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Causal ‘‘superluminal’’ effects have recently been observed and discussed in various contexts. The question
arises whether such effects could be observed with extremely weak pulses, and what would prevent the
observation of an ‘‘optical tachyon.’’ Aharonov, Reznik, and Stern~ARS! @Phys. Rev. Lett.81, 2190~1998!#
have argued that quantum noise will preclude the observation of a superluminal group velocity when the pulse
consists of one or a few photons. In this paper we reconsider this question both in a general framework and in
the specific example, suggested by Chiao, Kozhekin, and Kurizki~CKK! @Phys. Rev.77, 1254 ~1996!#, of
off-resonant, short-pulse propagation in an optical amplifier. We derive in the case of the amplifier a signal-
to-noise ratio that is consistent with the general ARS conclusions when we impose their criteria for distin-
guishing between superluminal propagation and propagation at the speedc. However, results consistent with
the semiclassical arguments of CKK are obtained if weaker criteria are imposed, in which case the signal can
exceed the noise without being ‘‘exponentially large.’’ We show that the quantum fluctuations of the field
considered by ARS are closely related to superfluorescence noise. More generally, we consider the implica-
tions of unitarity for superluminal propagation and quantum noise and study, in addition to the complete and
truncated wave packets considered by ARS, the residual wave packet formed by their difference. This leads to
the conclusion that the noise is mostly luminal and delayed with respect to the superluminal signal. In the limit
of a very weak incident signal pulse, the superluminal signal will be dominated by the noise part, and the
signal-to-noise ratio will therefore be very small.

PACS number~s!: 03.65.Sq, 42.50.2p, 42.50.Lc
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I. INTRODUCTION

Chiao and co-workers@1–3# have shown that certain ‘‘su
perluminal’’ effects are possible without violation of sta
dard notions of Einstein causality, i.e., without conveyi
information faster than the velocityc of light in vacuum.
Such effects have been demonstrated experimentally in o
cal tunneling@4–6# and in an electric circuit@7#.

It has been suggested by Chiao, Kozhekin, and Kur
~CKK! @1# that an optical pulse can propagate superlumina
in an amplifier whose relaxation times are long compa
with the pulse duration. The dispersion relation they der
can be obtained directly, as follows, starting from the f
mula for the refractive index of a monatomic gas:

n~v!511
2pe2

m (
i

(
j

Ni f ~ i , j !

v j i
2 2v2 ~1!

for n(v)>1, whereNi is the number density of atoms i
statei and f ( i , j ) is the oscillator strength for absorption o
the i→ j transition of frequencyv j i . Near a two-level reso-
nance this becomes
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n~v!511
2pe2f

m

N12N2

v0
22v2 , ~2!

where 1 and 2 designate the lower and upper energy lev
respectively, andv05v21. Close to the transition resonanc
frequencyv0 ,

n~v!>11
pe2f

mv0

N12N2

v02v2 ib
, ~3!

when we include a dipole damping rateb. The ~real! refrac-
tive index near a resonance is then

nR~v!511
pe2f

mv0

v02v

~v02v!21b2 ~N12N2!. ~4!

Introducing the inversionw5(N22N1)/N, whereN is the
number density of atoms, and assuming a field sufficien
far from resonance that (v02v)2@b2, we have

nR~v!>12
pe2Nw f

mv0

1

v02v
, ~5!
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k5nR~v!
v

c
5

v

c S 12
pe2Nw f

mv0

1

v02v D
5

v

c S 12
vp

2w/4v0

v02v D , ~6!

k2k05
1

c
~v2v0!2

v

c

vp
2w/4v0

v02v
>

1

c
~v2v0!2

vp
2w/4c

v02v
,

~7!

and

V22KcV1 1
4 wvp

250, ~8!

whereK5k2k0 , V5v2v0 , and the ‘‘plasma frequency’
vp is defined by

vp
254pNe2f /m58pNd2v0 /\, ~9!

with d the electric dipole transition moment. Equation~8! is
the dispersion relation obtained by CKK.

We refer the reader to the CKK paper for a discussion
this dispersion relation. Here we simply note that Eq.~7!
implies the group velocity

vg5
dv

dk
5cS 12

vp
2w/4

~v02v!2D 21

, ~10!

so that, in the case of an amplifier (w.0), a short off-
resonant pulse can propagate with a group velocityvg.c.

Questions have been raised about the validity of the la
prediction at the one-photon level, which would correspo
to what CKK call an ‘‘optical tachyon’’ @1#. Aharonov,
Reznik, and Stern~ARS! @8# have presented general arg
ments, based on the unitary evolution of the state vector,
‘‘strongly question the possibility that these systems m
have tachyonlike quasiparticle excitations made up o
small number of photons.’’ They also consider a particu
model as an analog of the CKK system.

In this paper we address the question of superlum
propagation at the one- or few-photon level, and in particu
the role played by quantum noise in the propagation of s
extremely weak pulses. We begin in the following secti
with some physical considerations about the observability
superluminal propagation, and we briefly compare the A
and CKK models. In Sec. III we formulate the Heisenbe
equations of motion for the propagation of a short opti
pulse in an inverted medium, and briefly review some r
evant results from the theory of superfluorescence~SF!. In
Sec. IV we derive a signal-to-noise ratio for the case wh
an incident, Gaussian signal pulse made up ofq photons is
very short compared with the radiative lifetime and has
central frequency far removed from the resonance freque
of the medium. If we impose the ARS criterion for distin
guishing between superluminal propagation and propaga
at the speed of light, we find, consistent with their conc
sions, that the signal must be ‘‘exponentially large’’ in ord
to distinguish it from quantum noise. If the ARS criterion
replaced by a much weaker one, however, the signal-to-n
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ratio can exceed unity even for a one-photon signal pulse
suggested by CKK. We relate the amplified quantum fi
fluctuations of ARS to quantum fluctuations of the atom
dipoles in the case of the optical amplifier. In Sec. V, fo
lowing the ideas of ARS, we present some general consi
ations based on the premises of unitarity and superlum
propagation. ARS show that, when the group velocity e
ceeds the speed of light, the superluminal signal is rec
structed from a truncated initial wave packet, and that t
truncated wave packet has unstable modes. We show tha
truncated wave packet introduced by ARS propagates w
both luminal and superluminal parts, and that, while the
perluminal part is the reconstructed signal, the luminal p
has the exponentially growing parts corresponding to the
stable modes. In addition, we study the residual wave pa
formed by the difference of the complete and truncated w
packets. We show that contributions from the truncated
residual wave packets cancel in the luminal region, but th
unlike the signal, thenoisedoes not cancel, leading to th
conclusion that the quantum noise is mostly luminal rat
than superluminal. In the limit of a very weak incident sign
pulse the signal-to-noise ratio will be very small, consiste
with the conclusions reached by ARS.

It may be worth recalling that a primary reason for reje
ing the possibility of superluminal transmission of inform
tion is the requirement that causality be maintained wh
Lorentz transformations are made: superluminal transmis
of information would allow an eventA causing an eventB in
one reference frame to occurafter event B in a different
frame. Considerations of superluminal propagation theref
often raise questions relating to Lorentz invariance. Wh
and how should one include relativistic effects in order
ensure that physically meaningful results are obtained?

As in all previous treatments of pulse propagation in
inverted medium that we know of, we choose the refere
frame in which the atoms are at rest. The Lorentz invaria
of the fundamental, fully relativistic theory implies, o
course, that our conclusions do not depend on this spe
choice of a reference frame. Working in this frame, we tr
the response of the atoms to the field in the approximation
nonrelativistic quantum mechanics. The electromagn
field in this frame is also treated approximately, namely,
the slowly-varying-envelope approximation that is us
practically universally in the theory of resonant atom-fie
interactions. A different choice of reference frame would
quire us to start with the fully Lorentz-invariant equatio
and then make the slowly-varying-envelope and other
proximations as appropriate. These approximations
known to be very accurate unless, for instance, the li
pulse is extremely short, and to the extent that they are v
our results and conclusions are Lorentz invariant.

II. PRELIMINARY CONSIDERATIONS

The quantum noise limitations to superluminal propag
tion discussed by ARS were associated physically with sp
taneous emission in the case of an optical amplifier, a
could invalidate the CKK results in two ways. First, CK
assume that the atoms stay in their excited states as the
4-2
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propagates through the amplifier. Radiative decay of the
cited state will modify their ‘‘tachyonic dispersion relation
and, if the decay is rapid enough, can lead to a sublum
rather than superluminal group velocity, sincew in Eq. ~10!
can become negative. This can be avoided by using a s
ciently short pulse. Second, spontaneously emitted radia
might interfere with the measurement of the superlumi
group velocity by introducing substantial noise. It is this po
sibility that is addressed by ARS.

Although the ARS arguments are certainly compellin
they are based in part on ananalog of an optical amplifier
rather than a theory involving the interaction of the elect
magnetic field with an atomic medium. In particular, theirs
a model of a single quantum field rather than coupled ato
and electromagnetic quantum fields. The dispersion rela
associated with this model, and the criteria assumed by A
for the observability of superluminal propagation, lead to
conclusion, by analogy to an optical amplifier, that spon
neous emission noise cannot be avoided no matter how s
the pulse or the transit time through the amplifier. Spec
cally, the unstable modes appearing in their model—wh
‘‘are analogous to spontaneous emission in the optical mo
of an inverted medium of two-level systems’’@8#—will pre-
clude the observation of superluminal group velocity wh
the pulse is made up of a small number of photons;
quantum noise will be larger than the signal. In this sect
we present some physical considerations, motivated by
CKK and ARS analyses, for the observability of superlum
nal group velocity.

Following their Eq.~11!, ARS state twonecessarycondi-
tions for the observability of superluminal propagati
~c51 in their units!:

~1! vgT@1/dk, wherevg is the group velocity,T is the
time at which the wave packet is observed, anddk is the
spectral width of their initial pulse.

~2! (vg21)T@1/dk.
The first condition ensures that ‘‘the point of observati

@is# far outside the initial spread of the wave packet.’’ T
second allows us to ‘‘distinguish between superlumi
propagation and propagation at the speed of light.’’

In the ARS model, where the fieldf satisfies

]2f

]t2 2
]2f

]z2 2m2f50, ~11!

the group velocity is

vg5
k0

Ak0
22m2

, ~12!

wherek0 is the central value of the spatial frequencyk for
the initial pulse. Form,k0 we can approximatevg by 1
1m2/2k0

2, so that condition 2~and also condition 1! is sat-
isfied if

m2T@k0
2/dk@k0 . ~13!
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k0@1/T—the condition that the observation time should
much larger than the optical period of the pulse—then i
plies

mT@1. ~14!

Since formT@1 the amplified quantum noise grows exp
nentially ~see Sec. III!, ARS conclude that the ‘‘signal am
plitude should be exponentially large’’ in order to distingui
it from noise. Thus, according to ARS, the observability
superluminality for an input pulse consisting of only a fe
photons would be clouded by spontaneous emission noi

Consider now the implications of conditions 1 and 2 f
the actual system of interest, namely, a very short opt
pulse in an inverted medium. Can we satisfy these conditi
for observation timesshortcompared with the radiative life
time?

For a short optical pulse of central frequencyv propagat-
ing in an inverted medium (w51) with resonance frequenc
v0 , the refractive index is@Eq. ~6!#

n~v!>11
2pNd2/\

v2v0
[12

vp
2

4v0D
~15!

for vp
2/(4v0)!uv02vu[uDu. We are assuming thatuDu is

large compared with the absorption width, which in our ca
is the radiative decay rate. Equation~15! implies

vg

c
5S d

dv
@vn~v!# D 21

5
1

12vp
2/4D2 ~16!

and

vg

c
215

vp
2/4D2

12vp
2/4D2 5

vp
2

4D2

vg

c
. ~17!

Then conditions 1 and 2 of ARS become, respectively,

T

12vp
2/4D2 @

1

c dk
;tp , ~18!

~vp
2/4D2!T

12vp
2/4D2 @

1

c dk
;tp , ~19!

with tp the pulse duration. Both conditions can be satisfi
if, for instance,T@tp andvp

2/4D2 is not too small. To avoid
spontaneous emission during the observation timeT, takeT
!t rad, where t rad is the radiative lifetime of a single in
verted atom. Then the ARS conditions require that

t rad@T@tp . ~20!

As noted by CKK, there is another aspect of an inver
atomic medium that must be addressed, namely, super
rescence. SF is a collective phenomenon of the sample
whole. We shall denote byNT , S, and L the number of
atoms, the cross-sectional area, and the length of the sam
respectively, so that the density of atoms is given byN
4-3
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5NT /SL. If collisional and other dephasing mechanisms
sufficiently weak, an inverted medium ofNT atoms can emit
SF radiation at the rate

tR5t rad/NT , ~21!

i.e., the radiative decay time can in effect be smaller b
factor of NT than the single-atom radiative lifetimet rad as-
sumed in the discussion thus far. The peak of the SF p
occurs at a time@9#

tD;tR@ 1
4 ln~2pNT!#2 ~22!

following the excitation of the atoms. It would appear th
that the quantum noise associated with SF will be small

tp ,L/c,tR,tD . ~23!

We note for later purposes that

vp
25

8pNd2v0

\
5

1

t rad

NT

SL
Sc5

4

tR

c

L
, ~24!

where we have used Eq.~A12! of Appendix A for the single-
atom radiative lifetimet rad.

This brief summary lends support to the CKK suggesti
but obviously a more quantitative analysis is called for.
this end we now formulate, in the Heisenberg picture,
quantum theory of pulse propagation in an amplifier.

III. FORMALISM FOR PULSE PROPAGATION

We begin with the Hamiltonian forNT two-level atoms
~TLAs! interacting with the quantized electromagnetic fie
via electric dipole transitions:

Ĥ5
1

2
\v0(

j 51

NT

ŝz j2d(
j 51

NT

ŝx jÊ~zj !1(
k

\vkâk
†âk ,

~25!

wherev0 andd have the same meaning as before andzj is
the z coordinate of atomj. The carets are used to deno
operators. We consider a one-dimensional model in wh
the atoms occupy the region fromz50 to z5L and the field
is a superposition of plane waves propagating in thez direc-
tion. The electric field operator is given byÊ(z)5Ê(1)(z)
1Ê(2)(z), where

Ê~1 !~z!5 i(
k

S 2p\vk

Sl D 1/2

âke
ikz ~k5vk /c! ~26!

and Ê(2)(z)5Ê(1)(z)†. Sl, whereS, as before, is a cross
sectional area andl a length, is the quantization volume. F
simplicity we consider only a single field polarizatio
namely, linear polarization along the direction of the tran
tion dipole moment of the TLAs. âk andâk

† are the photon
annihilation and creation operators, respectively, for modk,
and theŝ ’s are the Pauli two-state operators in the stand
notation.
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We will work in the Heisenberg picture, in which th
time-dependent electric field operator satisfies

S ]2

]z22
1

c2

]2

]t2D Ê5
4p

c2

]2P̂

]t2 5
4pd

c2S (
j 51

NT ]2ŝx j

]t2 d~z2zj !

→ 4p

c2 Nd
]2

]t2 ŝx~z,t !, ~27!

where in the last step we have made the continuum appr
mation for the polarization densityP̂, assuming a uniform
atomic densityN. We now write

Ê~1 !~z,t !5F̂~z,t !e2 iv~ t2z/c! ~28!

and assumeF̂(z,t) is slowly varying in z and t compared
with exp@2iv(t2z/c)#. In this approximation

2i
v

c
S ]F̂

]z
1

1

c

]F̂

]t
D 1H.c.5

4p

c2 Nd
]2ŝx

]t2 eiv~ t2z/c!.

~29!

It will be convenient to use the atomic lowering and raisi
operators ŝ5 1

2 (ŝx2 i ŝy) and ŝ†5 1
2 (ŝx1 i ŝy), respec-

tively, such that@ŝ,ŝ†#52ŝz , and to write

ŝ~z,t !5 ŝ~z,t !e2 iv~ t2z/c!, ~30!

where the operatorŝ(z,t) is assumed to be slowly varying i
the same sense asF̂(z,t). Then, in the rotating-wave ap
proximation, we can replace Eq.~29! with

]F̂

]z
1

1

c

]F̂

]t
5S 2p iNd

v0

c D ŝ, ~31!

where on the right-hand side we have approximatedv by
v0 . This equation and the TLA Heisenberg equations

] ŝ

]t
52 i ~D2 ib!ŝ2

id

\
ŝzF̂, ~32!

]ŝz

]t
522b~11ŝz!2

2id

\
~ F̂†ŝ2 ŝ†F̂ ! ~33!

derived in Appendix A, form a closed set of operator equ
tions. They provide the basis for a quantum theory of pro
gation in either amplifying or absorbing media.

In the semiclasical approximation in which the atom a
field operators are replaced by their expectation values, E
~31!–~33! reduce to the well-known Maxwell-Bloch equa
tions. Otherwise, different limits can apply:~1! The limit of
b→0, D50, andŝz→1 considered below gives Eqs.~35!–
~37! implying superfluorescence when the initial state of t
field is the vacuum.~2! The limit of v@v0 gives the ARS
field equation, as discussed below.~3! Finally, in Sec. IV the
CKK case of large detuning,ŝz→1, and the initial state of a
very short incoming pulse is studied.

If the field central frequencyv is assumed to match ex
actly the atomic resonance frequencyv0 , so thatD50, and
4-4
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if we restrict ourselves to times short compared with
single-atom radiative lifetime@t rad5(2b)21# and assume
that the atoms remain with probability>1 in their excited
states over times of interest, we can ignore Eq.~33! and
replaceŝz(z,t) by 1 and Eq.~32! by

] ŝ

]t
52

id

\
F̂. ~34!

In terms of the independent variablesz5t2z/c andh5z,

] ŝ

]z
52

id

\
F̂, ~35!

]F̂

]h
5S 2p iNd

v0

c D ŝ, ~36!

implying

]2ŝ

]h ]z
5S vp

2

4cD ŝ,
]2F̂

]h ]z
5S vp

2

4cD F̂. ~37!

Equations~35!–~37! have been used in studies of the build
of superfluorescent radiation@9#. It will be useful for the
discussion in Sec. IV to briefly rederive here one of the m
important results of those studies.

Equation~31! has the formal solution

F̂~z,t !5F̂0~z,t !1S 2p iNd
v0

c D
3E

0

z

dz8ŝS z8,t2
z2z8

c D uS t2
z2z8

c D
5F̂0~z,t !1S 2p iNd

v0

c D
3E

0

z

dz8ŝ~z2z8,t2z8/c!u~ t2z8/c!, ~38!

where we have chosen the retarded Green function ove
advanced Green function in order to ensure causality. Heu

is the unit step function andF̂0(z,t) is a solution of the
homogeneous equation. We are interested here in the ex
tation value^F̂†(L,t)F̂(L,t)&, at the end (z5L) of the me-
dium. For SF the expectation value is taken over the vacu
state of the field, in which case the first term on the rig
hand side of Eq.~38! does not contribute to normally ordere
expectation values. We may therefore ignore this term
practical purposes. Definingy52Azh we find from Eq.~37!
that ŝ satisfies the differential equation forI 0(y), the modi-
fied Bessel function of order zero@10#. The solution of in-
terest forF̂(L,t) is then@9#

F̂~L,t !5S 2p iNd
v0

c D E
0

L

dz8ŝ~L2z8,0!I 0

3@vpA~z8/c!~ t2z8/c!#u~ t2z8/c!. ~39!
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In order to calculate ^F̂†(L,t)F̂(L,t)& we require
^ ŝ†(z8,0)ŝ(z,0)&, which we evaluate in Appendix B. We ob
tain @9#

^F̂†~L,t !F̂~L,t !&5S 2pd
v0

c D 2 N

S E
0

L

dx u~ t2x/c!I 0
2

3@vpA~x/c!~ t2x/c!#. ~40!

For times large enough thatI 0 may be replaced by its
asymptotic form,

^F̂†~L,t !F̂~L,t !&;
1

8p

2p\v0

Sct
eAt/tR. ~41!

Equating the intensity expectation value (c/2p)^F̂†(L,
t)F̂(L,t)& to the maximum expected SF intensi
NT\v0 /StR , we arrive at the expression~22! for the time at
which the SF pulse reaches its peak intensity. In the sh
time limit, on the other hand,

^F̂†~L,t !F̂~L,t !&;S 2pd
v0

c D 2 N

S
ct, ~42!

a result we will return to in Sec. IV.

Approximation leading to the ARS field equation

Our considerations thus far assume that the field cen
frequency lies in the vicinity of the atomic resonance in t
sense that the detuningD is small in magnitude compare
with v and v0 . Let us now suppose instead that the fie
frequencyv is very large compared withv0 . In this case we
must work with the atomic operatorsŝx ,ŝy instead of the
slowly varying ŝ. From Eqs.~A1! and ~A2! of Appendix A
we have

s̈̂x1v0
2ŝx52

2dv0

\
ŝzÊ>2

2dv0

\
Ê ~43!

in the approximationŝz>1. The assumptionv@v0 implies

s̈̂x>2
2dv0

\
Ê, ~44!

so that, from Eq.~27!,

S ]2

]t22c2
]2

]z22vp
2D Ê50. ~45!

This is identical to the equation of motion for the quantu
field in the ARS model when we equatevp

2 to their m2.
From this perspective the ARS equation of motion descri
the interaction of the electromagnetic field withN unbound
electrons (v@v0) per unit volume. However, the usua
plasma dispersion formulan2512vp

2/v2 for the refractive
index n is replaced in this case by

n2511vp
2/v2. ~46!
4-5
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This is a consequence of the assumptionŝz>1; had we as-
sumedŝz>21 we would have obtained the familiar plasm
dispersion formula.

To describe the growth of the quantum noise with time
this model, we write Eq.~45! in the form

]2Ê

]t1]t2
2

m2

4
Ê50, ~47!

wheret15t2z/c, t25t1z/c. In terms of the independen
variable y5mAt1t2, Eq. ~47! has solutions that are linea
combinations of the zero-order modified Bessel functio
I 0(y),K0(y). For larget, the vacuum expectation value

^Ê2~z,t !&}I 0
2~y!;

e2mt

2pmt
, ~48!

so that the quantum noise grows exponentially in time fr
the initial fluctuations of the vacuum field, the fluctuatio
present before the medium in the ARS model is ‘‘inverted

IV. SIGNAL AND NOISE

We wish to determine to what extent the observation
the superluminal group velocity considered by CKK will b
affected by quantum noise. The system of interest is
scribed by the Heisenberg equations of motion~31! and~32!.
We approximateŝz by 1, assuming that pulse durationstp
and transit timesL/c are sufficiently small that deexcitatio
of the initially inverted atoms by radiation~or any other de-
cay process! is negligible. The situation here is differen
from that describing the onset of SF in that~a! the detuning
D is not zero but is instead large~Sec. II!, and~b! the initial
state of the field is not the vacuum but corresponds to a s
pulse of radiation from some external source.

The equation forŝ(z,t) in the present model is

] ŝ

]t
52 i ~D2 ib!ŝ2

id

\
F̂, ~49!

or

ŝ~z,t !5 ŝ~z,t0!e2 i ~D2 ib!~ t2t0!

2
id

\ E
t0

t

dt8F̂~z,t8!ei ~D2 ib!~ t82t !. ~50!

t0 is some initial time, before any pulse is injected into t
medium. We takeF̂(z,t0)50, although of course what thi
really means is that there is no nonvanishing field or int
sity in the medium att0 , so that for practical purposes~nor-
mally ordered expectation values! we can in effect ignore the
operatorF̂(z,t0) in the equation forŝ(z,t).

The pulse is assumed to have a central frequencyv and to
have no significant frequency components near the reson
frequencyv0 : uDutp.1. We assume thatuDutp is large
enough that we can approximate Eq.~50! by integrating by
parts and retaining only the leading terms:
02211
s

’

f

e-

rt

-

ce

ŝ~z,t !> ŝ~z,t0!e2 i ~D2 ib!~ t2t0!

2
d

\

D1 ib

D21b2 F̂~z,t !2
id

\D2

]F̂

]t
. ~51!

As will be clear from the analysis that follows, this approx
mation implies the undistorted propagation of the incide
pulse at the group velocityvg , as assumed by CKK.

From Eq.~31!,

]F̂

]z
1

1

c

]F̂

]t
>S 2p iNd

v0

c D ŝ~z,t0!e2 i ~D2 ib!~ t2t0!1
g

2
F̂

1 i @n~v!21#
v

c
F̂1S 1

c
2

1

vg
D ]F̂

]t
, ~52!

where

g[
4pNd2v0

\c

b

D21b2 ~53!

is the gain coefficient for propagation of a field wit
frequencyv in the inverted medium. We have used E
~15! for the refractive indexn(v) and Eq. ~17! for vg /c
21. Writing F̂(z,t)5F̂8(z,t)ei @n(v)21#vz/c and ŝ(z,t0)
5 ŝ8(z,t0)ei @n(v)21#vz/c yields an equation in terms of th
primed variables in which the termi @n(v)21#(v/c)z asso-
ciated with phase velocity is eliminated. Then, ignoring f
practical purposes the difference between the primed
unprimed variables, we have

]F̂

]z
1

1

vg

]F̂

]t
5

g

2
F̂1S 2p iNd

v0

c D ŝ~z,t0!e2 i ~D2 ib!~ t2t0!,

~54!

and therefore

F̂~z,t !5F̂~0,t2z/vg!egz/2

1S 2p iNd
v0

c D E
0

z

dz8ŝ~z8,t0!eg~z2z8!/2

3e2 i ~D2 ib!@ t2t02~z2z8!/vg#u„t2t02~z2z8!/vg…

[F̂s~0,t2z/vg!egz/21F̂n~z,t !, ~55!

where the subscriptss and n denoted signal and noise, re
spectively. Here

F̂n~z,t !5S 2p iNd
v0

c D
3E

0

z

dz8ŝ~z8,t0!eg~z2z8!/2

3e2 i ~D2 ib!@ t2t02~z2z8!/vg#u„t2t02~z2z8!/vg…

~56!
4-6
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is a quantum noise field associated with the quantum fl
tuations of the atomic dipoles.

To appreciate the significance ofg as defined by Eq.~53!,
consider the gain coefficientgR for a radiatively broadened
transition of frequencyv0 and radiative decay rate 1/t rad
52b. For light of frequencyv5v02D,

gR5
NS

t rad

2b

D21b2 5
4pNd2v0

\c

b

D21b2 ~57!

if we assume that all theN atoms per unit volume are in th
upper state of the amplifying transition. ThusgR5g, i.e., g
is just the gain coefficient for amplification by stimulate
emission. We note also that, from Eq.~17!,

g52bS 1

c
2

1

vg
D ~58!

in the case under consideration where the amplifying tra
tion is radiatively broadened and the detuning is large co
pared with the gain bandwidth.

The operatorŝ(z,t0) has the expectation-value properti
~B6! and ~B7! of Appendix B. These properties impl

^F̂n(z,t)&5^F̂n
†(z,t)&50 and
th
t

op
dia

a-
al
n

02211
c-

i-
-

^F̂n
†~z,t !F̂n~z,t !&5S 2pNd

v0

c
D 2

L

NT

e22b~ t2t0!

3E
z2vg~ t2t0!

z

dz8eg~z2z8!e2b~z2z8!/vg

5S 2pd
v0

c
D 2

N

S

c

2b
~egvgt2e22bt!,

~59!

where we have used the relations~58! andNT5NSL and, to
simplify the notation, we have takent050.

Since the atom and field are initially uncorrelated, i.e.,

^F̂†~0,t2z/vg!ŝj~ t0!&5^F̂n
†~0,t2z/vg!&^ŝj~ t0!&50,

~60!

we have, at the end of the amplifier,

^F̂†~L,t !F̂~L,t !&5^F̂s
†~0,t2L/vg!F̂s~0,t2L/vg!&egL

1^F̂n
†~L,t !F̂n~L,t !& ~61!

and the signal-to-noise ratio
RSN~L,t ![
^F̂s

†~0,t2L/vg!F̂s~0,t2L/vg!&egL

^F̂n
†~L,t !F̂n~L,t !&

5
^F̂s

†~0,t2L/vg!F̂s~0,t2L/vg!&egL

~2pdv0 /c!2~N/S!~c/2b!~egL2e22bL/vg!

5
^F̂s

†~0,t2L/vg!F̂s~0,t2L/vg!&e2b~1/c21/vg!L

~2pdv0 /c!2~N/S!~c/2b!~e2b~1/c21/vg!L2e22bL/vg!
>

^F̂s
†~0,t2L/vg!F̂s~0,t2L/vg!&

~2pdv0 /c!2NL/S
. ~62!
a

n

se
In the denominators we have takent5L/vg for the time over
which the atoms radiate, and have used the fact
2b(1/c21/vg)L5gL, the difference of two numbers tha
themselves are small according to our assumption that pr
gation times are small compared with the single-atom ra
tive decay rate, is much less than 1.

The numerator in Eq.~62! can be related to the expect
tion valueq of the number of photons in the incident sign
pulse as follows. The expectation value of the incident sig
intensity is

I s~0,t !5
vg

2p
^F̂s~0,t !F̂s~0,t !&5I 0e2t2/tp

2
~63!

for a Gaussian pulse of durationtp . Requiring that the en-
ergy flux *2`

` dt Is(z,t) be q\v/S>q\v0 /S implies I 0

5q\v0 /(StpAp) and therefore

^F̂s
†~0,t2L/vg!F̂s~0,t2L/vg!&5q

2p\v0

vgStpAp
e2~ t2L/vg!2/tp

2
.

~64!
at

a-
-

al

Thus

RSN~L,t !5
q

tpAp

c

vg
e2~ t2L/vg!2/tp

2S 2pd2v0

\cS
NSLD 21

5
q

Ap
S 4c

vp
2Ltp

D c

vg
e2~ t2L/vg!2/tp

2

5
q

Ap

tR

tp

c

vg
e2~ t2L/vg!2/tp

2
, ~65!

where we have used Eq.~24! @11#.
Among the criteria given by CKK for the observation of

superluminal pulse is that ‘‘The probe-pulse duration@tp#
must not exceedtR54c/Lvp

2.’’ This criterion implies, from
Eq. ~65!, thatRSN(L,t)>(q/Ap)c/vg and therefore that it is
possible, even forq;1, to have superluminal propagatio
with RSN(L,t).1 if the pulse duration is short enough:tp
,tRc/vg .

In order to relate this conclusion to the ARS result, we u
Eq. ~17! to write Eq.~65! as
4-7
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RSN~L,t !5
q

Ap

tp

~vg /c21!~L/c!D2tp
2 e2~ t2L/vg!2/tp

2
.

~66!

We see from this expression that, if we impose the A
condition ~2!, i.e., (vg /c21)L/c@tp , then

RSN~L,t !!
q

Ap

1

~Dtp!2 e2~ t2L/vg!2/tp
2
, ~67!

so that, given also the condition onuDutp discussed before
Eq. ~51!, the signal-to-noise ratio will be very small whe
the ARS condition for strong distinguishability of superlum
nal propagation from propagation at the speed c is satisfi.

In fact, if (vg /c21)L/c@tp and thereforeRSN(L,t) is
very small forq'1, then

t/tR5
L/c

tR
5

vg

c

L/vg

tR
*

vg

c

tp

tR
, ~68!

which, from Eq.~65!, must be large. Then the SF noise mu
be exponentially large@Eq. ~41!#. It follows that q must be
exponentially large in order to maintain a signal-to-noise
tio greater than unity. This is consistent with the ARS co
clusion that ‘‘for the signal amplitude to be larger than t
amplitude of the fluctuations at the observation time, the s
nal amplitude should be exponentially large’’@8#.

Our results are therefore in agreement with those of A
in that, if we require the separation of the superluminal pu
and a twin vacuum-propagated pulse to be much larger
the pulse duration, the signal-to-noise ratio will be ve
small at the one- or few-photon level. On the other hand,
results are not inconsistent with those of CKK: even at
one-photon level we can achieve a signal-to-noise r
greater than unity if this separation@(vg /c21)L/c# is
smaller than the pulse durationtp @Eq. ~66!#.

Physical origin of the noise limiting the observation
of superluminal group velocity

Note that, when we set the timet in Eq. ~42! for the
short-time SF noise intensity equal to the ‘‘observati
time’’ L/c, we obtain exactly the noise intensity appearing
the denominator of Eq.~62! @12#. Thus the quantum nois
that imposes limitations on the observation of superlumi
group velocity is attributable to the initiation of SF. We no
that the SF noise propagates at the speed of light an
therefore luminal and delayed with respect to the signal. T
is a manifestation of a general result obtained below
Sec. V.

Operator ordering and relation to ARS approach

Less obvious, perhaps, is the relation between the qu
tum noise we have considered—which stems from
atomic dipole fluctuationscharacterized by Eqs.~B6! and
~B7! of Appendix B—and the quantum noise of ARS, whic
is attributed to thequantum fluctuations of the field.
02211
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To establish the relation to the ARS approach we return
our calculation of the noise intensity, using now antinorma
ordered field operators instead of the normally ordered
erators used before. Thus we consider now the expecta
value ^F̂(z,t)F̂†(z,t)& instead of ^F̂†(z,t)F̂(z,t)&. In this
approach the atomic dipole fluctuations play no explicit ro
as can be seen from Eq.~55! and the fact that

^ŝ~z8,t0!ŝ†~z9,t0!&50 ~69!

for excited atoms. In this case, however, the initially uno
cupied modes of the field make a nonvanishing contribut
as a consequence of non-normal ordering:

^F̂~0,t2L/vg!F̂†~0,t2L/vg!&

5(
k

2p\vk

Sl
^âk~0!âk

†~0!&eg~vk!L

>(
k

2p\vk

Sl
@g~vk!L11#, ~70!

which follows from Eqs.~26! and ~28! and the approxima-
tion gL!1 upon which Eq.~65! is based. The contribution
from the term that does not vanish asL→0 can be ignored,
as it corresponds to vacuum quantum noise~energy 1

2 \vk
per mode! that is present even in the absence of the amplifi
In other words, the quantum noise of the field in the prese
of the amplifier is

^F̂~0,t2z/vg!F̂†~0,t2z/vg!&n

[(
k

2p\vk

Sl
g~vk!L→ l

2pc E dv
2p\v

Sl
g~v!L

>pS 2v0d

c D 2 NL

c E
0

`

dv
b

D21b2 , ~71!

where we have gone to the mode continuum limit, appro
matedv by v0 in the numerator of the integrand, and us
Eq. ~53! for the gain coefficient. Performing the integratio
we obtain exactly the noise term appearing in the denom
tor in the last line of Eq.~62!. But now the noise is attribut-
able to the amplification of vacuum field fluctuations@13#.

Thus we can attribute the quantum noise that limits
observation of superluminal group velocity to either t
quantum fluctuations of the field in the inverted medium,
do ARS, or to the quantum fluctuations of the inverted
oms, as in our derivation of the signal-to-noise ratio. T
situation here is similar to that in the theory of the initiatio
of SF, as discussed by Polder, Schuurmans, and Vrehen@9#,
or, as noted by those authors, to the theory of spontane
emission by a single atom@14#.

Limit of very small transition frequency

Since the origin of noise in the optical amplifier is ass
ciated ultimately with spontaneous emission, the ques
arises as to whether the signal-to-noise ratio might be
creased by employing a transition having a very small tr
4-8
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QUANTUM NOISE AND SUPERLUMINAL PROPAGATION PHYSICAL REVIEW A62 022114
sition frequencyv0 and therefore a very large radiative life
time. Indeed, sincevp

2}v0 , the second line of Eq.~65!
suggests at first glance thatRSN→` in the limit v0→0.
However, Eq.~16! shows thatvg→c in this limit: the super-
luminal effect itself becomes weaker as the spontane
emission rate is made smaller.

In this connection we invoke once again the form~66! of
the signal-to-noise ratio. If we assumeuDutp.1 in order that
the pulse does not undergo substantial distortion as a co
quence of strong absorption, then

RSN~L,t !,q
ctp

~vg2c!L/c
. ~72!

In other words, the signal-to-noise ratio must be smaller t
the number of photons in the incident pulse times a fac
equal to the length of the vacuum-propagated pulse divi
by the separation of the vacuum-propagated pulse and
pulse emerging from the amplifier,independent of the atomi
transition frequency or the radiative lifetime. At the one- or
few-photon level the signal-to-noise ratio must therefore
less than unity under the ARS criteria for the observation
superluminal group velocity, regardless of the frequency
strength of the amplifying transition.

V. UNITARITY AND SUPERLUMINAL PROPAGATION

We now turn our attention from the specific example
the optical amplifier to some general features of superlu
nal propagation that follow generally from the unitary ev
lution of the state vector, considered here within first qu
tization.

The time evolution of a wave packet can be formulated
terms of a unitary operatorU(t) or equivalently in terms of a
coordinate-space propagatorG(x2x8,t)5^xuU(t)ux8&:

uC~ t !&5U~ t !uC~0!&,

C~x,t !5^xuC~ t !&5E
2`

`

dx8G~x2x8,t !C~x8,0!.

~73!

The assumption that the propagator vanishes identically
side the light cone implies that

G~x2x8.ct,t !50. ~74!

Given an initial wave packet centered aroundx5X0,0 at
t50, we assume that at a later timet.0 it will be centered
aroundX01vgt, as in the example of pulse propagation
an inverted medium.

We divide the wave packet into two parts, which we lab
as‘‘superluminal’’ ~S! and ‘‘luminal’’ ~L!, in the following
way:

C~x,T!5H CS~x,T!, x.cT

CL~x,T!, x,cT.
~75!

CS vanishes if the group velocityvg,c.
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Suppose thatvg.c and that we let the wave packe
propagate for a timeT long enough that a superluminal sig
nal can be clearly identified. That is, we assume that at
5T,

CL~x,T!'0. ~76!

Now

^C~T!uC~T!&5^C~0!uC~0!& ~77!

due to unitarity, and thus

E
2`

`

dx8uC~x8,0!u25E
2`

`

dx8uC~x8,T!u2

'E
cT

`

dx8uCS~x8,T!u2. ~78!

Physically, this means that the superluminal signalCS(x,T)
is about as large, or contains about ‘‘as many photons,’’
the initial wave packet.

We now combine the two underlying premises of caus
ity and superluminal propagation as they are defined by E
~74! and ~76!. Using Eq.~73! for x.cT, we write

CS~x,T!5E
2`

0

dx8G~x2x8,T!C~x8,0!

1E
0

`

dx8G~x2x8,T!C~x8,0!. ~79!

The first term vanishes because, according to Eq.~74!, the
integrand differs from zero only ifx8.x2cT.0. Thus

CS~x,T!5E
2`

`

dx8G~x2x8,T!@Q~x8!C~x8,0!#. ~80!

This formulates the notion, which is essential to the AR
argument, that for acausal@i.e., Eq.~74!#, superluminal sig-
nal @Eq. ~76!#, the wave packet is reconstructed from its ta
@Eq. ~80!#. This rather remarkable reconstruction of the s
nal propagated without distortion and withsuperluminal
group velocity is especially evident in the temporal doma
@15#. ~See Fig. 1.!

FIG. 1. Incident~a! and transmitted~b! signals for a propagation
lengthL and group velocityvg.c. It follows from the causal con-
nection between the two signals that the shaded portion of~b! is
completely determined by the shaded portion of~a!. If L(1/c
21/vg) is much larger than the pulse duration, the peak of
transmitted signal is reconstructed from a small tail of the incid
pulse.
4-9
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The construction~80! of the superluminal wave packe
from the tail of the initial wave packet motivated ARS
define another,truncatedinitial wave packet:

F~x,0![Q~x!C~x,0!. ~81!

The two different initial wave functions, F(x,0) and
C(x,0), give the same superluminal signal:

C~x.cT,T!5F~x.cT,T!5E
2`

`

dx8G~x2x8,T!F~x8,0!.

~82!

Equation ~82! implies what ARS callamplification: a
‘‘small’’ signal propagates to become a ‘‘large’’ signal. A
ter all, F(x,0) is ‘‘made from a small number of photons,
while we have just seen thatC(x.cT,T) has about the
same number of photons as the nontruncated initial w
packet. We note thatamplification in this sense is a nece
sary consequence of a superluminal group velocity.

One might be tempted to write Eq.~82! symbolically as

uF~0!&→uCS~T!&, ~83!

where→ denotes time evolution underU(T). This would be
incorrect: the truncated initial wave packetF(x,0) is a per-
fectly well-defined initial state, but itdoes not evolveinto
CS(x,T); part of it evolves luminally. It will prove conve-
nient to introduce ‘‘superluminal’’ and ‘‘luminal’’ parts of
the truncated wave packet in a manner similar to the dec
position ~75! used for the complete wave packetC(x,T):

F~x,T![H FS~x,T!, x.cT

FL~x,T!, x,cT.
~84!

We note that, while the superluminal part of the tim
evolved truncated initial state is the same as the superlum
part of the time-evolved nontruncated initial state, the lum
nal parts of these signals differ:

FS~x,T!5CS~x,T!, ~85!

FL~x,T!ÞCL~x,T!'0. ~86!

That is, while the luminal part of the time-evolved comple
wave packet approximately vanishes@CL(x,T)'0#, the lu-
minal part of the truncated wave packet,FL(x,T), does not.
We show below that, on the contrary, it grows exponentia
with time.

Momentum space: Normal and unstable modes

We are comparing the time evolution of two differe
initial wave packetsC(x,0) and F(x,0) where F(x,0)
5Q(x)C(x,0). It is useful to define still another initial wav
packet,

R~x,0!5Q~2x!C~x,0!. ~87!

Clearly,

C~x,0!5R~x,0!1F~x,0!. ~88!
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After a time T, C(x,0) evolves intoC(x,T), F(x,0) into
F(x,T), andR(x,0) into R(x,T). The time evolution is lin-
ear and

C~x,T!5R~x,T!1F~x,T!. ~89!

Fourier transforming into momentum space, we defi
g(k), z(k), andj(k), by

C~x,t ![E
2`

`

dk g~k!exp@ i ~kx2vkt !#, ~90!

F~x,t ![E
2`

`

dk z~k!exp@ i ~kx2vkt !#, ~91!

R~x,t ![E
2`

`

dk j~k!exp@ i ~kx2vkt !#, ~92!

From these definitions it is straightforward to show that

z~k!5
2 i

2p E
2`

`

dk8
g~k8!

k2k82 ih
, ~93!

j~k!5
1 i

2p E
2`

`

dk8
g~k8!

k2k81 ih
, ~94!

whereh is an infinitesimal positive number. From the ide
tity

21

k2k82 ih
1

1

k2k81 ih
522p id~k2k8!, ~95!

it follows that

g~k!5z~k!1j~k!. ~96!

Equations~90!–~94! can be written as well in the following
way:

C~x,t ![E
2`

`

dk g~k!ck~x,t !, ~97!

F~x,t ![E
2`

`

dk g~k!fk~x,t !, ~98!

R~x,t ![E
2`

`

dk g~k!rk~x,t !, ~99!

where

ck~x,t !5exp@ i ~kx2vkt !#, ~100!

fk~x,t !5
2 i

2p E
2`

`

dk
exp@ i ~kx2vkt !#

k2k2 ih
, ~101!

rk~x,t !5
1 i

2p E
2`

`

dk
exp@ i ~kx2vkt !#

k2k1 ih
, ~102!

ck~x,t !5fk~x,t !1rk~x,t !. ~103!
4-10
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For t50 we obtain, as required by their definitions,

fk~x,0!5Q~x!ck~x,0!, ~104!

rk~x,0!5Q~2x!ck~x,0!. ~105!

We now invoke the premises of causality and superlu
nal propagation, focusing on the ARS model involving t
dispersion relation

vk5cAk22m2. ~106!

As long asuku.m this dispersion relation describes norm
oscillating modes. Unstable modes exist foruku,m. One
might attempt to avoid the unstable modes altogether
choosing ag(k) that vanishes or is negligibly small foruku
,m. This can be done, for example, by choosing an ini
state with a Gaussiang(k), centered aroundk0 and having a
width Dk0 such thatuk06Dk0u@m. This corresponds in the
case of the optical amplifier to a pulse detuning large co
pared with a radiative decay rate. It turns out, however,
might be expected from the example of the optical amplifi
that even for such an initial wave packetC(x,0) the unstable
modes play an essential role in the time evolution of both
truncated and the residual wave packetsF(x,t) andR(x,t),
respectively.

Consider the integrals in Eqs.~101! and ~102! as contour
integrals in the complexk plane. The integrands, analytical
continued into the complexk plane, each have a single
simple pole above or below the realk axis atk5k6 ih, and
both have two branch points atk56m, which we connect
with a branch cut on the line segment (2m,m) on the realk
axis. The contour from2` to ` should pass, as usua
slightly above the realk axis ~at a distance smaller thanh!.
As shown below, this ensures causality according to
~74!. In the limit of infinite uku,

lim
uku→`

vk5ck, ~107!

and on the circle at infinity,

kx2vkt→k~x2ct!. ~108!

For x.ct we can therefore close the contour integral in t
upper half plane, whereas forx,ct we close the contour in
the lower half. In both cases the contributions to the integ
from the arcs at infinity vanish.

Using first the residue theorem forx.ct, we see imme-
diately that the super-luminal parts of the time-evolved
sidual and truncated wave packets satisfy

rk~x.ct,t !50, ~109!

fk~x.ct,t !5exp@ i ~kx2vkt !#. ~110!

These results are not surprising, as they simply reformu
Eqs.~74! and ~82!, respectively. Forx,ct, where we close
the contour in the lower half plane, the integral encircles
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branch cut on (2m,m). After deforming the contour and
isolating contributions from this branch cut, we use the re
due theorem and obtain

rk~x,ct,t !5exp@ i ~kx2vkt !#2I k
r~x,t !, ~111!

fk~x,ct,t !5I k
f~x,t !, ~112!

where

I k
r~x,t !5

i

2p E
C
dk

exp@ i ~kx2ctAk22m2!#

k2k2 ih
, ~113!

I k
f~x,t !5

i

2p E
C
dk

exp@ i ~kx2ctAk22m2!#

k2k1 ih
, ~114!

and*Cdk is a closed contour circling counterclockwise th
branch cut on the line segment (2m,m) while not circling
the poles atk6 ih. Each of the integralsI k

r(x,t) andI k
f(x,t)

is dominated by a saddle point on the imaginaryk axis in the
complexk plane and exponentially grows with time. Com
bining terms, we obtain

R~x,t !5Q~ct2x!C~x,t !2Q~ct2x!E
2`

`

dk g~k!I k
r~x,t !,

~115!

F~x,t !5Q~x2ct!C~x,t !1Q~ct2x!E
2`

`

dk g~k!I k
f~x,t !.

~116!

The integrals give exponentially growing contributions to t
luminal parts of both the truncated and residual wave pa
ets. Our choice ofg(k) enforcesuk6 ihu.m, and, as a re-
sult,

E
2`

`

dk g~k!@ I k
f~x,t !2I k

r~x,t !#50. ~117!

We see therefore that, when the residual and truncated w
packets~115! and ~116! are combined to form the complet
wave packetC(x,t) @Eq. ~89!#, the exponentially growing
luminal parts cancel each other.

Discussion and implications for quantum noise

We are studying the time evolution of three wave packe
the complete wave packetC(x,t), the truncated wave packe
F(x,t), and the retarded, residual wave packetR(x,t).
These three wave packets can be decomposed in two di
ent ways. In Eqs.~90!–~94! they were decomposed in th
usual way via a Fourier transform at the initial timet50 into
normal and unstable modes. The Fourier components of
truncated wave packetz(k) and the retarded wave pack
j(k) are related to the Fourier components of the comp
wave packetg(k) by Eqs.~93! and ~94!, respectively. If we
choose to construct the complete wave packet from nor
modesg(k), whereuku@m, the truncated and retarded wav
packets will have a strong unstable-mode component
4-11
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them. This was discussed by ARS, who pointed out th
because of the unitarity of the time evolution, the unsta
modes are accompanied by an enhancement of the qua
noise.

In order to identify the noise in a space-time picture
employed in Eqs.~97!–~102! a less common decomposition
The difference between Eqs.~97!–~102! and Eqs.~90!–~94!
lies in the order of integration. Both decompositions can
derived from

C~x,t ![E
2`

`

dk g~k!exp@ i ~kx2vkt !#,

F~x,t ![
2 i

2p E
2`

`

dqE
2`

`

dp
g~p!exp@ i ~qx2vqt !#

q2p2 ih
,

~118!

R~x,t ![
i

2p E
2`

`

dqE
2`

`

dp
g~p!exp@ i ~qx2vqt !#

q2p1 ih
.

~119!

Equation~97! describes a wave packet made of a superp
tion of oscillating wavesck(x,t)[exp@i(kx2vkt)#, with the
momentum distributiong(k). In Eqs.~98! and ~99! each of
these oscillating waves is replaced by a new wave func
fk(x,t) and rk(x,t), respectively. The weight function fo
the superposition forming the respective wave packets
mainsg(k), but k has lost its meaning as a physical mome
tum. At any time,ck5fk1rk . At t50, fk andrk are ob-
tained fromck by truncation. At a later timet.0, one can
distinguish between two regions. In the superluminal reg
wherex.ct, fk5ck andrk50. In the luminal region where
x,ct, fkÞck : While ck is everywhere a periodic wav
function oscillating in space and time,fk is in this region
exponentially growing as a function of botht andx; it is not
oscillating in this region. In the same retarded regionrk has
a periodic oscillating component equal tock and an expo-
nentially growing component that exactly cancels the con
bution of fk to this region.

The three wave packets we consider are formed by su
positions of these different wave functions with the sa
weight functiong(k). They evolve in time in the following
way. In the superluminal regionx.ct the oscillating wave
functions ck5fk[exp@i(kx2vkt)#, with vk given above,
combine to form a wave packet moving at the group veloc
vg.c; this is the superluminal signal. In the luminal regio
x,ct the oscillating wave functions combine to cancel ea
other. This cancellation ensures the unitary time evolution
the complete wave packet. The residual part of the comp
wave packet is essential for this cancellation to occur.

Using the language of truncated wave packets introdu
by ARS, we see that the superluminal signal is construc
completely from the time evolution of the forward tail, i.e
from the time evolution of the truncated wave packet. T
truncated wave packet evolves with time into a combinat
of the superluminal signal and an additional, exponentia
increasing part in the luminal regionx,ct. As discussed
below, this additional part that grows exponentially wi
02211
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time can be expected to be accompanied by substantial q
tum noise, as ARS observed using a different decomposi
of the same truncated wave packet.

The decomposition presented here therefore leads u
conclude that the exponentially growing noise ismostly‘‘lu-
minal’’ and will be delayed compared with the superlumin
signal. This conclusion is consistent with the exponentia
growing noise due to SF in the case of the optical ampli
@12#. Looking at the complete wave packet, we observe t
contributions from the time-evolved residual wave pac
will cancel in the luminal regionx,ct the contributions
from the time-evolved truncated wave packet. Howev
while the signal in this region vanishes by the cancellation
the two exponentially growing contributions,the noise does
not cancel—and may be very large@16#. We note that an
amplification of the signal in the superluminal region do
occur, but our decomposition indicates that this amplificat
is mostly a result of a rather efficient constructive interfe
ence of oscillating wave functions, while the luminal parts
the time-evolved truncated and retarded wave packets ap
to be controlled by the unstable modes.

Our analysis in this section, being based on a fir
quantization approach in which the wave packets arec num-
bers, not operators, has not dealt explicitly with quant
noise. However, as in the theory of the initiation of sup
fluorescence@9#, the linearity of the model resulting from th
approximation that there is no change in the atomic invers
over the time scales of interest allows a treatment of
operator fields as classical, fluctuatingc-number fields@17#.
Thus the shaded part of Fig. 1~a!, the ‘‘tail’’ from which the
superluminal signal evolves, becomes in such a treatmen
truncated signal we have consideredplus a fluctuating noise
field. In the limit of a very weak incident signal pulse, th
superluminal signal will be dominated by the noise p
rather than the signal part of the tail shown in Fig. 1~a!, and
the signal-to-noise ratio will therefore be small, consiste
with the ARS results as well as the results obtained in S
IV for the model of an optical amplifier.

VI. SUMMARY

We have considered the effects of quantum noise on
propagation of a pulse with superluminal group velocity.
the case considered by CKK@1#, where an off-resonant, sho
pulse of durationtp propagates with superluminal group v
locity vg in an optical amplifier, we calculated a signal-t
noise ratioRSN and found that, for an incident pulse consis
ing of a single photon,RSN!1 under the condition (vg /c
21)L@tp assumed by ARS@8# for discrimination between
the pulse propagating in the amplifier and a twin pu
propagating the same distance in vacuum. This result is f
consistent with the conclusions of ARS based on gen
considerations and, in particular, the reconstruction of
superluminal pulse from a truncated portion of the init
wave packet. However, if we impose the weaker condit
that (vg /c21)L*tp , then our conclusion is thatRSN.1 is
possible. However, in this case superluminal group veloc
is observable in the arrival statistics of many photons, not
shot.
4-12
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We showed that, in the case of the optical amplifier,
quantum noise is attributable to the onset of superfluo
cence, and could be associated either with the quantum
tuations of the field, along the lines of the ARS consid
ations, or with the quantum fluctuations of the atom
dipoles.

We then presented some general considerations base
unitarity and causality and introduced a different wav
packet decomposition. In particular, we considered the ‘
sidual’’ wave packet in addition to the complete and tru
cated wave packets considered by ARS. This led to
conclusion that the noise is mostly luminal, and that in
luminal region the truncated and residual signals grow ex
nentially but cancel each other as required by unitarity,
that thenoiseis not canceled. For the case where the pro
gation time is large enough for the superluminal signal to
clearly distinguished from a twin pulse propagated at
vacuum speed of light, our conclusions were again consis
with those of ARS.

Note added in proof.Kurizki, Kozhekin, and Kofman@18#
have reached conclusions related to ours when the am
cation is due to optical phase conjugation or stimulated
man scattering rather than population inversion. Their e
phasis is on the fact that, for sufficiently strong signals,
exponentially growing quantum noise does not prevent
observation of~causal! superluminal pulse reshaping as
transient effect.
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APPENDIX A

The Heisenberg equations of motion for the Pauli ope
tors follow from the Hamiltonian~25! and the commutation
relations@ŝx ,ŝy#52i ŝz , etc.:

ṡ̂x j52v0ŝy j , ~A1!

ṡ̂y j5v0ŝx j1
2d

\
ŝz jÊ~zj ,t !, ~A2!

ṡ̂z j52
2d

\
ŝy jÊ~zj ,t !, ~A3!

or, in the rotating-wave approximation,

ṡ̂ j52 iv0ŝ j2
id

\
ŝz jÊ

~1 !~zj ,t !, ~A4!

ṡ̂z j52
2id

\
@Ê~2 !~zj ,t !ŝ j2ŝ j

†E~1 !~zj ,t !#. ~A5!
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From the formal solution of the Heisenberg equation
motion for âk(t) we obtain, using Eq.~26!,

Ê~1 !~zj ,t !5Ê0
~1 !~zj ,t !1

2p id

Sl (
k

vk (
i 51

NT

eik~zj 2zi !

3E
0

t

dt8ŝ i~ t8!eivk~ t82t !

[Ê0
~1 !~zj ,t !1Ês

~1 !~zj ,t !. ~A6!

Here

Ê0
~1 !~z,t !5 i(

k
S 2p\vk

Sl D 1/2

âk~0!e2 ivkteikz ~A7!

is the homogeneous~‘‘vacuum’’ ! solution of the Maxwell
equation for the quantized field, whileÊs

(1)(z,t) is the
‘‘source’’ part. Now in the mode continuum limit

Sk→~ l /2p!E dk5~ l /2pc!E dv,

Ês
~1 !~zj ,t !5

2p id

Sl

l

2pc (
i 51

NT E
0

t

dt8ŝ i~ t8!

3E
2`

`

dv veiv@ t82t1~zj 2zi !/c#

52
2pd

Sc (
i 51

NT E
0

t

dt8ṡ̂ i~ t8!d~ t82t1@zj2zi #/c!

>
2p idv0

Sc (
i 51

NT E
0

t

dt8ŝ i~ t8!d~ t82t1@zj2zi #/c!

5
ipdv0

Sc
ŝ j~ t !1

2p idv0

Sc (
iÞ j

NT

ŝ i~ t2@zj2zi #/c!

3u~zj2zi !u~ t2@zj2zi #/c!

5
ipdv0

Sc
ŝ j~ t !1Ê8~1 !~zj ,t !. ~A8!

HereÊ8(1)(zj ,t) denotes the field, at the positionzj of atom
j, that is produced by all theother atoms of the medium.

We now use this result, and the operator ident
ŝz jŝ j (t)52ŝ j (t), in Eq. ~A4!. The result is

ṡ̂ j~ t !52 iv0ŝ j~ t !2bŝ j~ t !2
id

\
ŝz j~ t !Ê~1 !~zj ,t !,

~A9!

where

b5
pd2v0

S\c
~A10!

and Ê(1)(zj ,t)5Ê0
(1)(zj ,t)1Ê8(1)(zj ,t).
4-13
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Similarly, using the operator identityŝ j
†(t)ŝ j (t)5 1

2 @1
1ŝz j(t)#, we obtain from Eqs.~A3! and ~A8!

ṡ̂z j~ t !522b@11ŝz j~ t !#

2
2id

\
@Ê~2 !~zj ,t !ŝ j~ t !2ŝ j

†~ t !Ê~1 !~zj ,t !#.

~A11!

Since the expectation valuêŝz& of the TLA inversion op-
erator isp22p152p221, wherep1 and p2 are the lower-
and upper-state probabilities, respectively, it follows thatb
is the radiative~spontaneous emission! decay rate:

1

t rad
52b5

2pd2v0

S\c
. ~A12!

This is not the more familiar EinsteinA coefficient for spon-
taneous emission,A54udu2v0

3/3\c3, because it gives the
spontaneous emission rate into modes propagating unid
tionally with a single polarization, whereasA is the sponta-
neous emission rate into all possible field modes in f
space. In fact, 1/t rad is the spontaneous emission rate impli
in much of laser theory: the coefficientl2A/8p appearing in
the standard expression for the gain coefficientg(n), where
l is the wavelength, is just 1/t rad times the cross-sectiona
areaS:

g~n!5
l2A

8p
~N22N1!L~n!5

1

t rad
~N22N1!SL~n!

~A13!

for ~nondegenerate! upper- and lower-level population den
sitiesN2 andN1 , respectively, an atomic line-shape functio
L(n), andudu2/35d2.

Finally we use the definitions~28! and~30! of F̂ and ŝ to
obtain

ŝ̇j~ t !52 i ~D2 ib!ŝj~ t !2
id

\
ŝz j~ t !F̂~zj ,t !, ~A14!
tt.

o

v.

.
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ṡ̂z j~ t !522b@11ŝz j~ t !#

2
2id

\
@ F̂†~zj ,t !ŝj~ t !2 ŝj

†~ t !F̂~zj ,t !# ~A15!

in the rotating-wave approximation. The detuning betwe
the TLA resonance frequencyv0 and the central field fre-
quency v is defined asD5v02v. Replacing ŝj (t) and
ŝz j(t) by ŝ(zj ,t) and ŝz(zj ,t), respectively, orŝ(z,t) and
ŝz(z,t) in the continuum limit, we obtain Eqs.~32! and~33!.

APPENDIX B

For the initial state in which all the TLAs are in the upp
state,̂ ŝi(t0)&50 and^ŝi

†(t0) ŝj (t0)&5d i j . Then the operator

Ŝ5(
i 51

NT

ŝi~ t0! ~B1!

satisfies

^Ŝ&50, ~B2!

^Ŝ†Ŝ&5(
i 51

NT

(
j 51

NT

^ŝi
†~ t0!ŝj~ t0!&5NT . ~B3!

In the continuum limit

Ŝ5
NT

L E
0

L

dz ŝ~z,0!, ~B4!

^Ŝ†Ŝ&5
NT

2

L2 E
0

L

dz8E
0

L

dz9^ ŝ†~z8,t0!ŝ~z9,t0!&, ~B5!

and we can satisfy Eqs.~B2! and ~B3! by taking

^ ŝ~z,t0!&50, ~B6!

^ŝ†~z8,t0!ŝ~z9,t0!&5
L

NT
d~z82z9!. ~B7!
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