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Radiative properties of an atom in the vicinity of a mirror

Reza Matloob
Department of Physics, University of Kerman, Kerman, Iran

~Received 4 January 2000; published 19 July 2000!

The decay rate of an excited atom is described using Fermi’s golden rule. Welton’s interpretation of the
Lamb shift is extended by introducing a damping term in the Heisenberg equation of motion associated with
the fluctuation in the position of the electron. These expressions are related to the imaginary part of the vector
potential Green function through the fluctuation dissipation theorem and Kubo’s formula. The results are
applied to the calculation of the radiative properties of an atom in the vicinity of a perfect mirror.

PACS number~s!: 12.20.Ds, 42.50.2p, 03.65.2w
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I. INTRODUCTION

The ground state of the quantized field in general and
of the electromagnetic field in particular motivates a n
picture for the vacuum. The undeniable indications of
reality of the zero-point field are seen both on macrosco
objects, as the Casimir force@1–4#, and on microscopic sys
tems, as the radiative properties of atoms and molecules@4#.
The Casimir effect can be discussed as the response o
vacuum against the presence of macroscopic objects
mersed in it@5–12#. The characteristic radiative behaviors
microscopic systems are explained as the reaction of th
systems against the existence of the zero-point field@4#. In
other words, the theoretical interpretations of these effe
are achieved by considering the presence of the vacuum
in the theory.

The conventional theory of quantum electrodynam
deals with isolated atomic systems in free space. This i
course an idealization of realistic situations in which ato
are always at finite distances of metallic or dielectric surfa
in a real environment. This apparently bears an error mad
the context of high precision experiments aiming at meas
ing the fundamental atomic constants.

The presence of a boundary surface or surfaces gives
to alterations of the electromagnetic field operators and s
sequently to a variation of the structure of the fluctuat
field of the vacuum. The effect is displayed in all the ph
nomena that originate basically in one way or another fr
the vacuum field. The level shifts and the decay rate of
croscopic systems are both examined either for the diffe
ways of thinking about the role of vacuum in these pheno
ena@13–18#, or on the basis of the modification of the effec
due to the alteration of the structure of the fluctuating field
the vacuum. The variation of the level shifts as well as
change in the decay rate of an excited atom in front o
mirror, inside a Fabry-Perot cavity, in the vicinity of a d
electric surface, and some other configurations are w
known in the literature@19–23#.

It seems that the existing variety of ways of dealing w
these effects gives rise to simplifications of the theory a
softens out the unnecessary complexity as far as poss
The medley of different approaches may also slightly i
prove the current status of our understanding of the effe
The present paper is in fact the extension of previous w
@24# to the case in which a boundary surface is involved. W
1050-2947/2000/62~2!/022113~7!/$15.00 62 0221
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present the base formulation of the effects in Sec. II. T
evaluation of the appropriate Green function needed for
later calculations is provided briefly in Sec. III. In Sec. IV w
use the general expressions of Sec. II to calculate the l
shifts and the decay rate of an atom in the vicinity of
perfect mirror. Finally, in the concluding section, Sec. V, t
main points of the present formulation are summarized.

II. THE BASE CALCULATION

The full quantum electrodynamics description of the
diative properties of an atom requires the explicit form of t
field operators. A difficulty usually arises when the modi
cations of these effects are to be examined inside a cavit
adjacent to a boundary surface. This is due to the intric
structure of the field expressions in the presence of a bou
ary surface or surfaces. The presentation of an alterna
approach that does not involve the explicit form of the fie
operators is consequently of special concern.

A. The decay rate of an excited atom

The decay rate of an initially excited atom in the dipo
approximation is given by Fermi’s golden rule

G5
2p

\2 (
f

z^ f um•Ê~r0 ,t !u0& z2d~v f2v0!, ~2.1!

wherer0 , v0, andm are the position, transition frequenc
and dipole moment of the atom, respectively. The ketsu0&
and u f & show the vacuum and final states of the electrom
netic field. The electric field operator can be written in t
form of

Ê~r ,t !5
1

A2p
E

0

1`

dv@Ê1~r ,v!e2 ivt1Ê2~r ,v!e1 ivt#,

~2.2!

where the positive and negative frequency parts involve o
the photon annihilation and creation operators. Substitu
of Eq. ~2.2! into Eq. ~2.1! yields
©2000 The American Physical Society13-1
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G5
1

\2 (
f
E

0

1`

dvE
0

1`

dv8^0um•Ê1~r0 ,v!u f &

3^ f um•Ê2~r0 ,v8!u0&e2 i (v2v8)td~v f2v0!. ~2.3!

The electric field operator includes sums over the annih
tion and creation operators of all modes of the electrom
netic field, whose frequenciesv andv8 must equalv f . The
summation over final states in Eq.~2.3! is therefore redun-
dant and its removal gives

G5
1

\2E0

1`

dvE
0

1`

dv8ma^0uÊa
1~r0 ,v!Êb

2~r0 ,v8!u0&

3mbe2 i (v2v8)td~v2v0!, ~2.4!

where repeated subscript indices are summed over and
resent Cartesian coordinatesa,b5x,y,z.

Taking advantage of the gauge in which the scalar po
tial vanishes, that is

Ê1~r ,v!5 ivÂ1~r ,v!,

B̂1~r ,v!5“3Â1~r ,v!, ~2.5!

the electric field correlation function is related to the ima
nary part of the vector potential Green function by using
fluctuation dissipation theorem and Kubo’s formula@25#

^0uÊa
1~r ,v!Êb

2~r 8,v8!u0&

52\v2 Im Gab~r ,r 8,v!d~v2v8!. ~2.6!

Employing Eq.~2.6!, expression~2.4! can be simplified as

G5
2

\
v2 Im@m•G~r0 ,r0 ,v0!•m#. ~2.7!

It is more convenient to use the dimensionless vector
tential Green functionGab(r ,r 8,v), defined as

Gab~r ,r 8,v!5
v

4pe0c3
Gab~r ,r 8,v!, ~2.8!

wheree0 is the permittivity of free space andc is the velocity
of light. Using Eq.~2.8!, the decay-rate~2.7! can be rewritten
in the form of

Ga5
3

2
G0 Im Gaa~r0 ,r0 ,v0!, ~2.9!

where

G05
m2v0

3

3pe0c3\
~2.10!

is the decay rate of the excited atom in free space. No
that the subscript index ‘‘a ’’ in Eq. ~2.9! refers to the differ-
02211
-
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ent orientations of the dipole moment of the atom and
summation over the repeated indices is not applied.

B. The level shifts of an atom

The position of an atomic electron fluctuates around
mean value due to the existence of the fluctuating field of
vacuum, that is

R̂~r ,t !5R̂0~r ,t !1DR̂~r ,t !, ~2.11!

where R̂0(r ,t) and DR̂(r ,t) are the mean position of th
electron and its deviation from the mean value, respectiv
This gives rise to a modification on the instantaneous po
tial energy of the electron which is given by

V~R̂01DR̂!5V~R̂0!1@~DR̂•“ !#V~R̂!

1
1

2
@~DR̂•“ !#2V~R̂!1•••, ~2.12!

where the argument (r ,t) has been omitted for simplicity
The first term on the right-hand side is the instantane
potential energy in the absence of the vacuum field which

V~R̂!52
Ze2

4pe0R
, ~2.13!

whereR̂5R̂0 andZe and2e are the electric charge of th
nucleus and electron, respectively. The other terms on
right-hand side of Eq.~2.12! display the correction due to th
presence of the fluctuating field of the vacuum. The ener
level shift of a given state is therefore obtained by evaluat
the expectation value of the correction terms of the poten
whose leading term is of the form

DEn5
1

2
^@~DR̂•“ !#2V~R̂!&

5
Ze2

8pe0
Qab^@DR̂~r0 ,t !#a@DR̂~r0 ,t !#b&, ~2.14!

where the repeated indices are summed over the three
tesian coordinatesa,b5x,y,z, and

Qab52^nu
]2

]Xa]Xb
S 1

RD un&. ~2.15!

In writing Eq. ~2.14!, account has been taken of^DR̂(r ,t)&
50. Note that the state of the system is a product state of
electromagnetic fieldu0& and the atomic stateun&. The inte-
ger n indicates the principal quantum number.

In the dipole approximationDR̂(r ,t) satisfies the Heisen
berg equation

m
d2

dt2
DR̂~r ,t !1mG

d

dt
DR̂~r ,t !52eÊ~r ,t !, ~2.16!

wherem is the observed mass of the electron. This equat
resembles Welton’s interpretation of the Lamb shift wh
3-2
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G→0 @17#. The presence of this term and the absence o
restoring force term in Eq.~2.16! denote that the motion o
DR̂(r ,t) is assumed to be overdamped with the damp
constantG much greater than the natural frequency of t
undamped motion. The fluctuationDR̂(r ,t) may be decom-
posed into positive and negative frequency parts having
Fourier transform

DR̂~r ,t !5
1

A2p
E

0

1`

dv@DR̂1~r ,v!e2 ivt

1DR̂2~r ,v!e1 ivt#. ~2.17!

Substitution of Eqs.~2.2! and ~2.17! into Eq. ~2.16! yields

DR̂1~r ,v!5
e

mv~v1 iG!
Ê1~r ,v! ~2.18!

for the positive frequency parts. The Hermitian conjugate
Eq. ~2.18! givesDR̂2(r ,v). The explicit form ofDR̂(r ,t) in
terms ofÊ6(r ,v) is obtained by inserting Eq.~2.18! and its
negative frequency counterpart into Eq.~2.17!. We find that

DR̂~r ,t !5
1

A2p
S e

mD E
0

1`dv

v
F Ê1~r ,v!

~v1 iG!
e2 ivt

1
Ê2~r ,v!

~v2 iG!
e1 ivtG . ~2.19!

Therefore

^@DR̂~r ,t !#a@DR̂~r ,t !#b&

5
e2

2pm2E0

1` dv

v~v1 iG!
E

0

1` dv8

v8~v82 iG!

3^0uÊa
1~r ,v!Êb

2~r ,v8!u0&e2 i (v2v8)t.

~2.20!

Using Eq.~2.6!, we find that

^@DR̂~r ,t !#a@DR̂~r ,t !#b&5
e2\

pm2E0

1`

dv
Im Gab~r ,r ,v!

~v21G2!
.

~2.21!

Substitution of Eq.~2.21! into Eq. ~2.14! provides the level
shifts of an atom

DEn5
Ze4\

8p2e0m2 E0

1`

dvQab

Im Gab~r0 ,r0 ,v!

~v21G2!
.

~2.22!

The range of validity of the dipole approximation, which h
been used in Eq.~2.16!, necessitates the introduction of
cutoff frequency for the upper limit of integration in Eq
~2.22!. It is customary to choosemc/\ corresponding to the
Compton wavelength of the electron. As in the decay rate
is advantageous to use the dimensionless vector pote
Green function, defined by Eq.~2.8!, to express Eq.~2.22! as
follows:
02211
a
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DEn5
Ze4\

32p3e0
2c3m2E0

mc/\

dq
q

~q21g2!

3Qab Im Gab~r0 ,r0 ,v!, ~2.23!

whereq5v/c andg5G/c. This expression can be used fo
the evaluation of quantum electrodynamics level shifts p
vided that the damping coefficientG and the different com-
ponents of the tensorGab(r ,r ,v) are given.

III. THE GREEN FUNCTION

Consider a perfectly conducting medium with a sing
plane interface atz50 which fills the half spacez>0. Thex
andy axes lie within the interface. To recover the notion
an ideal mirror, we assume a frequency-independent refl
tion coefficient of unity for this interface.

The electromagnetic field operators are governed by
Maxwell’s equations which in the frequency domain in fr
space are of the form

“3Ê1~r ,v!5 ivB̂1~r ,v!, ~3.1!

“3B̂1~r ,v!52 i
v

c2
Ê1~r ,v!1

1

e0c2
Ĵ1~r ,v!. ~3.2!

Combining Eqs.~2.5!, ~3.1!, and ~3.2!, and taking into ac-
count the definition of the Fourier time transformed vec
potential Green function, that is

Âa
1~r ,v!5(

b
E dr 8Gab~r ,r 8,v!Ĵb

1~r 8,v!, ~3.3!

one can easily show that

(
m

S q2dlm2
]2

]xl]xm
1dlm¹2DGmn~r ,r 8,v!

52
1

e0c2
dlnd~r2r 8!. ~3.4!

The different components ofGmn(r ,r 8,v) are obtained from
Eq. ~3.4! with the appropriate boundary conditions. Th
boundary conditions at the plane interface of the conduc
are governed by the boundary conditions on the differ
components of the electromagnetic fields. The details of
calculations are omitted here for the sake of brevity, and
complete description is given elsewhere@12#.

The explicit form of the coordinate space Green functi
in this configuration can be written as

Gab~r ,r 8,v!5Gab~r ,r08 ,v!6Gab~r ,r18 ,v!

2
1

3e0v2
dabd~r2r 8!, ~3.5!
3-3
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where the plus sign holds forab5xz,yz,zz and the minus sign holds for the other components. The tensorGab(r ,r i8 ,v) is
given by

Gab~r ,r i8 ,v!5
q3

4pe0v2 H S 1

~qrrel!
1

i

~qrrel!
2

2
1

~qrrel!
3D dab

2S 1

~qrrel!
1

3i

~qrrel!
2

2
3

~qrrel!
3D ~r relr rel!ab

~r rel!
2 J eiqr rel, ~3.6!
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wherer relr rel is the normal Cartesian dyadic and

r rel5r2r i8 , i 50,1. ~3.7!

The vectorsr i8 are defined as

r085r 8, r185r 822z8k̂. ~3.8!

The typical structure of a semi-infinite response funct
is seen in Eq.~3.5!. The bulk part, which is the first term
together with thed function term, is associated with the d
rect communication between the two pointsr and r 8 and
resembles the free space Green function. The second
displays the communication between the points via a refl
tion in the perfect conducting interface. This term cor
sponds to the so-called image source.

IV. THE RADIATIVE PROPERTIES OF AN ATOM
IN THE VICINITY OF AN IDEAL MIRROR

Though in a practical situation we deal with a good co
ductor instead of a perfect conductor having reflection co
ficient of unity for all frequencies, it is customary to use t
ideal mirror approximation for simplicity. The modificatio
of the radiative properties of an atom in the vicinity of
perfect reflecting mirror has a simplicity which allows us
work it out easily in almost any formulation. The typic
behavior of this configuration illuminates some points wh
may be useful in more complicated situations.

A. The decay rate of an excited atom

Regarding the symmetry of the present problem there
two different orientations for the dipole moment of the e
cited atom which are known as perpendicular and para
orientations. Let us first consider the case in which the dip
moment of the excited atom is perpendicular to the surf
of the mirror at a distancez5z0<0. This case is represente
by Gz in our notation. Thezz component of the dimension
less vector potential Green function needed for substitu
in Eq. ~2.9! is given by Eq.~3.5! with the use of Eqs.~2.8!
and ~3.6!–~3.8!. We find that

Gzz~r0 ,r0 ,v0!5H 2

3
i 22F i

~2q0z0!2
2

1

~2q0z0!3Ge2iq0z0J ,

~4.1!
02211
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where q05v0 /c. Substitution of Eq.~4.1! into Eq. ~2.9!
yields

Gz5G0H 123Fcos~2q0z0!

~2q0z0!2
2

sin~2q0z0!

~2q0z0!3 G J . ~4.2!

It is seen that in the limitz0→0 the decay rate~4.2! tends to
Gz52G0. This is due to the fact that the image dipole of t
atom is in phase with the atomic dipole moment.

A similar consideration is applicable to the parallel orie
tation. The symmetry of the configuration in thexy plane
indicates that this can be represented by eitherGx or Gy in
the present notation. Thexx component of the tenso
Gab(r ,r 8,v) needed for insertion in Eq.~2.9! is given by

Gxx~r0 ,r0 ,v0!

5H 2

3
i 2F 1

~2q0z0!
1

i

~2q0z0!2
2

1

~2q0z0!3Ge2iq0z0J .

~4.3!

Substitution of Eq.~4.3! into Eq.~2.9! leads to the following
expression for the decay rate

Gx5G0H 12
3

2 Fsin~2q0z0!

~2q0z0!
1

cos~2q0z0!

~2q0z0!2
2

sin~2q0z0!

~2q0z0!3 G J .

~4.4!

We see that this expression tends to zero whenz0→0. This
denotes the fact that the image dipole of the atom is ou
phase with the atom dipole moment in this case.

The typical behaviors of these two decay rates in terms
the distance of the atom from the mirror are depicted in F
1. Note that the wavelength of the electromagnetic field
diated by the atom is the only scale of length involved in t
phenomenon. Therefore, the distance from the mirror is m
sured in units ofl052pc/v0. The decay rate is measured
the unit of decay rate in free space. We see that for b
orientations of the dipole moment of the atom, when t
atom is many wavelengths away from the mirror, the
flected field is weak and therefore the decay rate tends to
free-space decay rate. If the distance to the mirror is
creased, the mirror effect becomes appreciable. In the cas
parallel ~perpendicular! orientation the decay rate tends
zero ~twice the free space value!, when the dipole is very
close to the mirror.
3-4
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The average decay rate of an excited atom is defined

Gav5
1

3
~Gz12Gx!

5G0H 12Fsin~2q0z0!

~2q0z0!
12

cos~2q0z0!

~2q0z0!2

22
sin~2q0z0!

~2q0z0!3 G J . ~4.5!

The variation ofGav /G0 in terms of the distance of the atom
from the mirror is shown in Fig. 2. As one expects, it is se
that

lim
z0→0

Gav5
2

3
G0 ~4.6!

and retains the free-space value whenz0→`.

B. The level shifts of an atom

The symmetry of the present case allows us to simp
the general expression of the quantum electrodynamics l
shifts given by Eq. ~2.23!. The explicit forms of
Gab(r ,r 8,v), obtained from Eqs.~3.5! and ~3.6! along with

FIG. 1. Variation of the relative decay rate of an atomic syst
in the vicinity of a perfect mirror~a! for parallel orientation and~b!
for perpendicular orientation.

FIG. 2. Variation of the average relative decay rate of an ato
system in the vicinity of a perfect mirror.
02211
s

n

y
el

the use of Eq.~2.8!, show that the off-diagonal elements o
Gab(r0 ,r0 ,v) are zero. Therefore, Eq.~2.23! can be rewrit-
ten as

DEn5
Ze4\

32p3e0
2c3m2E0

mc/\

dq
q

~q21g2!

3(
a

Qaa Im Gaa~r0 ,r0 ,v!, ~4.7!

in which a5x,y,z. Using Eq.~2.15!, the diagonal elements
of tensorQab are

Qaa52^nu
]2

]Xa
2 S 1

RD un&5
4p

3
ucn~0!u2, ~4.8!

where in the last step the symmetry of the potential is ta
into account. Substitution of Eq.~4.8! into Eq. ~4.7! leads to
the following expression for the atomic level shifts:

DEn5
Ze4\

24p2e0
2c3m2

ucn~0!u2

3E
0

mc/\

dq
q

~q21g2!
Im (

a
Gaa~r0 ,r0 ,v!.

~4.9!

Employing the explicit forms of the diagonal elements
tensorGab(r ,r 8,v), it is easy to show that

Im (
a

Gaa~r0 ,r0 ,v!

52H 12Fsin~2qz0!

~2qz0!
12

cos~2qz0!

~2qz0!2
22

sin~2qz0!

~2qz0!3 G J .

~4.10!

Substitution of Eq.~4.10! into Eq. ~4.9! yields

DEn5
Ze4\

12p2e0
2c3m2

ucn~0!u2E
0

mc/\

dq
q

~q21g2!

3H 12Fsin~2qz0!

~2qz0!
12

cos~2qz0!

~2qz0!2
22

sin~2qz0!

~2qz0!3 G J .

~4.11!

The integration in Eq.~4.11! is all that needs to be done
numerically if necessary, provided that a numerical value
been assigned forg. This can be accomplished easily if w
examine the latter equation in the limitz0→`. Imposing the
limit, we find that

ic
3-5
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DEn
05

Ze4\

12p2e0
2c3m2

ucn~0!u2E
0

mc/\

dq
q

~q21g2!

5
1

12p2e0
2 S Ze4\

m2c3D ucn~0!u2 lnS mc

g\ D , ~4.12!

where mc/\@g is assumed in order to neglectg2 in the
numerator of the argument of the logarithm. The supersc
index ‘‘0’’ denotes that the latter quantity is evaluated f
free space. Comparison of Eq.~4.12! with the traditional
approaches to the level shifts of an atom in free space@14#
allows us to assign a numerical estimate tog. We find that

g5uEn2Emuav /\c517.8R` /\c, ~4.13!

whereR` is the Rydberg unit of energy anduEn2Emuav is
Bethe’s average excitation energy associated with the
states of the atom involved in the emission and absorptio
virtual photons. We can use this value in the theory of lev
shifts whenever it is needed.

The other extreme case of special interest is the limitz0
→0. The imposition of this limit on Eq.~4.11! yields

lim
z0→0

DEn5
2

3
DEn

0 , ~4.14!

which is in harmony with Eq.~4.6! obtained for the decay
rate of an excited atom. These two expressions denote
fact that both the decay rate and the level shifts of an ato
system experience the constructive and destructive natu
the interference of the vacuum field in the vicinity of th
mirror in the same way.

Using Eq.~4.12! one may express Eq.~4.11! in the fol-
lowing form:

DEn5DEn
0H 12F lnS mc

g\ D G21E
0

mc/\

dq
q

~q21g2!

3Fsin~2qz0!

~2qz0!
12

cos~2qz0!

~2qz0!2
22

sin~2qz0!

~2qz0!3 G J .

~4.15!

No matter how far the calculation may be proceeded ana
cally, the integration in Eq.~4.15! is all that needs to be don
numerically. As far as the typical behavior of Eq.~4.15! is
concerned, we may in most cases be content with the va
tion of DEn in terms of the distance of the atom from th
mirror. The difficulty, however, arises because of the lack
a clearly evident scale of length in this problem. As it w
seen in the case of decay rate, an appropriate scale of le
is needed to show the characteristic behavior of the phen
enon properly.

The integration in Eq.~4.15! can be simplified with some
algebra, so that
02211
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DEn

DEn
0

512~ ln j!21H 2

~2gz0!2 Fsin@~2gz0!j#

~2gz0!j
21G

1F 1

~2gz0! S 11
2

~2gz0!2D
2

2

~2gz0!2

d

d~2gz0!G f ~2gz0!J , ~4.16!

where

f ~2gz0!5E
0

j dx

~x211!
sin@~2gz0!x# ~4.17!

and j5(mc/g\). We see thatl 5(2g)21.4 Å is the
proper scale of length for this equation whereg is given by
Eq. ~4.13!.

The typical behavior of the energy level shifts versus
distance of the atom from the mirror is depicted in Fig.
The vertical axis is in the units of the shifts in free space a
the distance on the horizontal axis is in the units of 1/(2g).
As one expects, it is seen that the relative atomic level sh
take the value 2/3 whenz0→0 which is consistent with Eq
~4.14!. Increasing the distance of the atom from the mirr
the energy level shifts increase rapidly and achieve the f
space limit.

V. CONCLUSION

We developed previous work on the radiative propert
of an atom@24# to the effects of the presence of a bounda
surface. The general expressions~2.9! and ~2.23! describe
the decay rate of an atom or molecules as well as the ene
level shifts of an atom in terms of the imaginary part of t
dimensionless vector potential Green function.

The results obtained by the application of these two
pressions for the atom in the vicinity of a perfect mirror is
harmony with those appearing in the literature using diff
ent methods@19–23# . However, the mechanism of the lev
shifts is mixed with the modification of the effect due to th
presence of a boundary surface or surfaces in these cal
tions. This usually affects the distance dependence of
effect which could be important when a more complicat
geometry is involved. What is advantageous in our form

FIG. 3. Variation of the relative level shifts of an atom in th
vicinity of a perfect mirror.
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ism is that these two problems have been separated to cl
the effect of the cavity properly. As was seen in Sec. IV,
present approach reveals the similarities between the d
rate and level shifts of atomic systems in the presence
mirror.

The formalism of the image method of the dipole dec
rate was explained in both the classical and quantum
mains@13#. What is not well appreciated is that the energ
level shifts of an atom may also be treated by the help of
image method. This is seen clearly in the present formu
tion. What is new is that, as for the relative decay rate,
relative level shifts tend to 2/3 forz0→0. This shows that the
decay rate and the level shifts both experience the pres
of the mirror identically whenz0→0.

Experiments testing the change in the decay rate of
atom in the vicinity of a mirror and some other configur
tions are numerous in literature@13#. The results are in agree
ment with the theoretical predictions. It is seen that the va
tion of induced energy-level shifts in the vicinity of a mirro
are small to be detected easily, unless the distance betw
02211
ify
e
ay
a

y
o-
-
e
-
e

ce

n

-

en

the atom and the mirror is small. In practical situations, ho
ever, other interactions come into play in this limit.

The questions which may naturally arise in the applicat
of this formalism are first on the accuracy of the numeri
estimated value ofg, as given by Eq.~4.13!, and second on
the inconsistency of the calculations with the causality c
siderations. As for the first question we must note that
value of the damping constantG5cg does not apparently
affect the typical behavior of the level shifts given by Fig.
This merely slightly changes the scale of length on the h
zontal axis. Regarding the second question, one should
essarily improve on the ideal notion of a perfect conduc
having a frequency-independent reflection coefficient
unity to remedy the present ambiguity. The work on th
problem is under way.
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