electromagnetic
the role played by quantum noise in the propagation of sucf{€!d in this frame is also treated approximately, namely, in
extremely weak pulses. We begin in the following sectionth® Slowly-varying-envelope approximation that is used
with some physical considerations about the observability opractically universally in the theory of resonant atom-field

superluminal propagation, and we briefly compare the ARgnteractions. A different choice of reference frame would re-
and CKK models. In Sec’. Il we formulate the Heisenbergqu"e us to start with the fully Lorentz-invariant equations

equations of motion for the propagation of a short optical®d then make the slowly-varying-envelope and other ap-
pulse in an inverted medium, and briefly review some rel-Proximations as appropriate. These approximations are
evant results from the theory of superfluoresce(89. In known_ to be very accurate unless, for instance, the Ilght
Sec. IV we derive a signal-to-noise ratio for the case wher@UIS€ is extremely short, and to the extent that they are valid
an incident, Gaussian signal pulse made um @hotons is  ©U" results and conclusions are Lorentz invariant.

very short compared with the radiative lifetime and has a

central frquency far rgmoved from the resonance frequgncy Il. PRELIMINARY CONSIDERATIONS

of the medium. If we impose the ARS criterion for distin-

guishing between superluminal propagation and propagation The quantum noise limitations to superluminal propaga-
at the speed of light, we find, consistent with their conclu-tion discussed by ARS were associated physically with spon-
sions, that the signal must be “exponentially large” in ordertaneous emission in the case of an optical amplifier, and
to distinguish it from quantum noise. If the ARS criterion is could invalidate the CKK results in two ways. First, CKK
replaced by a much weaker one, however, the signal-to-noisessume that the atoms stay in their excited states as the pulse
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propagates through the amplifier. Radiative decay of the exk,> 1/T—the condition that the observation time should be

cited state will modify their “tachyonic dispersion relation” much larger than the optical period of the pulse—then im-

and, if the decay is rapid enough, can lead to a sublumingjies

rather than superluminal group velocity, singen Eq. (10)

can become negative. This can be avoided by using a suffi- mT>1. (14

ciently short pulse. Second, spontaneously emitted radiation

might interfere with the measurement of the superluminalSince formT>1 the amplified quantum noise grows expo-

group velocity by introducing substantial noise. It is this pos-nentially (see Sec. I)l, ARS conclude that the “signal am-

sibility that is addressed by ARS. plitude should be exponentially large” in order to distinguish
Although the ARS arguments are certainly compelling,it from noise. Thus, according to ARS, the observability of

they are based in part on @malogof an optical amplifier superluminality for an input pulse consisting of only a few

rather than a theory involving the interaction of the electro-photons would be clouded by spontaneous emission noise.

magnetic field with an atomic medium. In particular, theirsis Consider now the implications of conditions 1 and 2 for

a model of a single quantum field rather than coupled atomithe actual system of interest, namely, a very short optical

and electromagnetic quantum fields. The dispersion relatiopulse in an inverted medium. Can we satisfy these conditions

associated with this model, and the criteria assumed by AR8r observation timeshortcompared with the radiative life-

for the observability of superluminal propagation, lead to thetime?

conclusion, by analogy to an optical amplifier, that sponta- For a short optical pulse of central frequensyropagat-

neous emission noise cannot be avoided no matter how shdrtg in an inverted mediumw= 1) with resonance frequency

the pulse or the transit time through the amplifier. Specifi-wg, the refractive index i$Eq. (6)]

cally, the unstable modes appearing in their model—which

“‘are analogous to spontaneous emission in the optical model 27Nd%/h wf,

of an inverted medium of two-level system§8]—will pre- n(w)=1+ w_—onl— Zwph

clude the observation of superluminal group velocity when

the pulse is made up of a small number of photons; thgor ((,2/(4,1)0)<|a,0 w|=|A|. We are assuming thah| is

quantum noise will be larger than the signal. In this sectionarge'compared with the absorption width, which in our case

we present some physical considerations, motivated by thg the radiative decay rate. Equatiéitb) implies
CKK and ARS analyses, for the observability of superlumi-

(15

nal group velocity. Vg d -1
Following their Eq.(11), ARS state twaecessarygondi- e (d—w[wn(w)]) =1 wZaAZ (16)
tions for the observability of superluminal propagation P
(c=1 in their units: and
(1) vyT>1/6k, wherevg is the group velocity T is the
time at which the wave packet is observed, afidis the vg w§/4A2 a,’ZJ vg
spectral width of their initial pulse. . 1= 1=oDarZ " 2AZ C - (17)
P

(2) (vg—1)T>1/6k.
The first condition ensures that “the point of observation

[is] far outside the initial spread of the wave packet.” TheThen conditions 1 and 2 of ARS become, respectively,

second allows us to “distinguish between superluminal T 1
propagation and propagation at the speed of light.” > ~Tp, (18)
In the ARS model, where the field satisfies 1-wp/4a® ¢ ok
2
/4A T 1
PP PP (@ B L
T a0, ay T Y 19
o with 7, the pulse duration. Both conditions can be satisfied
the group velocity is if, for instance,T> 7, andw}/4A is not too small. To avoid
spontaneous emission dunng the observation fin@ke T
Ko <T,ad» Where 7,4 is the radiative lifetime of a single in-
Vg™ T 12 verted atom. Then the ARS conditions require that
N~ 42 .
Trad™ 1> Tp . (20)
wherekg is the central value of the spatial frequencyor ] .
the initial pulse. Form<k, we can approximate , by 1 As noted by CKK, there is another aspect of an inverted
+m2/2k0, so that condition Zand also condition )1|s sat- atomic medium that must be addressed, namely, superfluo-
isfied if rescence. SF is a collective phenomenon of the sample as a

whole. We shall denote b+, S andL the number of
5 5 atoms, the cross-sectional area, and the length of the sample,
M T>ko/ k>Ko. (13)  respectively, so that the density of atoms is given Nby
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=N;/SL If collisional and other dephasing mechanisms are We will work in the Heisenberg picture, in which the
sufficiently weak, an inverted medium biff atoms can emit time-dependent electric field operator satisfies
SF radiation at the rate

P 1P\ Am PP And I %6,
7R= Traa/ N7, (21 7 2wt T s e 0
e., the radiative decay time can in effect be smaller by a 4 o2
factor of N than the single-atom radiative lifetims,q4 as- — ?—Ndﬁax(z,t), (27
sumed in the discussion thus far. The peak of the SF pulse
occurs at a timg9] where in the last step we have made the continuum approxi-
1 2 mation for the polarization densinf?, assuming a uniform
7o~ 7Rl 2 IN(27N7)] 22 atomic densityN. We now write
following the excitation of the atoms. It would appear then E(H) _A “iw(t—2c)
that the quantum noise associated with SF will be small if B (z)=F(zbe (28)
7o, LIC<TR<Tp . (23) and assurnefz(z,t) is slow!y varying inz_ andt compared
with exd —iw(t—2/c)]. In this approximation
We note for later purposes that
. w(dF 19F _Am 9? O'X s
e 877Nd2w0 1IN _4c - 2i—| —+ ¢ o THe= oz Nd— :
P h Trad SL rL’ (29

where we have used EGA12) of Appendix A for the single- It will be convenient to use the atomic lowering and raising

atom radiative lifetimer,,q. operators =3 (&~ 'U) and 6'=3(d,+idy), respec-
This brief summary lends support to the CKK suggestion tively, such tha(ﬂ o ]— — 0, and to write

but obviously a more quantitative analysis is called for. To N . —iw(t—2/)

this end we now formulate, in the Heisenberg picture, the a(z)=8(zt)e , (30)

quantum theory of pulse propagation in an amplifier. where the operatd(z,t) is assumed to be slowly varying in

the same sense d¥(z,t). Then, in the rotating-wave ap-

Ill. FORMALISM FOR PULSE PROPAGATION proximation, we can replace E(9) with

We begin with the Hamiltonian foN; two-level atoms

(TLASs) interacting with the quantized electromagnetic field f 1oF o
via electric dipole transitions: 0z T cat ZWINd 31
1 Nt Nt where on the right-hand side we have approximatety
= —thE 025~ dz (TXJE(ZJ)JFE hodlay, wo. This equation and the TLA Heisenberg equations
(29 s id .
E:—l(A—lﬁ)s—zazF, (32

wherew, andd have the same meaning as before ant
the z coordinate of atonj. The carets are used to denote R
operators. We consider a one-dimensional model in which do,
the atoms occupy the region froms=0 to z=L and the field ot
is a superposition of plane waves propagating inzl@ec-
tion. The electric field operator is given By(z)=E(*)(2)
+E()(2), where

<“<z>—|2 (

—— (F'3-3'F) (33)

=—-2B(1+0d,)—

derived in Appendix A, form a closed set of operator equa-
tions. They provide the basis for a quantum theory of propa-
gation in either amplifying or absorbing media.

2 In the semiclasical approximation in which the atom and
) a,e*? (k=wc/c) (26) field operators are replaced by their expectation values, Egs.

(31)—(33) reduce to the well-known Maxwell-Bloch equa-

R R tions. Otherwise, different limits can appl¢t) The limit of
andE(C)(z2)=EM)(2)". S|, whereS, as before, is a cross- $—0, A=0, andé,—1 considered below gives Eq&5)—
sectional area anida length, is the quantization volume. For (37) implying superfluorescence when the initial state of the
simplicity we consider only a single field polarization, field is the vacuum(2) The limit of w> w, gives the ARS
namely, linear polarization along the direction of the transi-field equation, as discussed beld®) Finally, in Sec. IV the
tion dipole moment of the TLAs. &, andak are the photon CKK case of large detunings,— 1, and the initial state of a
annihilation and creation operators, respectively, for mqde very short incoming pulse is studied.
and theg's are the Pauli two-state operators in the standard If the field central frequency is assumed to match ex-
notation. actly the atomic resonance frequensy, so thatA=0, and

2’7Tﬁ(1)k
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if we restrict ourselves to times short compared with the |n order to calculate (FT(L,t)F(L,t)) we require
single-atom radiative lifetime 7,4=(28) '] and assume (s'(z’ 0)5(z,0)), which we evaluate in Appendix B. We ob-
that the atoms remain with probabilitgl in their excited  tain[9]

states over times of interest, we can ignore E2B) and

replaced,(z,t) by 1 and Eq(32) by

. . ZN
(FT(L,HF(L,t)= de?) gf:dxe(t—x/c)l%

95 id £ (34
ot h X[ wpV(x/c)(t—x/c)]. (40)
In terms of the independent variablés t—z/c and n=z, For times large enough thdfy may be replaced by its
] asymptotic form,
a5 B id : (35
i b St E 1 2mheo g
(F'(L,t)F(L,t)) 87 sct © R, (47
Jd X (O] R "
- 2miNd =18, (36  Equating the intensity expectation value/Zm)(F'(L,
t)ﬁ(L,t)) to the maximum expected SF intensity
implying N+t wqy/STg, we arrive at the expressig@?2) for the time at
R which the SF pulse reaches its peak intensity. In the short-
s [of)  PF e . . time limit, on the other hand,
anat \ac)> angar \ac (87 12N
£t £ ~ 0
Equationg35)—(37) have been used in studies of the buildup (FILOF(L.) (ZWd c ) S et (42
of superfluorescent radiatiof®]. It will be useful for the . _
discussion in Sec. IV to briefly rederive here one of the mosg result we will return to in Sec. IV,
important results of those studies.
Equation(31) has the formal solution Approximation leading to the ARS field equation
© Our considerations thus far assume that the field central
F(z,t)= ﬁo(z,t)+ 2miNd —O) frequency lies in the vicinity of the atomic resonance in the
¢ sense that the detuning is small in magnitude compared
, 7— 7 7—7' with  and wg. Let us now suppose instead that the field
xf dz’%(z’,t— ) ( - ) frequencyw is very large compared witl,. In this case we
0 ¢ must work with the atomic operatois, ,d, instead of the
A e slowly varyings. From Egs.(Al) and (A2) of Appendix A
=Fo(z,t)+ ZmNd? we have
z . 2~ Zdwo’\ ~ 2dwo,\
xf dz'8(z—z't—2'lc)6(t—2'[c), (38) Ot 0o == o E=———E 43
0

. in the approximatioro,= 1. The assumptiow> w, implies
where we have chosen the retarded Green function over the PP z P @o IMP

advanced Green function in order to ensure causality. idere ) 2dwg .

is the unit step function anéy(z,t) is a solution of the ox=———FE, (44)

homogeneous equation. We are interested here in the expec-

tation value(FT(L,t)F(L,t)), at the end £=L) of the me-  so that, from Eq(27),

dium. For SF the expectation value is taken over the vacuum 5 5

state of the field, in which case the first term on the right- 77,0 A

hand side of Eq(38) does not contribute to normally ordered (W_C Era wp) E=0. (45)

expectation values. We may therefore ignore this term for

practical purposes. Defining=2+/¢ 7 we find from Eq.(37)  This is identical to the equation of motion for the quantum

that$ satisfies the differential equation fog(y), the modi-  field in the ARS model when we equatazf) to their m?.

fied Bessel function of order zefd0]. The solution of in- From this perspective the ARS equation of motion describes

terest forF(L,t) is then[9] the interaction of the electromagnetic field withunbound
electrons > wy) per unit volume. However, the usual

. o) (L, ) plasma dispersion formula?= 1—w,2)/w2 for the refractive
F(L,t)=|2miNd -~ fo dz's(L—2",0)lo indexn is replaced in this case by
X[wp\(ZT)(t—2'Tc)]6(t—2'Ic).  (39) n*=1+wy/w?. (46)
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This is a consequence of the assumptige=1; had we as- 3(z,t)=8(z,tg)e AP
sumeds,= —1 we would have obtained the familiar plasma
dispersion formula. d A+ip . id
To describe the growth of the quantum noise with time in TR AT R F(zO) - 732 o0 (51)

this model, we write Eq(45) in the form

As will be clear from the analysis that follows, this approxi-
mation implies the undistorted propagation of the incident
pulse at the group velocity,, as assumed by CKK.

From Eq.(32),

9’E
(97'1(5’7'2

m? .
—TEZO, (47

wherer,=t—2z/c, mp,=t+2z/c. In terms of the independent A A

varlabley_=m\/rlrz, Eq. (47) has solu_tl_ons that are Ime_ar i+ EE; ZwiNdﬂ S(ztg)e Bt 1 grz
combinations of the zero-order modified Bessel functions 57 ™ ¢ st C 10 2
o(y),Ko(y). For larget, the vacuum expectation value

. 1
R 2mt +i[n(w)—1]=F+ ———)—, (52
2 200 ) e — c C vgy dt
(Ez0)=1§y)~ 5 (48) ‘
where

so that the quantum noise grows exponentially in time from
the initial fluctuations of the vacuum field, the fluctuations 4rNdPw, B
present before the medium in the ARS model is “inverted.” 9="%c A g2 (53

IV. SIGNAL AND NOISE is the gain coefficient for propagation of a field with

We wish to determine to what extent the observation Otfrequencyw in the inverted medium. We have used Eq.

the superluminal group velocity considered by CKK will be (15) for t'h.e reliractlve Ln,dem((:)[i(a)rlq] Ez(/]c 7 fo[ vg/C

affected by quantum noise. The system of interest is de= 1. Writing Ii(lz,tz)lzlf (z,t)er™m %" and §(z,1o)

scribed by the Heisenberg equations of mo@h and(32). =35 (2,to)e/"(¥)~1*7¢ yields an equation in terms of the

We approximate’r, by 1, assuming that pulse durations ~ Primed variables in which the ternin(w) —1](w/c)z asso-

and transit timed./c are sufficiently small that deexcitation ciatéd with phase velocity is eliminated. Then, ignoring for

of the initially inverted atoms by radiatiofor any other de- pracpcal purposes the difference between the primed and

cay processis negligible. The situation here is different Unprimed variables, we have

from that describing the onset of SF in tha} the detuning R R

A is not zero but is instead lard&ec. 1), and(b) the initial JF 1 0F g. _wo) . —ia—ip)t—ty)

state of the field is not the vacuum but corresponds to a short gz + vyt 2 F+|27iNd-—|8(z,t0)e ,

pulse of radiation from some external source. (54)
The equation fog(z,t) in the present model is

and therefore

5 ] o id.
—=—|(A—|B)s—gF, (49

L F(zt)=F(0t—2z/v,)e%”?

or +

w z ’
27riNd?0)J dz'8(z ,t)ed 22
0

5(z,t)=8(z,tg)e A 1A"10)
X eii(Aiiﬁ)[tftof(zfz’)/vg]0(t—t0— (z—2')lvg)

id [t . A gt
—— | dt'F(zt)e@HE-u_ (50

7l =F(0t—2/vy)e9”+F (z,1), (59

t, is some initial time, before any pulse is injected into thewhere the subscripts and n denoted signal and noise, re-

medium. We take (z,t,) =0, although of course what this SPECtively. Here
really means is that there is no nonvanishing field or inten-
sity in the medium aty, so that for practical purposésor- = (z,t)=
mally ordered expectation valyese can in effect ignore the me
operatorﬁ(z,to) in the equation foé(z,t). 2 '
The pulse is assumed to have a central frequenapd to X J dz'8(z',ty)ed® 272
have no significant frequency components near the resonance 0
frequency wg: |A[7,>1. We assume thafA|7, is large CHA—iBt—to—(z=2 Vo g] p(s — 5 — (5 7
enough that we can approximate EgO) by integrating by xe TO(t=to=(2=2)vy)
parts and retaining only the leading terms: (56)

ZWiNdﬂ>
C
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2
L
— e 2B(t-tp)
T

is a quantum noise field associated with the quantum fluc-

tuations of the atomic dipoles. (Fl(z)Fn(z,1))=
To appreciate the significance gfas defined by Eq53),

consider the gain coefficiemy for a radiatively broadened i

transition of frequencywy and radiative decay rate 744 XJ dz ed(z—2")g2B(z=2")lvg

=2p. For light of frequencyw=wy—A, z—uvg(t—tg)

w
27Nd—
C

2
NS 28  4wNd’w, B wo| "N ¢
=— = 5 =|2md—| — —(e%d'—e 2,
Sy YR L c) s2p
if we assume that all thBl atoms per unit volume are in the (59

upper state of the amplifying transition. Thgg=g, i.e., g
is just the gain coefficient for amplification by stimulated
emission. We note also that, from Ed.7),

where we have used the relatiof8) andN=NSLand, to
simplify the notation, we have takeg= 0.
Since the atom and field are initially uncorrelated, i.e.,

1 i) (59) (FT(0t=2/vg)8(to)) = (F1(0t=2/vg))(§(t0) =0,

(60)

in the case under consideration where the amplifying transiwe have, at the end of the amplifier,

tion is radiatively broadened and the detuning is large com- . + . -t N oL

pared with the gain bandwidth. (FULOF(L, 1)) =(Fs(0t—L/vg)Fs(0t—L/vg))e
The operatoB(z,ty) has the expectation-value properties -4 A

(B6) and (B7) of Appendix B. These properties imply +(Fa(L DFn(L.1) (61)

(Fn(z,t))=(Fl(z,t))=0 and and the signal-to-noise ratio

(FLOt=LIvgFy(0t—Livg)ed  (FLOt-L/vg)Fy(0t—L/vg))est

Rep(L )= =
b0 (EHLDEL(L) (2mdwo/c)(N/S)(c/2B) (69— e~ 26L1vs)
~ (FLOt=LIvg)Fy0t—LIvg))ePtetbgt  (FI0t—L/vg)Fy(0t—Llvg)) ©2
(2mdwq/c)?(N/S)(c/2pB)(e2hic- gl _ g=2BLIvg) (27dwq/c)’NL/S '
|
In the denominators we have takeal /v for the time over  Thus
which the atoms radiate, and have used the fact that
2B(llc—1hbg4)L=gL, the difference of two numbers that q ¢ . 2 2/ 27d%w, -1
themselves are small according to our assumption that propa- Rsn(L,t)= N —e (7t ’%(WNSL>
gation times are small compared with the single-atom radia- TpNT 9
tive decay rate, is much less than 1. q dc \ ¢
The numerator in Eq62) can be related to the expecta- :_(T)_e—ﬂ—uvg)z/nﬁ
tion valueq of the number of photons in the incident signal Jr wpl7p/ Vg
pulse as follows. The expectation value of the incident signal
intensity is _ 9 7R ie_(t_,_,ug)zhg 65)
V7o vg ’

_ Vg 2 - _ —t2/72
Is(0)= E(FS(O,t)FS(O,t»—IOe P 63 \where we have used EQ4) [11].

Among the criteria given by CKK for the observation of a

for a Gaussian pulse of duratian . Requiring that the en- Superluminal pulse is that "The probe-pulse duratfag]

ergy flux [*, dtl(zt) be qho/S=qfiw,/S implies |, ~ Must not exceedr=4c/Lwy.” This criterion implies, from

=qﬁw0/(Srp\/;) and therefore Eq. (§5), thatRSN(L,t)B(q/\/;)clvgI and thgrefore that it ?s

possible, even fog~1, to have superluminal propagation

with Rgpn(L,t)>1 if the pulse duration is short enough,

e—(t—L/ug)Z/ﬂrs. <7rClvg.

ngTp\/; In order to relate this conclusion to the ARS result, we use

(64) Eq. (17) to write Eq.(65) as

- R 2mhwg
(Fe(0t—LIvg)F{(0t—Llvg))=q———F—
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T To establish the relation to the ARS approach we return to
Rsn(L,t)= a4 P e (t-Livg?my our calculation of the noise intensity, using now antinormall
SN Ic—1)(L/c)AZ72 > . . Y, y
Vr (vg p ordered field operators instead of the normally ordered op-
(66) erators used before. Thus we consider now the expectation

- ~t H -t - H
We see from this expression that, if we impose the ARSIAL® (E (2 () Beel P (08 (5): I RS e
condition (2), i.e., vg/c—1)L/c>7,, then PP P piay no exp ’

as can be seen from E(5) and the fact that

a 1 ., 22 (8(2' 10)8"(2",1))=0 (69)
1 (t—Llvgy) !
Rsn(L,t) < \/;mze o’ "p, (67) ' . o
for excited atoms. In this case, however, the initially unoc-
cupied modes of the field make a nonvanishing contribution

so that, given also the condition ¢ |7, discussed before ¢ 5 consequence of non-normal ordering:

Eq. (51), the signal-to-noise ratio will be very small when

the ARS condition for strong distinguishability of superlumi- (IA:(Ot— L/v, ) ET(0t—L/v )
nal propagation from propagation at the speed c is satisfied ’ g ’ g
In fact, if (vq/c—1)L/c>7, and thereforeRg\(L,t) is 2mhwy - "
very small forq~1, then sz S| (84(0)a)(0))edlwrt
L/c vqllvy vgqT 27hw
tUrg=—=-2—f=92 (69) =3 o lg(@L+1], (70)
TR C TR C TR k SI

which, from Eq.(65), must be large. Then the SF noise mustWhich follows from Egs.(26) and (28) and the approxima-
be exponentially larg¢Eq. (41)]. It follows thatq must be  tion gL<1 upon which Eq(65) is based. The contribution
exponentially large in order to maintain a signal-to-noise rafrom the term that does not vanish las-0 can be ignored,
tio greater than unity. This is consistent with the ARS con-as it corresponds to vacuum quantum naiseergy 37wy
clusion that “for the signal amplitude to be larger than theper modgthat is present even in the absence of the amplifier.
amplitude of the fluctuations at the observation time, the sigln other words, the quantum noise of the field in the presence
nal amplitude should be exponentially larggs)]. of the amplifier is

Our results are therefore in agreement with those of ARS .
in that, if we require the separation of the superluminal pulse (F(0t—2/vg)F'(0t—2/vg)),
and a twin vacuum-propagated pulse to be much larger than

the pulse duration, the signal-to-noise ratio will be very => Zthkg(wk)L_) | fdethg(w)L
small at the one- or few-photon level. On the other hand, the xSl 2mc SI

results are not inconsistent with those of CKK: even at the 2wnd | ZNL = P

one-photon level we can achieve a signal-to-noise ratio ;W( 0 ) _f 0, (72)
greater than unity if this separation(v,/c—1)L/c] is c c Jo AHB

smaller than the pulse duratiaf [Eq. (66)]. ) o .
where we have gone to the mode continuum limit, approxi-

. . o i matedw by wq in the numerator of the integrand, and used
Physical origin of the noise limiting the observation Eq. (53) for the gain coefficient. Performing the integration,
of superluminal group velocity we obtain exactly the noise term appearing in the denomina-
Note that, when we set the timiein Eq. (42) for the  tor in the last line of Eq(62). But now the noise is attribut-
short-time SF noise intensity equal to the “observationable to the amplification of vacuum field fluctuatidds].
time” L/c, we obtain exactly the noise intensity appearingin  Thus we can attribute the quantum noise that limits the
the denominator of Eq(62) [12]. Thus the quantum noise Observation of superluminal group velocity to either the
that imposes limitations on the observation of superluminafuantum fluctuations of the field in the inverted medium, as
group velocity is attributable to the initiation of SF. We note do ARS, or to the quantum fluctuations of the inverted at-
that the SF noise propagates at the speed of light and @ms, as in our derivation of the signal-to-noise ratio. The
therefore luminal and delayed with respect to the signal. Thisituation here is similar to that in the theory of the initiation
is a manifestation of a general result obtained below irof SF, as discussed by Polder, Schuurmans, and Vrgien
Sec. V. or, as noted by those authors, to the theory of spontaneous
emission by a single atofri4].
Operator ordering and relation to ARS approach

Less obvious, perhaps, is the relation between the quan- Limit of very small transition frequency

tum noise we have considered—which stems from the Since the origin of noise in the optical amplifier is asso-
atomic dipole fluctuationsharacterized by EqgB6) and ciated ultimately with spontaneous emission, the question
(B7) of Appendix B—and the quantum noise of ARS, which arises as to whether the signal-to-noise ratio might be in-
is attributed to theqguantum fluctuations of the field creased by employing a transition having a very small tran-
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sition frequencyw, and therefore a very large radiative life- | Uc |

time. Indeed, sinceuf)ocwo, the second line of Eq(65) ’ |

suggests at first glance th&gy— in the limit wy—0. /\ /\
However, Eq(16) shows thav ;— c in this limit: the super- t
luminal effect itself becomes weaker as the spontaneous L,

emission rate is made smaller.

In this connection we invoke once again the foi®6) of @ ()

the signal-to-noise ratio. If we assurh?l 7p>1 in order that FIG. 1. Incident(a) and transmittedb) signals for a propagation
the pulse does not undergo substantial distortion as a consgngthL and group velocity ,>c. It follows from the causal con-
quence of strong absorption, then nection between the two signals that the shaded portiofbjofs
completely determined by the shaded portion (af. If L(1/c
Rey(L.)<q C7p _ (72) —l/vg)' is mL_Jch Ia}rger than the pulse duration, t_he peak_ of the
(vg— c)L/c transmitted signal is reconstructed from a small tail of the incident
pulse.

In other words, the signal-to-noise ratio must be smaller than

the number of photons in the incident pulse times a factor Suppose thawv,>c and that we let the wave packet
equal to the length of the vacuum-propagated pulse dividegropagate for a tim& long enough that a superluminal sig-
by the separation of the vacuum-propagated pulse and theal can be clearly identified. That is, we assume that at
pulse emerging from the amplifiandependent of the atomic =T,

transition frequency or the radiative lifetimét the one- or

few-photon level the signal-to-noise ratio must therefore be Wh(x,T)~0. (76)
less than unity under the ARS criteria for the observation of
superluminal group velocity, regardless of the frequency oNow
strength of the amplifying transition. (W(T)[W(T))=(¥(0)|¥(0)) (77)
V. UNITARITY AND SUPERLUMINAL PROPAGATION due to unitarity, and thus

We now turn our attention from the specific example of o o
the optical amplifier to some general features of superlumi- j dX’l‘I’(X’,O)|2=f dx'|W(x',T)[2
nal propagation that follow generally from the unitary evo- o o
lution of the state vector, considered here within first quan- o
tization. %J dx’|[wS(x’,T)|%. (78)
The time evolution of a wave packet can be formulated in cT
terms of a unitary operatads(t) or equivalently in terms of a

coordinate-space propagalBtx—x',t) = (x|U (1) x'): Physically, this means that the superluminal sigl&(x, T)

is about as large, or contains about “as many photons,” as
the initial wave packet.

We now combine the two underlying premises of causal-
ity and superluminal propagation as they are defined by Egs.

W (x,t)=(x|¥(t))= J:dx’G(x—x’,t)\If(x’,O). (74) and (76). Using Eq.(73) for x>cT, we write

W (1)) =U(1)[¥(0)),

0
(73 xlfs(x,T)zf dx'G(x—x",T)¥(x’,0)
The assumption that the propagator vanishes identically out- o
side the light cone implies that o
+j dx' G(x—x",T)¥(x",0). (79
G(x—x'>ct,t)=0. (74) °

The first term vanishes because, according to (Z4), the

Given an initial wave packet centered arouxw X,<0 at integrand differs from zero only &' >x—cT>0. Thus

t=0, we assume that at a later tirie O it will be centered

aroundXy+uvgt, as in the example of pulse propagation in S o

an inverted medium. v (x,T)=f7 dx'G(x—x",T[O(x")¥(x",0]. (80

We divide the wave packet into two parts, which we label

as“;uperlummal” (S and “luminal” (L), in the following  This formulates the notion, which is essential to the ARS

way. argument, that for aausal[i.e., Eq.(74)], superluminal sig-
nal [Eq. (76)], the wave packet is reconstructed from its tail

US(x,T), x>cT [Eq. (76)] b

W(x,T)= (75) [Eq. (80)]. This rather remarkable reconstruction of the sig-
' vh(x,T), x<cT. nal propagated without distortion and witkuperluminal
group velocity is especially evident in the temporal domain
WS vanishes if the group velocity,<c. [15]. (See Fig. 1.
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The construction(80) of the superluminal wave packet After a time T, W (x,0) evolves intoW(x,T), ®(x,0) into
from the tail of the initial wave packet motivated ARS to ®(x,T), andR(x,0) into R(x,T). The time evolution is lin-

define anothertruncatedinitial wave packet: ear and
O (x,00=0(x)¥(x,0). (81) V(X,T)=R(X, T)+D(x,T). (89
The two different initial wave functions, ®(x,0) and Fourier transforming into momentum space, we define
V¥ (x,0), give the same superluminal signal: g(k), ¢(k), andé(k), by
\If(x>cT,T)=<D(x>cT,T)=J’w dx'G(x—x',T)d(x’,0). \If(x,t)EJm dk g(k)exdi(kx—wt)], (90
h 82 h
Equation (82) implies what ARS callamplification a CID(X,t)Eﬁ;dkg(k)exp{i(kx—wkt)], (92

“small” signal propagates to become a “large” signal. Af-

ter all, ®(x,0) is “made from a small number of photons,” .

while we have just seen thal(x>cT,T) has about the R(X,t)zf dk &(k)exdi(kx—wyt)], (92)
same number of photons as the nontruncated initial wave —o

packet. We note thamplification in this sense is a neces- _ . )

sary consequence of a superluminal group velocity From these definitions it is straightforward to show that

One might be tempted to write E¢B2) symbolically as

g(k’)
dk'————, 93
|®(0))—|T(T)), (83 f k—k'—in 3

where— denotes time evolution undé&r(T). This would be +i (e g(k’)
incorrect: the truncated initial wave pack®(x,0) is a per- &(k)= ZwJ 'm, (94)

fectly well-defined initial state, but iloes not evolvénto

S . - . .
W(x,T); part of it evolves luminally. It will prove conve- \here 5 is an infinitesimal positive number. From the iden-
nient to introduce “superluminal” and “luminal” parts of
the truncated wave packet in a manner similar to the decom-

position (75) used for the complete wave packE(x,T): -1 1
— + — =
k—k'—inp k—=k'+ign

—2mio(k—k'), (95)
dS(x,T), x>cT

P T)= ®L(x,T), x<cT.

(84) it follows that

We note that, while the superluminal part of the time- g(k)=¢(k)+ &(k). (96)
evolved truncated initial state is the same as the superluminal
part of the time-evolved nontruncated initial state, the lumi-Eduations(90)—(94) can be written as well in the following

nal parts of these signals differ: way:
S p— S oo
DS(x, T)=WS(x,T), (85) \If(x,t)zf_ dk oK) (1), @7
dL(x, T) =W (x,T)~0. (86)
That is, while the luminal part of the time-evolved complete CD(x,t)Ef dk g(k) ¢ (x,1), (98

wave packet approximately vanisheg"(x,T)~0], the lu-

minal part of the truncated wave packét;(x,T), does not. .

We show below that, on the contrary, it grows exponentially R(x,t)EJ dk g(k) p(x,t), (99)
with time. —o

Momentum space: Normal and unstable modes where

We are comparing the time evolution of two different (X ) =exdi(kx—wyt)], (100
initial wave packets¥(x,0) and ®(x,0) where ®(x,0)

=0 (x)¥(x,0). Itis useful to define still another initial wave exfli(kx—w,t)]

packet, dr(X )= J’ dek —— =7 o (102)
R(x,0)=0(=x)¥(x,0). (87) +i [ exgi(kX—w,t)]

Clearly, Pk(Xv"):Z—J_Oc KKk—+|77’ (102
Y (X0 =RX,0+®(x,0). (88) (D= GG+ pilx,1). (103
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Fort=0 we obtain, as required by their definitions, branch cut on £ m,m). After deforming the contour and
isolating contributions from this branch cut, we use the resi-
b (X,0)= O (X) ¢ (X,0), (104  due theorem and obtain
pr(X,00= 0 (—X) 1 (X,0). (105) pr(x<ctt)=exdi(kx—wgt)]—1£(X,1), (111
We now invoke the premises of causality and superlumi- Pr(x<ctt)=12(x1), (112

nal propagation, focusing on the ARS model involving the

dispersion relation where
N2_— 2 [ exdi(kx—ctyx?—m?
w=ekE-m?. (109 Iﬁ(x,t>=zfd" MKK K iKn N s
c Tk

As long as|k|>m this dispersion relation describes normal

oscillating modes. Unstable modes exist faif<m. One 4 exgi(kx—ctyx®—m?)]

might attempt to avoid the unstable modes altogether by Ik(x't):ﬁfcd" k—k+in . (119

choosing ag(k) that vanishes or is negligibly small fok|

<m. This can be done, for example, by choosing an initialand [ -d« is a closed contour circling counterclockwise the

state with a Gaussiag(k), centered arounk, and having a branch cut on the line segment (m,m) while not circling

width Ak such thatko+ Ako|>m. This corresponds in the the poles ak=i». Each of the integrals(x,t) and!{(x,t)

case of the optical amplifier to a pulse detuning large comis dominated by a saddle point on the imaginamxis in the

pared with a radiative decay rate. It turns out, however, agomplex « plane and exponentially grows with time. Com-

might be expected from the example of the optical amplifierpining terms, we obtain

that even for such an initial wave packE(x,0) the unstable

modes play an essential role in the time evolution of both the o

truncated and the residual wave pack®(,t) andR(x,t), R(x,1)=0(ct=x)¥(x,t) - O(ct—x) J_mdk glkIE(x, 1),

respectively. (115
Consider the integrals in Eq6L01) and (102 as contour

integrals in the complex plane. The integrands, analytically o

continued into the complex plane, each have a single, q)(X,t):®(X—Ct)‘1’(X,t)+®(Ct—X)J dk g(k)I £(x,1).

simple pole above or below the reabxis atk=k=*i#, and o (116)

both have two branch points at=*+m, which we connect

with a branch cut on the line segment n,m) on the realkk  The integrals give exponentially growing contributions to the

axis. The contour from—o to o should pass, as usual, Juminal parts of both the truncated and residual wave pack-

slightly above the reak axis (at a distance smaller thaw). ets. Our choice ofy(k) enforces“(ii 7]|>m’ and, as a re-
As shown below, this ensures causality according to Eqgylt,

(74). In the limit of infinite ||,
lim w,=cx, (107 Lcdk g(k)[12(x,t) = 1£(x,)]=0. (117

|K‘—>oo

We see therefore that, when the residual and truncated wave
packets(115 and(116) are combined to form the complete
wave packet¥(x,t) [Eq. (89)], the exponentially growing
luminal parts cancel each other.

and on the circle at infinity,
KX— o, t— k(X—Cct). (108

For x>ct we can therefore close the contour integral in the
upper half plane, whereas far ct we close the contour in
the lower half. In both cases the contributions to the integral We are studying the time evolution of three wave packets:
from the arcs at infinity vanish. the complete wave pack®t(x,t), the truncated wave packet
Using first the residue theorem far>ct, we see imme-  &(x,t), and the retarded, residual wave pacl(x,t).
diately that the super-luminal parts of the time-evolved re-These three wave packets can be decomposed in two differ-

Discussion and implications for quantum noise

sidual and truncated wave packets satisfy ent ways. In Eqs(90)—(94) they were decomposed in the
usual way via a Fourier transform at the initial tirrre O into
pk(x>ct,t) =0, (109  normal and unstable modes. The Fourier components of the
truncated wave packef(k) and the retarded wave packet
d(x>ct,t)=exdi(kx—wt)]. (110  &(k) are related to the Fourier components of the complete

wave packeg(k) by Egs.(93) and(94), respectively. If we
These results are not surprising, as they simply reformulatehoose to construct the complete wave packet from normal
Egs.(74) and(82), respectively. Fox<ct, where we close modesg(k), where|k|>m, the truncated and retarded wave
the contour in the lower half plane, the integral encircles thepackets will have a strong unstable-mode component in
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them. This was discussed by ARS, who pointed out thatfime can be expected to be accompanied by substantial quan-
because of the unitarity of the time evolution, the unstableum noise, as ARS observed using a different decomposition
modes are accompanied by an enhancement of the quantushthe same truncated wave packet.
noise. The decomposition presented here therefore leads us to
In order to identify the noise in a space-time picture weconclude that the exponentially growing noiseriestly*lu-
employed in Eqs(97)—(102) a less common decomposition. minal” and will be delayed compared with the superluminal
The difference between Eq@7)—(102 and Eqs.(90)—(94) signal. This conclusion is consistent with the exponentially
lies in the order of integration. Both decompositions can begrowing noise due to SF in the case of the optical amplifier
derived from [12]. Looking at the complete wave packet, we observe that
contributions from the time-evolved residual wave packet
_ |- Lo will cancel in the luminal regiorx<<ct the contributions
\If(x,t)_Jlxdkg(k)exm(kx od)], from the time-evolved truncated wave packet. However,
while the signal in this region vanishes by the cancellation of
—i e = g(p)exi(gx—wgt)] the two exponentially growing contributionthe noise does
CD(x,t)Ez—f dqj dp —— , not cancel—and may be very larg&6]. We note that an
e o a=p=t7 amplification of the signal in the superluminal region does

(118 occur, but our decomposition indicates that this amplification
_ i is mostly a result of a rather efficient constructive interfer-
Rix.t=— [ = g(p)exdi(gx—wqt)] ence of oscillating wave functions, while the luminal parts of
(x,t)=5— dq dp ——— . .
27 ) —w g—ptin the time-evolved truncated and retarded wave packets appear

(119  to be controlled by the unstable modes.

Our analysis in this section, being based on a first-
Equation(97) describes a wave packet made of a superposiquantization approach in which the wave packetscanam-
tion of oscillating wavesy, (x,t) =exdi(kx— )], with the  bers, not operators, has not dealt explicitly with quantum
momentum distributiorg(k). In Egs.(98) and(99) each of noise. However, as in the theory of the initiation of super-
these oscillating waves is replaced by a new wave functiofluorescenc¢9], the linearity of the model resulting from the
d(x,t) and py(x,t), respectively. The weight function for approximation that there is no change in the atomic inversion
the superposition forming the respective wave packets reover the time scales of interest allows a treatment of the
mainsg(k), butk has lost its meaning as a physical momen-operator fields as classical, fluctuatiogiumber fieldg17].
tum. At any time, = ¢+ py. At t=0, ¢, andp, are ob-  Thus the shaded part of Fig(d), the “tail” from which the
tained fromy, by truncation. At a later timé>0, one can superluminal signal evolves, becomes in such a treatment the
distinguish between two regions. In the superluminal regioriruncated signal we have considergds a fluctuating noise
wherex>ct, ¢,= i, andp,=0. In the luminal region where field. In the limit of a very weak incident signal pulse, the
x<ct, ¢k7’: wk: While ¢k is everywhere a periodic wave Superluminal Signal will be dominated by the noise part
function oscillating in space and times, is in this region  rather than the signal part of the tail shown in Fige)1and
exponentially growing as a function of bottandx; it is not the signal-to-noise ratio will therefore be small, consistent
oscillating in this region. In the same retarded regigrhas with the ARS results as well as the results obtained in Sec.
a periodic oscillating component equal #g and an expo- !V for the model of an optical amplifier.
nentially growing component that exactly cancels the contri-
bution of ¢, to this region.

The three wave packets we consider are formed by super-
positions of these different wave functions with the same We have considered the effects of quantum noise on the
weight functiong(k). They evolve in time in the following propagation of a pulse with superluminal group velocity. In
way. In the superluminal regiox>ct the oscillating wave the case considered by CKK], where an off-resonant, short
functions = ¢ =exdi(kx—wd)], with o, given above, pulse of durationr, propagates with superluminal group ve-
combine to form a wave packet moving at the group velocitylocity v in an optical amplifier, we calculated a signal-to-
vg>C; this is the superluminal signal. In the luminal region noise ratioRgy and found that, for an incident pulse consist-
x<ct the oscillating wave functions combine to cancel eaching of a single photonRgy<1 under the conditioniyy/c
other. This cancellation ensures the unitary time evolution of-1)L> 7, assumed by AR$8] for discrimination between
the complete wave packet. The residual part of the completthe pulse propagating in the amplifier and a twin pulse
wave packet is essential for this cancellation to occur. propagating the same distance in vacuum. This result is fully

Using the language of truncated wave packets introducedonsistent with the conclusions of ARS based on general
by ARS, we see that the superluminal signal is constructedonsiderations and, in particular, the reconstruction of the
completely from the time evolution of the forward tail, i.e., superluminal pulse from a truncated portion of the initial
from the time evolution of the truncated wave packet. Thiswave packet. However, if we impose the weaker condition
truncated wave packet evolves with time into a combinatiorthat (vy/c—1)L=7,, then our conclusion is th&g\>1 is
of the superluminal signal and an additional, exponentiallypossible. However, in this case superluminal group velocity
increasing part in the luminal regioxn<ct. As discussed is observable in the arrival statistics of many photons, not per
below, this additional part that grows exponentially with shot.

VI. SUMMARY
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We showed that, in the case of the optical amplifier, the From the formal solution of the Heisenberg equation of
quantum noise is attributable to the onset of superfluoresmotion for &,(t) we obtain, using Eq(26),
cence, and could be associated either with the quantum fluc-
tuations of the field, along the lines of the ARS consider-

ations, or with the quantum fluctuations of the atomic (Z]!t) E(+)(Z,. Ek on 2 e'k(zj=2)
dipoles.
We then presented some general considerations based on . ot 0
unitarity and causality and introduced a different wave- XJO dt’o;(t")e'x
packet decomposition. In particular, we considered the “re
sidual” wave packet in addition to the complete and trun- EE§)+)(ZJ 't)+é(s+)(zj 1). (AB)

cated wave packets considered by ARS. This led to the

conclusion that the noise is mostly luminal, and that in theqere

luminal region the truncated and residual signals grow expo-

nentially but cancel each other as required by unitarity, but 5 (1) ,
that thenoiseis not canceled. For the case where the propa- Eo (Z’t):'Ek:
gation time is large enough for the superluminal signal to be

clearly distinguished from a twin pulse propagated at thgs the homogeneou&'vacuum™) solution of the Maxwell
vacuum speed of light, our conclusions were again consster& uation for the quantized field, WhlIE(j)(z,t) is the

with those of ARS. “ ” ; : .
Note added in prooKurizki, Kozhekin, and Kofmah18] source” part. Now in the mode continuum limit

have reached conclusions related to ours when the amplifi-

cation is due to optical phase conjugation or stimulated Ra- Ek—>(I/27-r)j dkz(l/ch)J do,
man scattering rather than population inversion. Their em-
phasis is on the fact that, for sufficiently strong signals, the .
exponentially growing quantum noise does not prevent th%u)(z — 2mid
observation of(causal superluminal pulse reshaping as a I Sl 2@ci=
transient effect.

12

w . .
‘| a(0)e e (A7)

| Nt

dt’ &;(t")
0

xfm deo welelt’ ~t+(z-2)ic]
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APPENDIX A S¢ Sc 7
The Heisenberg equations of motion for the Pauli opera- X0(zj—z)0(t—[z;—z]/c)
tors follow from the Hamiltoniar(25) and the commutation Ide
relations[ &, &,]=2i5,, etc.: o So () +E Mz b). (A8)
Oy =—wobyi, Al .
X o7l (A) HereE'(*)(z; ,t) denotes the field, at the positianof atom
) 2d . j, that is produced by all thether atoms of the medium.
Tyj= wodyj+ 5 07E(Z),1), (A2) We now use this result, and the operator identity
0,;0j(t)=—a;(t), in Eq. (A4). The result is
5, -2 E(z 1) (A3) x o . id, e
Z) el IR O'j(t):_l(x)oa'j(t)_,BO'j(t)_%O’Zj(t)E (Zj ,t),
or, in the rotating-wave approximation, (A9)
iq where
&]=—Iw061—??)’zjé(+)(zj ,t), (A4) ’7Td2(1)0
B= She (A10)
= — 2L B 15— 5TED (2 A5
0=~ 3 [BE(Z00 =51z, 01 A8y EM(z,1)=ES(z,t) +E' (g 1).
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Similarly, using the operator identityﬂ(t)&j(t)z%[l 52'(0:—2[3[1“‘ F,i(1)]
+&,j(t)], we obtain from Eqs(A3) and (A8) . .
2id . .
R R —ZTEYz )& (1) -5 .
() =—2B[1+5,(1)] 7 LF(Z, 08 ()-8 (DF(z,0] (ALY
A e Ay AT E () o in the rotating-wave approximation. The detuning between
A [E" (7,081 =6 (VE(Z D] the TLA resonance frequenay, and the central field fre-

(A11) quency w is defined asA=w,—w. Replacing$;(t) and
a,j(t) by 5(z;,t) and 7,(z; ,t), respectively, oi§(z,t) and
Since the expectation valugr,) of the TLA inversion op-  0,(z,t) in the continuum limit, we obtain Eq$32) and(33).
erator isp,—p;=2p,—1, wherep, and p, are the lower-
and upper-state probabilities, respectively, it follows that 2 APPENDIX B

's the radiative(spontaneous emissipdecay rate: For the initial state in which all the TLAs are in the upper

1 27d%wq state(5;(ty))=0 and(éﬂ(to)éj(to))z dij - Then the operator
—=2B8=——. (A12)
Trad Shc Nt
This is not the more familiar Einstei coefficient for spon- = 2’1 Silto) B1)

taneous emissionA=4|d|?w3/3hc, because it gives the o
spontaneous emission rate into modes propagating unidiregatisfies
tionally with a single polarization, wheredsis the sponta- -

neous emission rate into all possible field modes in free (8)=0, (B2)
space. In fact, ,qis the spontaneous emission rate implicit Ny Np
in much of laser theory: the coefficientA/8x appearing in <§r:§>:2 2 <§-T(t )3i(to))=N (B3)
the standard expression for the gain coefficight), where R 0730 i
\ is the wavelength, is just /4 times the cross-sectional . .
areaS In the continuum limit
2 ~ Nt (L
()= % (N~ Ny £(2) = —— (N, Ny SE(») 5= | azse0, (B4
m Trad
(A13) N2 L ]
for (nondegenerajeupper- and lower-level population den- (8'8)= f;J dz’f dz'(8'(2' ,t0)3(2",to)), (B5)
sitiesN, andN,, respectively, an atomic line-shape function 0 0
L(v), and|d|*/3=d>. i and we can satisfy Eq$B2) and (B3) by taking
Finally we use the definition€8) and(30) of F ands to .
obtain (8(z,t9)) =0, (B6)
o . . ~ Id ~ ~ atror af ol _ L ’ "
§i()=—i(A=iB3(1)— +o7(OF (1), (AL4) (812 10)8(2" 1)) = - (' = 2'). (B7)
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