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Geometric phase for entangled spin pairs
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~Received 19 November 1999; published 17 July 2000!

The entanglement dependence of the noncyclic geometric phase is analyzed. A pair of noninteracting spin-
1
2 particles prepared in an arbitrarily entangled state and precessing in an external time-independent uniform
magnetic field is considered. It is shown that the geometric phase reduces to a sum of one-particle geometric
phases for product states and takes on the two values corresponding to the phase factors61 for maximally
entangled states. If only one of the particles is affected by the magnetic field it is demonstrated that the
influence of entanglement on the geometric phase may be interpreted as an effective reduction of the degree of
polarization of the affected particle. The generalization to more than two precessing spin-1

2 particles, in the
particular case where Schmidt decompositions exists, is briefly outlined. The geometric phase for a pair of
spin-12 particles with a spin-spin interaction is calculated. In this model we show that the noncyclic geometric
phase for a certain class of states may be interpreted solely in terms of the solid angle enclosed by the
geodesically closed curve on a two-sphere parametrized by the evolving Schmidt coefficients. This suggests a
geometric interpretation of Schmidt decompositions for spin-1

2 pairs analogous to that of the Poincare´ sphere
for a single spin1

2 .

PACS number~s!: 03.65.Bz
a
t
b

tic
t 1
-
et
w
n
n

de
o
ur
a
th

dy

he
e
t

u
n

co
io

-
ic

ef.

pen-

ntext
r
yze
for

orm
ter-

ch

nge

ert

e

-

e
n

I. INTRODUCTION

The concept of geometric phase, first introduced by P
charatnam@1# in his study of interference between ligh
waves in distinct states of polarization and rediscovered
Berry @2# for quantal systems undergoing cyclic adiaba
evolution, has been refined and applied during the pas
years. Aharonov and Anandan@3# removed the need of adia
batic external parameters and pointed out that the geom
phase could be considered the anholonomy associated
the curvature of the projective Hilbert space. Samuel a
Bhandari@4# extended the geometric phase to noncyclic a
nonunitary evolutions by making use of the notion of geo
sic closure in the projective Hilbert space. Subsequent w
@5–8# were to show the redundancy of the geodesic clos
making the noncyclic geometric phase easier to calculate
conceptually more accessible. Recent applications of
noncyclic geometric phase can be found in molecular
namics @9#, linear response theory@10#, and the theory of
wave packet revivals@11#.

Another important development having its roots in t
quantal formalism is that of entanglement. Several conc
tual consequences of this phenomenon were pointed ou
ready in the 1930s@12,13#, but it was not until the work by
Bell @14# that entanglement became an experimental iss
Especially the recent development of parametric dow
conversion techniques as a convenient tool for creating
related multiphoton states, has made many of the cur
implications of entanglement available in the laboratory~see,
e.g., Ref.@15# for a review!. Today we know that the impor
tance of entanglement may extend to information theoret
applications such as quantum cryptography@16#, quantum
teleportation@17,18#, and fast quantum computation@19# ~a
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recent review of these achievements can be found in R
@20#!.

In the present paper we analyze the entanglement de
dence of the geometric phase in the case of SU~2! ~spin!
subsystems. Such an analysis seems pertinent in the co
of the recent efforts@21–27# concerning phase effects fo
entangled states in two-photon interferometry. We anal
the noncyclic nonadiabatic two-particle geometric phase
two model systems both involving entangled spin-1

2 par-
ticles. In the first case noninteracting spin-1

2 prepared in an
arbitrarily entangled Schmidt state undergo local SU~2! op-
erations caused by an external time-independent unif
magnetic field. The second case concerns a spin-spin in
action model.

II. NONCYCLIC GEOMETRIC PHASE

In this section we review briefly the kinematic approa
to the noncyclic geometric phase for unitary evolutions@6#.

Consider the Hilbert space trajectoryG̃:tP@0,t#→uC(t)&
with C(t) normalized and the ‘‘end points’’C(0) andC(t)
nonorthogonal. By noting that the dynamical phase cha

dh(t) at t along G̃ is naturally given by dh(t)

5arĝ C(t)uC(t1dt)&'2 i ^C(t)uĊ(t)&dt, we may define
the geometric phase associated with the projective Hilb

space imageG of G̃ by removing the accumulation of thes
dynamical phases from the total phase, i.e.,

FG@G#5arĝ C~0!uC~t!&1 i E
0

t

dt^C~ t !uĊ~ t !&. ~1!

The geometric phaseFG@G# is real-valued, reparametri
zation invariant, and projective geometric@5,6#. It depends
only on the curveG in the projective Hilbert space. It can b
demonstrated thatFG@G# reduces to the Aharonov-Ananda
©2000 The American Physical Society09-1
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formula @3# for cyclic evolutions and to the expressions
Refs.@2,8# for adiabatic states.

As an example consider a spin-1
2 precessing in a time

independent uniform magnetic field pointing in thez direc-
tion. Assuming that the initial spin stateun(0)& makes an
angleu with thez axis the state at any later time is given b

un~ t !&5e2 iw(t)/2 cos
u

2
u1z&1eiw(t)/2 sin

u

2
u2z&. ~2!

Herew(t)5w(0)1vt, wherew(0) is the initial angle with
the x axis andv is the Larmor frequency being proportion
to the magnetic field strength. The curveG in the projective
Hilbert space is isomorphic to the curveCn :tP@0,t#
→n(t)5@sinu cosw(t),sinu sinw(t),cosu# on the Poincare´
sphere with antipodal points corresponding to orthogo
states, i.e.,̂ 2nun&50. Inserting Eq.~2! into Eq. ~1! we
obtain the noncyclic geometric phase acquired during
evolution as~see, e.g., Ref.@28#!

FG@Cn#52arctanS cosu tan
vt

2 D1
vt

2
cosu

52
1

2
V@Cn

g2c#, ~3!

where V@Cn
g2c# is the solid angle enclosed by the cur

Cn
g2c that consists ofCn and the shortest geodesic on t

Poincare´ sphere connecting the end pointsn(0) andn(t)Þ
2n(0). Note that for a given curveCn , FG@Cn# is indepen-
dent of the strength of the Hamiltonian as it depends on
precession anglevt, but not onv itself.

III. GEOMETRIC PHASE FOR ENTANGLED SU „2…
STATES

A. Description of entanglement

According to Schmidt’s theorem@29,30# the state of any
spin-12 pair ~or indeed any pair of two-state systems! may be
decomposed as

uC&5e2 ib/2 cos
a

2
un&1um&21eib/2 sin

a

2
u2n&1u2m&2 ,

~4!

n and m being two points on the Poincare´ sphere and the
subscripts denote spin 1 and 2, respectively. With more t
r
n-

02210
l
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two particles Schmidt decompositions of this type genera
do not exist@31#. In fact special conditions for the existenc
of Schmidt decompositions in tripartite@32# and multipartite
@33# pure states have been found recently. The ‘‘angle’’a in
Eq. ~4! determines the degree of entanglement in the s
@34#: a50 or a5p correspond to product states and ma
mal entanglement is obtained fora5p/2. In analogy with
the Poincare´ sphere interpretation of a single spin-1

2 , Eq. ~4!
suggests thata and b parametrize a two-sphere, which w
shall call the ‘‘Schmidt sphere.’’ A pointe on the Schmidt
sphere is given bye5(sina cosb,sina sinb,cosa), so that
antipodal points correspond to orthogonal states,
^2eue&50. The projective Hilbert space for the spin-pair
the three-dimensional complex projective space CP3 @35#.
Existence of Schmidt decompositions of the form Eq.~4!
makes it possible to represent points in CP3 uniquely by the
vectors (n,m,e).

B. Spin precession

Consider two noninteracting entangled spin-1
2 particles

that undergo spin precession in an external time-indepen
uniform magnetic field in thez direction. The Hamiltonian
operator is

H5v1S1,z1v2S2,z , ~5!

wherev1 and v2 are the Larmor frequencies, andS1,z and
S2,z are the correspondingz components of the spin operato
associated with the two particles. Thus the time evolut
operator takes a product form, which implies that t
Schmidt parametersa and b are constant and the sta
evolves according to

uC~0!&5e2 ib/2 cos
a

2
un~0!&1um~0!&2

1eib/2 sin
a

2
u2n~0!&1u2m~0!&2

→uC~ t !&5e2 ib/2 cos
a

2
un~ t !&1um~ t !&2

1eib/2 sin
a

2
u2n~ t !&1u2m~ t !&2 ~6!

with u6n(t)& and u6m(t)& given by Eq.~2!. The geometric
phase for this state reads
FG@G#52arctanS cosa@cosu1tan~v1t/2!1cosu2 tan~v2t/2!#

12~cosu1cosu21sina cosb sinu1sinu2!tan~v1t/2!tan~v2t/2! D1cosaS v1t

2
cosu11

v2t

2
cosu2D ,

~7!
ase

t

whereG is the path in the projective Hilbert space CP3. The
quantities (u1 ,v1t) and (u2 ,v2t) are the spherical pola
angles ofn andm, respectively. They parametrize the Poi
carésphere pertaining to the two spins. In the general c
the geometric phase and the four spin pathsC1n , C2n ,
C1m , andC2m on the Poincare´ sphere with the concomitan
9-2
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GEOMETRIC PHASE FOR ENTANGLED SPIN PAIRS PHYSICAL REVIEW A62 022109
solid angles are unrelated.FG@G# depends nontrivially on
the constant relative phaseb in the Schmidt decomposition
i.e., the geometric phase may be different for distinct sta
that have the same degree of entanglement and follow
same one-particle pathsC6n and C6m . The dynamical
phase for each spin is reduced by the entanglement and
add separately toFG@G# as the spins do not interact. Thu
the inseparability ofFG@G# in Eq. ~7! can entirely be traced
back to the inseparability of the total pha
arĝ C(0)uC(t)&.

For vanishing entanglement with the state at the no
(a50) or south (a5p) pole of the Schmidt sphere, w
have

FG@G#57arctanS cosu1tan~v1t/2!1cosu2 tan~v2t/2!

12cosu1 cosu2 tan~v1t/2!tan~v2t/2! D
6S v1t

2
cosu11

v2t

2
cosu2D

5FG@C6n#1FG@C6m#, ~8!

where we have used the identity arctan@(x1y)/(12xy)#
5arctanx1arctany and the fact that2FG@Cn#5FG@C2n#.
As expected the two-particle geometric phase for prod
states may be analyzed in terms of the geodesically clo
solid angle for each spin. This is true for any multipartic
system: the geometric phase for any product state equal
sum of geometric phases acquired by each subsystem. E
tion ~8! implies that the geometric phase for two identic
particles being prepared in the same spin polarization s
is doubled compared to that of the one-particle case, w
for opposite polarization the geometric phase vanish
These effects were predicted by Klyshko@25# and observed
in a two-photon experiment by Brendelet al. @23# in the
special case of cyclic evolution along geodesic segment
the Poincare´ sphere.

In the case of maximal spin entanglementa5p/2,
corresponding to states lying on the equator of
Schmidt sphere, the dynamical phase vanishes
^C(0)uC(t)&5cos(v1t/2)cos(v2t/2)2(cosu1 cosu21cosb
3sinu1 sinu2)sin(v1t/2)sin(v2t/2) is real valued. It follows
that

FG@G#5H 0 if ^C~0!uC~t!&.0,

undefined if ^C~0!uC~t!&50,

p if ^C~0!uC~t!&,0.

~9!

This result is reminiscent of the sign-change property of
geometric phase for real-valued wave functions@8#, such as
in the molecular Aharonov-Bohm effect@37#. In Eq. ~9! we
see that the dependence ofFG@G# on the one-particle quan
tities u1 ,u2 ,v1t,v2t is indirect asFG@G# depends only on
the sign of^C(0)uC(t)&. Note that as the dynamical phas
vanishes the geometric and total phases are identical.
makes it possible to testFG@G# directly in the case of maxi-
mal spin entanglement by observing the total phase@28,36#.

Suppose now that only one of the particles~1 say! is
affected by the external magnetic field. We shall see that
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second particle still may influence the two-particle geome
phase through entanglement. The state now evolves acc
ing to

uC~0!&5e2 ib/2 cos
a

2
un~0!&1um~0!&2

1eib/2 sin
a

2
u2n~0!&1u2m~0!&2

→uC~ t !&5e2 ib/2 cos
a

2
un~ t !&1um~0!&2

1eib/2 sin
a

2
u2n~ t !&1u2m~0!&2 . ~10!

The geometric phase for this state can be found by inser
v250 into Eq.~7! yielding

FG@G#52arctanS cosa cosu1tan
v1t

2 D
1

v1t

2
cosa cosu1 , ~11!

which differs from the one-particle geometric phaseFG@Cn#
in Sec. II, except for vanishing entanglement. This effec
perhaps most striking when the spin basis of the affec
spin in the Schmidt decomposition is parallel~antiparallel! to
the magnetic field, i.e.,u150 (u15p). In this case we ob-
tain

FG@G#57arctanS cosa tan
v1t

2 D6
v1t

2
cosa, ~12!

where the upper~lower! sign corresponds tou150 (u1
5p). By comparing this result with Eq.~3! we see thata
formally plays the role of the constant polar angle of t
affected spin.

The two-particle geometric phase in Eq.~11! may
be interpreted in terms of the improper mixture12 (1
1cosa n•s1) obtained by tracing over the unaffected sy
tem. This interpretation makesFG@G# equivalent~up to a
sign! to the one-particle phase FG@Cn ;P#5
2arctan@Pcosu tan(vt/2)#1(vt/2)P cosu @28# with the
degree of polarizationP and the degree of entangleme
ucosau identified. However, it should be kept in mind th
FG@G# in Eq. ~11! differs conceptually from the correspond
ing one-particle phaseFG@Cn ;P# as the former cannot be
tested on one of the particles alone; it pertains to the wh
system and must therefore be observed in coincidence.

Kwiat and Chiao@21# and Graysonet al. @22# observed
the geometric phase using two-photon coincidence techn
by letting one of the photons make a geodesic cycle on
Poincare´ sphere. The observed phase in these experim
corresponds to the cyclic case of Eq.~11! for disentangled
polarizations (a50).

The nonclassical dependence of the geometric phase
the exact fixed location on the Schmidt sphere could
9-3



g
er
t
i

s
ll
i

nd
ti

a-
o
e

a
ag

y

ap

e

be

ert
-

r

tric
ngle-

per-
y

idt

-

in
of
ric
eso-

cles,
lly
al-

tes
are

ter-
lve

e to
the

ition
e in
on-

ERIK SJÖQVIST PHYSICAL REVIEW A 62 022109
checked nonlocally as the spins do not interact and entan
ment may persist over large spatial distances. This prop
may be used to obtain an adiabatic geometric phase of
entangled spin pair. The idea is to use the fact that Schm
decompositions of spin pairs single out two spin directionn
andm that each can be transported locally by two spatia
separated slowly varying magnetic fields: spin 1 is located
a spatial region with a magnetic fieldB15B1n and spin 2 in
a spatial region whereB25B2m. By slowly changing the
magnetic field pair, the spin basesu6n& and u6m& follow
adiabatically. Keeping the angles ofB1 andB2 with respect
to thez axis fixed, the general expression~7! still holds and
the geometric phase becomes an entanglement depe
function of the path taken by the directions of the magne
field pair (B1 ,B2) that are localized at two spatially sep
rated regions. In this way the geometric phase can be c
trolled as an arbitrary path of the spin pair could be gen
ated.

We end this section by a brief outline of the generaliz
tion to spin precession in a time-independent uniform m
netic field for more than two noninteracting spin-1

2 particles
in an entangled Schmidt state. WithN spins such a state ma
be written as

uC&5cos
a

2
e2 ib/2 )

j 51

N

unj&1sin
a

2
eib/2 )

j 51

N

u2nj&.

~13!

The evolution of this state is described by the set of m
pings$nj (0)%→$nj (t)% on the Poincare´ sphere. Introducing
the spin angles$u j% with respect to the magnetic field in th
z direction and the Larmor frequencies$v j%, it is useful to
introduce the entanglement independent quantities

z5)
j 51

N S cos
v jt

2
2 i cosu j sin

v jt

2 D ~14!

and

g5)
j 51

N

sinu j sin
v jt

2
. ~15!

The geometric phase for the evolving multiparticle state
comes

FG@G#5arctanS cosa Im z

Rez1~21!Kg sina cosb
D

1cosa(
j 51

2K
v jt

2
cosu j ~16!

for N52K, K being a positive integer, and

FG@G#5arctanS cosa Im z

Rez1~21!K11g sina sinb
D

1cosa (
j 51

2K11
v jt

2
cosu j ~17!
02210
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for N52K11, K again being a positive integer. HereG is a
path in the Schmidt subspace of the full projective Hilb
space CP2

N21 of the N-particle system. Vanishing entangle
ment yields

FG@G#56argz6(
j 51

N
v jt

2
cosu j5(

j 51

N

FG@C6nj
#

~18!

that naturally generalizes Eq.~8!. The geometric phase fo
maximal entanglement is given by Eq.~9!, where now
^C(0)uC(t)&5Rez1(21)Kg cosb for even N and
^C(0)uC(t)&5Rez1(21)K11g sinb for odd N. In the
case where one of the particles (N say! does not interact with
the external magnetic field, it follows thatg50 and the geo-
metric phase reads

FG@G#5arctan~cosa arctan@argz#!

1cosa (
j 51

N21
v jt

2
cosu j . ~19!

Thus the noninteracting particle influences the geome
phase through entanglement. In the case where the enta
ment vanishes the geometric phase reduces to Eq.~18!. This
expresses the fact that states in which entanglement may
sist for the remainingN21 particles cannot be reached b
Schmidt states of the form Eq.~13!. States of the former type
require a different treatment beyond that of the Schm
analysis in this work.

C. Spin-spin interaction

In this section we consider a closed~isolated! quantal sys-
tem consisting of two spin-1

2 particles with a spin-spin inter
action described by the Hamiltonian operator

H5~2l/\!S1•S2 , ~20!

whereS1 andS2 are the spin operators pertaining to the sp
pair andl is the strength of the interaction. This model is
particular interest for the implementation of the geomet
phase in quantum computation using nuclear magnetic r
nance technique@38#. In a physically realistic situationl
decreases with the spatial distance between the two parti
thus making the results of the analysis below only loca
testable. The coupled spin dynamics is straightforwardly c
culated by transforming to the singlet and triplet sta
uS,M &. It can be seen that all nonstationary spin states
cyclic with cyclic timetc5p/l.

The degree of entanglement may change due to the in
action between the two spins; a product state may evo
into an entangled state and vice versa and it is impossibl
make one of the subsystems evolve but not the other. For
same reason the relative phase in the Schmidt decompos
may change. To stress this mobility on the Schmidt spher
the context of the geometric phase, it is convenient to c
sider a superposition of the type

uC~0!&5cos~a/2!u1,0&1sin~a/2!u0,0&. ~21!
9-4
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GEOMETRIC PHASE FOR ENTANGLED SPIN PAIRS PHYSICAL REVIEW A62 022109
The spin-spin interaction generates the time evolut
cos(a/2)→e2 ilt/2 cos(a/2) and sin(a/2)→ei3lt/2 sin(a/2),
from which we obtain

uC~ t !&5
1

A2
F S e2 ilt cos

a

2
1eilt sin

a

2D u1&1u2&2

1S e2 ilt cos
a

2
2eilt sin

a

2D u2&1u1&2G ~22!

up to an unimportant overall phase. The basis statesu6&1,2
~expressed alongz, say! in Eq. ~22! are time independent an
the geometric phase originates purely from the evolution
the Schmidt sphere. To see this explicitly we introduce
time-dependent Schmidt parametersa and b by rewriting
Eq. ~22! on the symmetric form

uC~ t !&5e2 ib(t)/2 cos
a~ t !

2
u1&1u2&2

1eib(t)/2 sin
a~ t !

2
u2&1u1&2 ~23!

again ignoring an overall phase. The Schmidt parameters
given by cosa(t)5sinacos 2lt and tanb(t)5
2tana sin 2lt. The image curveG in the projective Hilbert
space is isomorphic to the curveCe:tP@0,t#→e(t)
5@sina(t)cosb(t),sina(t)sinb(t),cosa(t)# on the Schmidt
sphere. Inserting Eq.~23! into Eq. ~1! we obtain the noncyc-
lic two-particle geometric phase acquired during the evo
tion as

FG@Ce#52arctanS cos~@a~t!1a~0!#/2!

cos~@a~t!2a~0!#/2!
tan

b~t!

2 D
1E

0

t

dt
ḃ~ t !

2
cosa~ t !

52
1

2
V@Ce

g2c#, ~24!

where a(0)5p/22a and V@Ce
g2c# is the solid angle en-

closed by the curveCe
g2c that consists ofCe and the shortes

geodesic on the Schmidt sphere connecting the end po
e(0) and e(t)Þ2e(0). In the cyclic case the geometri
phase reduces to

FG@Ce#52
1

2 R
Ce

db~12cosa!52
1

2
V@Ce#, ~25!

where nowV@Ce# is the solid angle enclosed by the loopCe
on the Schmidt sphere. The value ofFG@G# may be found
by insertinga and b into the expression for the pathCe
yielding Ce:tP@0,t#→e(t)5(cosa,2sinasin 2lt,
sinacos 2lt). The curveCe is shown in Fig. 1. It follows
immediately that the geometric phase
2arctan(cosa tanlt)1lt cosa, which in the cyclic case re
duces to2p(12cosa).
02210
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By including the triplet statesu1,61&, the one-particle
bases in the Schmidt decomposition become time depend
For such cases the state follows a path in CP3 that can nei-
ther be projected solely onto the Poincare´ nor solely onto the
Schmidt sphere, which therefore both lose their role in
interpretation of the two-particle geometric phase.

The solid angle interpretation of the geometric phase
given by Eqs.~24! and~25! constitutes the main result of thi
section. It shows the significance of the Schmidt sphere
provides a clear demonstration of the importance of
evolving entanglement for the geometric phase in clo
quantal systems with interacting parts.

IV. CONCLUSIONS

The influence of entanglement on the noncyclic tw
particle geometric phase has been studied for two differ
spin-12 models. The geometric phase for noninteracting sp
1
2 particles precessing in an external time-independent m
netic field and prepared in an entangled Schmidt state
been shown to exhibit a rich entanglement dependence
experimental technique that could prepare arbitrarily
tangled polarization states has been developed recently@39#.
This opens up the possibility to test the full entanglem
dependence of the two-particle phase in the laboratory u
photons that undergo local SU~2! operations@27#. We have
found a class of states where the geometric phase in a s
spin interaction model can be interpreted solely in terms
the solid angle enclosed by the curve on the two-sphere
rametrized by the evolving Schmidt coefficients. This su
gests a geometric interpretation of Schmidt decompositi
for spin-12 pairs analogous to that of the Poincare´ sphere for
a single spin1

2 .
The present analysis could be extended to cases invol

three or more SU~2! particles where Schmidt decomposition
do not exist as well as to subsystems with high
dimensional Hilbert spaces. For more than two particles g

FIG. 1. CurveCe on the Schmidt sphere. In the cyclic case th
curve defines a cone with opening anglea and enclosed solid angle
2p(12cosa).
9-5
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ERIK SJÖQVIST PHYSICAL REVIEW A 62 022109
eral descriptions of entanglement, being applicable to
number of subsystems and not based on the Schmidt fo
are available@40#. It would be interesting to apply thes
ideas in the calculation of the geometric phase. In the cas
pairs of entangled higher-dimensional Hilbert spaces, i
clear that the Schmidt sphere has to be generalized, prec
as the Poincare´ sphere has to be generalized for high
dimensional single-particle Hilbert spaces@41–43#.
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