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Geometric phase for entangled spin pairs
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The entanglement dependence of the noncyclic geometric phase is analyzed. A pair of noninteracting spin-
% particles prepared in an arbitrarily entangled state and precessing in an external time-independent uniform
magnetic field is considered. It is shown that the geometric phase reduces to a sum of one-particle geometric
phases for product states and takes on the two values corresponding to the phasetfadimrsnaximally
entangled states. If only one of the particles is affected by the magnetic field it is demonstrated that the
influence of entanglement on the geometric phase may be interpreted as an effective reduction of the degree of
polarization of the affected particle. The generalization to more than two precessiné ppiticles, in the
particular case where Schmidt decompositions exists, is briefly outlined. The geometric phase for a pair of
spin-% particles with a spin-spin interaction is calculated. In this model we show that the noncyclic geometric
phase for a certain class of states may be interpreted solely in terms of the solid angle enclosed by the
geodesically closed curve on a two-sphere parametrized by the evolving Schmidt coefficients. This suggests a
geometric interpretation of Schmidt decompositions for é)imairs analogous to that of the Poincaghere
for a single spins.

PACS numbe(s): 03.65.Bz

I. INTRODUCTION recent review of these achievements can be found in Ref.
[20]).

The concept of geometric phase, first introduced by Pan- In the present paper we analyze the entanglement depen-
charatnam[1] in his study of interference between light dence of the geometric phase in the case of2pUspin
waves in distinct states of polarization and rediscovered byubsystems. Such an analysis seems pertinent in the context
Berry [2] for quantal systems undergoing cyclic adiabaticof the recent effort§21-27 concerning phase effects for
evolution, has been refined and applied during the past 18ntangled states in two-photon interferometry. We analyze
years. Aharonov and Anand8] removed the need of adia- the noncyclic nonadiabatic two-particle geometric phase for
batic external parameters and pointed out that the geometrfwo model systems both involving entangled spirpar-
phase could be considered the anholonomy associated witigles. In the first case noninteracting sgirprepared in an
the curvature of the projective Hilbert space. Samuel andubitrarily entangled Schmidt state undergo local(&ubp-
Bhandari[4] extended the geometric phase to noncyclic ancerations caused by an external time-independent uniform
nonunitary evolutions by making use of the notion of geodesmagnetic field. The second case concerns a spin-spin inter-
sic closure in the projective Hilbert space. Subsequent workction model.

[5—8] were to show the redundancy of the geodesic closure,

making the noncyclic geometric phase easier to calculate and II. NONCYCLIC GEOMETRIC PHASE

conceptually more accessible. Recent applications of the i ) _ ] _ )

noncyclic geometric phase can be found in molecular dy- In this section we review briefly the k_mematlc approach
namics[9], linear response theorjl0], and the theory of to the noncyclic geometric phase for~un|tary evolutip@k
wave packet revivalfl1]. Consider the Hilbert space trajectofy:te[0,7]—|W¥(t))

Another important development having its roots in thewith W (t) normalized and the “end points¥(0) and¥ (7)
qguantal formalism is that of entanglement. Several concepronorthogonal. By noting that the dynamical phase change
tual consequences of this phenomenon were pointed out ab—n(t) at t along T is naturally given by &7(t)

ready in the 1930§12,13, but it was not until the work by — argW (1) W (t+ 5t)>~—i<\1f(t)|\i’(t)>5t we may define

Bell [14] that entanglement became an experimental issu . : ; LY .
Especially the recent development of parametric down%he geometric phase associated with the projective Hilbert

conversion techniques as a convenient tool for creating cospace imagé’ of I' by removing the accumulation of these

related multiphoton states, has made many of the curioudynamical phases from the total phase, i.e.,

implications of entanglement available in the laborat@se,

e.g., Ref[15] for a review. Today we know that the impor- _ . :

tagce of entanglement may extgnd to information theSretical Poll]=argW(0)[W(m)+i fo dwOI¥m). @

applications such as quantum cryptogragh], quantum

teleportation[17,18), and fast quantum computati¢h9] (a The geometric phas®[I'] is real-valued, reparametri-
zation invariant, and projective geometfis,6]. It depends
only on the curvd” in the projective Hilbert space. It can be

*Electronic address: eriks@kvac.uu.se demonstrated thab[I'] reduces to the Aharonov-Anandan
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formula [3] for cyclic evolutions and to the expressions in two particles Schmidt decompositions of this type generally
Refs.[2,8] for adiabatic states. do not exisf31]. In fact special conditions for the existence
As an example consider a spjnprecessing in a time- of Schmidt decompositions in tripartif82] and multipartite
independent uniform magnetic field pointing in thelirec- [33] pure states have been found recently. The “angleih
tion. Assuming that the initial spin state(0)) makes an Eq. (4) determines the degree of entanglement in the state
angle # with the z axis the state at any later time is given by [34]: =0 or a= 7 correspond to product states and maxi-
mal entanglement is obtained far=#/2. In analogy with
the Poincaresphere interpretation of a single sgin£q. (4)
suggests thatr and 8 parametrize a two-sphere, which we
) o _ shall call the “Schmidt sphere.” A poin¢é on the Schmidt
Here o(t) = ¢(0) + wt, where¢(0) is the initial angle with  gphere is given b= (sinacosg,sinasin 8,cosa), so that
to the magnetic field strength. The curlVein the projective  (_gg)=0. The projective Hilbert space for the spin-pair is
Hilbert space is isomorphic to the curv€,:te[0,7]  the three-dimensional complex projective space® ¢35).
—n(t)=[sindcose(t),sind sing(t),cosd] on the Poincare Existence of Schmidt decompositions of the form E4).
sphere with antipodal points corresponding to orthogonapakes it possible to represent points in*GRiquely by the
states, i.e.{—n|n)=0. Inserting Eq.(2) into Eq. (1) we  yectors f,m,e).
obtain the noncyclic geometric phase acquired during the

. 0 . 0
In(t)y=e ¢V cos;|+2)+ e"P(t)’zsinE -2). (2

evolution as(see, e.g., Ref.28]) B. Spin precession
0T\ T Consider two noninteracting entangled spirparticles
Pg[Crl= —arctar( cothanT + 70059 that undergo spin precession in an external time-independent
uniform magnetic field in the direction. The Hamiltonian
1 g—c operator is
=-50[C8 ), 3
H=w1S,+ 0,5, )

g-cq .
G0 tnat consists ok, and the shortest geotesic on the Nere@s andws are the Larmor frequencies, as, and

n. -, n : S, are the correspondirggcomponents of the spin operators
Poincaresphere connecting the end poim0) andn(7)#  aqgociated with the two particles. Thus the time evolution
—n(0). Note that for a given curv€,, ®g[C,] isindepen-  gnerator takes a product form, which implies that the

dent of the strength of the Hamiltonian as it depends on the.pmidt parameterse and 8 are constant and the state
precession angle r, but not onw itself. evolves according to

Ill. GEOMETRIC PHASE FOR ENTANGLED SU (2)

STATES |‘I’(0)>:efiﬁlzcosgln(o)hlm(o))z

A. Description of entanglement

According to Schmidt’s theoref29,3( the state of any
spin-4 pair (or indeed any pair of two-state systemsay be
decomposed as

+e25in2 [—n(0)),] ~m(0)),

—|W(t))=e P2 cosg|n(t)>1| m(t)),
|w)y=e"'F? COS%|”)1|'"”>27L Gl sin%| —n)g|—m)y,
(4)

n and m being two points on the Poincasphere and the with |+n(t)) and|=m(t)) given by Eq.(2). The geometric
subscripts denote spin 1 and 2, respectively. With more thaphase for this state reads

+eiﬁ/2sing|—n(t)>1|_m(t)>2 (6)

cosa[ cosf tan w4 7/2) +cosb, tan w,7/2) |
1—(c0sh,c0s6,+ sina cosB sin 64Sin 6,)tan w4 7/2)tan w,7/2)

w1 T Wy T
+cosa| ——co0s6f,+ ——cosb, |,

2 2
@)

O [T]= —arctafé

|
whereT is the path in the projective Hilbert space EFhe  caresphere pertaining to the two spins. In the general case
guantities @,,w,7) and (0,,w,7) are the spherical polar the geometric phase and the four spin paths,, C_,,
angles ofn andm, respectively. They parametrize the Poin- C.,, andC_, on the Poincarsphere with the concomitant
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solid angles are unrelated@[I'] depends nontrivially on second particle still may influence the two-particle geometric
the constant relative phagein the Schmidt decomposition, phase through entanglement. The state now evolves accord-
i.e., the geometric phase may be different for distinct stategg to
that have the same degree of entanglement and follow the
same one-particle path€., and C.,. The dynamical
phase for each spin is reduced by the entanglement and they
add separately t@g[I'] as the spins do not interact. Thus
the inseparability ofb[I'] in Eq. (7) can entirely be traced iB12 cinX|_ _
back t% they insGeparabiIi'g/ of the tgtal phase +e’ sm2| n(0))2]=m(0)).
arg( (0)|W(7)).

For vanishing entanglement with the state at the north
(a=0) or south @=1) pole of the Schmidt sphere, we
have

[W(0)) = e #2cos3 |n(0))1|m(0)),

—[W(t)=e"#Zcosz |n(t)):/m(0)),

) L«
cosétan w 7/2) + cosé, tan w,7/2) +e'3’25|n§|—n(t))ll—m(0)>2. (10
1—cosf, cosb, tan w4 7/2)tan w,7/2)

O[T]=%F arctar(
The geometric phase for this state can be found by inserting

w1 T wHoT = i i i
" TlcosalJrTzcosaz w,=0 into Eq.(7) yielding
w17
=Qg[Cap]+P[Cinnl, (8) ®[I']= —arctan cosa cosaltanT
where we have used the identity ardi@ty)/(1—xy)] w07
=arctarnx+arctany and the fact that-®[C,,]=Ds[C_,]. +——C0Ssa c0sb, (11

As expected the two-particle geometric phase for product 2

sta.tes may be analyzeq in te.f”?s of the geodesica_lly C!Os%hich differs from the one-particle geometric phasg[ C,,]
solid angle for each spin. This is true for any multlpar'uclein Sec. Il, except for vanishing entanglement. This effect is

system: the geo.metric phase fqr any product state equals t %rhaps most striking when the spin basis of the affected
sum of geometric phases acquired by each subsystem. Equgs;,, i, the Schmidt decomposition is parallehtiparalle] to

tion (8) implies that the geometric phase for two identical the magnetic field, i.e.,=0 (6,=). In this case we ob-
particles being prepared in the same spin polarization state,. P ! '
is doubled compared to that of the one-particle case, while

for opposite polarization the geometric phase vanishes. w0 7| @7

These effects were predicted by KlyshkZb] and observed O I']= Iarctaré CoSa tanT) tTCOSa, (12
in a two-photon experiment by Brendet al. [23] in the

special case of cyclic evolution along geodesic segments on . _
the Poincaresphere. where the upper(lower) sign corresponds t@,;=0 (6,

In the case of maximal spin entanglemeat= /2 = ). By comparing this result with E¢3) we see thak

corresponding to states lying on the equator of theformally plays the role of the constant polar angle of the

Schmidt sphere, the dynamical phase vanishes an%ff?rﬁsdtivpci?.article cometric phase in Eqll) ma
(W(0)|W¥(7))=cos,7/2) cos,72)— (c0SH; COSh,+CoSpB P 9 P Y

) . . ; . be interpreted in terms of the improper mixtur(1l
t>r<1:tn 6ysin y)sin(w,72)sin(w,72) is real valued. It follows "\ ” o,) obtained by tracing over the unaffected sys-

tem. This interpretation make®[I'] equivalent(up to a
0 if (¥(0)|W(7))>0, sign to the one-particle phase ®g[C,;P]=
) . —arctafP cosftan(w/2)]+ (w7/2)P cosf [28] with the
®g[I']= | undefined if (W(0)|¥(7))=0, (9 degree of polarizatiorP and the degree of entanglement
o if (¥(0)|¥(7))<O0. |cosal identified. However, it should be kept in mind that
®[I'] in Eq. (12) differs conceptually from the correspond-
This result is reminiscent of the sign-change property of théng one-particle phasés[C,,;P] as the former cannot be
geometric phase for real-valued wave functip8l such as tested on one of the particles alone; it pertains to the whole
in the molecular Aharonov-Bohm effef37]. In Eq. (9) we  system and must therefore be observed in coincidence.
see that the dependence®§[I"] on the one-particle quan- Kwiat and Chiao[21] and Graysoret al. [22] observed
tities 61,6, ,w,7,0,7 is indirect asPs[I'] depends only on the geometric phase using two-photon coincidence technique
the sign of( ¥ (0)|¥(7)). Note that as the dynamical phase by letting one of the photons make a geodesic cycle on the
vanishes the geometric and total phases are identical. ThRoincaresphere. The observed phase in these experiments
makes it possible to tede[I'] directly in the case of maxi- corresponds to the cyclic case of E4l) for disentangled
mal spin entanglement by observing the total pHa836]. polarizations ¢=0).
Suppose now that only one of the particlgls say is The nonclassical dependence of the geometric phase on
affected by the external magnetic field. We shall see that théhe exact fixed location on the Schmidt sphere could be
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checked nonlocally as the spins do not interact and entangléer N=2K + 1, K again being a positive integer. Hereis a
ment may persist over large spatial distances. This propertyath in the Schmidt subspace of the full projective Hilbert
may be used to obtain an adiabatic geometric phase of thehace cP' ! of the N-particle system. Vanishing entangle-
entangled spin pair. The idea is to use the fact that Schmidhent yields

decompositions of spin pairs single out two spin directions

andm that each can be transported locally by two spatially T N

separated slowly varying magnetic fields: spin 1 is located in ~ ®a[T']=*arg{* >, 71005912 > P[Cun]

a spatial region with a magnetic fieRl = B;n and spin 2 in =1 =1 18)

a spatial region wher®,=B,m. By slowly changing the

magnetic field pair, the spin basgsn) and|+m) follow  that naturally generalizes E¢8). The geometric phase for
adiabatically. Keeping the angles Bf andB, with respect maximal entanglement is given by E@9), where now
to thez axis fixed, the general expressi6# still holds and (W(0)|W(7))=Rel+(—1)"ycosp for even N and
the geometric phase becomes an entanglement dependglqt(o)|q/(7-)>:Re§+(_1)K+lySinB for odd N. In the
function of the path taken by the directions of the magneticcase where one of the particles 6ay does not interact with

field pair (B;,B) that are localized at two spatially sepa- the external magnetic field, it follows that=0 and the geo-
rated regions. In this way the geometric phase can be cofnetric phase reads

trolled as an arbitrary path of the spin pair could be gener-
ated. d[I']=arctaricosa arctafarg{])
We end this section by a brief outline of the generaliza-

N—1
tion to spin precession in a time-independent uniform mag- T _
netic field for more than two noninteracting spinparticles +cosa ,Zl 2 cosf; (19
in an entangled Schmidt state. Withspins such a state may
be written as Thus the noninteracting particle influences the geometric

phase through entanglement. In the case where the entangle-
ment vanishes the geometric phase reduces tq18j. This
expresses the fact that states in which entanglement may per-
(13) sist for the remainindN— 1 particles cannot be reached by
Schmidt states of the form E¢L3). States of the former type
The evolution of this state is described by the set of maprequire a different treatment beyond that of the Schmidt
pings{n;(0)}—{n;(7)} on the Poincarsphere. Introducing analysis in this work.
the spin angle$6;} with respect to the magnetic field in the
z direction and the Larmor frequenci¢e;}, it is useful to C. Spin-spin interaction
introduce the entanglement independent quantities

N N
a . Lo
[¥)=cos, e'#"? Jl:[l [nj) +sin €A ,-Hl [=ny)-

In this section we consider a clos@dolated quantal sys-

T Y tem consisting of two spig-particles with a spin-spin inter-
J : . J . . . .
(= H c057—| coso, smT (14 action described by the Hamiltonian operator
j=1
H=(2\1)S,-S,, (20)
and

N whereS,; andS, are the spin operators pertaining to the spin
. W57 pair and\ is the strength of the interaction. This model is of

= P Sin——. 1 . . . . .
Y J-Hl sind; sin 2 (15 particular interest for the implementation of the geometric

. . o phase in qguantum computation using nuclear magnetic reso-
The geometric phase for the evolving multiparticle state benance techniqué3s]. In a physically realistic situation

comes decreases with the spatial distance between the two particles,
thus making the results of the analysis below only locally
D[I']=arcta cosa Im{ testable. The coupled spin dynamics is straightforwardly cal-
G Rel+(—1)Xysina cosp culated by transforming to the singlet and triplet states

x |S,M). It can be seen that all nonstationary spin states are

o cyclic with cyclic time 7= m/\.
+ c03a21 — 0S¥, (16) The degree of entanglement may change due to the inter-
= action between the two spins; a product state may evolve
for N=2K, K being a positive integer, and into an entangled state and vice versa and it is impossible to
make one of the subsystems evolve but not the other. For the

cosa Im¢ same reason the relative phase in the Schmidt decomposition
d[]=arcta TR - ) may change. To stress this mobility on the Schmidt sphere in
Re{+(—1)"""ysinasing the context of the geometric phase, it is convenient to con-
2K+1 sider a superposition of the type
+cosa S, L cose, (17)
=1 2 ! |W(0))=cogal2)|1,0)+sin(a/2)|0,0). (21
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The spin-spin interaction generates the time evolution z

cos@/2)—e M2cos@?2) and sing/2)—e'*M?sin@/2),
from which we obtain

1
|‘1’(t)>:E

+

—int cos; +e'M sin= )|+>1| Y2

(22

a
e IM cosi—e'M sin= )|—>1|+)2

up to an unimportant overall phase. The basis states ,
(expressed along say) in Eq. (22) are time independent and
the geometric phase originates purely from the evolution on x |
the Schmidt sphere. To see this explicitly we introduce the :C
time-dependent Schmidt parametersand 8 by rewriting e
Eqg. (22) on the symmetric form

FIG. 1. CurveC, on the Schmidt sphere. In the cyclic case this
curve defines a cone with opening angland enclosed solid angle

¥ (1) = e_'ﬁ(t)’zcos |+>1| 2m(1-cosa).
B2 a(t) By including the triplet state$l,+1), the one-particle
e sin 2 [ =)l +)2 (23 bases in the Schmidt decomposition become time dependent.

For such cases the state follows a path irf @t can nei-
again ignoring an overall phase. The Schmidt parameters atber be projected solely onto the Poincaa solely onto the

given by cosx(t)=sinacosAat and targB(t)= Schmidt sphere, which therefore both lose their role in the
—tanasin 2\t. The image curvd® in the projective Hilbert interpretation of the two-particle geometric phase.
space is isomorphic to the curv&€.:te[0,7]—¢€(t) The solid angle interpretation of the geometric phase as

=[sina(t)cosp(t),sina(t)sin B(t),cosa(t)] on the Schmidt given by Eqs(24) and(25) constitutes the main result of this

sphere. Inserting Eq23) into Eq. (1) we obtain the noncyc- section. It shows the significance of the Schmidt sphere and

lic two-particle geometric phase acquired during the evoluprovides a clear demonstration of the importance of the

tion as evolving entanglement for the geometric phase in closed
quantal systems with interacting parts.

cog[a(7)+a(0)]/2) B(T)
Dol Cel =~ Cta'ﬁ cod[a(n) —a(0)]/2) @ 2
ﬁ( ) IV. CONCLUSIONS
o dt——cosa(t) The influence of entanglement on the noncyclic two-

particle geometric phase has been studied for two different

1 e spin4 models. The geometric phase for noninteracting spin-
=-50[ce e, @ T ari ng | ime-i

2 e 5 particles precessing in an external time-independent mag-

netic field and prepared in an entangled Schmidt state has
where @(0)=n/2—a and Q[CJ ] is the solid angle en- been shown to exhibit a rich entanglement dependence. An
closed by the curv€?™© that consists o€, and the shortest experimental technique that could prepare arbitrarily en-
geodesic on the Schmidt sphere connecting the end pointgngled polarization states has been developed rede@gly
e(0) and e(7)# —€(0). In the cyclic case the geometric This opens up the possibility to test the full entanglement
phase reduces to dependence of the two-particle phase in the laboratory using
photons that undergo local $2) operationg27]. We have
found a class of states where the geometric phase in a spin-
spin interaction model can be interpreted solely in terms of
the solid angle enclosed by the curve on the two-sphere pa-
where nowf)[ C,] is the solid angle enclosed by the loGp  rametrized by the evolving Schmidt coefficients. This sug-
on the Schmidt sphere. The value ®[I'] may be found gests a geometric interpretation of Schmidt decompositions
by insertinga and B into the expression for the pafi,  for spin3 pairs analogous to that of the Poincaghere for
yielding Ceo:te[0,7]—€(t) =(cosa,—sinasin 2it, a single spin.
sinacos At). The curveC, is shown in Fig. 1. It follows The present analysis could be extended to cases involving
immediately that the geometric phase is three or more S(2) particles where Schmidt decompositions
—arctan(cositani 7) + A 7 cosa, which in the cyclic casere- do not exist as well as to subsystems with higher-
duces to— 7(1— cosa). dimensional Hilbert spaces. For more than two particles gen-

1 1
Pg[Cl=— > ﬁc dB(1—cosa)=— EQ[CE], (25
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