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Radiative properties of an atom in the vicinity of a mirror
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The decay rate of an excited atom is described using Fermi’s golden rule. Welton’s interpretation of the
Lamb shift is extended by introducing a damping term in the Heisenberg equation of motion associated with
the fluctuation in the position of the electron. These expressions are related to the imaginary part of the vector
potential Green function through the fluctuation dissipation theorem and Kubo’s formula. The results are
applied to the calculation of the radiative properties of an atom in the vicinity of a perfect mirror.

PACS numbegps): 12.20.Ds, 42.50-p, 03.65—w

[. INTRODUCTION present the base formulation of the effects in Sec. Il. The
evaluation of the appropriate Green function needed for the
The ground state of the quantized field in general and thaater calculations is provided briefly in Sec. Ill. In Sec. IV we
of the electromagnetic field in particular motivates a newuse the general expressions of Sec. Il to calculate the level
picture for the vacuum. The undeniable indications of theshifts and the decay rate of an atom in the vicinity of a
reality of the zero-point field are seen both on macroscopi®€rfect mirror. Finally, in the concluding section, Sec. V, the
objects, as the Casimir for¢@—4], and on microscopic sys- main points of the present formulation are summarized.
tems, as the radiative properties of atoms and mole¢dles
The Casimir effect can be discussed as the response of the
vacuum against the presence of macroscopic objects im- Il. THE BASE CALCULATION

mersed in if5-12]. The characteristic radiative behaviors of The full quantum electrodynamics description of the ra-

microscopic systems are explained as the reaction of theggative properties of an atom requires the explicit form of the
systems against the existence of the zero-point fiéldin  fieiq operators. A difficulty usually arises when the modifi-
other words, the theoretical interpretations of these effects iions of these effects are to be examined inside a cavity or
are achieved by considering the presence of the vacuum fielgyis cent to a boundary surface. This is due to the intricate
in the theory. . structure of the field expressions in the presence of a bound-
The conventional theory of quantum electrodynamics,y g rface or surfaces. The presentation of an alternative

deals with isolated atomic systems in free space. This is 0f 5 roach that does not involve the explicit form of the field
course an idealization of realistic situations in which atomsOperators is consequently of special concern.

are always at finite distances of metallic or dielectric surfaces
in a real environment. This apparently bears an error made in
the context of high precision experiments aiming at measur- A. The decay rate of an excited atom
ing the fundamental atomic constants. The decav rate of an initiallv excited atom in the diool

The presence of a boundary surface or surfaces gives rise Jecay rate. initi y_, xcited atom in the dipole
to alterations of the electromagnetic field operators and Sube}pproxmatlon Is given by Fermi's golden rule
sequently to a variation of the structure of the fluctuating o
field of the vacuum. The gffect is displayed in all the phe- r=— > [(F| - E(rg,0)[0)PS8(wi—wg),  (2.2)
nomena that originate basically in one way or another from he T
the vacuum field. The level shifts and the decay rate of mi-
croscopic systems are both examined either for the different N .
ways of thinking about the role of vacuum in these phenomWhererg, wo, and u are the position, transition frequency,
ena[13—18, or on the basis of the modification of the effects 2nd dipole moment of the atom, respectively. The k8js
due to the alteration of the structure of the fluctuating field ofand|f) show the vacuum and final states of the electromag-
the vacuum. The variation of the level shifts as well as thehetic field. The electric field operator can be written in the
change in the decay rate of an excited atom in front of dorm of
mirror, inside a Fabry-Perot cavity, in the vicinity of a di-
electric surface, and some other configurations are well L
known in the literatur¢19—23. - _ e Ay Lot B tiot

It seems that the existing variety of ways of dealing with E(r.t)= Efo doB7(r,0)e " +E(r,w)e™],
these effects gives rise to simplifications of the theory and (2.2)
softens out the unnecessary complexity as far as possible.
The medley of different approaches may also slightly im-
prove the current status of our understanding of the effectsvhere the positive and negative frequency parts involve only
The present paper is in fact the extension of previous workhe photon annihilation and creation operators. Substitution
[24] to the case in which a boundary surface is involved. Weof Eq. (2.2) into Eq.(2.1) yields
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1 St o . ent orientations of the dipole moment of the atom and a
I'= ﬁ Ef: fo dwfo do'(O|p-E"(rg,w)|f) summation over the repeated indices is not applied.
X(f| - E’(ro,w’)|0>e"(“”“”)‘5(wf— o). (2.3 B. The level shifts of an atom
The position of an atomic electron fluctuates around a
The electric field operator includes sums over the annihilamean value due to the existence of the fluctuating field of the
tion and creation operators of all modes of the electromagvacuum, that is
netic field, whose frequencies andw’ must equakv;. The R R R
summation over final states in E@.3) is therefore redun- R(r,t)=Rg(r,t) + AR(r,t), (2.11)
dant and its removal gives R ~
where Ry(r,t) and AR(r,t) are the mean position of the
1 [+ e - . ) electron and its deviation from the mean value, respectively.
I'= 2 dwfo do’ 1 (O0|E, (rg,w)Ez(rg,w")[0) This gives rise to a modification on the instantaneous poten-
tial energy of the electron which is given by
—i(0—w')t
Xpge™ 7V 0(w = wo), 24 V(Ry+AR)=V(Ro) +[(AR- V)IV(R)
where repeated subscript indices are summed over and rep- 1
resent Cartesian coordinatesg=x,y,z. +-[(AR-V)]JAV(R)+---, (2.12
Taking advantage of the gauge in which the scalar poten- 2

tial vanishes, that is where the argumentr(t) has been omitted for simplicity.

The first term on the right-hand side is the instantaneous

-+ —i AT
E'(rw)=iwA™(r,e), potential energy in the absence of the vacuum field which is

Z€?

47T€0R ’

BT (r,w)=VXA*(r,w), (2.5

V(R)=— (2.13

the electric field correlation function is related to the imagi-
nary part of the vector potential Green function by using the,nereR= ﬁo andZe and —e are the electric charge of the

fluctuation dissipation theorem and Kubo's form{&5] nucleus and electron, respectively. The other terms on the
. ., right-hand side of Eq2.12) display the correction due to the
(OB, (r,@)E4(r",0")[0) presence of the fluctuating field of the vacuum. The energy-

—2hw2Im Gupl(r I @) S(w—w'). (2.6 level shift of a given state is therefo_re obtained by evaluati_ng
the expectation value of the correction terms of the potential,

Employing Eq.(2.6), expression(2.4) can be simplified as ~ Whose leading term is of the form

1 . .
2 == . V)12
I'=2o?Imlp-G(ro,ro,wo) - 4l- 2.7 AB=5([(AR-V)IV(R))
: . . . zé . .
It is more convenient to use the dimensionless vector po- = ——Q.([AR(ro,1) 1 [AR(rg,1) 1), (2.14
tential Green functiorg,4(r,r’,w), defined as 8meo

where the repeated indices are summed over the three Car-

Gupl(rr )= _? 5 S0 o), (2.9 tesian coordinates, 8=x,y,z, and
“ 47T€0C3 “ 2 1
wheree is the permittivity of free space aras the velocity Qup=~ (n IX 43X g ( ﬁ) ). (2.19
of light. Using Eq.(2.8), the decay-rat€2.7) can be rewritten A
in the form of In writing Eq. (2.14), account has been taken @ R(r,t))

=0. Note that the state of the system is a product state of the

_3 electromagnetic field0) and the atomic state). The inte-
Fa=5T0IMGaalro,ro, @0), 2.9 gern indicates the principal quantum number.
In the dipole approximatiod R(r,t) satisfies the Heisen-
where berg equation
r —Mzwg (2.10 ¢ AR(r,t)+ml d AR(r,t E(r,t), (2.16
= . m— r, ml — r, =—€ rl ] .
O 3mech e (r,t) giARLY (r.t)

is the decay rate of the excited atom in free space. Noticevherem is the observed mass of the electron. This equation
that the subscript index&” in Eq. (2.9 refers to the differ- resembles Welton’s interpretation of the Lamb shift when
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I'—0 [17]. The presence of this term and the absence of a 76 mdh q
restoring force term in Eq2.16 denote that the motion of AEnz—ZJ dq———-
= : , : 32735 m?Jo (9°+9?)
AR(r,t) is assumed to be overdamped with the damping
constantl” much greater than the natural frequency of the X Qap M GoplFo,To, ), (2.23

undamped motion. The fluctuatiahR(r,t) may be decom-
posed into positive and negative frequency parts having thﬁ/hereqzwlc and y=T/c. This expression can be used for

Fourier transform the evaluation of quantum electrodynamics level shifts pro-
vided that the damping coefficieit and the different com-

AR(r,t)= \/%fowdw[Aﬁ*(r,w)ei“‘t ponents of the tens@,4(r,r,w) are given.
+AR(r,w)etin. (2.17 Ill. THE GREEN FUNCTION
Substitution of Eqs(2.2) and(2.17) into Eq. (2.16) yields Consider a perfectly conducting medium with a single
plane interface at=0 which fills the half space=0. Thex
SR g () (229 SO Seslewinin e e o recoue e oo of

- - ) tion coefficient of unity for this interface.
for the positive frtfquency parts. The Hermitian E:onjugate of The electromagnetic field operators are governed by the
Eq. (2.18 givesAR ™ (r,w). The explicit form ofAR(r,t) in Maxwell’'s equations which in the frequency domain in free
terms ofE*(r,®) is obtained by inserting Eq2.18 and its ~ space are of the form
negative frequency counterpart into Eg.17). We find that
. 1 (e
AR(r,t)= —| =

f*mdw
2m\m/Jo o

E~(r,o)
* (o=iT)

E*(r,a))(:}_iwt VXE™(r,o)=iwB" (r,0), (3.2

(0+il)

~ RO 1.
V><B+(r,w)=—|—2E+(r,w)+—2J+(r,w). (3.2
+iwt ¢ €oC

(2.19

Combining Egs.(2.5), (3.1, and(3.2), and taking into ac-
Therefore count the definition of the Fourier time transformed vector
N N otential Green function, that is
([AR(TDTIAR(, D) P

_ ¢ f do f do’ Arro)=3 Jdr'Ga[g(r,r',w)ﬁ;(r',w), (3.3
2am?Jo w(ew+il)Jo o'(0'—il)
><<0|E;(r,w)E;(r,w’)|o>e*i(w*w')t_ one can easily show that
(2.20 52
2y ——+6 Vz)G rr',
Using Eq.(2.6), we find that % 4" IXNIX,, 11, 0)
(AR DTLAR(TO1,) ethHOd IMG 41,1, @) 1
rt], r, =— o——. - —r. _
B 7Tm2 0 (w2+ FZ) 60(_:2 5)\1/5(r r ) (3 4)
(2.21
Substitution of Eq(2.21) into Eq. (2.14) provides the level The different components @& ,,(r,r’,) are obtained from
shifts of an atom Eq. (3.4 with the appropriate boundary conditions. The
4 boundary conditions at the plane interface of the conductor
__Z¢ h f*w ©0 IMm Gup(ro,lo, @) are governed by the boundary conditions on the different
" 8m2e,m? Jo B (w?+T3) ' components of the electromagnetic fields. The details of the

(2.22 calculations are omitted here for the sake of brevity, and the

o ] S ] complete description is given elsewheie].
The range of validity of the dipole approximation, which has  The explicit form of the coordinate space Green function
been used in Eq(2.16, necessitates the introduction of a j this configuration can be written as

cutoff frequency for the upper limit of integration in Eq.
(2.22. It is customary to chooseac/% corresponding to the
Compton wavelength of the electron. As in the decay rate, it
is advantageous to use the dimensionless vector potential 1
Green function, defined by EQ.9), to express E(2.22) as — ———8,50(r—1"), (3.5
follows: 3eqw?

Gop(r,r",w)=G,pa(r,rg,w) =G, 4(r,r,w)
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where the plus sign holds far3=xzyzzz and the minus sign holds for the other components. The t&Bggfr,r ,w) is

given by
+ - 84
{(Wreu) (qrre)? (qrre|>3) g
1 3i 3

_ iqrre
(qrr'3|) i (qrre|)2 (qrrel)s) ]e l,

where go=wq/c. Substitution of Eq.(4.1) into Eg. (2.9

q® 1 i 1

- 47eqm?

wherer o l'¢ iS the normal Cartesian dyadic and

Gaﬁ(rrri’ ,0))

(rrelrrel)aﬁ
(rrel)2

(3.6

yields
re=r—r{, i=0,1. (3.7
cog2qgz sin(2q,z
, . =Tyl 1-3 g2qo o)_ n(2q02) 42
The vectorg| are defined as (29020)° (20020)°
ro=r’, r1=r’—22’R. (3.9 It is seen that in the limizy,— 0 the decay raté4.2) tends to

I',=2I",. This is due to the fact that the image dipole of the
The typical structure of a semi-infinite response functionatom 1SN phase_wnh Fhe atomic dipole moment. _
A similar consideration is applicable to the parallel orien-

is seen in Eq(3.5. The bulk part, which is the first term tation. Th mmetrv of th nfiquration in the blan
together with thed function term, is associated with the di- tation. The symmetry of the contiguration in thg plane
indicates that this can be represented by eifhgor I'y in

rect communication between the two poimtsand r’ and resent notation. Thex component of the tensor

resembles the free space Green function. The second te:g]\e P e,se oda dof. he ¥ cor pé) 299) or the be S0

displays the communication between the points via a refle Yap(r.1", @) needed for insertion in Eq2.9) is given by
162iqozo] )

tion in the perfect conducting interface. This term corre- G(FosT o, 00)
XX ’ 1
4.3

Though in a practical situation we deal with a good con-
ductor instead of a perfect conductor having reflection coefSubstitution of Eq(4.3) into Eq.(2.9) leads to the following
ficient of unity for all frequencies, it is customary to use theexpression for the decay rate
ideal mirror approximation for simplicity. The modification ]
(4.9

sponds to the so-called image source.
1 i 1
+ —
(200%0) ~ (29020)®  (20020)°

2
§I

IV. THE RADIATIVE PROPERTIES OF AN ATOM
IN THE VICINITY OF AN IDEAL MIRROR

of the radiative properties of an atom in the vicinity of a
perfect reflecting mirror has a simplicity which allows us to
work it out easily in almost any formulation. The typical

behavior of this configuration illuminates some points which
may be useful in more complicated situations.

cog2q0Zo)  SiN(200Zo)
(2%20)2 (2%20)3

sin(202o)
(29020)

3
FX:FO 1_ E

We see that this expression tends to zero when0. This
denotes the fact that the image dipole of the atom is out of
phase with the atom dipole moment in this case.

The typical behaviors of these two decay rates in terms of
e distance of the atom from the mirror are depicted in Fig.
. Note that the wavelength of the electromagnetic field ra-
iated by the atom is the only scale of length involved in this
henomenon. Therefore, the distance from the mirror is mea-
ured in units ok y=27c/wy. The decay rate is measured in

A. The decay rate of an excited atom

Regarding the symmetry of the present problem there arg,
two different orientations for the dipole moment of the ex-
cited atom which are known as perpendicular and paralle
orientations. Let us first consider the case in which the dipol
moment of the excited atom is perpendicular to the surfac

of the _mirror ata Qistance= 29=<0. This case is re_prese_nted the unit of decay rate in free space. We see that for both
by I'; in our notation. Thezz component of the dimension- jantations of the dipole moment of the atom, when the

less vector potential Green function needed for substitutiogﬂom is many wavelengths away from the mirror, the re-
in Eq. (2.9 is given by Eq.(3.5 with the use of EQs(2.8)  figcteq field is weak and therefore the decay rate tends to the

2
Sis

3

: 1 parallel (perpendicular orientation the decay rate tends to

and(3.6)—(3.8). We find that free-space decay rate. If the distance to the mirror is de-
creased, the mirror effect becomes appreciable. In the case of
1(32“1020] ,
4.

z 10 = 2 -
GedTolo.0 [ (200%0)°  (20070)°

zero (twice the free space valyewhen the dipole is very
close to the mirror.
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) the use of Eq(2.8), show that the off-diagonal elements of
% 2 Gap(To.ro,w) are zero. Therefore, E¢2.23 can be rewrit-
S ® ten as
=
kLY
§ Ze* mdh q
$ 1 AEnZ—szszf a2
& 32w egcmeJo (q°+y9)
K} @
% 0 T XZ Qaalm gaa(r01r01w)1 (47)
2 10 05 0.0
distance/wavelength in which a=x,y,z. Using Eq.(2.15), the diagonal elements

FIG. 1. Variation of the relative decay rate of an atomic systemOf tensorQaB are

in the vicinity of a perfect mirrofa) for parallel orientation an¢b)
for perpendicular orientation.

P (1 4 )
Qaa:_<n|y g/IM=—3 1O}, 48
The average decay rate of an excited atom is defined as @

1 where in the last step the symmetry of the potential is taken
Fau=§(l“z+ 2r'y) into account. Substitution of E¢4.8) into Eq.(4.7) leads to
the following expression for the atomic level shifts:
o

sin(2002p) N cog2002Zo)

(2G02o) (20020)? AE. = Ze'h 02
n(2 ) n 247726(2)C3m2|¢n( )|
S V4
o) H (4.5
(2d02p)

mdh q

xf dqﬁlmE Guallo,lo,w).
0 Q@ ty) a

The variation ofl",, /Ty in terms of the distance of the atom

from the mirror is shown in Fig. 2. As one expects, it is seen

that

4.9

Employing the explicit forms of the diagonal elements of
tensorG,4(r,r',w), it is easy to show that

2
T (4.6)

lim Fav=3

zp—0
Im 2 gaa(r01r01w)
a

and retains the free-space value wlzgr- .

sin(2qz,) _cos2az) _ 2sin<2qzo>H

(202) (2920)°  (2qz)°
The symmetry of the present case allows us to simplify (4.10

the general expression of the quantum electrodynamics level

shifts given by Eg. (2.23. The explicit forms of N . .

Gap(r,r',w), obtained from Eqs(3.5 and(3.6) along with Substitution of Eq(4.10 into Eq. (4.9) yields

B. The level shifts of an atom :2[ a

4 , Mot
AE,=———7F>FF— 0) f d
2 " 12#265C3m2|¢n( | o U4

1.0 A X{l—

0.8

I
(@%+ %)
sin(2qz;) ~_cog2qz,) _sin(2qz)
+ -2
(292) (2920)° (2929)*

|

(4.11

0.6 .

-1.0 .05 0.0 The integration in Eq(4.1)) is all that needs to be done,
numerically if necessary, provided that a numerical value has
been assigned foy. This can be accomplished easily if we

FIG. 2. Variation of the average relative decay rate of an atomic@xamine the latter equation in the linzg— . Imposing the
system in the vicinity of a perfect mirror. limit, we find that

(decay rate)/(free-space decay rate)

distance/wavelength
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4

mc/h q %1 0
AEj= 0)|? f dg———- S
n 127T2€SC3m2|¢n( )| 0 q(q2+y2) g
-
Y]
1 [zen 012] mc) i1 §°-8 m
_12’7T2€§ m2C3 |(//n( )| n 'yﬁ ’ ( . 2 "§
o5
“~o06 ,
where mc/4>y is assumed in order to neglegf in the 6 3 0
numerator of the argument of the logarithm. The superscript 22

index “0” denotes that the latter quantity is evaluated for

free space. Comparison of E®.12 with the traditional FIG. 3. Variation of the relative level shifts of an atom in the
approaches to the level shifts of an atom in free sgadé vicinity of a perfect mirror.

allows us to assign a numerical estimateytoWe find that
2

(2720)2

n

AES

y=|En—Epla /fic=17.8R,, /ficC, (4.13 (27200

=1—(|n§)1{ Sin[(zyz(’)g]—l}

whereR,, is the Rydberg unit of energy an&,—E,| 4, is
Bethe's average excitation energy associated with the two +
states of the atom involved in the emission and absorption of

e
(2y2o) (2y20)?

virtual photons We can use this value in the theory of level 2
shifts whenever it is needed. R f(27zo)}, (4.16
The other extreme case of special interest is the lait (2yz)? d(2720)
—0. The imposition of this limit on Eq4.11) yields
where
lim AE =EAE° (4.14 ¢ dx
nogTTn ' f22=f sin (2yzy)X 4.1
200 (2y20)= | oy s2yzox] (419

which is in harmony with Eq(4.6) obtained for the decay and £¢=(md/yA). We see thatl=(2y) =4 A is the

rate of an excited atom. These two expressions denote thsroper scale of length for this equation wherés given by
fact that both the decay rate and the level shifts of an atomigq. (4.13.

system experience the constructive and destructive nature of The typical behavior of the energy level shifts versus the
the interference of the vacuum field in the vicinity of the distance of the atom from the mirror is depicted in Fig. 3.

mirror. in the same way. _ The vertical axis is in the units of the shifts in free space and
Using Eq.(4.12 one may express E¢4.11) in the fol-  the distance on the horizontal axis is in the units of 32
lowing form: As one expects, it is seen that the relative atomic level shifts
take the value 2/3 wher,— 0 which is consistent with Eq.
mec\ 171 mah q (4.14. Increasing the distance of the atom from the mirror,
AEnzAEﬂ| 1— In(—) f 9 the energy level shifts increase rapidly and achieve the free-
vh 0 (9°+v9) space limit.

V. CONCLUSION

sin(292,) Cos(zqzo)_zsm(zqzo)“

(29 2 3
%) (202) (2020) We developed previous work on the radiative properties
(4.19 of an atom[24] to the effects of the presence of a boundary
surface. The general expressiof@s9) and (2.23 describe

No matter how far the calculation may be proceeded analytithe decay rate of an atom or molecules as well as the energy-
cally, the integration in Eq4.15 is all that needs to be done level shifts of an atom in terms of the imaginary part of the
numerically. As far as the typical behavior of E¢.15 is  dimensionless vector potential Green function.
concerned, we may in most cases be content with the varia- The results obtained by the application of these two ex-
tion of AE, in terms of the distance of the atom from the pressions for the atom in the vicinity of a perfect mirror is in
mirror. The difficulty, however, arises because of the lack ofharmony with those appearing in the literature using differ-
a clearly evident scale of length in this problem. As it wasent method$19-23 . However, the mechanism of the level
seen in the case of decay rate, an appropriate scale of lengshifts is mixed with the modification of the effect due to the
is needed to show the characteristic behavior of the phenonpresence of a boundary surface or surfaces in these calcula-

enon properly. tions. This usually affects the distance dependence of the
The integration in Eq(4.15 can be simplified with some effect which could be important when a more complicated
algebra, so that geometry is involved. What is advantageous in our formal-
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ism is that these two problems have been separated to clarithe atom and the mirror is small. In practical situations, how-

the effect of the cavity properly. As was seen in Sec. IV, theever, other interactions come into play in this limit.

present approach reveals the similarities between the decay The questions which may naturally arise in the application

rate and level shifts of atomic systems in the presence of af this formalism are first on the accuracy of the numerical

mirror. estimated value of, as given by Eq(4.13), and second on
The formalism of the image method of the dipole decaythe inconsistency of the calculations with the causality con-

rate was explained in both the classical and quantum dacsiderations. As for the first question we must note that the

mains[13]. What is not well appreciated is that the energy-value of the damping constahit=cy does not apparently

level shifts of an atom may also be treated by the help of thaffect the typical behavior of the level shifts given by Fig. 3.

image method. This is seen clearly in the present formulaThis merely slightly changes the scale of length on the hori-

tion. What is new is that, as for the relative decay rate, theontal axis. Regarding the second question, one should nec-

relative level shifts tend to 2/3 fap— 0. This shows that the essarily improve on the ideal notion of a perfect conductor

decay rate and the level shifts both experience the presentrmving a frequency-independent reflection coefficient of

of the mirror identically wherzy—0. unity to remedy the present ambiguity. The work on this
Experiments testing the change in the decay rate of aproblem is under way.

atom in the vicinity of a mirror and some other configura-

tions are numerous in Iiteratuf_ﬂe:%_]. The r_esults are in agree- ACKNOWLEDGMENT

ment with the theoretical predictions. It is seen that the varia-

tion of induced energy-level shifts in the vicinity of a mirror ~ We are grateful to R. Loudon for comments and sugges-

are small to be detected easily, unless the distance betwetions that helped us to improve the present work.
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