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Space-time description of photon emission from an atom

Ole Keller
Institute of Physics, Aalborg University, Pontoppidanstrade 103, DK-9220 Aalborg @st, Denmark
(Received 14 December 1999; published 18 July 2000

Starting from the postulate that the electromagnetic field appearing in the transverse set of microscopic
Maxwell-Lorentz equations governing field-matter interactions, properly normalized, can be looked upon as
describing one-photon-emission and -absorption processes in space and time, a first-quantized initiation of
photon emission by a single atom is presented. The wave function for the emerging photon is introduced as a
six-vector object constructed from the complex analytical signals of the Riemann-Silberstein vectors belonging
to opposite photon helicities. When the atom is no longer electrodynamically active, the emitted photon is
described in first quantization by the so-called energy wave function well known for photons in free space.
From the momentum representation of the emerging photon wave function a condition on the analytical part of
the transverse atomic current density is established which ensures that precisely one photon is emitted. A
propagator description of the emerged photon dynamics in the coordinate representation is established. The
photon propagator is introduced as a two-component spinor, where upper and lower tensor components are
constructed, respectively, from positive and negative helicity combinations of the propagators describing the
time-space evolution of the transverse electric and magnetic fields. It is shown that the emission region for the
photon coincides with the region in space where the transverse atomic current density is nonvanishing. For a
photon emitted in an electric dipole transition the emission region essentially is the near-field zone of the atom,
and this zone therefore determines the initeald bestspatial confinement of the photon. The photon emerg-
ing from an atom active for a finite time necessarily is of the polychromatic sort and the associated wave packet
essentially is confined between spherical shells moving outwards with the vacuum speed of light. To illustrate
the main principles of the fundamental theory in a heuristic fashion we apply it to a study of the emission of
a one-photon sinusoidal wavetrain from a pointlike atom. It is found that the atomic current density needed to
create just one photon is independent of the oscillation period in the train and thus depends only on the number
of periods in the wave train. An explicit expression for the one-photon energy is derived, and it is shown that
only for extremely short pulse trains pronounced deviations from the textbook rEstltw,, occur. The
radial energy flow in the coupled atom-photon system in the near-field zone of the atom is investigated, and the
cycle-averaged outwards energy transport carried by the emerging photon in a given distance from the atom is
determined.

PACS numbegps): 03.65.Ca, 42.56:p, 42.50.Ct

[. INTRODUCTION loss of spatial confinement of quantized light emitted from a
single atom[4]. For a given optical transition the spatial

The electromagnetic interaction between an atom and extension of the related transverse current density of the
quantum field usually is described in the language of secondtom gives us precisely the strongest confinement of the
guantization, and the photons are the quantum excitations @fuantum field, and for an electric-dipole active transition the
the field[1]. To the best of our knowledge quantum electro-source region of the field extends over the entire near-field
dynamics(QED) offers us a rigorous framework for studying zone of the atom.
all fundamental atom-field interactions, and over the years Let us imagine now that just one photon is emitted from
various mathematical techniques have been used to investhe atom. As long as the time derivative of the atomic current
gate the time development of the coupled photon-atom dyeensity is nonvanishing the photon is in the process of being
namics. Traditionally, one starts from the Heisenberg equaemitted, and this process takes place over the near-field zone
tions of motion for the atomic operators and the modeof the atom. To investigate theoretically the emission process
operators of the plane-wave components of the field, and thef a single and necessarily polychromatic photonbith
fingerprints of the photon-atom interaction are looked for inspace and time | have found it useful to seek a first-quantized
the properties of the radiated field in the far-field zg8g8].  description of the process as a forerunner to a second-

The development of near-field opti¢blFO) within the  quantized QED theory. A first-quantized theory for the pho-
last two decades has made it clear that an improved undeten is attractive in the present context because a photon wave
standing of the matter-field interaction on a length scalgunction in the coordinate representation may be introduced.
(much smaller than the optical wavelengshis needed. In The concept of a photon wave function in direct space
attempts to improve the spatial resolution in NFO it is im-was suggested by Landau and Peierls in 180 and has
portant to understand what kind of conceptual limitationsmore recently been investigated and used by (éel8] and
QED sets for the spatial confinement of light. Recently soménagaki[9]. The Landau-Peierls wave function has a number
insight into this question has been obtained using an electraf less attractive properties. Hence, it bears a nonlocal rela-
magnetic propagator picture to describe as time elapses thion to the local electromagnetic field and is apparently not a
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good candidate for understanding the detection of partiallyl C and 11 D. In Sec. 1l C, single-photon emission in momen-
localized photons. In the present work we shall use the sixtum space is studied and a description of the initiation of
vector wave function advocated by Bialynicki-BiruJa0—  photon emission is introduced on the basis of a six-vector
12]. This, as well as the closely related three-vector waveVave-function object. It is suggested that the transverse set
function used by Sipe[13] arise from the Riemann- ©f microscopic Maxwell-Lorentz equations, properly nor-
Silberstein vectof14—17 introduced in the beginning of the malized, describe the photon-emissiand -absorptionpro-
20th century to rewrite Maxwell's equations in complex cess in space-time. In Sec. |l D, photon emission is examined

) in direct space, and a propagator description of the emission
form. It appears that Oppenheinld8] suggested the use of jitiation dynamics is established. The propagator descrip-

the Riemann-Silberstein vector as the wave function of thgion appears particularly useful because it allows us to inves-
photon in direct space. Since the information carried by th‘%igate the spatial localization of the emerging photon in a
negative-frequency components of the Riemann-Silbersteigjrect manner, and because the propagation speed of the pho-
wave function is already contained in the positive-frequencyon field, i.e., the vacuum speed of light, appears so explicitly
part of the wave function only the positive-ener@lye- i the formalism. In the coordinate representation the photon
quency part enters the Bialynicki-Birula definitiofi2] and  emjssion process is studied in two equivalent propagator pic-
the one used below. By this choice a useful connection to th?ures(views) [4]: The view from the photon’s perspective in
so-called analytical signal of importance in both classicalyhich the source region is identified with the region where
and quantum field theor}] is induced in the formalism. the transverse atomic current density is different from zero,
Quite recently another_attractive description of the photon irhnd the view from the electron’s perspective in which the
free space was established by Haw{d®,20,, who argued  photon source region is imagined to be compressed to coin-
for a photon state vector proportional to the four-vector po-sjge with the region of nonvanishing electron denségsen-
tential in order to base photon quantum mechanics on NUMia]ly).
ber density[1,3] as is usual. A good review of the almost | Sec. 11 the general theory is applied in a model calcu-
century-old history of the photon wave function has recentlyjgtion. Thus, a sinusoidal wave trajof finite length emitted
been given by Bialynicki-Biruld12], and readers interested from a pointlike atom is taken as an heuristic paradigm. The
in the connection between the photon wave function conytomic current density needed to emit precisely one photon is
cepts in the coordinate representation and the so-calleghiculated in Sec. Il B for a point dipole, and in Sec. Il C
coarse-grained detection thedig] may start from the book  finjte-size corrections to the current density are studied for
by Mandel and Wolf3]. _ _ the hydrogen &« 2p, transition. The one-photon energy is
The emission process in space-time of a single photofetermined in Sec. 111D, and a simple explicit formula, de-
generated by an electrodynamically active atom is at focus igyed. From this the textbook result for the enertyy, is
the present theory, and this necessitates that the matter—fiellggained as the length of the photon wave train is increased
coupling is involved in the formalism, and this aspect makesbeyond a few cycles. In Sec. Il E the cycle-averaged radial
the Bialynicki-Birula-Sipe approach adequate. In fact, Sip&nergy flows in the near-field zone of the atom are investi-
[13] relates his photon wave-function description to thegated for the wave-train paradigm, in both the photon and
spontaneous-emission process via the Power-Zinau-Woolle¥jectron perspectives, and we determine how the energy
Lagrangiar{21-23, but since the photon field is assumed t0fioys hetween the emerging photon and the atom as a func-
be confined to withincy7 of the atom at a timer after the o1y of the distance from the point particle.
atom hqs started to decay, the near-field confinement dynam- |, the Appendixes, the photon-antiphoton interference is
ics studied by the present author recefdywas lost. Aswe sy died, the magnetic-field propagators relevant in the pho-
shall realize the near-field zone plays an important role inon and electron perspectives calculated, and the transverse
photon emission. Also Bialynicki-Birula stresses the impor-5,q longitudinal parts of the hydroges<: 2p, current den-
tance of going beyond the free-space photon description, ar’gjty determined in wave-vector space.
does this by studying the photon wave equation in an inho- "1 5 forthcoming paper it will be demonstrated that the
mogeneous medium and in optical fibgtk0,12. In both  resent first-quantized theory can be used to establish a rig-
cases, however, the maitter dynamics is described in thg,gus one-photon theory for optical tunnelifig9,3d. In
framework of macroscopic electrodynamics, and the pheppoton-tunneling processes the conceptual limitation in our
nomenological nature of such an approach as well as thgjjity to localize photons in space plays a crucial 86],
complications arising when dealing with a material many-5nq in a space-time description of the tunneling of single

body system[26,27] make such systems less attractive inphotons studies of the dynamics of the emerging photon
attempts to understand the emission and absorption processggrefore turns out to be indispensable.

for single photons in a first-quantized description.

In Sec. II B, we briefly review the Riemann-Silberstein- Il. FIRST-QUANTIZED THEORY OF
Bialynicki-Birula description of the photon wave function in THE EMERGING PHOTON
free space, paying attention to those aspects which are of
particular importance for the subsequent development of the
theory. The need for dividing the electromagnetic field cor- In a simple first-quantized description a photon cannot be
rectly into genuine transverse and longitudinal vector fieldcreated nor can it be annihilated, and therefore the single-
parts in both matter and matter-free regions is emphasizeghoton wave function is a concept of the free electromag-
[28], and the importance of this appears in full scale in Secsnetic field. Even in a nonrelativistic treatment of matter-field

A. Preliminary considerations
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interactions, where the number of charged particles is fixedgveryspace-time pointr(t) it satisfies the condition

the number of elementary excitations in the radiation field,

the photons, inevitably will change as a function of time. V-B(r,n)=0. @
Thus, spontaneously emitting atoms _generqte photons, 'Since matter inevitably is present in portions of space, the
other processes photons are absorfgdce with no rest

h b dnd field . - electric field E(r,t) is not so simple, but we can always
mass they cannot be stoppednd field propagation, .., ingjide it uniquely into a transvers@ubscriptT) vector-field

qondensed media consists of a su.ccession of pho'ton absorﬁért' E+(r,t), and a longitudinalL) part, E, (r,t). Though
tion and emission processes. At first sight one might therege givision is unique in a given inertial frame it will in
fore be inclined to think that the photon wave-function con-general be different in another frame. This lack of relativistic
cept is of limited usefulnes in studies of light-matter jnyariance is of no importance here, however. Despite the
interactions in quantum optics. As we shall realize in thefact that the electric field fulfils the conditioW - E(r,t)=0
following, this conception is not correct. in those regions of space where the particle charge density is
The notion of a photon wave function in momentum rep-zero, we are not entitled to claim that only the transverse part
resentation has been well founded for many years, whereasf the electric vector field is present in charge-free regions.
the coordinate representation has stirred much controversphis is so because also the conditi®xE(r,t)=0 is
over the year§l1]. It seems, however, that a good candidateobeyed in certain parts of the particle-empty space, namely
for a position-representation wave function (he) one in the near-field zone of mattg¥,27,29. Technically the
which relates to the probability amplitude for the photonextension of this zone is identified with the region of matter-
energy to be locatettletectedi at the various space points at empty space where the transve(eeequivalently longitudi-
a given time[10-13. This so-called photon-energy wave nal) part of the particle charge current density is nonvanish-
function [3] is proportional to the transversely polarized ing. As | shall demonstrate later this region in fact also is the
electric field prevailing in free space. emission region of the photon, a spatially extended object
Once accepted that the single-photon wave function iglready from the outset of the emission process. In every
intimately connected with the transverse part of the classica#pace-time point of the abstract matter-free space, in which
electromagnetic field a search for a conceptual frameworknly a transverse electric field&(r,t)=E+(r,t), exists, in
for understanding the transverse set of microscopic Maxwelladdition to
Lorentz equations, describing the interaction of matter with
transverse electromagnetic fields from the photon point of V-Ex(r,0)=0, @
view, seems unavoidable. | suggest here that these equationsﬁd also the two relations
properly normalized, in the one-photon case can be lookef

upon as describing the photon emission absorptioh pro- IB(r,1)

cess in space and time. Since it is legitimate to claim that VXE+(r,t)=— , 3
field-matter interaction occurs in every place in space where at

the time derivative of the transverse part of the particle cur- 1 GE(r.0)

rent density is different from zero the domain occupied by VXB(r,t)=— e (4)
these places constitutes the emissjon absorption region cop dt

of the photon. The process of emittiigr absorbing the ) _
photon with certainty lasts as long as the time derivative ofvhereco is the vacuum speed of light, hold. Together, Egs.
the particle current is different from zero. (1)—(4) constitute the(microscopi¢ Maxwell equations in

In Secs. 11 B—II D we shall study the theoretical consider-€mpty space. Only in this idealized world a photon is a ro-
ations which lay the foundation for the above-mentionedoust object. _
point of view, and describe some of the perspectives emerg- We denote the solution to the set of empty-space Maxwell
ing in the wake. By incorporating the photon emission andequations, which below will be related to the energy wave
absorption processes as an integral part of the first-quantizdenction of a single photon, bger(r,t),b(r,t)). Other solu-
one-photon theory it appears to me that this theory might b&ons (E+(r,t),B(r,t)) to those homogeneous Maxwell equa-
quite useful. As an extra bonus the theory helps bridging th&ions can be found by multiplying this solution with an arbi-
gap to the second-quantized time-space description of théary constanta), i.e.,

near-field electrodynamics of atoms, a subject to be studied
in detail in a forthcoming paper. (Ex(r,1),B(r,t))=a(er(r,t),b(r,1)). (5

) . We now introduce the specific Riemann-Silberstein vectors
B. Single-photon wave function [14-17

We begin our study with a summary of the theory for the
single-photon energy wave function in empty space payin €o .
attgntign to those g)épects of the formulat?o)r/l V\?hich gug ong fe(r.t)= \/;[er(r,t)imob(r,t)], ©®)
particular importance for the subsequent description of a
photon emerging from an electrodynamically active atom. whereeq is the vacuum permittivity. By means of Eq®)

We know from the microscopic Maxwell equations that and(4) these vectors are seen to satisfy the differential equa-
the magnetic field(r,t) is atransverse vector fieldince in  tions
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af.(r,t) normalized probability that the photon energy is localized in
ot T ECoh VXTL(r1). (7)  the infinitesimal volumed®r aroundr at timet. The issue
above cannot be elucidated further without involving matter,
To prepare for the quantum description the Planck constarib relation for instance t¢i) the photon detection procefs|
divided by 2r, i.e., #, has been put in. Following the sug- and (i) a discussion of the fundamental limitations which
gestion by Birula-Bialynicki[10-12, | define the one- gquantum electrodynamic®QED) forces upon us when we
photon wave function in the space-time domair(r,t), as  Seek to obtain an extremely strong spatial localization of a

the six-component object photon[4]. Although the overwhelming majority of papers
dealing with the conceptual possibilities of localizing a pho-

f.(r 1) ton have dealt with the free-space dynaniid$—38,3,19), |
‘I’(f,t)E(fu)(r,t)), (8 hold the point of view that field-matter coupling is needed to

understand the spatial localization process of phofdis
where Seen from this perspective, a description of the photon-
emission process as the one presented in Secs. IIC and I D
+) €0, (1) _ . might be useful as a first step towards a second-quantized
fny=zle (= icob ™ (r,1)] formulation. In Appendi A a derivation of Eq(10) is given,
and the underlying physics is addressed in more detail than
\/?o o _ it hitherto in the literature, in particular the photon versus an-
= ?fo [er(r;w)Ticob(r;w)]e™'”'dw (9)  tiphoton aspect. Since it follows from the dynamical equa-
tions (7), or from the energy balance equation for the elec-

are the positive-frequencyw) parts of the respective tromagnetic field, that

Riemann-Silberstein vectors. In the theory of classical and d (=

quantum coherence, as well as in quantum detection theory, _f @ (r,t)-d(r,t)d*r =0, (12

the positive-frequency parts of the various fields dt )

(E$Y) ,BM), called the(compley analytic signals, play a _ _ _

more prominent role than the fields themsely@k and as & Photon once introduced in empty space never disappears.
emphasized by Birula-BialynicKil2] the analytic signal, for Before proceeding a comment on the definition | have
consistency in the broader framework of particles and anti¢hosen in Eq(8) for the photon wave function should be
particles, must be related to the photon and the negativemade- Historically, the use qf the Rlemann-S_llbersteln vec-
frequency parti(;)(r,t) of the Riemann-Silberstein vectors torsf..(r,t) as the.wave function of the photoniirspace has

to the antiphoton. Since the antiphoton is identical to th een advocated first by Oppenheimie8], and subsequently

photon itself, the technical bonus of working with the ana- y @ number of other physicis{89,40,10-18 The choice

lytical signal is that this removes a redundancy in the de—Of the plus sigriin Eq. (6)] in fact means that only photons

scrioti of positive helicity are considered. Photons of negative he-
ption. -
By multiplying @(r,t) with its Hermitian conjugatérow) licity are treated by means OL(r,1). If we do nc.)tlwant to
T  reH) * r(+) * . address the photon-emission process it is sufficient to use a
vector ®'(r,t)=(f"'(r,t)]*,[f2/(r,t)]*) one obtains f i i1 which the phot function 1 .
upon integration over the entire space ormafism in whic € photon wave function for a given
helicity is a three-component objddt.(r,t) ], remembering
@ o the particle— antiparticle redundancy hidden in the relations
E=J’ @T(r,t)~¢(r,t)d3r=f fo(r,t)-f_(r,t)dqr. e (r;— w)=er(r;») andb* (r;— w)=b(r; ). In the emis-
o "’“ (10) sion (absorption process of the photon linear superpositions
of the two helicity states occur as we shall realize later on,
and therefore, it is profitable to consider the two helicity
states as the upper and lower components of the same wave
w(r,t)=f (r,t)-f_(r,t) function. Bialynicki-Birula argues for the need of a six-
component wave function in order to deal with the one-
€0 2 photon concept in inhomogeneous media in an effective
- ?[er(r,t).eT(r,t)vLcob(r,t)-b(r,t)] A manner. Basically, | agree with this point of view, but an
inhomogeneous medium which dynamics is described in a
precisely is the energy density in the classical electromagphenomenological manner by(space-dependendielectric
netic vacuum field, the quantitly above is identified as the constant is not well suited for understanding the basic fea-
energy of the photon. Though a deeper analysis appeatasres of the coupling of one photon to matter. When ex-
needed, taking into account the coupling of the photon to théended to many-particle electronic wave functions the emis-
particle field, we may tentatively say thd'(r,t)-®(r,t) sion process formalism established in Secs. IIC and 11D,
represents the energy density in the photon field in our firsttogether with a similar description of the photon absorption
guantized description; hence the name photon-energy wavy@ocess, appears to me to constitute a better framework for
function for ®(r,t). One may upgrade the formalism to understanding, in a first-quantized version, single-photon dy-
second quantization and suggesf3,10-13 that namics in condensed matter systems. Using microscopic
®'(r,t)- d(r,t)d% represents in the statistical sense(ime-  local-field calculation techniques | shall address this problem

Since
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in a later publication. In the theory of Sigd3], a three- The single-photon wave function in the momentum represen-

component wave function including both helicities is de-tation then is defined as the six vector

fined. Essentially, his choice for the photon wave function in

direct space is a properly normalized sum of the two

Riemann-Silberstein vectors, i.ef, (r,t)+f_(r,t). This (I)(p’t)z(zwﬁ)_3/2(

gives a free-space photon wave function proportional to the

transverse part of the electric fiek;. In Sipe’s treatment of

the one-photon emission from a spontaneously decayinglthough the notationsp(r,t) and ®(p,t) have been used

atom the transverse electric field is replaceth a Power- for the photon wave function in, respectively, the space and

Zinau-Woolley transformatiofi21-25) by the displacement momentum representation, one must remember that the two

field, d(r,t), in order to preserve the causality of the outgo-functions do not form a pair of Fourier transforms, cf. Egs.

ing photon field. In Sipe’s description the photon is initially, (13) and(14). The probability density?(p,t) in momentum

i.e., when the emission process starts, completely localizegpace

in space, or at least to a region identical with the electronic

size of the atom. The complete localization is not found in

the present analysis, and yet no violation of Einstein causal

photon propagation appears, see R&fand Sec. Il D of this

paper. with  ®'(p,t)=(27%) ¥ g% (p,t) & (P).g* (p.t) € ()],
Following the standard approa¢h2,13 the one-photon thus is given by

wave function in momentur(p) representation is introduced

starting from the Fourier transformations

g+(p,t)%+(|6)> 20

g-(p,t)e-(p)/)

P(p,t)=(27%) 3[|g+(p,)[2+|g_(p.H)[?], (22

f(r,t)y=(2mh *3Jm \VCopg-(p,t)eP "d3p (13
= (D= ) —o oPQ:(P.1) P as one readily realizes sin@s (p) - €. (p)=1. From the as-

sumption that we are dealing with just one photon follows

and their inverse the normalization condition

f(+) pt \CO g+(pt f“ +)(r,t)e7|pr/ﬁd3r' )
(14) fﬁxqﬂ(pat)'q)(p,t)dgpz 1, (23)

If one then transforms Ed7) to the frequencyw) domain, )
and thereupon integrates the resulting equation over the posind if Eq.(23) is satisfied at one time, the Schiinger-like
tive frequencies it is realized that thig)’s satisfy the dif- time evolutions forg.(p,t), given in Egs.(19), guarantee

ferential equations that it holds at all later times. In fact, since no coupling is
present between the two helicity components, the much
ot +) sharper conditions|g-(p,t)|%dt=0 hold, as one may real-
i —— = £ Ch VXTL(r,1). (19 ize with the help of Eqs(19), and therefore the probability
density in momentum space is time independent, Fe.,
By inserting the expressions in Eq4.3) into Egs.(15) one  =P(p). The homogeneity of the dynamical equations in Eq.
gets (19) leaves the amplitudes @f.(p,t) undetermined but the
normalization condition in Eq(23) fixes them. In turn the
5 99=(p.H) _ & CopX G (i), (16  amplitudes off(*) are determined via Eqs13), and finally
dt the amplitudes of the transverse electrég)(and magnetic

(b) fields entering the single-photon Riemann-Silberstein
vectors[see Eqs(9)] are uniquely determined.

The one-photon energy density in momentum space,
e (p )Z—[El(P) &)1, (17) wr(p,t), can bg obtai_ned taking as a starting point the
Parseval-Planchdreelation

With the help of the helicity unit vectors.. (p), given by

where the unit vector€,(p), &(p), andp=p/p (in this
ordep form a right-handed triad, the vector amplitudes, J OO (r,t) - [FC(r 1) ] d3r
g-(p,t), introduced via - -

gi(put):gt(p!t)ét(ﬁ)v (18) :(277771)73"‘“ f(++)(p,t)[f(++)(p,t)]*d3p (24)
are seen to satisfy the Schlinger-like equation o
ﬁg (pt) Utilizing that f")(p,t) = \copg. (p,t) [Egs.(14)], the pho-

=PCog-(p,t). (19

at ton energy can be written in the form
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® ) +) in direct space, as one easily realizes from Eg5s.(6), (9),
E= j_x{ﬁ (r,t)-[f(rn]* and (28) [with J.(r,t) replaced byJ+(r,t)]. The quantity
+f(_+)(r,t)-[f(_+)(r,t)]*}d3r ngj—)(l’,t): JAwJT(I’;w)eii‘"tdw (31)

0

= -3 “ .o
(2m#) fﬁmcop[g+(p,t) gi(p.t) is the analytical signal belonging tg+(r,t). In momentum

space the equivalent equations read

+g-(p.t)-g* (p,t)]1d%p, (25
ot (p,b) i%
or equivalently ih———— =+icopXf ) (p,t)— — T (p,1),
ot Op + (p ) \/2_60 T (p )
” (32
E= J_ CopP(p)dp, (26)

where 7$7)(p,t) is the Fourier transform of7{")(r,t). To
with P(p) given by Eq.(22). It appears from Eq(26) that ~ obtain the dynamical equations for the scalar functions
the one-photon energy densityr(p) equals the product of f.(p,t), given via
the p-space photon energyp and probabilityP(p), i.e.,

()= (p.0&.(p), (33
w(p)=copP(p), (27)
) as it readily appears from Eq§l4) and (18), we use the
as desired. dyadic expansion
C. Single-photon emission process in momentum space; U= e (D)e.(p)+e_(p)e_(p)+pp (34)

emergence of a photon

Let us now turn our attention towards the establishment obf the unit tensorU, and the condition that7{") is
a so-called photon perspective of the transverse microscopiiivergence-free, i.ef)- J(T”:O, to resolve the current den-
Maxwell equations in the presence of matter. If we denotesity generating a single photon in the form
the transverse part of the prevailing current densify,t),

by J1(r,t), Eq.(4) must be replaced by T p=e.PI ] (p)+e (PITF (p,t), (35

1 9E+(r,t
VXB(r,0=podr(r,0+ — Ta(t ! (2g Where
0
| _ _ T (py=e(p)- T (p.b). (36)
and again | emphasize that in order f3(r,t) to be a genu-
ine transverse vector field the condition An insertion of Eq.(35) into Eg. (32), a subsequent multi-
plication of the resulting upper- and lower-sign equations by
V- Jr(r,t)=0 (29 & (p) and &, (p), respectively, and use of the relations

must be fulfilled in the entire space, i.e., inside as well asfi(p)‘et(p)zl’ give after a few algebraic steps

outside the region where the particle charge density is differ- (+)
: A afy(p,t)

ent from zero at the given time. The presence of a matter p—""
field does not change the two Maxwell equations in Edjs. ot
and(3), and the addition to the final onfé&q. (2)] does not
enter the dynamics of the transverse photons directly but i¥/nder the assumption that the Riemann-Silberstein vectors
of importance for the energy flow in the coupled photon-vanish in the remote past, the solution of E8j7) is
atom system, see Sec. Il E.

In order that precisely one photon comes out of the emis- Cieopun (U 6 I it [ s
sion process the transverse current density must have a spefs '(P.t)=— \/?9 oP lf_ij,i(p,t )e'coPtitdt’,
cific amplitude. We shall determine this amplitude below, €0 38)
and by assuming here that this has been done, let us denote

the resulting transverse current density Jy(r,t). _To characterize the initiation of the photon-emission process
The positive-frequency parts of the Riemann-Silberstein, momentum-time space the six-vector object
vectorsf(j)(r,t) now fulfill the inhomogeneous differential

ih
=copfi(p,t) - \/fj%ft)(p,t). (37)
0

equations +(p,t
! wipn=h-g " t;)
ot (r t) P
e AALNUT e Ty h-342 —1/2(f<++)(p,t)%+(lﬁ)) 39
0 (30) - (COp) f(_+)(p,t)%7(f)) ( )
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is introduced. With thé")(p,t)’s given by Eq.(38), W(p,t)  and hence the amplitude o' {*)(p,cop/%.) [and thereafter

can be written in the explicit form J+(p,cop/ti.)] can be determined from the normalization
e i condition
W(p,t)=—h""92€xCop)
A A a 1 * 1 Cop Cop) |*
. _ = 2 g OB g 2O 3=
Xe*ICOPt/ﬁ ZJrEg;Z Eg;) 2h3€0C0 f—prT (pr A ) JT (pv i )} d p 11
- +
(47
t . ,
'J_ T (p,t)ecort /iy, (40 cf. Egs.(23) and(35). Remembering that we, strictly speak-

ing, performed a Fourier transformation from direct space
(r) to wave-vector =p/#.) space earlier, the transverse
current density is

where the notation i(f’)-az(if’j) has been used for
— €4 -€+

brevity. In the limitt—oc the photon has emerged, and there-

fore ()~ CoP) _ 4y

jT pyT ZJT (qyw)! (48)

lim¥(p,t)=d(p,t), (41
t—oo

wherew=E/#% is the cyclic frequency of a monochromatic

where®(p,t) is the relevant free-space single-photon wavePhoton of energye=pc, (see also Sec. lllD In the mo-
function in the momentum representatifgq. (20)]. Since mentum representa‘uon. th'e posmve-frquency part of the
W(p,t) describes a not fully emerged photon, we may callfransverse current densﬂ_y in the, ) dqmam thus plays an
W(p,t) the emerging-photon wave functidin momentum important role, as one might have anticipated.

representation By means of the Fourier transform
D. Single-photon emission process in direct space; propagator

CoP * - . description of the emerging photon
J%“( P, 7) = J T (ptyecorihdt, (42 |
- 1. Photon perspective

we thus have To describe the emergence of the photon in space-time we
oo P must now introduce the relevant direct space emerging-
®(p,t)=—h">42eqcop) Ve %PV photon wave function¥(r,t). Despite the notatior¥(r,t)

A ava a is not the Fourier transform o¥(p,t) given in Eq.(40). In
f+(?)f‘(?)) .J<+>(p @)_ (43  terms of the analytical part of the Riemann-Silberstein vec-
€-(p)e.(p) T " h tors, W(r,t) still has the six-component form displayed in
Fd. (8), but now thef{")(r,t)’ s have to satisfy the inhomo-
geneous first-order partial differential equations in E2f).

The relations between the positive-frequency parts of the
Riemann-Silberstein vectors and the analytical signal related

after the timety where the source current has stopped. tnoug,'g;rra;svﬁrs;%ﬁmf i?\:;?g;:j\?vgs';y '??Esbeo\;vgttrig ms?art
We are now in a position where the positive-frequency. pny y eq ys. ’ y

amplitude of the transverse source current densityfOM the momentum-time relations between the'(p.)'s

T (p,coplh), can be determined so that precisely one@nd 7+ (p.t), given by Eq.(38) with Eq. (36) inserted, and
photon is emitted. Thus, from the free-space Sdimger then perform the inverse Fourier transformations to obtain

Above we have integrated the transverse source current de
sity from —oo to o, Usually, the current density is only non-
vanishing over a finite time interval, say<G<t,, and the
photon is hence described by the wave function in @8§)

’ : + :
equation in Eq(19), one obtains the general solution thef(;)('r,t) s as functions of7 )(r,t). Here, we will es-
tablish instead an electromagnetic propagator relation be-
g-(p,t)=g%(p)e CoPV% (44)  tween the analytical parts of the Riemann-Silberstein vectors

. _ and (the time-derivative ofthe transverse current density.
and upon a comparison to Eq89), (41), and(43) it appears  The reason for choosing such a procedure is twofold. Hence,
that first the speed of light is introduced in the space-time dynam-

Cop ics in such a manner that the role of the Einstein causality in
L)

9% (p) = —(ZEOCop)l’ZJ({l( D, : (45) the photon-emission process appears explicitly. Second, the

propagator formalism offers us a direct way of following the
. . - time development of the loss of spatial confinement of the
In turn this means that the probability density in momentumphoton wave function during its generation.

space given by Eq22) becomes By combining Eqs(3) and(28) and limiting ourselves to

cop\ |2 the complex analytical signals one can obtain the following
P(p)= m j(TQ( P, T) wave equation for the electric field of the emerging photon:
cap) |2 1 4 AT (r )
+ j@(p, %) } (46) (VZ— C_SW> e(Tﬂ(f,t):ﬂoT, (49

022111-7
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and by means of the isotropic electromagnetic propagator p(*)(r t)

s 0J(+) r/,t/
dRm=— s R )U (50) :?f fi(r=r',t=t") %dgr'dt/’
(Rn==77r% 7Y 0=

(53
with R=[R[, R=r—r’, and 7=t—t’, the Einstein-causal | here
relation betweere\")(r,t) and 974" (r’ ,t')/at’ reads
BR. 7= 5 R Co R
(1,0 MR e T TR T g
- 0Tt X[®(R)OR)—O(R)D(R)] (54)
=ﬂof d(lr—r'|,t-t") . —————dat",

is the relevant propagator for the magnetic field in the photon
(51)  perspective. In Eq.(54), the magnetic-field propagator,
M(R,7), is expressed in polar-coordinate form and the unit

In Eqg. (51) the source domain of the electric field of the Vectors R,@(R), and ®(R), which form a right-handed
photon is identified with the region occupied by titene  triad, are the local ones. Since,

derivative of the transverse part7{")(r’,t"), of the ana- o
lytical atomic current density7(")(r’,t"). Although the UXR
electron motion is confined to a region of essentially expo- .
nential extension around the nucleltise decay length being the far-field (~R™*) part of the propagator has precisely the
of the order of the Bohr radilisthe transverse current den- form cited above. Although the far-field contribution
sity exhibits a much weaker spatial confinement of @i to €")(r,t) which originates in the differential source
type. The view given us of the electrodynamics starting from{ a7 (r' ,t")/ot' 1d3 'dt’ is different from zero only on
Egs.(51) | have called the photon perspective, and a detailedhe light shelllR=cy7, near the atom the magnetic field is
account of the picture it offers us can be found in Réf. In  nonvanishing for timelike £>R/cy) source-observation
this reference the propagator description of the magnetipoint couplings also, cf. the presence of the term with the
field emitted from the atom was not studied but this is necHeaviside unit step functiom(7—R/cg), in Eq. (54). The
essary here in order to develop the propagator description afimelike couplings vanish @&~ 2 (midfield dependengavith

the emerging-photon energy wave function and the emittethe distance from the local source point. Only in the far field

RxU=®(R)O(R)—OR)®(R), (55

photon. the electromagnetic field stemming from the in time and
The magnetic field of the photon(*)(r,t) may be ob- space infinitesimally extended sourcd d J+(r’,t')/
tained from the expression at']d%r"dt’ is located entirely on the light cone. In the pho-

ton perspective, the Einstein causality is thus never violated.
The final steps towards a propagator description of the

V X e(T“(r,t’)dt’ (52 ph_oton emission process and th_e subsequent free-space evo-
o lution can now be taken. Thus, | introduce what one may call
the photon-energy wave-function propagators in the photon

by the help of Eq(51), as one readily infers from E¢g). In per_spt_activejEI(R,r), for the two(+, —) helicities by the
setting up Eq(52) we have assumed that the magnetic fielddefinitions

vanishes in the remote past. In the far-fieldR ') zone of -

the atom the propagator description of the magnetic field has FL(R,7)=d(R,7)*iM(R,7), (56)

a form closely resembling the one given for the transverse

electric field in Eqg.(51). Thus, the source density is still or in explicit forms

oS (r' t")lat’, and in the propagator we just need to

replaceU by UxR, whereR=R/R. Finally, the replace- ET(R7)=— L5< R )

ment uo— o /Co is Needed. In the near- and midfield zones =~ 4R "\ Co

of the atom, zones which are of particular importance for the
photon-emission process, the modifications are more pro-

b (r,t)=— ft

x{T=i[D(R)OR)— OR)D(R)]}

nounced, and, in fact, both propagator and nonpropagator ico R\ . . . .
formalisms, equivalent from a physical point of view, can be F— 0( T— —) [®(R)O(R)—O(R)DP(R)].
established. In the present context it is convenient to picture 47R Co

the physics in propagator form. In this form the driving term (57)

is the same as for the electric field, i.e77(r’,t')/dot’. As
shown in Appendix B 1, the magnetic field of the photonThe superscripfl put on the propagators just is meant to
then becomes remind us that these are related to the transverse photon dy-
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namics. To describe the photon-emission process in compact

(+) (! #
form, a two-component spinor propagator J (r ’t)

ﬂ(Rm)) -

< _
F (R’T)_(ﬁT(R,T)

is defined. By means of this the six-vector energy wave func-
tion of the emerging photon may now be written in the
propagator form

f(r,t)
WILO= 00t

€ (¢ o aj“)r’,t’)
:Mo\@"j #Rn - T gy,

at’
(59
with the abbreviation

" Fl a
Fla= :
‘ (lf’i-a)

FIG. 1. Schematic illustration of the photon-emission process in
photon perspective. Upper part: For an electrodynamically ac-

Some important conclusions about the spatial localization

of the photon wave function during the emission process cap

i e . o

t_hls, _Iet us carry (_)ut the mte_gratlon_ for the magnetic mid- tribution, JCH(r',t'), the source region of the photon,

fieldlike contribution. Essentially, this amounts to TL(r '), extends over the atomic near-field zone. Middle parts:

fw ; R ,) &J%—H(r’,t’) The field of the photon emerging from the infinitesimal source re-

t——t' | ———

— 0 Co located entirely on the light sheR=cy7, and a magnetic compo-
(60) nent(figure to the rightlocated not only on the light shell but also

behind it (a timelike response Lower part: When the photon is

remote past, i.e. 74 (r’',—)=0. In passing, | note that located between the light shels=co(t—to) andR=cot, the atom

this assumption follows once the principle of causality isbeing active in the time interval ().

adopted. To be specific, let us consider the situation where

tive vanish identically outside the time interva@’<t, in  mjdfieldlike term does not contribute to the photon wave

takes a time, and begins at’ =0. At the end points of the  process, and in consequence of this the contribution to the

=&J(T”(r',t')/&t'ltr:f&J(T+)(r',t’)/8t'Itr:to=0 for a  [ag7$)(r' t")/at'1d% " is different from zero in the spatial

physically acceptable atom dynamics. It readily appears fromegion between the two spherical shelts-r’|=cq(t—t)

Eqg. (60) that the magnetic midfieldlike contribution to the and |r—r’|=cot which both move outwards with the

term J(r',t')d3 located atr’ is different from zero Sion process in the photon perspective is presented in Fig. 1.

inside a sphere of radiys—r’'|=c,t during the emission in The energy wave function of the emitted photon, i.e.,

process (&t<ty). In the limitt—0™, the radius shrinks to W(r,t’>to)=®(r,t), as it appears in the photon perspec-

spatial confinement of the magnetic midfieldlike contributionresult

is found when the emission process starts, and is given by

: : A L o R (9‘7(4-)(',./ t/)

the spatial extension of the transverse current-density distri- f 5( T "y

be made on the basis of Eq&7)~(59), but before doing tive atom with its strongly localized analytical current density dis-
- dt’ = J(T+)( [t E) , gion, AF{)(r',[t]), has an electric componetftgure to the left

assuming that the transverse current density vanishes in theeated the electromagnetic field from the7{")(7" ,[t]) source is

the transverse current density and its first-order time deriva+Ricy, 74 (r',t—R/co) =0. This means that the magnetic

interval  we must demand J{7(r',00=F¢(r' tg)  photon wave function from the infinitesimal source

photon wave function®(r,t), from the infinitesimal source vacuum speed of light. A schematic illustration of the emis-

zero, and therefore it follows from E¢B9) that the strongest tive, can now be determined. Hence, with the help of the

ot t’

bution of the atom at these early times, i.e., " 0 at’

X(r’,0"). The far-field contribution to the photon wave &J(“(r’ t)

function, which is located on the light shelt—r’|=cgt =T 7 =70 [, 61
does not change this conclusion in any essential manner, ot t/ =t—Ric,

since the best localization of this contribution is given by
oS (r',0M)/at’. At timest’>t,, or equivalentlyt>t,  where[t]=t—R/c, is the retarded time, one gets
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e (» 1{U+i(PO- 0D

d)(r,t):—@\ﬁf o Do

47 N2 | .R\U-i(dO-Od)

) LT A3, t=te+R/co. (62)

In the local Cartesian coordinate system, wher@®, and®  problem does not exist at all in the electron perspective ap-
are unit vectors along the one, two, and three axes, the tefroach, for instance. See Fig. 2. o
sors appearing in the upper and lower parts of the spinor By inserting Eq(64) into Eq.(51), a calculation aiming at

propagator have the explicit forms obtaining a propagator formalism in which the time deriva-
tive of the total atomic current density distribution plays the
1 0 O role of the source leads to the resj#{26]
Uxi(®0-0d)={ 0 1 =i, 63
I ) o z (63 e (r, )= EFLr, b +er,b), (65)
where

In ending this section, and in contrast to the claim in Ref.

[13], we may thus conclude that even in the moment of emis- 1 [t

sion (or infinitesimally short time aft¢rthe photon is not EFdHr =~ gJ’ T (r)dt, (66)
completely confined in space. 077

. is a transverse self-fiel5F) contribution, and
2. Electron perspective
In Sec. 11D 1, the photon emission process was studie@R(r,t)

using a propagator formalism in which the source region was o aT (' 1)
identified with the domain occupied by the transverse part of :“OJ Dr(r—r’,t—t') - —ar
the analytical atomic current density distribution and its first- -
order time derivative. Though such a formalism is quite €asyq e retardedR) part of the transverse electric field. The
to establish starting from the transverse set of microscopig.onsverse self-field is nonvanishing only in the near-field

Maxwell equa_tioqs and intuitively appealing because the(~R‘3) zone of the atom, and furthermore, it is different
electromagnetic fields generated from every one of the in-

finitesimal sources constituting(#)(r’,t’) propagate in an
Einstein causal manner, it has the disadvantage that the
source domain is spread over a region of space much larger
than the region occupied by the electf®nof the atom. In

the photon-emission process, the interference between the
fields produced by the various differential sources therefore
always plays a crucial role. In the so-called electron perspec-
tive discussed below one identifies the source domain with
the domain occupied bfthe time derivative gfthe atomic
current density itself. The positive-frequency part of the cur-
rent density needed for the emission of precisely one photon
we denote by7(")(r,t). The analytical parts of the total
atomic current density and its transverse part are related by
the spatially nonlocal linear relation

d3r’dt’ (67)

.7%“<r,t)=fw Sr(r—r")-JHr Hdr’, (64

where 51(R) is the transverse delta function. As indicated, . . . -
the relation is local in time, and this has the consequence that F'C- 2- Schematic illustration showing the photon-emission pro-

. . : in the electron perspective. Upper parts: The emergent-photon
he new near-field pr r of th m in ligEss It . ) L
the new near-field propagator of the atom attains a space leld generated by the analytical atomic current density distribution,

component in the_ el_ectron perspective. For certain a.nalysgg(*)(r’ [t]), has an electric patfigure to the left located on and
of the photon emission process the electron perspective m front of (spacelike responséhe light shellR=c,7, and a mag-

hhav? tlrc]je ac_lva_nta?e thar: the |_nterfg_r§nce pr?blem relgte(rj] t?etic part different from zero on and behiftanelike responsethe
the field emission from the various diterential sources in t Qight shell. Once the photon is emitted the main part of the electro-

atomic current density domain is easier to tackle due to th?nagnetic field is located between the light sheélls c,t and R
fact that the7*)(r,t) distribution is much better localized —c,(t—t,), under the assumption that the atom is active in the

than its transverse7{")(r,t)] part. In the heuristic point- time interval (Qto). A small spacelike electric field yet still is
particle analysis to be discussed in Sec. lll, the interferenceresent.
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from zero only in the time interval where the photon- t
emission process takes plad®cause the mean valgever b<r<+)(f,t)= —J
time) of J{") is zerd. Also a longitudinal self-field is -
present in the near-field zone, cf., e.g., Rp43.[28] and the  is obtained by combining Eq$67)—(69). Technically, this
analysis in Sec. I, and in the quantum electrodynamic decalculation is rather cumbersome and the interested reader
scription removal of redundancy requires that the entire selfmay consult Appendix B2 for a stepwise derivation. The
field operator is eliminated in favor of the particle-position final result is remarkably simple; however, viz.,

variablgs). In consequence the self-field dynamics is trans-

ferred to the particle Hamiltonian and only the retarded part,b<+) = Mo f” Sttt T (r' ')
el"3(r 1), of the transverse field is subjected to the canonical ™~ (r.H= Co = t=t). at’
guantization procedure leading to the photon conéptin (70

our first-quantized description of the photon-emission pro- ) o

cess in the electron perspective we therefore necessarily ha¥éth M(R,7) given by Eq.(54). The propagator describing

to identify only e(r? with the electric field of the photon. the retarded magnetic response hence is the same in the pho-

Sincee(r+)(r,t)=e(T+F2(r,t) once the photon is fully emitted ton and electron perspectives. See F_|g_. &
. DN : In the electron perspective description of the transverse
i.e., for t>ty, the elimination of the transverse self-field

from the photon field does not change the normalization con‘?'?c”F’dY”_am'_CS also a magnetic Selfff'eﬁ&)(r’t)’ ent_ers.
dition in Eq. (47). Once the amplitude OU(TH has been This fleld_|s d[ﬁerent_ from zero o_nly inside the atomic cur-
obtained from this equation, E¢64) fixes the amplitude of rent density distribution, and is given by

J) entering Eq.(67). The transverse electromagnetic 1 [t (v

propagatorD+(R, ), appearing in Eq(67), is known to B(S?(r,t)z3—60f_wf_mvx.7(+)(r,t")dt”dt’, (71)
have the explicit forn{27]

V xefa(r,t)dt’, (69)

d3r'dt’,

1 R as one readily realizes by combining E¢3) and (66) and
Br(R,7)=— _5(—— r)(U ~RR) remembering thaV x 7" =V x 7(*).
4mR "\ Co By means of the two-component spinor propagator
2

CoT (R
+-——=36(7)0

s o r)(U—BRR). (68)

H(R,7)= (72)

D’T(R,T)+ir‘ﬁ(R,T))
D{(R,7)—if(R,7)]’
An elaborate discussion of the physics hidden in(®§) can ) ) ) )
be found elsewherf27] and need not be repeated here. Theth® emerging photon is described by the six-vector energy
first term on the right-hand side of E¢8) represents the Wave function

far-field (~R™1) contribution to the propagator. It is aniso-

o . . PO S AT )
tropic, with an anisotropy given by the tenddrRR, but W(r,t)=pug §f H'(R,7)- Td3r’dt’
besides this it exhibits the same form as the isotréﬁél@, T) o (73)
propagator; see E@50). The other term, different from zero
only for spacelike events, is present solely in the near-fieldf observed from the electron perspective. In E@3) the

zone of the atom, i.e., in the spatial region where the photosame compact notation as in E§9) has been employed. It

is created; see Fig. 2. appears from Eqg72) and(73) that the energy wave func-
The retardedR) magnetic field associated with the pho- tion of the emitted photon, which we hitherto had written as
ton in the electron perspective, i.e., displayed in Eq(62), may be written in the alternative form

ST [, t—oo, (74)

identifying the photon source with the analytical part of thetion. The obtained results are also of interest in their own

entire atomic current density distribution. right because they offer a simple qualitative picture of the
photon-emission process and allow us to make contact to the
ll. HEURISTIC PARADIGM: SINUSOIDAL PHOTON textbook description of the photon emission from an atom.
WAVE TRAIN EMITTED FROM A POINTLIKE ATOM In our model the atom is considered as a pointlike entity

from an electronic point of view, and we assume that it
electrodynamically behaves like an electric dipgED).

It is instructive to throw light on the general theory estab-In the ED approximation the atomic current density is given
lished in Secs. Il C—1I1D by applying it in a model calcula- by

A. Model
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J(r,t)=Jt)8(r), (75) it appears that the positive-frequency part of the transverse
current density in thég, ») domain(momentum-energy rep-

assuming that the dipole is placed at the origin of the coorfesentationis given by
dinate system. In the near-field zone of the point particle a

(singula) current density distribution of the form given in (+>( Cop>
Eq. (75) gives rise to both attached and radiated electromag+’ T R
netic fields. In the far-field zone only the radiative part is left.

To emphasize that the dipole current density has been nor- —(U IOD) ®o
malized so that precisely one photon is emitted, calligraphic |\~ p?/°

letters are used to denote the current density and its ampli-
tude. The source of the emitted photon is related to the trans-
verse part of the current density in E@5), i.e.,

having used also the energy-momentum constraint for the

T+(r,t)=8(r)- J(t), (76) photon, namely,

where 81(r) is the transverse delta functidsee also Eq. w= %p (>0) (82

(64)], a dyadic quantity. Since the range &f(r) is charac-
terized by anr ~® dependence, the emission region of the. ; T :
7 ) . . in Eq. (80). The analytical current density signal leading to
photon is just the near-field zone of the point particle. A o ; ; o
detailed semiclassicé#field-quantizedl study of the attached the emission of just one photon in turn is given by
and radiated electromagnetic fields of an electric point dipole . Cop i
- i i _ 0

anlss]ed on a Green-function approach may be found in Ref. J(T*)(r,t)zh 3fx‘7(T+)<p’T> ex;{ﬁ(p-r

Let us assume now that the atom is excited by a mono-
chromatic field of finite duration and with a cyclic frequency —c pt)}d"’p (83)
wq So far from any of the atomic transition frequencies that 0 ’
the Rabi oscillations in the current density can be neglected
[3]. The fact that the atomic current density must be so smalemembering thap>0.
that only one photon is emitted in itself suppresses the Rabi The point-particle current density, which is linearly polar-
sidebands except at resonafigeclose to resonangeA time ized, is assumed to be directed along #hexis of our Car-

dependence of the form tesian coordinate system, i.e7,=.,2, wherez is a unit
vector in thez direction, and to determine the yet unknown
T(t) =Tl 6(1) — 0(t—To) Isinwet (77)  amplitude J,, Eq. (81) is inserted into the normalization

condition given in Eq(47). Since
hence is taken. The period of the harmonic oscillatiof is

=2mlwg, the current density is different from zero in the , [ CoPTo
time interval 0<t<T,, and lasts for an integer number of c 2 4wg sz( o7 )
cycles, i.e.To=nT, wheren is a positive integer. J<T+>( D, %) :WJO'(G_[SE))'JW
FRE
B. One-photon atomic current density

(84)
We begin our investigation of the photon-emission and

-absorption process with a calculation of the associated veqgtiing without restriction7, be a real quantity, it appears

torial point particle current density amplitud®,. Thus, by  that the integral in Eq(47) adequately is carried out in

means of the inverse spatial Fourier transformafib26] spherical coordinates. With the polar axis in theirection
. ‘ = pp one hasJy- (U—pp) - To=T3sir? 6, where 6 is the polar
f sr(re ' rddr=U- = (78  angle, and after having performed the trivial angular integra-
‘°° tions the normalization condition reads
where
p sinz( CopTO)
o0 3
0 o|/[Co 2 ) 2 2 1677'(0%
andp?=p-p, and the inverse Fourier transformation in time 7| P T @o
” ; oty @0 iw A substitutionp= (% wqy/cq)y, followed by an integration b
0(t)— 6(t—To) ]sinwgte''dt= el“To—1), P 0/Co)Y, y 9 y
f_w[ (1)~ 0(t=To)sinwo wz—w(z)( ) parts (taking y/(y?—1)2=d[2(1—y?)] Ydy as the one

(80 function) gives

022111-12



SPACE-TIME DESCRIPTION OF PHOTON EMISSION . .. PHYSICAL REVIEW @2 022111

? cosf— @sing|e ", (92

/'(r):B

14 br
3

7 )an jw sin(27ny)

zdPZ‘( 2 )Ty W

Cowg . B B 4 .
with b=23/(2a,) and B=efi/(87v2ma,). In passing we

note that /(r) is independent of the azimuth angdle) and

(86) has nog component, as expected from the symmetry of the
wheren=T,/T. Sincen is a positive integer one has 1s and 2p, orbitals. By writing the atomic current density in
the form
=sin(2wny) 2mn sinx
f RV fo —~ ax (87) J(r)=i[ck (et —ca(D)es (D] (r), (99

By combining Eqs(85)—(87) it appears that the current den- One obtains, when Rabi sidebands effects are neglected,
sity amplitude needed to ensure that precisely one photonis . i
emitted from the atom in the point-particle approximation is 1[C1 ()C2(t) —cy(t)c; (1) ]=A[6(1) — O(t—To]sinwot,

(94)
2mn sinx
jO: 7TCO\6h60CO 27Tnf de
0

The result in Eq(88) is remarkable because it shows ttat
is independent of the frequeney,, and thus depends only
on the number of period&) in the wave train and on the
fundamental quantitieb andc,. If one abandons the na
point-particle model, the atomic current density amplitud
will depend on the atomic length parametessentially the
Bohr radiusay) and the characteristic wavelength of the pho-
ton wave train\y=cyT. For photons emitted in electric di-
pole transitions the dependence @f on a; and Ay, how-
ever, will be weak since the ratiag/\g is small in the % _
optical region. Finally, also the ratie@’'m, between the elec- /’(Q)Zf (ne 4 rd%q (96)
tron charge ¢e) and massm), will appear inJ,. o

—-1/2
(88)  when a sinusoidal excitation of finite length is applied to the
atom. The amplituded must be determined so that only a
single photon is emitted from the hydroges<t2p, transi-
tion. By a comparison of the current densities of the hydro-
gen atom[Eq. (93) with Eq. (94) inserted and the point-
particle model[Eq. (75 with Eq. (77) inserted it appears
ethat the association is as follows:

A ()& Jod(r)2. (95

In order to calculated the inverse Fourier transformation

o _ _ needs to be carried out, and from the division
C. Finite-size correction to the transverse atomic current

density: Hydrogen 1s«+2p, transition A= 1)+ /(q), (97

Let us now make a pause in the analysis of the emergent . . .
photon and photon wave trains emitted from a pointlike atom_the transverse part of ti{effective transition current density
and estimate the importance of the inevitable finite size of? the wave-vector(~momentum representation, r(q),
the atom by studying the one-photon wave train emitted fronf2" be obtained. The above-mentioned calculation is cum-

electron oscillations between the &nd 2, states in hydro- °€rsome, and the interested reader may find a few of the
gen. intermediate steps leading to the final result in Appendix C.

When the hydrogen atom is electrodynamically active thel N€ results for the transverse and longitudinal parts-()

electron wave function(r,t), is in a time-dependent super- Conveniently are given in spherical coordinateg é;, ¢,)
position with the polar axis coincident with the one usedrispace.

The local unit vectorsin g space are denoted by, bq, and
P(r,t)=ca(t) e (r) +Co(t) gra(r) (89  &,. As one might have anticipated from E@2), the inde-
pendence of/(r) on the azimuth angle implies thatr(q)
only gets a component along tlﬁg direction. Hence, in ex-
plicit form one obtains

of the 1s and 2, eigenstates, namegh (r) and ¢,(r), re-
spectively. Normalization requires that,(t)|2+|c,(t)|?
=1. In the state/(r,t) the atomic current density is given by

6 5
— * +c* 2 eh b A
j(r!t) Cl(t)CZ (t)/ 1—»2(r) Cl (t)CZ(t)‘/Z—»l(r)a (90) /T(q): _ 35‘/2 E (b2+q2)2 0q sin eq ' (98)
where the transition current densities can be obtained from
the relations and for the longitudinal pary, (q) of (q) the final result
. L reads
i1oa(n)=i71 5 ()= (1), (91
2
where in polar coordinatds, 6, ¢) [the polar axis coinciding 6 of b3l b2+ g
. . . . A4 e .
with Athez axis| wnh the local unit vggtors denoted liy 6, )= S T s g cosb,, (99)
and &, the vector /(r) has the explicit form 3%2 m  (b°+g)
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and this of course only has@component. The association ~ Once the photon-emission process has been completed all

in g space between the transverse current density of thihe energy released from the atom resig@ays in the pho-

point-particle model and the hydroges<:2p, transition is ~ ton. In terms of the current density amplitug®, the cycle-
averaged energdf), emitted by a point particle performing a

A () Tod1(q) - 2, (100 sinusoidal motion, is
and since 67(q) 2= (G— 4q)-z=- bq sind,, Eq. (98 ,uowojg
shows that the transcription in E€LO0) is equivalent to (&)= BTN (109

2° eh  b° The total ener i

cn gy emitted by the atom therefore becomes
35, m (b2+q2)2A®‘7°' (10D
2 (2msinx |71t

To determine the one-photon value fdrone may proceed E=n(&)=fwo = fo X dx| (106

as described in Sec. IlI B, and it now follows that an extra

factor proportional tqb?+ (p/#)?]™* appears under the in- 45 one readily realizes by combining E488) and (105).
tegral sign in Eq(85). Since the wavelengt§ of lightinthe  The energy of the photon wave train hence is given by Eq.
optical region is four orders of magnitude larger than the(106)_ For finiten, one always ha&>#% w,, and in the limit
Bohr radius, this extra factor only gives a small correction to,_, o, the textbook resulE=1 w, is recovered. Since the
the p integral. By neglecting this correction, and thus Settingintegral in Eq.(106 converges rapidly towards/2 with

2 2. _h2 ; H
b+q°~b® in Eq. (101, the relation betweew/y and A j,creasingn, only for extremely short pulse trains the devia-

becomes tions fromE=7w, are pronouncedsee Fig. 3
N/ 2" e A (102 E. Radial fl in th field
~ — A, . Radlal energy 1lows In the near-field zone
7 347 mag _ ) _

During the photon-emission process the dynamics of the
and with a current-density amplitude emerging photon and the atom are coupled. This implies that
the energy flow in the near-field zone of the atom is shared
3\4 MayCy [€oCo 2mnsinx |~ 42 between the photon and a cross coupling effect between the
A=(§ mV3 e N ZWHJO de , atom and emerging photon. In the far-field zone the energy

transport is provided solely by the emergent photon. In this
(103 : . o
section, the cycle-averaged energy flow in the radial direc-

precisely one photon is emitted in the hydroges42p,  tion will be examined, paying particular attention to the con-
oscillation. ditions in the near-field zone of the point particle.

1. Energy balance equations
D. One-photon energy

By taking the inner products of the transverse Maxwell

The emergent photon, which energy wave funCtionequations in Eqs(3) and (28) with B andE-, respectively,

W(r,t) in the photon perspective is given by E§9), does
not possess a time-independent energy. Only after the emis- 12
sion of the photon the energy

E(t)= ﬁ;llﬁ(r,t)~\lf(r,t)d3r (104 1.1

ton energy is time dependent originates in the fact that the hy
photon during the creation process is coupled to the atom,

and only the entire atom-photon system therefore is in an 09 f
eigenstate for the energy. The state of things is further com-
plicated since the energy ascribed to the emerging photon at

a given time will be different in the photon and electron 0.8
perspectives. This is so because the self-field part of the
transverse energy of the electromagnetic field in the electron n

perspective is considered as belonging to the particle energy, riG. 3. Normalized one-photon energi/(% wy), of a sinu-
cf. the discussion in Sec. [lID 2. In the subsequent sectioRgidal photon wave traitoscillation period 2r/wg) as a function
(INE) we shall study how the total energy, averaged over &f the number of periods in the train. As indicated by the black
wave-train period, is shared between the atom and th@ots only integer values af are physically meaningfulThe fully
emerging photon within the framework of the point-particle drawn((2/7) f3™x~* sinxdX ~* curve is plotted to guide the eye.
model. Note that the one-photon energyis always larger tharm wy.

becomes independent bfThe reason that the emergent pho- E 1 /\\/\/\/\\/\ A AAA

0 1 2 3 4 5 6 7 8 9 10
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and afterwards subtracting the resulting equations, one 1 (to+T
readily obtains the following local energy balance relation: <X1(t)X2(t)>E? Jt X1(t)Xo(t)dt
0
1 J [ €o 1 =2 RE X, (wo) X% (wg)] (113
1= e B+ -~ B.B|=—E.. 1(@o) X3 (wo)].
\ (ﬂOETxB + 5| g ErErt 5 BB|=—Erdr,

(107  The result in Eq.(113 is independent ot,, and for the
field-atom dynamics associated with the sinusoidal wave

where ,uglETxB is the Poynting vector of the transverse train given in Eq.(77) one must choosg, in the interval 0
field, (50/2)E$+(2,u0)*182 is the energy density in the =<ty<Ty—T to apply Eq.(113. By performing the cycle-
transverse field, anf- J; is the work carried out per unit average procedure to Eq407), (108), (110), and(111), one
time locally of the transverse field on the transverse degreesbtains
of freedom of the atom. A similar and well-known local 1
energy balance equation holds for the flow and exchange of L — /e
power in and between the total elecromagnetic field and the V'< 0 Ex B> =—(E-J), (114
atom, namelyf41],

1
1 d [ € 1 V’<_ETXB>:_<ET'JT>’ (119
V.|—EXB|+ —|—+E-E+=—B-B|=—E.J, Ko
Mo at\ 2 20
(109 1
V. —E XB)=(E-Jr)—(E-J), (116
whereJ andE denote the atomic current density and the total o
electric field. If one subtracts Eq28) from the Maxwell  5ng
equationV X B=M0J+0523E/5t, one obtains the relation
(EL-J)=0. (117
1 9E (r,t)
oI (r )+ 5 ———=0 (109 |f we integrate Eqs(114—(116) over a spherical volume

0 (Vo) of radiusr centered on the point particle position, and

between the longitudindL) parts of the atomic current den- Nereafter apply Gauss’s theorem to the terms containing the
sity (3, =J—J;) and the electric field€, =E— E7). By tak- V operation, we getdenoting the surface element of the

ing the scalar product of Eq109 andE, , an energy bal- SPhere bydS)
ance equation

fﬁ <iE><B>.fdso:—f (E-2)dV,, (118
So Vo

J €o Mo

1
for the longitudinal atom-field dynamics emerges. Since the 3gso<,uo ETXB> Fd% fv0<ET IrdVo. (119
magnetic field has no longitudinal parsee Eq.(1)], the
Poynting vector of the longitudinal electromagnetic field isand
zero, and this part of the field therefore cannot transport en-
ergy from one place to another. By subtracting EG€Q7) jg iE XB)-f dS,
and (108, and utilizing Eq.(110, one obtains an energy o\ Mo L
balance equation

:fv (Ep-J1)—(E-d)dV,. (120

1 1%
V. _ELXB +_(60ET.EL):_ET'JL_EL"]T
o ot . .
(111  The sum of the two last equations gives EL8), of course.
for the cross coupling between the longitudinal and trans- 3. Energy flows in the photon perspective
verse dynamics. The cycle-averaged energy balance equations in Egs.

) (118—(120 can only be fully understood if on@) considers
2. Cycle-averaged dynamics and outwards transport of energy photh the incident field EinC) acting on the atom and the

In a notation adequate when working with analytical sig-scattered field £°°) created by the particle, ar(d) takes
nals(cf. e.g., Eq.9) and Ref[3]), the cycle-averaged prod- into account the finite size of the atom. The field driving the

uct of two harmonically varying quantities atom hence consists of the sum of the inpident field, which
we necessarily must assume is transveSE£ ET°), and
Xi(t)=Xj(wg)e '@+ X* (wg)e'®!, i=1,2 (112  the transverse vector-field paEL™) of the (yet unknown
scattered fieldsee Ref[41]). If the incident field did have a
of angular frequencywy(>0)=27/T is given by longitudinal component on the site of the atom this would
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mean that the source of this field would be in the near-fielchow easily can be calculated via Eq$13) and(122)—(124).
zone of the atom, and consequently the source and the atolone remembers thaff( w,) = 3 T, [compare Eqs77) and
had to be considered as a single system from an electrody112)] we finally have

namic point of view. Consequently, the problem would be

more complicated than “just” a single-particle interaction _ Mong(z)_ (&) 126
with an electromagnetic field. The transverse local electric T 12mc, T (126
field

_ seatt where the last relation follows from E¢L05). The quantity
Er=E"+E7 (121)  gis independent of, (the textbook resulf42]) and repre-
i i i . sents the cycle-averaged power emitted by the atom. The
acting on the atom must be determined in a self-conS|stergnergy of the emerged photonnid 3.
manner from the combined Scldiager (or Dirag and mi- The energy transport associated with the cross coupling
croscopic Maxwell equations. In such a calculation finer deyepyeen the transverse and longitudinal fields we calculate
tails would be lost if the atom were considered as an electri¢,ayt The matter attached longitudinal electric fieldr,t)

point dipole. OnceEr has been determinedo a sufficient  5ccompanying the atomic one-photon current density, is
accuracy the current density of the atom can be obtained a”(biven by

afterwards the split intd; andJ, done. Finally, this allows
a calculation of the right-hand sides of Eq418—(120).
The radial energy flows appearing on the left-hand sides of e (r;wo) =
these equations contain not only a scattered field contribution
stemming from (ES®<B*®), but also parts £(E***" in the space-frequency domain, except at the dipole position
X B, (EM°x B**%) associated with the interference of the where the field is singular. With the help of the spherical-
incident and scattered fields. In agreement with the analysisoordinate expression for the longitudinal delta function, i.e.,
presented in the previous parts of this paper, we here confine
ourselves to a calculation of the radial flux associated with
the scattered field, and we assume that the current density
amplitude has such a magnitude that precisely one photon is
emitted. The related scattered electric field we denote by the matter attached field becomes
=er+e , and the associated magnetic fieldtyas before. .

In the space-frequency domain the electric field of the N ' ~ "
electric point dipole is given bysee, e.g., Ref.28)) Qriwo)= 47760w0r3(05|n0+2r €06) J(wo)-

3.(r)- Twe), r#0 (127

ieo(l)o

- 1 on o
Bu(N= 45 (00 e-2i1), r#0 (128

. (129
&(r; wo) = — i powoD (I} wo) - T(wo), (122
° frowo ° ° By combining Egs.(124) and (129), and carrying out(in
where, with thegg= wq/co, spherical coordinat¢subsequently a number of elementary
integrations it is found that the related energy flow per unit
o Qo | 1 - [ 1 1 } time through the sphere of radiug is given by
D(r; =— 1 —(U-T1)—| 3
(100 = 2 ('%r( " |Giaon? ™ Taor? .
- _ % <_Q_Xb>'fd332ﬂa(%ro), (130
X (U —3ff) e (123 So \ Mo
where
is the standardtextbook propagator. With the current den-
sity in thez direction, the relevant tensor-vector products in 1 Sin(qgor o)
Eq. (122 become in our spherical coordinatds { ff) - 2= @(dof0) = (Qof0)?| oo ~C08Goro) |- (13D

—@sin6, and (U—3ff)-2=— @sin6—2f cosh, and from _ o
the Maxwell equationV X e(r; wg) =i web(r; wg) written in 1 he coupling of the matter attached electric field to the mag-

spherical coordinates a straightforward calculation gives ~netic field hence results in a cycle-averaged radial power
transport which depends on the distancg) (from the point

oG wg) 1\ si R dipole. The power flow exhibits strongly damped spatial os-
b(riwe)=—7— Tiaer) T e'%'¢. (124 cillations of periodc,T, and vanishes in the far fielthut not
0 in the midfield zond ~(qoro) “2]). For ro—0, the matter
Using distribution theory the same result may be obtainedtached power flow equaf3 sincea(dor o)l ,—o0=3-
starting from the integral expression in E@0). The cycle- A subtraction of the results in Eq&l25 and(130) shows
averaged total energy flow per unit time in the radial direc-that the radial power flow associated with the transverse
tion through a sphere of radiug, i.e., electromagnetic field of the emerging photon is given by
1 1
p= % <—e><b>-fds) (125 fﬁ <—eT><b>-deo=,8[1—a(q0ro)] (132
Sp \ M0 So \ Mo
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1.1

1
fﬁ <_er,R><b>'fd%:ﬁ[l_éa(%ro)]- (137
Sy \ Mo

The radial power flow associated with the coupling between
the magnetic field and the total attached field is obtained by
adding the results in Eq$130) and(136). Thus,

0.9 |

08| 1
% <_(eL+£T,SF)><b>‘deo:%,Ba(%ro)- (138

S \ Mo

0.7

Close to the electric dipole, i.e., fop—0, Eq.(138 equals
06 . . 2/9.

qor APPENDIX A: PHOTON AND ANTIPHOTON

. . INTERFERENCE
FIG. 4. Normalized and cycle-averaged radial power flows as-

sociated with the emergent photon as a function of the normalized In Sec. IIB we defined the photon wave function in the
distancegor, from the atom in the photon perspective{#) and  space-time domain via the positive-frequency parts of the
electron perspectivgl — (2/3)a]. Far from the atom the outwards (normalized Riemann-Silberstein vectors belonging to the
power flow is carried entirely in the photon field. positive and negative heliciti¢see Eq(8)]. In analogy with
this definition, the antiphoton energy wave function, denoted

in the photon perspectivesee Fig. 4. In the far field the by d,(r,t), is introduced as the six-component object
photon attached field provides the entire energy transport in
the outwards direction. f7)(r,t)
Dp(r,1)= f(—)(r t)) (A1)
4. Energy flows in the electron perspective -

In the space-frequency domain the relation between theomposed of the negative-frequency components of the two
transverse self-field and the single-photon current density hasiemann-Silberstein vectors. The antiphoton wave function
the form may be obtained from the photon wave function by the

particle-antiparticle conjugation operation

1
Ersliwg) = 3i

€oWo

S1(r)- T wy), (133 Du(r )=, (1 1), (A2)

&, being the Pauli spin matriX(3). To show that Eq(A2)

and sinced(r)=— 3, (r) for r 0, it appears that ( )
w(r) L(r) PP is correct one may use the relations

VXErsdr;wg)=0, r+0 (134 (0T = (1 1), (A3)
in the point-particle approach. In turn this implies that

Vxe(=Vxe)=Vxerg, Whereer r is the retarded part These readily follow from the fact that since the frequency
of the transverse electric field in the electron perspectivetomponents of the real fields(r,t) andb(r,t) must obey
The magnetic field accompanying the emergent photoiihe —conditions er(r;—w)=€f(r;0) and b(r;—w)
therefore is the same in the photon and electron perspectives,b* (r;»), one hase{ (r,t)=[e")(r,t)]* and b{)(r,t)
i.e.,b=bg(b{"=b{"), in the point-particle approximation. =[b{*)(r,t)]*.

By a comparison of Eqg127) and(133), one sees that If one considers the photon and antiphoton as different
(orthogonal eigenstates of a one-particle electromagnetic
Ersiliwg)=—36.(r;w), r#0. (135 field superposition of these states are allowed. In the present

o . context it is sufficient to consider a particular simple super-
By combining Eqs(130 and (139 it appears that the cou- position, viz.,

pling between the magnetic field and the transverse part of
the matter attached field leads to a cycle-averaged power

1
flow in the radial direction given by =(r,t)= 5[(1)(r,t)+<l)A(r,t)]. (A4)
1
fﬁ <_£T,SFX b> fdS=—3Ba(qore). (136  Since

Sp \ Mo
If now one substracts the results in E¢k32) and(136), it is E(r,t)= i f+(r,t)> (A5)
realized that the retarded part of the transverse electromag- ' vy’
netic field is responsible for a radial power transpieete also
Fig. 4 andf_(r,t)=f%(r,t), it appears that
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Efr,t)-E(r,t)=wq(r,t) (A6)
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J .0, 1) - £ (r ) d®r

i.e., the local energy density of the transverse electromag-

netic field, cf. Eq.(11). Thus, if one insists thaw(r,t) has
physical reality, the photon and antiphoton must be able to

interfere(self-photon-interferenge
By means of EQq(A6) it is easy to show that

D (r,t)-D(r,t)=DL(r,t)- Du(r,1), (A7)

~2m [ 1@ e
(A7)

since ()= ne (@ and F(-qp)
=f(_+)(—q,t)%_(—(j), the integrand in Eq(Al7) is pro-

and the photon and antiphoton energy density distributiongortional to the scalar produck, (d)-€_(—§). If one
therefore are identical. It also follows with the use of EJ. writes the he|icity unit vectors in the usual forrﬁ&((’j)

(A3) that
[®T(r,t) DA(r, 1) ] =DA(r,1)- B(r,t). (A8)

The total energy in the electromagnetic fiéd,, given by

Eone f ='(r,0)- E(r, 0 dr, (A9)
can tentatively be decomposed as follows:
Eem=3 (E+Ep) +A, (A10)
where
Ezf ®'(r,t)-®(r,t)dr, (A11)
and
EA:f DL(r,t) Du(r,1)d°r, (A12)

are the energies of the photdB) and antiphotonE,), re-
spectively, and

=(IM2)[&(G) +i&(d)] and & (—0)=(1V2)[&(-q)
—i&(—§)], where the sets of unit vecto(&;(q),€,(q),q)
and (€,(—§),&(—q),— ) each form right-handed triads, it
follows from elementary calculations of inner products that
€.(9)-e(-9)=0, (A18)
independentof the chosen anglebetweene;(§) and €;
(—4§). The result in Eq(A18) hence implies that the right-
hand side of Eq(A17) is zero. Altogether the net energy
associated with the photon antiphoton interference there-
fore is zero, i.e.,
A=0. (A19)

A combination of Eqs(A10), (A14), and(A19) thus shows
that
Eem=E, (A20)

as postulated in Eq10).
APPENDIX B: CALCULATION OF
THE MAGNETIC-FIELD PROPAGATOR
1. Photon perspective

In order to derive the expression for the magnetic-field

A=3% f ®L(r,t)-D(r,t)d%r +c.c. (A13)  propagatomi(R, ), which is cited in Eq(54), starting from
o Eq. (52), we introduce the Huygens scalar Green function
is the net energy associated with the photon and antiphoton 1 R
interference. It readily appears from H&\7) that d(R,7)=— IR 5(0—— 7/, (B1)
0
E=Eax. (Al4)

To determineA one starts from the relation

fw @L(r,t)@(r,t)d%:sz 7 (r,t) - £ (r 1) dr,
(A15)

obtained by combining the Hermitian conjugate of El),

and Eqgs.(8) and (A3). By inserting the Fourier transforms

100 =2m [ qnetaty  (a16)

and note that the isotropic propagator in EgO) is just
3(R,r)=d(R,r)L7. The curl of the transverse electric field
e")(r,t) is obtained, beginning with the result

VX

aj‘ﬁ(r’,t’)}

E(R:T) : at’

aT ()
at’

. 8J£|'+)(r,,t,)
at’

=[Vd(R,7)]X

_ [&d(R,T) ®2)

JR

in Eq. (A15) and carrying out some ftrivial integrations, one easily gotten by remembering that the nabla oper&tap-

next gets

erates inr space. Utilizing also that
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R
sdR7 1]1 (R 1‘95(?0_7) -
R an| R0 T TR r | B
we find from Eq.(51)
R
(+) "y — Ho o ’
Vxer(r,t")= Wﬁx R25( 7+t
5 R ”+ I
K C—Ot t .
"R IR
agFs(r t")
—(d3 "dt’, (B4)

at’

since the nabla operation and theintegration can be inter-

PHYSICAL REVIEW @2 022111

field can be written in the form given in E¢53), with a
magnetic-field propagator as cited in E§4). Q.E.D.

2. Electron perspective

To determine the curl of the retarded transverse electric
field, e(TTFg(r,t), given in Eq.(67), let us consider the three
vectorsA, B, andC, and let us assume thatandB depend
on the position vector whereasC is independent of. The
following tensor identity then holds:

V X[A(r)B(r)-C]={[V X A(r)]B(r) — A(r)xVB(r)} C.
(B10)

Since the step functiof[ (R/cy) — 7] appearing in Eq(68)

ensures that n& 2 singularity is present iﬁT(R,r) for 7
>0, the integral over’ in Eq. (67) converges absolutely,

and theV X andfx operations can be interchanged in the

changed directly. For the sake of the subsequent calculatioietermination ofv x et*J(r,t). Thus, we have

the time variablet has been renamed. To determine the
magnetic field via Eq(52) [with t’ replaced byt”], one
makes use of the formulas

t R R
f 5(——t”+t’ dt”=0(t—t’——), (B5)
> Co Co
and
jt aé(c_o_t " dt”"= O R H—t’) B6
—w dR o \Co , (B6)
and obtains consequently
Mo [(*|Co R
(+) - Y
b'"(r,t) 411'Cof_ ﬁzﬁ(t t Co)
+15(R t+t’ | R
R ¢
a.7<+ (r',t)
3,7 ’
—(?t dor'dt’. (B7)
Since
2 S X 4 5
o RX(RR+ OO+ dd) o (B8)

because the dyadic SURR+ OO+ dd is just the unit ten-
sor, we finally may write

aT) aj#“

RX o =(®O-69d)- ,

(B9)

remembering thaR, ©, and® in this cyclic order form a
right-hand triad. By inserting EqB9) into Eq. (B7), it ap-

[

v><e<{,g(r,t)=uof v
aT (' t")

L d3r’dt’.

X|D(R,7)

(B11)

Since I5}(R,r) consists of a sum of dyadic terms, see Eq.
(68), the identity in Eq.(B10) helps us to calculat&V
X[Dr- (aT D at)].

It appears from Eq(68) that the transverse electromag-
netic propagator contains two dyadic terms of the form
a(R)RR,  where a(R)=d(R,7), and a(R)
=3Cg7'(9(7') 6 (R/cy) — 7]/(47R%), respectively. By setting

AN =a(R)R, B(r)=R, and C=9F)(r" t')/at’, one
obtains for these terms by means of Eg10)
o 0T ()
X a(R)RR-T
=({Vx[a(RR]R
N A (s
—a(R)RXVR)~%. (B12)
Since
L~ 1 o L.
VR=2(U-RR), (B13)

as one may show by an explicit calculation in Cartesian co-
ordinates, for instance, and

Vx[a(R)R]=0, (B14)

pears that the analytical signal belonging to the magneti&€qg. (B12) is reduced to
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aT (r" t")

Vx| a(R)RR- 7

R) . =9 (+) /,t,
R g )

R at’ (B19

PHYSICAL REVIEW A 62 022111

V X efR(r,t")

The two remaining terms in the dyadic expression for

D+(R,7) have the formB(R)U, with B(R)=d(R,7) and
B(R)=«a(R)/3. For these terms one gets

o0 (+) ,,t,
V X B(R)U'%

G aT(r' t)
' at’ '

B(R) .
=g RX (B16)
cf. Eq.(B2).

By means of Egs(68), (B15), and (B16) it appears that
the far-field contribution to the integral in E¢B11) equals

~ A J (+) r,tr
V X d(R,T)(U—RR)-%,r)}
[ad(R7) AR~ dT ()
= R + R RXU~T,
(B17)

and the near-field contribution is given by

2 ) et 47
c5T R e aa 0Tt
7 R 360 R
—CSTG i c + & R
2R\ TR R
o aT Dt
xU-—(). (B19)

at’
Since Eq.(B3) can be rewritten in the form

R
&5( —— 7')
Co

ad(R,7)  d(R,7) 1
+ 1
IR

IR R  47R

(B19)

and a direct calculation gives

R 20l R
9 0 C—O—T 0 C—O—T - 1 R
IR R )T R T o®Rc T
(B20)

we finally have

R
98| ——t"+t’
_ Mo (7| 1 iC
4o | _» R JR
Co(t"—t) R .
4+ —_ - "n__ 41 . /r+ !
ot t)(scot t'] |R
o 0T )
U. T(,d3r’dt’. (B21)

To obtain the retarded magnetic fielok(r,t), from Eq.
(69), with t’ replaced byt”, and with the expression in Eg.
(B21) inserted, one makes use of E§6) and the formula

d t//

t R
f (t”—t’)ﬁ(t”—t’)ﬁ C__t//+t/

0

R R
=—9<t—t’——). (B22)
Co Co
Hence, one gets
° 1 R
() 1) = 2o S (LA
be (1, 1) Co IJ 47TR5<CO T)
Co 0 R ﬁ
47rR2\ T ¢,
- 0Tt
uU- T(,)d3r’dt’, (B23)

and by a comparison with E@54) [with Eqg. (55) inserted,
we immediately obtain the propagator result cited in Eq.
(70).

APPENDIX C: CALCULATION OF +(Q) AND  (Q)
FOR THE HYDROGEN 1 S«<>2P, TRANSITION

To determine the Fourier transforpa(q) of the effective
transition current density,(r), given in polar coordinates in
Eqg. (92), it is convenient first to write it in Cartesian coordi-
nates. Thus

e b, (C1

b
/'(r)zB(§ZF+2

wheref = (xX+yy+z2)/r with r=(x>+y?+z?)2. Next we
perform a rotation of the Cartesian coordinate system so that
the new axes are given by the unit vect&g§ &y, andg.
These vectors are just the local unit vectors belonging to a
spherical coordinate representation of the wave veqtor
[The polar axis is assumed to coincide with #exis. In the

new coordinate system we denote the arbitrary vector by

rO=X0A0q+y0{oq+ Zoq, (CZ)
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and since the transformation from the old to new coordinateSince the longitudinal and transverse parts ¢f}) may be

implies  that r=ro=(x3+y3+25)'? t=f,=ro/ry, obtained from, respectively,
2=2(C0SO;— X Sin 6, and 2= { cos,— bq sing,, the tran- _ o
sition current density in Eq.C1) goes into ,(@)=084.,(a) (C6)
b ) and
/(rg)=B §(zO COSHy— X Sinfy)fy
/(@)= (8,0+ @qq) - (a), (o)
A D i —br
(g costlq— by sinfy) |& 7. (C3) a comparison with Eq(C5) indicates that
The Fourier transform hence is given by AD=§ /(q)+ A0q,/~'T(Q), (C8)
( )=ch e 0% gy _ 3 where
/q . 2a,
) ~ ; = 7B coséd fxJ'Wefiqrocos‘.aef3ro/(2ao)
X z—ao(zocoseq—xosmaq)ro Al@=m 90 Jo
- x| 22 cog a+2|r2sinadad C9
+§ coSfy— O, sin b, |d3rg, (C4) aoco aT < |loSinadadr, (C9

since q-r=0qz. The integration over the, space is and

adequately carried out in spherical coordinates for which

the polar axis coincides with th§ axis. The polar and i . . 7 —igrg cosaa—3ro/(2ag)
azimuth angles we denote hy and B, respectively. By /1(0)==mBsin, 0 Jo e TerTe T
inserting  Kq,Yo,Z0) =ro(SinacosB,sinasinB,cosa), fo
=siznqcosﬁbq+sinasinﬂ¢q+COSaq, _ and _d3r0 %
=r§sinadBdadry, in Eq.(C4), one obtains after having car-

ried out the trivial integrations oves

r
—Osin2a+2

2 .
2a rgsinadadrg. (C10

It appears from Eq(C8) that the transverse part of the tran-
(= — R i “ T amiarg cosan—3rg/(2ag) sition current density only has a component in fhedirec-
/(@)= = mBlsin quo fo © © tion, as expected due to the fact thatr) in qu.’a(92) is
independent of the azimuth angie If one makes the sub-
stitution u=cosa in Egs. (C9) and (C10), the integrations
over u are easily carried out, and after this has been done
. only elementary integrals ovep need to be performed. The
+7Bq cosan fwefiqro cosag—3rq/(2ag) final results for the transverse and longitudinal parts of the
oJo hydrogen k< 2p, transition current density in the wave-
vector domain are presented in the main {&qs. (98) and
(C5) (99)]. The corresponding expressions in direct space may be
found in, e.g., Ref[26].

X

fo . 2 .
—sifa+
7 Sin’ a 2) rgsSinadadrg

lo :
X a—cos2 a+2|risinadadr,.

0
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