
PHYSICAL REVIEW A, VOLUME 62, 022111
Space-time description of photon emission from an atom
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Starting from the postulate that the electromagnetic field appearing in the transverse set of microscopic
Maxwell-Lorentz equations governing field-matter interactions, properly normalized, can be looked upon as
describing one-photon-emission and -absorption processes in space and time, a first-quantized initiation of
photon emission by a single atom is presented. The wave function for the emerging photon is introduced as a
six-vector object constructed from the complex analytical signals of the Riemann-Silberstein vectors belonging
to opposite photon helicities. When the atom is no longer electrodynamically active, the emitted photon is
described in first quantization by the so-called energy wave function well known for photons in free space.
From the momentum representation of the emerging photon wave function a condition on the analytical part of
the transverse atomic current density is established which ensures that precisely one photon is emitted. A
propagator description of the emerged photon dynamics in the coordinate representation is established. The
photon propagator is introduced as a two-component spinor, where upper and lower tensor components are
constructed, respectively, from positive and negative helicity combinations of the propagators describing the
time-space evolution of the transverse electric and magnetic fields. It is shown that the emission region for the
photon coincides with the region in space where the transverse atomic current density is nonvanishing. For a
photon emitted in an electric dipole transition the emission region essentially is the near-field zone of the atom,
and this zone therefore determines the initial~and best! spatial confinement of the photon. The photon emerg-
ing from an atom active for a finite time necessarily is of the polychromatic sort and the associated wave packet
essentially is confined between spherical shells moving outwards with the vacuum speed of light. To illustrate
the main principles of the fundamental theory in a heuristic fashion we apply it to a study of the emission of
a one-photon sinusoidal wavetrain from a pointlike atom. It is found that the atomic current density needed to
create just one photon is independent of the oscillation period in the train and thus depends only on the number
of periods in the wave train. An explicit expression for the one-photon energy is derived, and it is shown that
only for extremely short pulse trains pronounced deviations from the textbook result,E5\v0 , occur. The
radial energy flow in the coupled atom-photon system in the near-field zone of the atom is investigated, and the
cycle-averaged outwards energy transport carried by the emerging photon in a given distance from the atom is
determined.

PACS number~s!: 03.65.Ca, 42.50.2p, 42.50.Ct
d
on
s
o
g
a
es
d
u
d
t
in

de
al

-
n
m
tr
t

a
l
the
the
he
eld

m
ent
ing
one

ess

zed
nd-
o-
ave
ed.
ce

er
ela-
t a
I. INTRODUCTION

The electromagnetic interaction between an atom an
quantum field usually is described in the language of sec
quantization, and the photons are the quantum excitation
the field@1#. To the best of our knowledge quantum electr
dynamics~QED! offers us a rigorous framework for studyin
all fundamental atom-field interactions, and over the ye
various mathematical techniques have been used to inv
gate the time development of the coupled photon-atom
namics. Traditionally, one starts from the Heisenberg eq
tions of motion for the atomic operators and the mo
operators of the plane-wave components of the field, and
fingerprints of the photon-atom interaction are looked for
the properties of the radiated field in the far-field zone@2,3#.

The development of near-field optics~NFO! within the
last two decades has made it clear that an improved un
standing of the matter-field interaction on a length sc
~much! smaller than the optical wavelength~s! is needed. In
attempts to improve the spatial resolution in NFO it is im
portant to understand what kind of conceptual limitatio
QED sets for the spatial confinement of light. Recently so
insight into this question has been obtained using an elec
magnetic propagator picture to describe as time elapses
1050-2947/2000/62~2!/022111~22!/$15.00 62 0221
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loss of spatial confinement of quantized light emitted from
single atom@4#. For a given optical transition the spatia
extension of the related transverse current density of
atom gives us precisely the strongest confinement of
quantum field, and for an electric-dipole active transition t
source region of the field extends over the entire near-fi
zone of the atom.

Let us imagine now that just one photon is emitted fro
the atom. As long as the time derivative of the atomic curr
density is nonvanishing the photon is in the process of be
emitted, and this process takes place over the near-field z
of the atom. To investigate theoretically the emission proc
of a single and necessarily polychromatic photon inboth
space and time I have found it useful to seek a first-quanti
description of the process as a forerunner to a seco
quantized QED theory. A first-quantized theory for the ph
ton is attractive in the present context because a photon w
function in the coordinate representation may be introduc

The concept of a photon wave function in direct spa
was suggested by Landau and Peierls in 1930@5#, and has
more recently been investigated and used by Cook@6–8# and
Inagaki@9#. The Landau-Peierls wave function has a numb
of less attractive properties. Hence, it bears a nonlocal r
tion to the local electromagnetic field and is apparently no
©2000 The American Physical Society11-1
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good candidate for understanding the detection of parti
localized photons. In the present work we shall use the
vector wave function advocated by Bialynicki-Birula@10–
12#. This, as well as the closely related three-vector wa
function used by Sipe@13# arise from the Riemann
Silberstein vector@14–17# introduced in the beginning of th
20th century to rewrite Maxwell’s equations in comple
form. It appears that Oppenheimer@18# suggested the use o
the Riemann-Silberstein vector as the wave function of
photon in direct space. Since the information carried by
negative-frequency components of the Riemann-Silbers
wave function is already contained in the positive-frequen
part of the wave function only the positive-energy~fre-
quency! part enters the Bialynicki-Birula definition@12# and
the one used below. By this choice a useful connection to
so-called analytical signal of importance in both classi
and quantum field theory@3# is induced in the formalism
Quite recently another attractive description of the photon
free space was established by Hawton@19,20#, who argued
for a photon state vector proportional to the four-vector p
tential in order to base photon quantum mechanics on n
ber density@1,3# as is usual. A good review of the almo
century-old history of the photon wave function has recen
been given by Bialynicki-Birula@12#, and readers intereste
in the connection between the photon wave function c
cepts in the coordinate representation and the so-ca
coarse-grained detection theory@7# may start from the book
by Mandel and Wolf@3#.

The emission process in space-time of a single pho
generated by an electrodynamically active atom is at focu
the present theory, and this necessitates that the matter
coupling is involved in the formalism, and this aspect mak
the Bialynicki-Birula-Sipe approach adequate. In fact, S
@13# relates his photon wave-function description to t
spontaneous-emission process via the Power-Zinau-Woo
Lagrangian@21–25#, but since the photon field is assumed
be confined to withinc0t of the atom at a timet after the
atom has started to decay, the near-field confinement dyn
ics studied by the present author recently@4# was lost. As we
shall realize the near-field zone plays an important role
photon emission. Also Bialynicki-Birula stresses the imp
tance of going beyond the free-space photon description,
does this by studying the photon wave equation in an in
mogeneous medium and in optical fibers@10,12#. In both
cases, however, the matter dynamics is described in
framework of macroscopic electrodynamics, and the p
nomenological nature of such an approach as well as
complications arising when dealing with a material man
body system@26,27# make such systems less attractive
attempts to understand the emission and absorption proce
for single photons in a first-quantized description.

In Sec. II B, we briefly review the Riemann-Silberstei
Bialynicki-Birula description of the photon wave function
free space, paying attention to those aspects which ar
particular importance for the subsequent development of
theory. The need for dividing the electromagnetic field c
rectly into genuine transverse and longitudinal vector fi
parts in both matter and matter-free regions is emphas
@28#, and the importance of this appears in full scale in Se
02211
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II C and II D. In Sec. II C, single-photon emission in mome
tum space is studied and a description of the initiation
photon emission is introduced on the basis of a six-vec
wave-function object. It is suggested that the transverse
of microscopic Maxwell-Lorentz equations, properly no
malized, describe the photon-emission~and -absorption! pro-
cess in space-time. In Sec. II D, photon emission is exami
in direct space, and a propagator description of the emis
initiation dynamics is established. The propagator desc
tion appears particularly useful because it allows us to inv
tigate the spatial localization of the emerging photon in
direct manner, and because the propagation speed of the
ton field, i.e., the vacuum speed of light, appears so explic
in the formalism. In the coordinate representation the pho
emission process is studied in two equivalent propagator
tures~views! @4#: The view from the photon’s perspective i
which the source region is identified with the region whe
the transverse atomic current density is different from ze
and the view from the electron’s perspective in which t
photon source region is imagined to be compressed to c
cide with the region of nonvanishing electron density~essen-
tially!.

In Sec. III the general theory is applied in a model calc
lation. Thus, a sinusoidal wave train~of finite length! emitted
from a pointlike atom is taken as an heuristic paradigm. T
atomic current density needed to emit precisely one photo
calculated in Sec. III B for a point dipole, and in Sec. III
finite-size corrections to the current density are studied
the hydrogen 1s↔2pz transition. The one-photon energy
determined in Sec. III D, and a simple explicit formula, d
rived. From this the textbook result for the energy\v0 is
regained as the length of the photon wave train is increa
beyond a few cycles. In Sec. III E the cycle-averaged rad
energy flows in the near-field zone of the atom are inve
gated for the wave-train paradigm, in both the photon a
electron perspectives, and we determine how the ene
flows between the emerging photon and the atom as a fu
tion of the distance from the point particle.

In the Appendixes, the photon-antiphoton interference
studied, the magnetic-field propagators relevant in the p
ton and electron perspectives calculated, and the transv
and longitudinal parts of the hydrogen 1s↔2pz current den-
sity determined in wave-vector space.

In a forthcoming paper it will be demonstrated that t
present first-quantized theory can be used to establish a
orous one-photon theory for optical tunneling@29,30#. In
photon-tunneling processes the conceptual limitation in
ability to localize photons in space plays a crucial role@30#,
and in a space-time description of the tunneling of sin
photons studies of the dynamics of the emerging pho
therefore turns out to be indispensable.

II. FIRST-QUANTIZED THEORY OF
THE EMERGING PHOTON

A. Preliminary considerations

In a simple first-quantized description a photon cannot
created nor can it be annihilated, and therefore the sin
photon wave function is a concept of the free electrom
netic field. Even in a nonrelativistic treatment of matter-fie
1-2
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SPACE-TIME DESCRIPTION OF PHOTON EMISSION . . . PHYSICAL REVIEW A62 022111
interactions, where the number of charged particles is fix
the number of elementary excitations in the radiation fie
the photons, inevitably will change as a function of tim
Thus, spontaneously emitting atoms generate photons
other processes photons are absorbed~since with no rest
mass they cannot be stopped!, and field propagation, e.g., i
condensed media consists of a succession of photon ab
tion and emission processes. At first sight one might the
fore be inclined to think that the photon wave-function co
cept is of limited usefulnes in studies of light-matt
interactions in quantum optics. As we shall realize in t
following, this conception is not correct.

The notion of a photon wave function in momentum re
resentation has been well founded for many years, whe
the coordinate representation has stirred much controv
over the years@11#. It seems, however, that a good candida
for a position-representation wave function is~the! one
which relates to the probability amplitude for the phot
energy to be located~detected! at the various space points
a given time@10–13#. This so-called photon-energy wav
function @3# is proportional to the transversely polarize
electric field prevailing in free space.

Once accepted that the single-photon wave function
intimately connected with the transverse part of the class
electromagnetic field a search for a conceptual framew
for understanding the transverse set of microscopic Maxw
Lorentz equations, describing the interaction of matter w
transverse electromagnetic fields from the photon poin
view, seems unavoidable. I suggest here that these equa
properly normalized, in the one-photon case can be loo
upon as describing the photon emission~or absorption! pro-
cess in space and time. Since it is legitimate to claim t
field-matter interaction occurs in every place in space wh
the time derivative of the transverse part of the particle c
rent density is different from zero the domain occupied
these places constitutes the emission~or absorption! region
of the photon. The process of emitting~or absorbing! the
photon with certainty lasts as long as the time derivative
the particle current is different from zero.

In Secs. II B–II D we shall study the theoretical conside
ations which lay the foundation for the above-mention
point of view, and describe some of the perspectives em
ing in the wake. By incorporating the photon emission a
absorption processes as an integral part of the first-quan
one-photon theory it appears to me that this theory migh
quite useful. As an extra bonus the theory helps bridging
gap to the second-quantized time-space description of
near-field electrodynamics of atoms, a subject to be stud
in detail in a forthcoming paper.

B. Single-photon wave function

We begin our study with a summary of the theory for t
single-photon energy wave function in empty space pay
attention to those aspects of the formulation which are
particular importance for the subsequent description o
photon emerging from an electrodynamically active atom

We know from the microscopic Maxwell equations th
the magnetic fieldB(r ,t) is a transverse vector fieldsince in
02211
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everyspace-time point (r ,t) it satisfies the condition

“•B~r ,t !50. ~1!

Since matter inevitably is present in portions of space,
electric field E(r ,t) is not so simple, but we can alway
divide it uniquely into a transverse~subscriptT! vector-field
part, ET(r ,t), and a longitudinal~L! part, EL(r ,t). Though
the division is unique in a given inertial frame it will in
general be different in another frame. This lack of relativis
invariance is of no importance here, however. Despite
fact that the electric field fulfils the condition“•E(r ,t)50
in those regions of space where the particle charge densi
zero, we are not entitled to claim that only the transverse p
of the electric vector field is present in charge-free regio
This is so because also the condition“3E(r ,t)50 is
obeyed in certain parts of the particle-empty space, nam
in the near-field zone of matter@4,27,28#. Technically the
extension of this zone is identified with the region of matt
empty space where the transverse~or equivalently longitudi-
nal! part of the particle charge current density is nonvani
ing. As I shall demonstrate later this region in fact also is
emission region of the photon, a spatially extended ob
already from the outset of the emission process. In ev
space-time point of the abstract matter-free space, in wh
only a transverse electric field,E(r ,t)5ET(r ,t), exists, in
addition to

“•ET~r ,t !50, ~2!

and also the two relations

“3ET~r ,t !52
]B~r ,t !

]t
, ~3!

“3B~r ,t !5
1

c0
2

]ET~r ,t !

]t
, ~4!

wherec0 is the vacuum speed of light, hold. Together, Eq
~1!–~4! constitute the~microscopic! Maxwell equations in
empty space. Only in this idealized world a photon is a
bust object.

We denote the solution to the set of empty-space Maxw
equations, which below will be related to the energy wa
function of a single photon, by„eT(r ,t),b(r ,t)…. Other solu-
tions „ET(r ,t),B(r ,t)… to those homogeneous Maxwell equ
tions can be found by multiplying this solution with an arb
trary constant~a!, i.e.,

„ET~r ,t !,B~r ,t !…5a„eT~r ,t !,b~r ,t !…. ~5!

We now introduce the specific Riemann-Silberstein vect
@14–17#

f6~r ,t !5Ae0

2
@eT~r ,t !6 ic0b~r ,t !#, ~6!

wheree0 is the vacuum permittivity. By means of Eqs.~3!
and~4! these vectors are seen to satisfy the differential eq
tions
1-3
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i\
]f6~r ,t !

]t
56c0\“3f6~r ,t !. ~7!

To prepare for the quantum description the Planck cons
divided by 2p, i.e., \, has been put in. Following the sug
gestion by Birula-Bialynicki @10–12#, I define the one-
photon wave function in the space-time domain,F(r ,t), as
the six-component object

F~r ,t ![S f1
~1 !~r ,t !

f2
~1 !~r ,t ! D , ~8!

where

f6
~1 !~r ,t !5Ae0

2
@eT

~1 !~r ,t !6 ic0b~1 !~r ,t !#

5Ae0

2 E
0

`

@eT~r ;v!6 ic0b~r ;v!#e2 ivtdv ~9!

are the positive-frequency~v! parts of the respective
Riemann-Silberstein vectors. In the theory of classical a
quantum coherence, as well as in quantum detection the
the positive-frequency parts of the various fiel
(ET

(1) ,B(1)), called the~complex! analytic signals, play a
more prominent role than the fields themselves@3#, and as
emphasized by Birula-Bialynicki@12# the analytic signal, for
consistency in the broader framework of particles and a
particles, must be related to the photon and the negat
frequency partsf6

(2)(r ,t) of the Riemann-Silberstein vector
to the antiphoton. Since the antiphoton is identical to
photon itself, the technical bonus of working with the an
lytical signal is that this removes a redundancy in the
scription.

By multiplying F(r ,t) with its Hermitian conjugate~row!
vector F†(r ,t)5„@ f1

(1)(r ,t)#* ,@ f2
(1)(r ,t)#* … one obtains

upon integration over the entire space

E5E
2`

`

F†~r ,t !•F~r ,t !d3r 5E
2`

`

f1~r ,t !•f2~r ,t !d3r .

~10!

Since

wT~r ,t !5f1~r ,t !•f2~r ,t !

5
e0

2
@eT~r ,t !•eT~r ,t !1c0

2b~r ,t !•b~r ,t !# ~11!

precisely is the energy density in the classical electrom
netic vacuum field, the quantityE above is identified as the
energy of the photon. Though a deeper analysis app
needed, taking into account the coupling of the photon to
particle field, we may tentatively say thatF†(r ,t)•F(r ,t)
represents the energy density in the photon field in our fi
quantized description; hence the name photon-energy w
function for F(r ,t). One may upgrade the formalism t
second quantization and suggest@3,10–13# that
F†(r ,t)•F(r ,t)d3r represents in the statistical sense the~un-
02211
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normalized! probability that the photon energy is localized
the infinitesimal volumed3r aroundr at time t. The issue
above cannot be elucidated further without involving matt
in relation for instance to~i! the photon detection process@3#
and ~ii ! a discussion of the fundamental limitations whic
quantum electrodynamics~QED! forces upon us when we
seek to obtain an extremely strong spatial localization o
photon @4#. Although the overwhelming majority of paper
dealing with the conceptual possibilities of localizing a ph
ton have dealt with the free-space dynamics@31–38,3,19#, I
hold the point of view that field-matter coupling is needed
understand the spatial localization process of photons@4#.
Seen from this perspective, a description of the phot
emission process as the one presented in Secs. II C and
might be useful as a first step towards a second-quant
formulation. In Appendix A a derivation of Eq.~10! is given,
and the underlying physics is addressed in more detail t
hitherto in the literature, in particular the photon versus a
tiphoton aspect. Since it follows from the dynamical equ
tions ~7!, or from the energy balance equation for the ele
tromagnetic field, that

d

dt E2`

`

F†~r ,t !•F~r ,t !d3r 50, ~12!

a photon once introduced in empty space never disappe
Before proceeding a comment on the definition I ha

chosen in Eq.~8! for the photon wave function should b
made. Historically, the use of the Riemann-Silberstein v
tors f6(r ,t) as the wave function of the photon inr space has
been advocated first by Oppenheimer@18#, and subsequently
by a number of other physicists@39,40,10–13#. The choice
of the plus sign@in Eq. ~6!# in fact means that only photon
of positive helicity are considered. Photons of negative
licity are treated by means off2(r ,t). If we do not want to
address the photon-emission process it is sufficient to u
formalism in which the photon wave function for a give
helicity is a three-component object@ f6(r ,t)#, remembering
the particle↔ antiparticle redundancy hidden in the relatio
eT* (r ;2v)5eT(r ;v) andb* (r ;2v)5b(r ;v). In the emis-
sion ~absorption! process of the photon linear superpositio
of the two helicity states occur as we shall realize later
and therefore, it is profitable to consider the two helic
states as the upper and lower components of the same w
function. Bialynicki-Birula argues for the need of a six
component wave function in order to deal with the on
photon concept in inhomogeneous media in an effec
manner. Basically, I agree with this point of view, but a
inhomogeneous medium which dynamics is described i
phenomenological manner by a~space-dependent! dielectric
constant is not well suited for understanding the basic f
tures of the coupling of one photon to matter. When e
tended to many-particle electronic wave functions the em
sion process formalism established in Secs. II C and I
together with a similar description of the photon absorpt
process, appears to me to constitute a better framework
understanding, in a first-quantized version, single-photon
namics in condensed matter systems. Using microsco
local-field calculation techniques I shall address this probl
1-4
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in a later publication. In the theory of Sipe@13#, a three-
component wave function including both helicities is d
fined. Essentially, his choice for the photon wave function
direct space is a properly normalized sum of the t
Riemann-Silberstein vectors, i.e.,f1(r ,t)1f2(r ,t). This
gives a free-space photon wave function proportional to
transverse part of the electric field,eT . In Sipe’s treatment of
the one-photon emission from a spontaneously deca
atom the transverse electric field is replaced~via a Power-
Zinau-Woolley transformation@21–25#! by the displacemen
field, d(r ,t), in order to preserve the causality of the outg
ing photon field. In Sipe’s description the photon is initiall
i.e., when the emission process starts, completely local
in space, or at least to a region identical with the electro
size of the atom. The complete localization is not found
the present analysis, and yet no violation of Einstein cau
photon propagation appears, see Ref.@4# and Sec. II D of this
paper.

Following the standard approach@12,13# the one-photon
wave function in momentum~p! representation is introduce
starting from the Fourier transformations

f6
~1 !~r ,t !5~2p\!23E

2`

`
Ac0pg6~p,t !eip•r /\d3p ~13!

and their inverse

f6
~1 !~p,t !5Ac0pg6~p,t !5E

2`

`

f6
~1 !~r ,t !e2 ip•r /\d3r .

~14!

If one then transforms Eq.~7! to the frequency~v! domain,
and thereupon integrates the resulting equation over the p
tive frequencies it is realized that thef6

(1)’s satisfy the dif-
ferential equations

i\
]f6

~1 !~r ,t !

]t
56c0\“3f6

~1 !~r ,t !. ~15!

By inserting the expressions in Eqs.~13! into Eqs.~15! one
gets

\
]g6~p,t !

]t
56c0p3g6~p,t !. ~16!

With the help of the helicity unit vectorsê6( p̂), given by

ê6~ p̂!5
1

&
@ ê1~ p̂!6 i ê2~ p̂!#, ~17!

where the unit vectorsê1(p̂), ê2(p̂), and p̂5p/p ~in this
order! form a right-handed triad, the vector amplitude
g6(p,t), introduced via

g6~p,t !5g6~p,t !ê6~ p̂!, ~18!

are seen to satisfy the Schro¨dinger-like equation

i\
]g6~p,t !

]t
5pc0g6~p,t !. ~19!
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The single-photon wave function in the momentum repres
tation then is defined as the six vector

F~p,t ![~2p\!23/2S g1~p,t !ê1~ p̂!

g2~p,t !ê2~ p̂! D . ~20!

Although the notationsF(r ,t) and F(p,t) have been used
for the photon wave function in, respectively, the space a
momentum representation, one must remember that the
functions do not form a pair of Fourier transforms, cf. Eq
~13! and ~14!. The probability densityP(p,t) in momentum
space

P~p,t ![F†~p,t !•F~p,t !, ~21!

with F†(p,t)5(2p\)23/2@g1* (p,t) ê1* (p̂),g2* (p,t) ê2* (p̂)#,
thus is given by

P~p,t !5~2p\!23@ ug1~p,t !u21ug2~p,t !u2#, ~22!

as one readily realizes sinceê6* (p̂)• ê6(p̂)51. From the as-
sumption that we are dealing with just one photon follo
the normalization condition

E
2`

`

F†~p,t !•F~p,t !d3p51, ~23!

and if Eq.~23! is satisfied at one time, the Schro¨dinger-like
time evolutions forg6(p,t), given in Eqs.~19!, guarantee
that it holds at all later times. In fact, since no coupling
present between the two helicity components, the m
sharper conditions]ug6(p,t)u2/]t50 hold, as one may real
ize with the help of Eqs.~19!, and therefore the probability
density in momentum space is time independent, i.e.P
5P(p). The homogeneity of the dynamical equations in E
~19! leaves the amplitudes ofg6(p,t) undetermined but the
normalization condition in Eq.~23! fixes them. In turn the
amplitudes off6

(1) are determined via Eqs.~13!, and finally
the amplitudes of the transverse electric (eT) and magnetic
(b) fields entering the single-photon Riemann-Silberst
vectors@see Eqs.~9!# are uniquely determined.

The one-photon energy density in momentum spa
wT(p,t), can be obtained taking as a starting point t
Parseval-Planchere`l relation

E
2`

`

f6
~1 !~r ,t !•@ f6

~1 !~r ,t !#* d3r

5~2p\!23E
2`

`

f6
~1 !~p,t !•@ f6

~1 !~p,t !#* d3p. ~24!

Utilizing that f6
(1)(p,t)5Ac0pg6(p,t) @Eqs. ~14!#, the pho-

ton energy can be written in the form
1-5
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E5E
2`

`

$f1
~1 !~r ,t !•@ f1

~1 !~r ,t !#*

1f 2
~1 !~r ,t !•@ f2

~1 !~r ,t !#* %d3r

5~2p\!23E
2`

`

c0p@g1~p,t !•g1* ~p,t !

1g2~p,t !•g2* ~p,t !#d3p, ~25!

or equivalently

E5E
2`

`

c0pP~p!d3p, ~26!

with P(p) given by Eq.~22!. It appears from Eq.~26! that
the one-photon energy densitywT(p) equals the product o
the p-space photon energyc0p and probabilityP(p), i.e.,

wT~p!5c0pP~p!, ~27!

as desired.

C. Single-photon emission process in momentum space;
emergence of a photon

Let us now turn our attention towards the establishmen
a so-called photon perspective of the transverse microsc
Maxwell equations in the presence of matter. If we den
the transverse part of the prevailing current density,J(r ,t),
by JT(r ,t), Eq. ~4! must be replaced by

“3B~r ,t !5m0JT~r ,t !1
1

c0
2

]ET~r ,t !

]t
, ~28!

and again I emphasize that in order forJT(r ,t) to be a genu-
ine transverse vector field the condition

“•JT~r ,t !50 ~29!

must be fulfilled in the entire space, i.e., inside as well
outside the region where the particle charge density is dif
ent from zero at the given time. The presence of a ma
field does not change the two Maxwell equations in Eqs.~1!
and ~3!, and the addition to the final one@Eq. ~2!# does not
enter the dynamics of the transverse photons directly bu
of importance for the energy flow in the coupled photo
atom system, see Sec. III E.

In order that precisely one photon comes out of the em
sion process the transverse current density must have a
cific amplitude. We shall determine this amplitude belo
and by assuming here that this has been done, let us de
the resulting transverse current density byJT(r ,t).

The positive-frequency parts of the Riemann-Silberst
vectorsf6

(1)(r ,t) now fulfill the inhomogeneous differentia
equations

i\
]f6

~1 !~r ,t !

]t
56c0\“3f6

~1 !~r ,t !2
i\

A2e0

J T
~1 !~r ,t !

~30!
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in direct space, as one easily realizes from Eqs.~3!, ~6!, ~9!,
and ~28! @with JT(r ,t) replaced byJT(r ,t)#. The quantity

J T
~1 !~r ,t !5E

0

`

JT~r ;v!e2 ivtdv ~31!

is the analytical signal belonging toJT(r ,t). In momentum
space the equivalent equations read

i\
]f6

~1 !~p,t !

]t
56 ic0p3f6

~1 !~p,t !2
i\

A2e0

J T
~1 !~p,t !,

~32!

whereJ T
(1)(p,t) is the Fourier transform ofJ T

(1)(r ,t). To
obtain the dynamical equations for the scalar functio
f 6

(1)(p,t), given via

f6
~1 !~p,t !5 f 6

~1 !~p,t !ê6~ p̂!, ~33!

as it readily appears from Eqs.~14! and ~18!, we use the
dyadic expansion

UJ5 ê1~ p̂!ê1~ p̂!1 ê2~ p̂!ê2~ p̂!1p̂p̂ ~34!

of the unit tensorUJ , and the condition thatJ T
(1) is

divergence-free, i.e.,p̂•J T
(1)50, to resolve the current den

sity generating a single photon in the form

J T
~1 !~p,t !5 ê1~ p̂!J T,1

~1 ! ~p,t !1 ê2~ p̂!J T,2
~1 ! ~p,t !, ~35!

where

J T,6
~1 ! ~p,t ![ ê7~ p̂!•J T

~1 !~p,t !. ~36!

An insertion of Eq.~35! into Eq. ~32!, a subsequent multi-
plication of the resulting upper- and lower-sign equations
ê2(p̂) and ê1(p̂), respectively, and use of the relation
ê7(p̂)• ê6(p̂)51, give after a few algebraic steps

i\
] f 6

~1 !~p,t !

]t
5c0p f6

~1 !~p,t !2
i\

A2e0

J T,6
~1 ! ~p,t !. ~37!

Under the assumption that the Riemann-Silberstein vec
vanish in the remote past, the solution of Eq.~37! is

f 6
~1 !~p,t !52

1

A2e0

e2 ic0pt/\E
2`

t

J T,6
~1 ! ~p,t8!eic0pt8/\dt8.

~38!

To characterize the initiation of the photon-emission proc
in momentum-time space the six-vector object

C~p,t !5h23/2S g1~p,t !
g2~p,t ! D

5h23/2~c0p!21/2S f 1
~1 !~p,t !ê1~ p̂!

f 2
~1 !~p,t !ê2~ p̂! D ~39!
1-6
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is introduced. With thef 6
(1)(p,t!’s given by Eq.~38!, C(p,t)

can be written in the explicit form

C~p,t !52h23/2~2e0c0p!21/2

3e2 ic0pt/\S ê1~ p̂!ê2~ p̂!

ê2~ p̂!ê1~ p̂! D
•E

2`

t

J T
~1 !~p,t8!eic0pt8/\dt8, ~40!

where the notation (
ê2ê1

ê1ê2)•a[(
ê2ê1•a

ê1ê2•a
) has been used fo

brevity. In the limitt→` the photon has emerged, and the
fore

lim
t→`

C~p,t !5F~p,t !, ~41!

whereF(p,t) is the relevant free-space single-photon wa
function in the momentum representation@Eq. ~20!#. Since
C(p,t) describes a not fully emerged photon, we may c
C(p,t) the emerging-photon wave function~in momentum
representation!. By means of the Fourier transform

J T
~1 !S p,

c0p

\ D5E
2`

`

J T
~1 !~p,t !eic0pt/\dt, ~42!

we thus have

F~p,t !52h23/2~2e0c0p!21/2e2 ic0pt/\

3S ê1~ p̂!ê2~ p̂!

ê2~ p̂!ê1~ p̂! D •J T
~1 !S p,

c0p

\ D . ~43!

Above we have integrated the transverse source current
sity from 2` to `. Usually, the current density is only non
vanishing over a finite time interval, say 0<t<t0 , and the
photon is hence described by the wave function in Eq.~43!
after the timet0 where the source current has stopped.

We are now in a position where the positive-frequen
amplitude of the transverse source current dens
J T

(1)(p,c0p/\), can be determined so that precisely o
photon is emitted. Thus, from the free-space Schro¨dinger
equation in Eq.~19!, one obtains the general solution

g6~p,t !5g6
0 ~p!e2c0pt/\, ~44!

and upon a comparison to Eqs.~39!, ~41!, and~43! it appears
that

g6
0 ~p!52~2e0c0p!21/2J T,6

~1 ! S p,
c0p

\ D . ~45!

In turn this means that the probability density in moment
space given by Eq.~22! becomes

P~p!5
1

2h3e0c0p FUJ T,1
~1 ! S p,

c0p

\ D U2

1UJ T,2
~1 ! S p,

c0p

\ D U2G , ~46!
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and hence the amplitude ofJ T
(1)(p,c0p/\.) @and thereafter

JT(p,c0p/\.)# can be determined from the normalizatio
condition

1

2h3e0c0
E

2`

` 1

p
J T

~1 !S p,
c0p

\ D •FJ T
~1 !S p,

c0p

\ D G* d3p51,

~47!

cf. Eqs.~23! and~35!. Remembering that we, strictly spea
ing, performed a Fourier transformation from direct spa
(r ) to wave-vector (q5p/\.) space earlier, the transvers
current density is

J T
~1 !S p,

c0p

\ D[J T
~1 !~q,v!, ~48!

wherev5E/\ is the cyclic frequency of a monochromat
photon of energyE5pc0 ~see also Sec. III D!. In the mo-
mentum representation the positive-frequency part of
transverse current density in the (q,v) domain thus plays an
important role, as one might have anticipated.

D. Single-photon emission process in direct space; propagator
description of the emerging photon

1. Photon perspective

To describe the emergence of the photon in space-time
must now introduce the relevant direct space emergi
photon wave functionC(r ,t). Despite the notation,C(r ,t)
is not the Fourier transform ofC(p,t) given in Eq.~40!. In
terms of the analytical part of the Riemann-Silberstein v
tors, C(r ,t) still has the six-component form displayed
Eq. ~8!, but now thef6

(1)(r ,t)’ s have to satisfy the inhomo
geneous first-order partial differential equations in Eq.~30!.
The relations between the positive-frequency parts of
Riemann-Silberstein vectors and the analytical signal rela
to the transverse~atomic! current density can be written in
number of physically equivalent ways. Thus, one may s
from the momentum-time relations between thef6

(1)(p,t)’ s
andJ T

(1)(p,t), given by Eq.~38! with Eq. ~36! inserted, and
then perform the inverse Fourier transformations to obt
the f6

(1)(r ,t)’ s as functions ofJ T
(1)(r ,t). Here, we will es-

tablish instead an electromagnetic propagator relation
tween the analytical parts of the Riemann-Silberstein vec
and ~the time-derivative of! the transverse current densit
The reason for choosing such a procedure is twofold. Hen
first the speed of light is introduced in the space-time dyna
ics in such a manner that the role of the Einstein causalit
the photon-emission process appears explicitly. Second,
propagator formalism offers us a direct way of following th
time development of the loss of spatial confinement of
photon wave function during its generation.

By combining Eqs.~3! and~28! and limiting ourselves to
the complex analytical signals one can obtain the follow
wave equation for the electric field of the emerging photo

S ¹22
1

c0
2

]2

]t2DeT
~1 !~r ,t !5m0

]J T
~1 !~r ,t !

]t
, ~49!
1-7
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and by means of the isotropic electromagnetic propagato

dJ~R,t!52
1

4pR
dS R

c0
2t DUJ , ~50!

with R5uRu, R5r2r 8, and t5t2t8, the Einstein-causa
relation betweeneT

(1)(r ,t) and]J T
(1)(r 8,t8)/]t8 reads

eT
~1 !~r ,t !

5m0E
2`

`

dJ~ ur2r 8u,t2t8! •
]J T

~1 !~r 8,t8!

]t8
d3r 8dt8.

~51!

In Eq. ~51! the source domain of the electric field of th
photon is identified with the region occupied by the~time
derivative! of the transverse part,J T

(1)(r 8,t8), of the ana-
lytical atomic current density,J (1)(r 8,t8). Although the
electron motion is confined to a region of essentially ex
nential extension around the nucleus~the decay length being
of the order of the Bohr radius!, the transverse current den
sity exhibits a much weaker spatial confinement of theR23

type. The view given us of the electrodynamics starting fr
Eqs.~51! I have called the photon perspective, and a deta
account of the picture it offers us can be found in Ref.@4#. In
this reference the propagator description of the magn
field emitted from the atom was not studied but this is n
essary here in order to develop the propagator descriptio
the emerging-photon energy wave function and the emi
photon.

The magnetic field of the photonb(1)(r ,t) may be ob-
tained from the expression

b~1 !~r ,t !52E
2`

t

“3eT
~1 !~r ,t8!dt8 ~52!

by the help of Eq.~51!, as one readily infers from Eq.~3!. In
setting up Eq.~52! we have assumed that the magnetic fie
vanishes in the remote past. In the far-field (;R21) zone of
the atom the propagator description of the magnetic field
a form closely resembling the one given for the transve
electric field in Eq.~51!. Thus, the source density is sti
]J T

(1)(r 8,t8)/]t8, and in the propagator we just need

replaceUJ by UJ3R̂, where R̂5R/R. Finally, the replace-
mentm0→m0 /c0 is needed. In the near- and midfield zon
of the atom, zones which are of particular importance for
photon-emission process, the modifications are more
nounced, and, in fact, both propagator and nonpropag
formalisms, equivalent from a physical point of view, can
established. In the present context it is convenient to pic
the physics in propagator form. In this form the driving ter
is the same as for the electric field, i.e.,]JT(r 8,t8)/]t8. As
shown in Appendix B 1, the magnetic field of the phot
then becomes
02211
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b~1 !~r ,t !

5
m0

c0
E

2`

`

mJ ~r2r 8,t2t8! •
]J T

~1 !~r 8,t8!

]t8
d3r 8dt8,

~53!

where

mJ ~R,t!5F2
1

4pR
dS R

c0
2t D2

c0

4pR2 uS t2
R

c0
D G

3@F̂~R̂!Q̂~R̂!2Q̂~R̂!F̂~R̂!# ~54!

is the relevant propagator for the magnetic field in the pho
perspective. In Eq.~54!, the magnetic-field propagato
mJ (R,t), is expressed in polar-coordinate form and the u
vectors R̂,Q̂(R̂), and F̂(R̂), which form a right-handed
triad, are the local ones. Since,

UJ3R̂5R̂3UI5F̂~R̂!Q̂~R̂!2Q̂~R̂!F̂~R̂!, ~55!

the far-field (;R21) part of the propagator has precisely th
form cited above. Although the far-field contributio
to eT

(1)(r ,t) which originates in the differential sourc
@]J T

(1)(r 8,t8)/]t8#d3r 8dt8 is different from zero only on
the light shell,R5c0t, near the atom the magnetic field
nonvanishing for timelike (t.R/c0) source-observation
point couplings also, cf. the presence of the term with
Heaviside unit step function,u(t2R/c0), in Eq. ~54!. The
timelike couplings vanish asR22 ~midfield dependence! with
the distance from the local source point. Only in the far fie
the electromagnetic field stemming from the in time a
space infinitesimally extended source@]JT(r 8,t8)/
]t8#d3r 8dt8 is located entirely on the light cone. In the ph
ton perspective, the Einstein causality is thus never viola

The final steps towards a propagator description of
photon emission process and the subsequent free-space
lution can now be taken. Thus, I introduce what one may c
the photon-energy wave-function propagators in the pho
perspective,FJ6

T (R,t), for the two ~1, 2! helicities by the
definitions

FJ6
T ~R,t![dJ~R,t!6 imJ ~R,t!, ~56!

or in explicit forms

FJ6
T ~R,t!52

1

4pR
dS R

c0
2t D

3$UJ6 i @F̂~R̂!Q̂~R̂!2Q̂~R̂!F̂~R̂!#%

7
ic0

4pR2 uS t2
R

c0
D @F̂~R̂!Q̂~R̂!2Q̂~R̂!F̂~R̂!#.

~57!

The superscriptT put on the propagators just is meant
remind us that these are related to the transverse photon
1-8
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namics. To describe the photon-emission process in com
form, a two-component spinor propagator

FJ T~R,t![S FJ1
T ~R,t!

FJ2
T ~R,t!

D ~58!

is defined. By means of this the six-vector energy wave fu
tion of the emerging photon may now be written in t
propagator form

C~r ,t !5S f1
~1 !~r ,t !

f2
~1 !~r ,t ! D

5m0Ae0

2 E
2`

`

FJ T~R,t! •
]J T

~1 !~r 8,t8!

]t8
d3r 8dt8,

~59!

with the abbreviation

FJ T
•a[S FJ1

T
•a

FJ2
T
•a

D .

Some important conclusions about the spatial localiza
of the photon wave function during the emission process
be made on the basis of Eqs.~57!–~59!, but before doing
this, let us carry out thet8 integration for the magnetic mid
fieldlike contribution. Essentially, this amounts to

E
2`

`

uS t2
R

c0
2t8D ]J T

~1 !~r 8,t8!

]t8
dt85J T

~1 !S r 8,t2
R

c0
D ,

~60!

assuming that the transverse current density vanishes in
remote past, i.e.,J T

(1)(r 8,2`)50. In passing, I note tha
this assumption follows once the principle of causality
adopted. To be specific, let us consider the situation wh
the transverse current density and its first-order time der
tive vanish identically outside the time interval 0<t8<t0 in
every space pointr 8. Hence, the photon-emission proce
takes a timet0 and begins att850. At the end points of the
interval we must demandJ T

(1)(r 8,0)5J T
(1)(r 8,t0)

5]J T
(1)(r 8,t8)/]t8u t8505]J T

(1)(r 8,t8)/]t8u t85t0
50 for a

physically acceptable atom dynamics. It readily appears fr
Eq. ~60! that the magnetic midfieldlike contribution to th
photon wave function,C(r ,t), from the infinitesimal source
term J T

(1)(r 8,t8)d3r 8 located atr 8 is different from zero
inside a sphere of radiusur2r 8u5c0t during the emission in
process (0,t,t0). In the limit t→01, the radius shrinks to
zero, and therefore it follows from Eq.~59! that the stronges
spatial confinement of the magnetic midfieldlike contributi
is found when the emission process starts, and is given
the spatial extension of the transverse current-density di
bution of the atom at these early times, i.e., byJ T

(1)

3(r 8,01). The far-field contribution to the photon wav
function, which is located on the light shellur2r 8u5c0t
does not change this conclusion in any essential man
since the best localization of this contribution is given
]J T

(1)(r 8,01)/]t8. At times t8.t0 , or equivalentlyt.t0
02211
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1R/c0,J T
(1)(r 8,t2R/c0)50. This means that the magnet

midfieldlike term does not contribute to the photon wa
function C(r ,t) after the finish of the emission
process, and in consequence of this the contribution to
photon wave function from the infinitesimal sourc
@]J T

(1)(r 8,t8)/]t8#d3r 8 is different from zero in the spatia
region between the two spherical shellsur2r 8u5c0(t2t0)
and ur2r 8u5c0t which both move outwards with the
vacuum speed of light. A schematic illustration of the em
sion process in the photon perspective is presented in Fig

The energy wave function of the emitted photon, i.
C(r ,t8.t0)[F(r ,t), as it appears in the photon perspe
tive, can now be determined. Hence, with the help of
result

E
2`

`

dS R

c0
2t1t8D ]J T

~1 !~r 8,t8!

]t8
dt8

5
]J T

~1 !~r 8,t8!

]t8
U

t85t2R/c0

[J̇ T
~1 !~r 8,@ t# !, ~61!

where@ t#5t2R/c0 is the retarded time, one gets

FIG. 1. Schematic illustration of the photon-emission proces
the photon perspective. Upper part: For an electrodynamically
tive atom with its strongly localized analytical current density d
tribution, J (1)(r 8,t8), the source region of the photon
J T

(1)(r ,t8), extends over the atomic near-field zone. Middle pa
The field of the photon emerging from the infinitesimal source
gion, DJ T

(1)(r 8,@ t#), has an electric component~figure to the left!
located entirely on the light shell,R5c0t, and a magnetic compo
nent~figure to the right! located not only on the light shell but als
behind it ~a timelike response!. Lower part: When the photon is
created the electromagnetic field from theDJ T

(1)(rW8,@ t#) source is
located between the light shellsR5c0(t2t0) andR5c0t, the atom
being active in the time interval (0ut0).
1-9
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F~r ,t !52
m0

4p
Ae0

2 E
2`

` 1

R S UJ1 i ~F̂Q̂2Q̂F̂!

UJ2 i ~F̂Q̂2Q̂F̂!
D • J̇ T

~1 !~r 8,@ t# !d3r 8, t>t01R0/c0. ~62!
te
in

ef
is

ie
a

t o
st
as
p

th
in

t
rg

t
or
e
i

ur
to
l

d
th
li
s

m
d
th
th

d

nc

ap-

a-
he

e
ld
nt

ro-
oton
on,

tro-

the
In the local Cartesian coordinate system, whereR̂, Q̂, andF̂
are unit vectors along the one, two, and three axes, the
sors appearing in the upper and lower parts of the sp
propagator have the explicit forms

UJ7 i ~F̂Q̂2Q̂F̂!5S 1 0 0

0 1 7 i

0 6 i 1
D . ~63!

In ending this section, and in contrast to the claim in R
@13#, we may thus conclude that even in the moment of em
sion ~or infinitesimally short time after! the photon is not
completely confined in space.

2. Electron perspective

In Sec. II D 1, the photon emission process was stud
using a propagator formalism in which the source region w
identified with the domain occupied by the transverse par
the analytical atomic current density distribution and its fir
order time derivative. Though such a formalism is quite e
to establish starting from the transverse set of microsco
Maxwell equations and intuitively appealing because
electromagnetic fields generated from every one of the
finitesimal sources constitutingJ T

(1)(r 8,t8) propagate in an
Einstein causal manner, it has the disadvantage that
source domain is spread over a region of space much la
than the region occupied by the electron~s! of the atom. In
the photon-emission process, the interference between
fields produced by the various differential sources theref
always plays a crucial role. In the so-called electron persp
tive discussed below one identifies the source domain w
the domain occupied by~the time derivative of! the atomic
current density itself. The positive-frequency part of the c
rent density needed for the emission of precisely one pho
we denote byJ (1)(r ,t). The analytical parts of the tota
atomic current density and its transverse part are related
the spatially nonlocal linear relation

J T
~1 !~r ,t !5E

2`

`

dJT~r2r 8!•J ~1 !~r 8,t !d3r 8, ~64!

wheredJT(R) is the transverse delta function. As indicate
the relation is local in time, and this has the consequence
the new near-field propagator of the atom attains a space
component in the electron perspective. For certain analy
of the photon emission process the electron perspective
have the advantage that the interference problem relate
the field emission from the various differential sources in
atomic current density domain is easier to tackle due to
fact that theJ (1)(r ,t) distribution is much better localize
than its transverse@J T

(1)(r ,t)# part. In the heuristic point-
particle analysis to be discussed in Sec. III, the interfere
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problem does not exist at all in the electron perspective
proach, for instance. See Fig. 2.

By inserting Eq.~64! into Eq.~51!, a calculation aiming at
obtaining a propagator formalism in which the time deriv
tive of the total atomic current density distribution plays t
role of the source leads to the result@4,26#

eT
~1 !~r ,t !5ET,SF

~1 ! ~r ,t !1eT,R
~1 !~r ,t !, ~65!

where

ET,SF
~1 ! ~r ,t !52

1

3e0
E

2`

t

J T
~1 !~r ,t8!dt8, ~66!

is a transverse self-field~SF! contribution, and

eT,R
~1 !~r ,t !

5m0E
2`

`

DJ T~r2r 8,t2t8! •
]J ~1 !~r 8,t8!

]t8
d3r 8dt8 ~67!

is the retarded~R! part of the transverse electric field. Th
transverse self-field is nonvanishing only in the near-fie
(;R23) zone of the atom, and furthermore, it is differe

FIG. 2. Schematic illustration showing the photon-emission p
cess in the electron perspective. Upper parts: The emergent-ph
field generated by the analytical atomic current density distributi
J (1)(r 8,@ t#), has an electric part~figure to the left! located on and
in front of ~spacelike response! the light shell,R5c0t, and a mag-
netic part different from zero on and behind~timelike response! the
light shell. Once the photon is emitted the main part of the elec
magnetic field is located between the light shellsR5c0t and R
5c0(t2t0), under the assumption that the atom is active in
time interval (0ut0). A small spacelike electric field yet still is
present.
1-10
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SPACE-TIME DESCRIPTION OF PHOTON EMISSION . . . PHYSICAL REVIEW A62 022111
from zero only in the time interval where the photo
emission process takes place@because the mean value~over
time! of J T

(1) is zero#. Also a longitudinal self-field is
present in the near-field zone, cf., e.g., Refs.@4#, @28# and the
analysis in Sec. III, and in the quantum electrodynamic
scription removal of redundancy requires that the entire s
field operator is eliminated in favor of the particle-positio
variable~s!. In consequence the self-field dynamics is tra
ferred to the particle Hamiltonian and only the retarded p
eT,R

(1)(r ,t), of the transverse field is subjected to the canon
quantization procedure leading to the photon concept@4#. In
our first-quantized description of the photon-emission p
cess in the electron perspective we therefore necessarily
to identify only eT,R

(1) with the electric field of the photon
SinceeT

(1)(r ,t)5eT,R
(1)(r ,t) once the photon is fully emitted

i.e., for t.t0 , the elimination of the transverse self-fie
from the photon field does not change the normalization c
dition in Eq. ~47!. Once the amplitude ofJ T

(1) has been
obtained from this equation, Eq.~64! fixes the amplitude of
J (1) entering Eq. ~67!. The transverse electromagnet
propagatorDJ T(R,t), appearing in Eq.~67!, is known to
have the explicit form@27#

DJ T~R,t!52
1

4pR
dS R

c0
2t D ~UJ2R̂R̂!

1
c0

2t

4pR3 u~t!uS R

c0
2t D ~UJ23R̂R̂!. ~68!

An elaborate discussion of the physics hidden in Eq.~68! can
be found elsewhere@27# and need not be repeated here. T
first term on the right-hand side of Eq.~68! represents the
far-field (;R21) contribution to the propagator. It is aniso
tropic, with an anisotropy given by the tensorUJ2R̂R̂, but
besides this it exhibits the same form as the isotropicdJ(R,t)
propagator; see Eq.~50!. The other term, different from zer
only for spacelike events, is present solely in the near-fi
zone of the atom, i.e., in the spatial region where the pho
is created; see Fig. 2.

The retarded~R! magnetic field associated with the ph
ton in the electron perspective, i.e.,
he

b
-
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bR
~1 !~r ,t !52E

2`

t

“3eT,R
~1 !~r ,t8!dt8, ~69!

is obtained by combining Eqs.~67!–~69!. Technically, this
calculation is rather cumbersome and the interested re
may consult Appendix B 2 for a stepwise derivation. T
final result is remarkably simple; however, viz.,

bR
~1 !~r ,t !5

m0

c0
E

2`

`

mJ ~r2r 8,t2t8!•
]J ~1 !~r 8,t8!

]t8
d3r 8dt8,

~70!

with mJ (R,t) given by Eq.~54!. The propagator describing
the retarded magnetic response hence is the same in the
ton and electron perspectives. See Fig. 2.

In the electron perspective description of the transve
electrodynamics also a magnetic self-field,BSF

(1)(r ,t), enters.
This field is different from zero only inside the atomic cu
rent density distribution, and is given by

BSF
~1 !~r ,t !5

1

3e0
E

2`

t E
2`

t8
“3J ~1 !~r ,t9!dt9dt8, ~71!

as one readily realizes by combining Eqs.~3! and ~66! and
remembering that“3J T

(1)5“3J (1).
By means of the two-component spinor propagator

HJ T~R,t![S DJ T~R,t!1 imJ ~R,t!

DJ T~R,t!2 imJ ~R,t!
D , ~72!

the emerging photon is described by the six-vector ene
wave function

C~r ,t !5m0Ae0

2 E
2`

`

HJ T~R,t!•
]J ~1 !~r 8,t8!

]t8
d3r 8dt8

~73!

if observed from the electron perspective. In Eq.~73! the
same compact notation as in Eq.~59! has been employed. I
appears from Eqs.~72! and ~73! that the energy wave func
tion of the emitted photon, which we hitherto had written
displayed in Eq.~62!, may be written in the alternative form
F~r ,t !52
m0

4p
Ae0

2 E
2`

` 1

R S UJ2R̂R̂1 i ~F̂Q̂2Q̂F̂!

UJ2R̂R̂2 i ~F̂Q̂2Q̂F̂!
D •J̇ ~1 !~r 8,@ t# !d3r 8, t→` , ~74!
wn
he
the
.

tity
it

en
identifying the photon source with the analytical part of t
entire atomic current density distribution.

III. HEURISTIC PARADIGM: SINUSOIDAL PHOTON
WAVE TRAIN EMITTED FROM A POINTLIKE ATOM

A. Model

It is instructive to throw light on the general theory esta
lished in Secs. II C–II D by applying it in a model calcula
-

tion. The obtained results are also of interest in their o
right because they offer a simple qualitative picture of t
photon-emission process and allow us to make contact to
textbook description of the photon emission from an atom

In our model the atom is considered as a pointlike en
from an electronic point of view, and we assume that
electrodynamically behaves like an electric dipole~ED!.
In the ED approximation the atomic current density is giv
by
1-11
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J~r ,t !5J~ t !d~r !, ~75!

assuming that the dipole is placed at the origin of the co
dinate system. In the near-field zone of the point particl
~singular! current density distribution of the form given i
Eq. ~75! gives rise to both attached and radiated electrom
netic fields. In the far-field zone only the radiative part is le
To emphasize that the dipole current density has been
malized so that precisely one photon is emitted, calligrap
letters are used to denote the current density and its am
tude. The source of the emitted photon is related to the tra
verse part of the current density in Eq.~75!, i.e.,

JT~r ,t !5dJT~r !•J~ t !, ~76!

where dJT(r ) is the transverse delta function@see also Eq.
~64!#, a dyadic quantity. Since the range ofdJT(r ) is charac-
terized by anr 23 dependence, the emission region of t
photon is just the near-field zone of the point particle.
detailed semiclassical~field-quantized! study of the attached
and radiated electromagnetic fields of an electric point dip
based on a Green-function approach may be found in R
@28#.

Let us assume now that the atom is excited by a mo
chromatic field of finite duration and with a cyclic frequen
v0 so far from any of the atomic transition frequencies th
the Rabi oscillations in the current density can be neglec
@3#. The fact that the atomic current density must be so sm
that only one photon is emitted in itself suppresses the R
sidebands except at resonance~or close to resonance!. A time
dependence of the form

J~ t !5J0@u~ t !2u~ t2T0!#sinv0t ~77!

hence is taken. The period of the harmonic oscillation isT
52p/v0 , the current density is different from zero in th
time interval 0,t,T0 , and lasts for an integer number o
cycles, i.e.,T05nT, wheren is a positive integer.

B. One-photon atomic current density

We begin our investigation of the photon-emission a
-absorption process with a calculation of the associated
torial point particle current density amplitudeJ0 . Thus, by
means of the inverse spatial Fourier transformation@1,26#

E
2`

`

dJT~r !e2 iq•rd3r 5UJ2
pp

p2 , ~78!

where

p5\q, ~79!

andp25p•p, and the inverse Fourier transformation in tim

E
2`

`

@u~ t !2u~ t2T0!#sinv0teivtdt5
v0

v22v0
2 ~eivT021!,

~80!
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it appears that the positive-frequency part of the transve
current density in the~q, v! domain~momentum-energy rep
resentation! is given by

J T
~1 !S p,

c0p

\ D
5S UJ2

pp

p2 D •J0

v0

S c0p

\ D 2

2v0
2
FexpS i

c0pT0

\ D21G , ~81!

having used also the energy-momentum constraint for
photon, namely,

v5
c0p

\
~.0! ~82!

in Eq. ~80!. The analytical current density signal leading
the emission of just one photon in turn is given by

J T
~1 !~r ,t !5h23E

2`

`

J T
~1 !S p,

c0p

\ DexpF i

\
~p•r

2c0pt!Gd3p, ~83!

remembering thatp.0.
The point-particle current density, which is linearly pola

ized, is assumed to be directed along thez axis of our Car-
tesian coordinate system, i.e.,J05J0ẑ, where ẑ is a unit
vector in thez direction, and to determine the yet unknow
amplitudeJ0 , Eq. ~81! is inserted into the normalization
condition given in Eq.~47!. Since

UJ T
~1 !S p,

c0p

\ D U2

5

4v0
2 sin2S c0pT0

2\ D
F S c0p

\ D 2

2v0
2G2 J0•~UJ2p̂p̂!•J0 ,

~84!

letting without restrictionJ0 be a real quantity, it appear
that the integral in Eq.~47! adequately is carried out in
spherical coordinates. With the polar axis in thez direction
one hasJ0•(UJ2p̂p̂)•J05J 0

2 sin2 u, whereu is the polar
angle, and after having performed the trivial angular integ
tions the normalization condition reads

J 0
2E

0

`
p sin2S c0pT0

2\ D
F S c0

\ D 2

p22v0
2G2 dp5

3h3e0c0

16pv0
2 . ~85!

A substitutionp5(\v0 /c0)y, followed by an integration by
parts „taking y/(y221)25d@2(12y2)#21/dy as the one
function… gives
1-12
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E
0

`
p sin2S c0pT0

2\ D
F S c0

\ D 2

p22v0
2G2 dp52S \

c0v0
D 2 np

2 E
0

` sin~2pny!

12y2 dy,

~86!

wheren5T0 /T. Sincen is a positive integer one has

E
0

` sin~2pny!

12y2 dy52E
0

2pn sinx

x
dx. ~87!

By combining Eqs.~85!–~87! it appears that the current den
sity amplitude needed to ensure that precisely one photo
emitted from the atom in the point-particle approximation

J05pc0A6\e0c0F2pnE
0

2pn sinx

x
dxG21/2

. ~88!

The result in Eq.~88! is remarkable because it shows thatJ0
is independent of the frequencyv0 , and thus depends onl
on the number of periods~n! in the wave train and on the
fundamental quantitiesh andc0 . If one abandons the naı¨ve
point-particle model, the atomic current density amplitu
will depend on the atomic length parameter~essentially the
Bohr radiusa0) and the characteristic wavelength of the ph
ton wave train,l05c0T. For photons emitted in electric di
pole transitions the dependence ofJ0 on a0 and l0 , how-
ever, will be weak since the ratioa0 /l0 is small in the
optical region. Finally, also the ratioe/m, between the elec
tron charge (2e) and mass~m!, will appear inJ0 .

C. Finite-size correction to the transverse atomic current
density: Hydrogen 1s^2pz transition

Let us now make a pause in the analysis of the emerg
photon and photon wave trains emitted from a pointlike at
and estimate the importance of the inevitable finite size
the atom by studying the one-photon wave train emitted fr
electron oscillations between the 1s and 2pz states in hydro-
gen.

When the hydrogen atom is electrodynamically active
electron wave function,c(r ,t), is in a time-dependent supe
position

c~r ,t !5c1~ t !c1~r !1c2~ t !c2~r ! ~89!

of the 1s and 2pz eigenstates, namedc1(r ) andc2(r ), re-
spectively. Normalization requires thatuc1(t)u21uc2(t)u2
51. In the statec(r ,t) the atomic current density is given b

J~r ,t !5c1~ t !c2* ~ t ! j 1→2~r !1c1* ~ t !c2~ t ! j 2→1~r !, ~90!

where the transition current densities can be obtained f
the relations

i j 1→2~r !5 i 21 j 2→1~r ![ j ~r !, ~91!

where in polar coordinates~r, u, w! @the polar axis coinciding
with the z axis# with the local unit vectors denoted byr̂ , û,
and ŵ, the vector j (r ) has the explicit form
02211
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m

j ~r !5BF S 11
br

3 D r̂ cosu2û sinuGe2br, ~92!

with b53/(2a0) and B5e\/(8p&ma0
4). In passing we

note that j (r ) is independent of the azimuth angle~w! and
has noŵ component, as expected from the symmetry of
1s and 2pz orbitals. By writing the atomic current density i
the form

J~r ,t !5 i @c1* ~ t !c2~ t !2c1~ t !c2* ~ t !# j ~r !, ~93!

one obtains, when Rabi sidebands effects are neglected

i @c1* ~ t !c2~ t !2c1~ t !c2* ~ t !#5A@u~ t !2u~ t2T0#sinv0t,
~94!

when a sinusoidal excitation of finite length is applied to t
atom. The amplitudeA must be determined so that only
single photon is emitted from the hydrogen 1s↔2pz transi-
tion. By a comparison of the current densities of the hyd
gen atom@Eq. ~93! with Eq. ~94! inserted# and the point-
particle model@Eq. ~75! with Eq. ~77! inserted# it appears
that the association is as follows:

A j ~r !⇔J0d~r !ẑ. ~95!

In order to calculateA the inverse Fourier transformatio

j ~q!5E
2`

`

j ~r !e2 iq•rd3q ~96!

needs to be carried out, and from the division

j ~q!5 j T~q!1 j L~q!, ~97!

the transverse part of the~effective! transition current density
in the wave-vector~;momentum! representation, j T(q),
can be obtained. The above-mentioned calculation is c
bersome, and the interested reader may find a few of
intermediate steps leading to the final result in Appendix
The results for the transverse and longitudinal parts ofj (q)
conveniently are given in spherical coordinates (q,uq ,wq)
with the polar axis coincident with the one used inr space.
The local unit vectors~in q space! are denoted byq̂, ûq , and
ŵq . As one might have anticipated from Eq.~92!, the inde-
pendence ofj (r ) on the azimuth angle implies thatj T(q)
only gets a component along theûq direction. Hence, in ex-
plicit form one obtains

j T~q!52
26

35&

e\

m

b5

~b21q2!2 ûq sinuq , ~98!

and for the longitudinal partj L(q) of j (q) the final result
reads

j L~q!5
26

35&

e\

m

b5Fb21S q

2D 2G
~b21q2!3 q̂ cosuq , ~99!
1-13
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and this of course only has aq̂ component. The associatio
in q space between the transverse current density of
point-particle model and the hydrogen 1s↔2pz transition is

A j T~q!⇔J0dJT~q!• ẑ, ~100!

and since d6 T(q)• ẑ5(UJ2q̂q̂)• ẑ52ûq sinuq , Eq. ~98!
shows that the transcription in Eq.~100! is equivalent to

26

35&

e\

m

b5

~b21q2!2A⇔J0 . ~101!

To determine the one-photon value forA one may proceed
as described in Sec. III B, and it now follows that an ex
factor proportional to@b21(p/\)2#24 appears under the in
tegral sign in Eq.~85!. Since the wavelength~s! of light in the
optical region is four orders of magnitude larger than
Bohr radius, this extra factor only gives a small correction
thep integral. By neglecting this correction, and thus sett
b21q2'b2 in Eq. ~101!, the relation betweenJ0 and A
becomes

J0⇔
25

34&

e\

ma0
A , ~102!

and with a current-density amplitude

A5S 3

2D 4

p)
ma0c0

e
Ae0c0

\ F2pnE
0

2pn sinx

x
dxG21/2

,

~103!

precisely one photon is emitted in the hydrogen 1s↔2pz
oscillation.

D. One-photon energy

The emergent photon, which energy wave functi
C(r ,t) in the photon perspective is given by Eq.~59!, does
not possess a time-independent energy. Only after the e
sion of the photon the energy

E~ t !5E
2`

`

C†~r ,t !•C~r ,t !d3r ~104!

becomes independent oft. The reason that the emergent ph
ton energy is time dependent originates in the fact that
photon during the creation process is coupled to the at
and only the entire atom-photon system therefore is in
eigenstate for the energy. The state of things is further c
plicated since the energy ascribed to the emerging photo
a given time will be different in the photon and electro
perspectives. This is so because the self-field part of
transverse energy of the electromagnetic field in the elec
perspective is considered as belonging to the particle ene
cf. the discussion in Sec. III D 2. In the subsequent sec
~III E ! we shall study how the total energy, averaged ove
wave-train period, is shared between the atom and
emerging photon within the framework of the point-partic
model.
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Once the photon-emission process has been complete
the energy released from the atom resides~stays! in the pho-
ton. In terms of the current density amplitudeJ0 , the cycle-
averaged energŷE&, emitted by a point particle performing
sinusoidal motion, is

^E&5
m0v0J 0

2

6c0
. ~105!

The total energy emitted by the atom therefore becomes

E5n^E&5\v0F 2

p E
0

2pn sinx

x
dxG21

, ~106!

as one readily realizes by combining Eqs.~88! and ~105!.
The energy of the photon wave train hence is given by
~106!. For finiten, one always hasE.\v0 , and in the limit
n→` the textbook resultE5\v0 is recovered. Since the
integral in Eq. ~106! converges rapidly towardsp/2 with
increasingn, only for extremely short pulse trains the devi
tions fromE5\v0 are pronounced~see Fig. 3!.

E. Radial energy flows in the near-field zone

During the photon-emission process the dynamics of
emerging photon and the atom are coupled. This implies
the energy flow in the near-field zone of the atom is sha
between the photon and a cross coupling effect between
atom and emerging photon. In the far-field zone the ene
transport is provided solely by the emergent photon. In t
section, the cycle-averaged energy flow in the radial dir
tion will be examined, paying particular attention to the co
ditions in the near-field zone of the point particle.

1. Energy balance equations

By taking the inner products of the transverse Maxw
equations in Eqs.~3! and ~28! with B andET , respectively,

FIG. 3. Normalized one-photon energy,E/(\v0), of a sinu-
soidal photon wave train~oscillation period 2p/v0) as a function
of the number of periodsn in the train. As indicated by the black
dots only integer values ofn are physically meaningful„The fully
drawn„(2/p)*0

2pnx21 sinxdx…21 curve is plotted to guide the eye.…

Note that the one-photon energyE is always larger than\v0 .
1-14
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and afterwards subtracting the resulting equations,
readily obtains the following local energy balance relatio

“•S 1

m0
ET3BD1

]

]t S e0

2
ET•ET1

1

2m0
B•BD52ET•JT ,

~107!

where m0
21ET3B is the Poynting vector of the transvers

field, (e0/2)ET
21(2m0)21B2 is the energy density in the

transverse field, andET•JT is the work carried out per uni
time locally of the transverse field on the transverse deg
of freedom of the atom. A similar and well-known loc
energy balance equation holds for the flow and exchang
power in and between the total elecromagnetic field and
atom, namely@41#,

“•S 1

m0
E3BD1

]

]t S e0

2
E•E1

1

2m0
B•BD52E•J,

~108!

whereJ andE denote the atomic current density and the to
electric field. If one subtracts Eq.~28! from the Maxwell
equation“3B5m0J1c0

22]E/]t, one obtains the relation

m0JL~r ,t !1
1

c0
2

]EL~r ,t !

]t
50 ~109!

between the longitudinal~L! parts of the atomic current den
sity (JL5J2JT) and the electric field (EL5E2ET). By tak-
ing the scalar product of Eq.~109! and EL , an energy bal-
ance equation

]

]t S e0

2
EL•ELD52EL•JL ~110!

for the longitudinal atom-field dynamics emerges. Since
magnetic field has no longitudinal part@see Eq.~1!#, the
Poynting vector of the longitudinal electromagnetic field
zero, and this part of the field therefore cannot transport
ergy from one place to another. By subtracting Eqs.~107!
and ~108!, and utilizing Eq.~110!, one obtains an energ
balance equation

“•S 1

m0
EL3BD1

]

]t
~e0ET•EL!52ET•JL2EL•JT

~111!

for the cross coupling between the longitudinal and tra
verse dynamics.

2. Cycle-averaged dynamics and outwards transport of energ

In a notation adequate when working with analytical s
nals~cf. e.g., Eq.~9! and Ref.@3#!, the cycle-averaged prod
uct of two harmonically varying quantities

Xi~ t !5Xi~v0!e2 iv0t1Xi* ~v0!eiv0t, i 51,2 ~112!

of angular frequencyv0(.0)52p/T is given by
02211
e

es

of
e

l

e

n-

-
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^X1~ t !X2~ t !&[
1

T E
t0

t01T

X1~ t !X2~ t !dt

52 Re@X1~v0!X2* ~v0!#. ~113!

The result in Eq.~113! is independent oft0 , and for the
field-atom dynamics associated with the sinusoidal wa
train given in Eq.~77! one must chooset0 in the interval 0
<t0<T02T to apply Eq.~113!. By performing the cycle-
average procedure to Eqs.~107!, ~108!, ~110!, and~111!, one
obtains

“• K 1

m0
E3BL 52^E•J&, ~114!

“• K 1

m0
ET3BL 52^ET•JT&, ~115!

“• K 1

m0
EL3BL 5^ET•JT&2^E•J&, ~116!

and

^EL•JL&50. ~117!

If we integrate Eqs.~114!–~116! over a spherical volume
(V0) of radiusr 0 centered on the point particle position, an
hereafter apply Gauss’s theorem to the terms containing
“ operation, we get~denoting the surface element of th
sphere bydS0)

R
S0
K 1

m0
E3BL • r̂ dS052E

V0

^E•J&dV0 , ~118!

R
S0
K 1

m0
ET3BL • r̂ dS052E

V0

^ET•JT&dV0 , ~119!

and

R
S0
K 1

m0
EL3BL • r̂ dS0

5E
V0

~^ET•JT&2^E•J&!dV0 . ~120!

The sum of the two last equations gives Eq.~118!, of course.

3. Energy flows in the photon perspective

The cycle-averaged energy balance equations in E
~118!–~120! can only be fully understood if one~i! considers
both the incident field (Einc) acting on the atom and th
scattered field (Escatt) created by the particle, and~ii ! takes
into account the finite size of the atom. The field driving t
atom hence consists of the sum of the incident field, wh
we necessarily must assume is transverse (Einc5ET

inc), and
the transverse vector-field part (ET

scatt) of the ~yet unknown!
scattered field~see Ref.@41#!. If the incident field did have a
longitudinal component on the site of the atom this wou
1-15
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OLE KELLER PHYSICAL REVIEW A 62 022111
mean that the source of this field would be in the near-fi
zone of the atom, and consequently the source and the a
had to be considered as a single system from an electr
namic point of view. Consequently, the problem would
more complicated than ‘‘just’’ a single-particle interactio
with an electromagnetic field. The transverse local elec
field

ET5Einc1ET
scatt ~121!

acting on the atom must be determined in a self-consis
manner from the combined Schro¨dinger ~or Dirac! and mi-
croscopic Maxwell equations. In such a calculation finer
tails would be lost if the atom were considered as an elec
point dipole. OnceET has been determined~to a sufficient
accuracy! the current density of the atom can be obtained a
afterwards the split intoJT andJL done. Finally, this allows
a calculation of the right-hand sides of Eqs.~118!–~120!.
The radial energy flows appearing on the left-hand sides
these equations contain not only a scattered field contribu
stemming from ^Escatt3Bscatt&, but also parts (;^Escatt

3Binc&,^Einc3Bscatt&) associated with the interference of th
incident and scattered fields. In agreement with the anal
presented in the previous parts of this paper, we here con
ourselves to a calculation of the radial flux associated w
the scattered field, and we assume that the current de
amplitude has such a magnitude that precisely one photo
emitted. The related scattered electric field we denote be
5eT1eL , and the associated magnetic field byb, as before.

In the space-frequency domain the electric field of
electric point dipole is given by~see, e.g., Ref.@28#!

e~r ;v0!52 im0v0DJ ~r ;v0!•J~v0!, ~122!

where, with theq05v0 /c0 ,

DJ ~r ;v0!5
q0

4p i H 1

iq0r
~UJ2 r̂ r̂ !2F 1

~ iq0r !22
1

~ iq0r !3G
3~UJ23r̂r̂ !J eiq0r ~123!

is the standard~textbook! propagator. With the current den
sity in thez direction, the relevant tensor-vector products
Eq. ~122! become in our spherical coordinates (UJ2 r̂ r̂ )• ẑ5

2û sinu, and (UJ23r̂ r̂ )• ẑ52û sinu22r̂ cosu, and from
the Maxwell equation“3e(r ;v0)5 iv0b(r ;v0) written in
spherical coordinates a straightforward calculation gives

b~r ;v0!5
m0q0J~v0!

4p i S 12
1

iq0r D sinu

r
eiq0rŵ. ~124!

Using distribution theory the same result may be obtain
starting from the integral expression in Eq.~70!. The cycle-
averaged total energy flow per unit time in the radial dire
tion through a sphere of radiusr 0 , i.e.,

b[ R
S0
K 1

m0
e3bL • r̂dS0 ~125!
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now easily can be calculated via Eqs.~113! and~122!–~124!.
If one remembers thatJ(v0)5 1

2J0 @compare Eqs.~77! and
~112!# we finally have

b5
m0v0

2J 0
2

12pc0
5

^E&
T

, ~126!

where the last relation follows from Eq.~105!. The quantity
b is independent ofr 0 ~the textbook result@42#! and repre-
sents the cycle-averaged power emitted by the atom.
energy of the emerged photon isnTb.

The energy transport associated with the cross coup
between the transverse and longitudinal fields we calcu
next. The matter attached longitudinal electric field,eL(r ,t),
accompanying the atomic one-photon current density,
given by

eL~r ;v0!5
1

i e0v0
dJ L~r !•J~v0!, rÞ0 ~127!

in the space-frequency domain, except at the dipole posi
where the field is singular. With the help of the spheric
coordinate expression for the longitudinal delta function, i

dJL~r !5
1

4pr 3 ~ ûû1ŵŵ22r̂r̂ !, rÞ0 ~128!

the matter attached field becomes

eL~r ;v0!5
i

4pe0v0r 3 ~ û sinu12r̂ cosu!J~v0!.

~129!

By combining Eqs.~124! and ~129!, and carrying out~in
spherical coordinates! subsequently a number of elementa
integrations it is found that the related energy flow per u
time through the sphere of radiusr 0 is given by

R
S0
K 1

m0
eL3bL • r̂dS05ba~q0r 0!, ~130!

where

a~q0r 0!5
1

~q0r 0!2 Fsin~q0r 0!

q0r 0
2cos~q0r 0!G . ~131!

The coupling of the matter attached electric field to the m
netic field hence results in a cycle-averaged radial po
transport which depends on the distance (r 0) from the point
dipole. The power flow exhibits strongly damped spatial o
cillations of periodc0T, and vanishes in the far field„but not
in the midfield zone@;(q0r 0)22#…. For r 0→0, the matter
attached power flow equalsb/3 sincea(q0r 0)ur 0→05 1

3 .
A subtraction of the results in Eqs.~125! and~130! shows

that the radial power flow associated with the transve
electromagnetic field of the emerging photon is given by

R
S0
K 1

m0
eT3bL • r̂dS05b@12a~q0r 0!# ~132!
1-16
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in the photon perspective~see Fig. 4!. In the far field the
photon attached field provides the entire energy transpo
the outwards direction.

4. Energy flows in the electron perspective

In the space-frequency domain the relation between
transverse self-field and the single-photon current density
the form

ET,SF~r ;v0!5
1

3i e0v0
dJ T~r !•J~v0!, ~133!

and sincedJT(r )52dJL(r ) for rÞ0, it appears that

“3ET,SF~r ;v0!50, rÞ0 ~134!

in the point-particle approach. In turn this implies th
“3eT(5“3e)5“3eT,R , whereeT,R is the retarded par
of the transverse electric field in the electron perspect
The magnetic field accompanying the emergent pho
therefore is the same in the photon and electron perspect
i.e., b5bR(b(1)5bR

(1)), in the point-particle approximation
By a comparison of Eqs.~127! and ~133!, one sees that

ET,SF~r ;v0!52 1
3 eL~r ;v0!, rÞ0. ~135!

By combining Eqs.~130! and ~135! it appears that the cou
pling between the magnetic field and the transverse par
the matter attached field leads to a cycle-averaged po
flow in the radial direction given by

R
S0
K 1

m0
ET,SF3bL • r̂dS052 1

3 ba~q0r 0!. ~136!

If now one substracts the results in Eqs.~132! and~136!, it is
realized that the retarded part of the transverse electrom
netic field is responsible for a radial power transport~see also
Fig. 4!

FIG. 4. Normalized and cycle-averaged radial power flows
sociated with the emergent photon as a function of the normal
distance,q0r , from the atom in the photon perspective (12a) and
electron perspective@12(2/3)a#. Far from the atom the outward
power flow is carried entirely in the photon field.
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R
S0
K 1

m0
eT,R3bL • r̂dS05b@12 2

3 a~q0r 0!#. ~137!

The radial power flow associated with the coupling betwe
the magnetic field and the total attached field is obtained
adding the results in Eqs.~130! and ~136!. Thus,

R
S0
K 1

m0
~eL1ET,SF!3bL • r̂dS05 2

3 ba~q0r 0!. ~138!

Close to the electric dipole, i.e., forr 0→0, Eq.~138! equals
2b/9.

APPENDIX A: PHOTON AND ANTIPHOTON
INTERFERENCE

In Sec. II B we defined the photon wave function in th
space-time domain via the positive-frequency parts of
~normalized! Riemann-Silberstein vectors belonging to t
positive and negative helicities@see Eq.~8!#. In analogy with
this definition, the antiphoton energy wave function, deno
by FA(r ,t), is introduced as the six-component object

FA~r ,t !5S f1
~2 !~r ,t !

f2
~2 !~r ,t ! D , ~A1!

composed of the negative-frequency components of the
Riemann-Silberstein vectors. The antiphoton wave funct
may be obtained from the photon wave function by t
particle-antiparticle conjugation operation

FA~r ,t !5sJ1•F* ~r ,t !, ~A2!

sJ1 being the Pauli spin matrix (1 0
0 1). To show that Eq.~A2!

is correct one may use the relations

@ f6
~2 !~r ,t !#* 5f7

~1 !~r ,t !. ~A3!

These readily follow from the fact that since the frequen
components of the real fieldseT(r ,t) and b(r ,t) must obey
the conditions eT(r ;2v)5eT* (r ;v) and b(r ;2v)
5b* (r ;v), one haseT

(2)(r ,t)5@eT
(1)(r ,t)#* and b(2)(r ,t)

5@b(1)(r ,t)#* .
If one considers the photon and antiphoton as differ

~orthogonal! eigenstates of a one-particle electromagne
field superposition of these states are allowed. In the pre
context it is sufficient to consider a particular simple sup
position, viz.,

J~r ,t !5
1

&
@F~r ,t !1FA~r ,t !#. ~A4!

Since

J~r ,t !5
1

&
S f1~r ,t !
f2~r ,t ! D , ~A5!

and f2(r ,t)5f1* (r ,t), it appears that

-
d
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J†~r ,t !•J~r ,t !5wT~r ,t ! ~A6!

i.e., the local energy density of the transverse electrom
netic field, cf. Eq.~11!. Thus, if one insists thatwT(r ,t) has
physical reality, the photon and antiphoton must be able
interfere~self-photon-interference!.

By means of Eq.~A6! it is easy to show that

F†~r ,t !•F~r ,t !5FA
†~r ,t !•FA~r ,t !, ~A7!

and the photon and antiphoton energy density distributi
therefore are identical. It also follows with the use of E
~A3! that

@F†~r ,t !•FA~r ,t !#* 5FA
†~r ,t !•F~r ,t !. ~A8!

The total energy in the electromagnetic fieldEem given by

Eem5E
2`

`

J†~r ,t !•J~r ,t !d3r , ~A9!

can tentatively be decomposed as follows:

Eem5 1
2 ~E1EA!1D, ~A10!

where

E5E
2`

`

F†~r ,t !•F~r ,t !d3r , ~A11!

and

EA5E
2`

`

FA
†~r ,t !•FA~r ,t !d3r , ~A12!

are the energies of the photon~E! and antiphoton (EA), re-
spectively, and

D5 1
2 E

2`

`

FA
†~r ,t !•F~r ,t !d3r 1c.c. ~A13!

is the net energy associated with the photon and antiph
interference. It readily appears from Eq.~A7! that

E5EA . ~A14!

To determineD one starts from the relation

E
2`

`

FA
†~r ,t !•F~r ,t !d3r 52E

2`

`

f1
~1 !~r ,t !•f2

~1 !~r ,t !d3r ,

~A15!

obtained by combining the Hermitian conjugate of Eq.~A1!,
and Eqs.~8! and ~A3!. By inserting the Fourier transforms

f6
~1 !~r ,t !5~2p!23E

2`

`

f6
~1 !~q,t !eiq•rd3q ~A16!

in Eq. ~A15! and carrying out some trivial integrations, on
next gets
02211
g-

to

s
.

on

E
2`

`

f1
~1 !~r ,t !•f2

~1 !~r ,t !d3r

5~2p!23E
2`

`

f1
~1 !~q,t !•f2

~1 !~2q,t !d3q.

~A17!

Since f1
(1)(q,t)5 f 1

(1)(q,t) ê1(q̂) and f2
(1)(2q,t)

5 f 2
(1)(2q,t) ê2(2q̂), the integrand in Eq.~A17! is pro-

portional to the scalar productê1(q̂)• ê2(2q̂). If one
writes the helicity unit vectors in the usual formsê1(q̂)
5(1/&)@ ê1(q̂)1 i ê2(q̂)# and ê2(2q̂)5(1/&)@ ê1(2q̂)
2 i ê2(2q̂)#, where the sets of unit vectors„ê1(q̂),ê2(q̂),q̂…
and„ê1(2q̂),ê2(2q̂),2q̂… each form right-handed triads,
follows from elementary calculations of inner products th

ê1~ q̂!• ê2~2q̂!50, ~A18!

independentof the chosen anglebetween ê1(q̂) and e1
(2q̂). The result in Eq.~A18! hence implies that the right
hand side of Eq.~A17! is zero. Altogether the net energ
associated with the photon↔ antiphoton interference there
fore is zero, i.e.,

D50. ~A19!

A combination of Eqs.~A10!, ~A14!, and~A19! thus shows
that

Eem5E, ~A20!

as postulated in Eq.~10!.

APPENDIX B: CALCULATION OF
THE MAGNETIC-FIELD PROPAGATOR

1. Photon perspective

In order to derive the expression for the magnetic-fie
propagatormJ (R,t), which is cited in Eq.~54!, starting from
Eq. ~52!, we introduce the Huygens scalar Green function

d~R,t!52
1

4pR
dS R

c0
2t D , ~B1!

and note that the isotropic propagator in Eq.~50! is just
dJ(R,t)5d(R,t)UJ . The curl of the transverse electric fiel
eT

(1)(r ,t) is obtained, beginning with the result

“3F dJ~R,t! •
]J T

~1 !~r 8,t8!

]t8
G

5@¹d~R,t!#3
]J T

~1 !~r 8,t8!

]t8

5F]d~R,t!

]R GR̂3
]J T

~1 !~r 8,t8!

]t8
, ~B2!

easily gotten by remembering that the nabla operator“ op-
erates inr space. Utilizing also that
1-18
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]d~R,t!

]R
5

1

4p
F 1

R2 dS R

c0
2t D2

1

R

]dS R

c0
2t D

]R
G , ~B3!

we find from Eq.~51!

“3eT
~1 !~r ,t9!5

m0

4p E
2`

` F 1

R2 dS R

c0
2t91t8D

2
1

R

]dS R

c0
2t91t8D
]R

G R̂

3
]J T

~1 !~r 8,t8!

]t8
d3r 8dt8, ~B4!

since the nabla operation and ther 8 integration can be inter
changed directly. For the sake of the subsequent calcula
the time variablet has been renamedt9. To determine the
magnetic field via Eq.~52! @with t8 replaced byt9#, one
makes use of the formulas

E
2`

t

dS R

c0
2t91t8Ddt95uS t2t82

R

c0
D , ~B5!

and

E
2`

t
]dS R

c0
2t91t8D
]R

dt952
1

c0
dS R

c0
2t1t8D , ~B6!

and obtains consequently

b~1 !~r ,t !52
m0

4pc0
E

2`

` F c0

R2 uS t2t82
R

c0
D

1
1

R
dS R

c0
2t1t8D GR̂

3
]J T

~1 !~r 8,t8!

]t8
d3r 8dt8. ~B7!

Since

R̂3
]J T

~1 !

]t8
5R̂3~R̂R̂1ÛÛ1F̂F̂!•

]J T
~1 !

]t8
~B8!

because the dyadic sumR̂R̂1ÛÛ1F̂F̂ is just the unit ten-
sor, we finally may write

R̂3
]J T

~1 !

]t8
5~F̂Û2ÛF̂!•

]J T
~1 !

]t8
, ~B9!

remembering thatR̂, Û, and F̂ in this cyclic order form a
right-hand triad. By inserting Eq.~B9! into Eq. ~B7!, it ap-
pears that the analytical signal belonging to the magn
02211
on

ic

field can be written in the form given in Eq.~53!, with a
magnetic-field propagator as cited in Eq.~54!. Q.E.D.

2. Electron perspective

To determine the curl of the retarded transverse elec
field, eT,R

(1)(r ,t), given in Eq.~67!, let us consider the three
vectorsA, B, andC, and let us assume thatA andB depend
on the position vectorr whereasC is independent ofr . The
following tensor identity then holds:

“3@A~r !B~r !•C#5$@“3A~r !#B~r !2A~r !3“B~r !%•C.
~B10!

Since the step functionu@(R/c0)2t# appearing in Eq.~68!

ensures that noR23 singularity is present inDJ T(R,t) for t
.0, the integral overr 8 in Eq. ~67! converges absolutely

and the“3 and*
2`
` operations can be interchanged in t

determination of“3eT,R
(1)(r ,t). Thus, we have

“3eT,R
~1 !~r ,t !5m0E

2`

`

“

3FDJ T~R,t!•
]J ~1 !~r 8,t8!

]t8 Gd3r 8dt8.

~B11!

SinceDJ T(R,t) consists of a sum of dyadic terms, see E
~68!, the identity in Eq. ~B10! helps us to calculate“
3@DJ T•(]J (1)/]t8)#.

It appears from Eq.~68! that the transverse electroma
netic propagator contains two dyadic terms of the fo
a(R)R̂R̂, where a(R)5d(R,t), and a(R)
53c0

2tu(t)u@(R/c0)2t#/(4pR3), respectively. By setting

A(r )5a(R)R̂, B(r )5R̂, and C5]J (1)(r 8,t8)/]t8, one
obtains for these terms by means of Eq.~B10!

“3Fa~R!R̂R̂•

]J ~1 !~r 8,t8!

]t8 G
5„$“3@a~R!R̂#%R̂

2a~R!R̂3“R̂…•

]J ~1 !~r 8,t8!

]t8
. ~B12!

Since

“R̂5
1

R
~UJ2R̂R̂!, ~B13!

as one may show by an explicit calculation in Cartesian
ordinates, for instance, and

“3@a~R!R̂#50, ~B14!

Eq. ~B12! is reduced to
1-19
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“3Fa~R!R̂R̂•

]J ~1 !~r 8,t8!

]t8 G
52

a~R!

R
R̂3UJ •

]J ~1 !~r 8,t8!

]t8
. ~B15!

The two remaining terms in the dyadic expression
DJ T(R,t) have the formb(R)UJ , with b(R)5d(R,t) and
b(R)5a(R)/3. For these terms one gets

“3Fb~R!UJ •
]J ~1 !~r 8,t8!

]t8 G
5

]b~R!

]R
R̂3UJ •

]J ~1 !~r 8,t8!

]t8
, ~B16!

cf. Eq. ~B2!.
By means of Eqs.~68!, ~B15!, and ~B16! it appears that

the far-field contribution to the integral in Eq.~B11! equals

“3Fd~R,t!~UJ2R̂R̂!•
]J ~1 !~r 8,t8!

]t8 G
5F]d~R,t!

]R
1

d~R,t!

R GR̂3UJ •
]J ~1 !~r 8,t8!

]t8
,

~B17!

and the near-field contribution is given by

“3F c0
2t

4pR3 u~t!uS R

c0
2t D ~UJ23R̂R̂!•

]J ~1 !~r 8,t8!

]t8
G

5
c0

2t

4p
u~t!F ]

]R
S uS R

c0
2t D

R3
D 1

3uS R

c0
2t D

R4
G R̂

3UJ •
]J ~1 !~r 8,t8!

]t8
. ~B18!

Since Eq.~B3! can be rewritten in the form

]d~R,t!

]R
1

d~R,t!

R
52

1

4pR

]dS R

c0
2t D

]R
, ~B19!

and a direct calculation gives

]

]R
S uS R

c0
2t D

R3
D 1

3uS R

c0
2t D

R4 5
1

c0R3 dS R

c0
2t D ,

~B20!

we finally have
02211
r

“3eT,R
~1 !~r ,t9!

5
m0

4p E
2`

` F2
1

R

]dS R

c0
2t91t8D
]R

1
c0~ t92t8!

R3 u~ t92t8!dS R

c0
2t91t8D G R̂

3UJ •
]J ~1 !~r 8,t8!

]t8
d3r 8dt8. ~B21!

To obtain the retarded magnetic field,bR
(1)(r ,t), from Eq.

~69!, with t8 replaced byt9, and with the expression in Eq
~B21! inserted, one makes use of Eq.~B6! and the formula

E
2`

t

~ t92t8!u~ t92t8!dS R

c0
2t91t8Ddt9

5
R

c0
uS t2t82

R

c0
D . ~B22!

Hence, one gets

bR
~1 !~r ,t !5

m0

c0
E

2`

` F2
1

4pR
dS R

c0
2t D

2
c0

4pR2 uS t2
R

c0
D GR̂

3UJ •
]J ~1 !~r 8,t8!

]t8
d3r 8dt8, ~B23!

and by a comparison with Eq.~54! @with Eq. ~55! inserted#,
we immediately obtain the propagator result cited in E
~70!.

APPENDIX C: CALCULATION OF j T„Q… AND j L„Q…

FOR THE HYDROGEN 1 S^2PZ TRANSITION

To determine the Fourier transformj (q) of the effective
transition current density,j (r ), given in polar coordinates in
Eq. ~92!, it is convenient first to write it in Cartesian coord
nates. Thus

j ~r !5BS b

3
zr̂1 ẑDe2br, ~C1!

wherer̂5(xx̂1yŷ1zẑ)/r with r 5(x21y21z2)1/2. Next we
perform a rotation of the Cartesian coordinate system so
the new axes are given by the unit vectorsûq , ŵq , and q̂.
These vectors are just the local unit vectors belonging t
spherical coordinate representation of the wave vectorq.
@The polar axis is assumed to coincide with theẑ axis.# In the
new coordinate system we denote the arbitrary vector by

r05x0ûq1y0ŵq1z0q̂, ~C2!
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and since the transformation from the old to new coordina
implies that r⇒r 05(x0

21y0
21z0

2)1/2, r̂⇒ r̂05r0 /r 0 ,

z⇒z0 cosuq2x0 sinuq , and ẑ⇒q̂ cosuq2ûq sinuq , the tran-
sition current density in Eq.~C1! goes into

j ~r0!5BFb

3
~z0 cosuq2x0 sinuq! r̂0

1~ q̂ cosuq2ûq sinuq!Ge2br0. ~C3!

The Fourier transform hence is given by

j ~q!5BE
2`

`

e2 iqz0 expS 2
3r 0

2a0
D

3F 1

2a0
~z0 cosuq2x0 sinuq! r̂0

1q̂ cosuq2ûq sinuqGd3r 0 , ~C4!

since q•r⇒qz0 . The integration over ther0 space is
adequately carried out in spherical coordinates for wh
the polar axis coincides with theq̂ axis. The polar and
azimuth angles we denote bya and b, respectively. By
inserting (x0 ,y0 ,z0)5r 0(sina cosb,sina sinb,cosa), r̂0

5sina cosbûq1sina sinbŵq1cosaq̂, and d3r 0

5r 0
2 sinadbdadr0, in Eq. ~C4!, one obtains after having car

ried out the trivial integrations overb

j ~q!52pBûq sinuqE
0

`E
0

p

e2 iqr 0 cosae23r 0 /~2a0!

3S r 0

2a0
sin2 a12D r 0

2 sinadadr0

1pBq̂ cosuqE
0

`E
0

p

e2 iqr 0 cosae23r 0 /~2a0!

3S r 0

a0
cos2 a12D r 0

2 sinadadr0 . ~C5!
ic
.

-
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Since the longitudinal and transverse parts ofj (q) may be
obtained from, respectively,

j L~q!5q̂q̂•j ~q! ~C6!

and

j T~q!5~ ûqûq1ŵqŵq!• j ~q!, ~C7!

a comparison with Eq.~C5! indicates that

j ~q!5q̂ j L~q!1ûq j T~q!, ~C8!

where

j L~q!5pB cosuqE
0

`E
0

p

e2 iqr 0 cosae23r 0 /~2a0!

3S r 0

a0
cos2 a12D r 0

2 sinadadr0 ~C9!

and

j T~q!52pB sinuqE
0

`E
0

p

e2 iqr 0 cosae23r 0 /~2a0!

3S r 0

2a0
sin2 a12D r 0

2 sinadadr0 . ~C10!

It appears from Eq.~C8! that the transverse part of the tra
sition current density only has a component in theûq direc-
tion, as expected due to the fact thatj (r ) in Eq. ~92! is
independent of the azimuth angleŵ. If one makes the sub
stitution u5cosa in Eqs. ~C9! and ~C10!, the integrations
over u are easily carried out, and after this has been d
only elementary integrals overr 0 need to be performed. Th
final results for the transverse and longitudinal parts of
hydrogen 1s↔2pz transition current density in the wave
vector domain are presented in the main text@Eqs.~98! and
~99!#. The corresponding expressions in direct space may
found in, e.g., Ref.@26#.
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