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In the conventional picture of quantum feedback control, sensors perform measurements on the system, a
classical controller processes the results of the measurements, and actuators supply semiclassical potentials to
alter the behavior of the quantum system. In this picture, the sensors tend to destroy coherence in the process
of making measurements, and although the controller can use the actuators to act coherently on the quantum
system, it is processing and feeding back classical information. This paper proposes an alternative method for
quantum feedback control, in which the sensors, controller, and actuators are quantum systems that interact
coherently with the system to be controlled. In this picture, the controller gets, processes, and feeds back
guantuminformation. Controllers that operate using such quantum feedback loops can perform tasks such as
entanglement transfer that are not possible using classical feedback. Necessary and sufficient conditions are
presented for Hamiltonian quantum systems to be controllable and observable using both classical and quan-
tum feedback.

PACS numbd(s): 03.65—w, 89.70:+c

I. INTRODUCTION formation about the system it is to control, processes that
information, and feeds the information back into the system
Quantum control theory has a long histdi~12. Ex-  to change its behavior in a desired way. In the conventional
periments in elementary particles, atoms, solid-state systemgicture of quantum feedback control, a feedback controller is
and optics involve the systematic measurement and manip@ classical system that processes classical information ob-
lation of quantum systems. Quantum control theory has confained by making measurements on the quantum system to
tributed significantly to the understanding of fundamental asbe controlled. In contrast, this paper proposes the idea of a
pects of quantum mechanics, including the quantum Zen@uantum controller, a device that obtaigsantuminforma-
effect [13,14], nondemolition measuremen{d5,16, and tion by interacting with the quantum system to be controlled,
stochastic quantizatiofi7]. Classical concepts of geometric Processes that information using quantum logic, and feeds
control provide a basis for many quantum res(it6—17.  the information coherently back into the system. As will be
For example, the field of nuclear magnetic resonance i§hown, a controller that processes quantum information can
largely concerned with the geometric control of collectionsPerform tasks that a controller that processes classical infor-
of interacting nuclear spingl8—20. Particularly significant Mmation cannot. This paper analyzes the operation of such
are experimental applications of optimal control theory toguantum controllers, proposes applications, and presents
quantum systems using NMR and optical techniqédsAs  simple, experimentally accessible examples.
quantum technologies have matuféd, a host of practical The analysis will proceed as follows: Experimental ex-
applications of quantum control have been realized in moamples of various types of quantum control will be taken
lecular dynamicg6], quantum optic§7,21-24, and quan- from quantum optics, atomic physics, and nuclear magnetic
tum computatiorf21,22,25—28 Efforts to protect quantum resonance. Then general theoretical results will be derived
information from noise and decohererf@®—31 have led to  that apply to all quantum systems. Proofs of the theoretical
proposals for quantum error correctip8l] and entangle- results will be presented in the Appendix so as not to disrupt
ment purification[32], which can be thought of in terms of the exposition.
guantum feedback control. The idea of using quantum infor-
mation in control situations has been proposed in the context
of quantum “smart matter’[33] and in the “all-optical”
feedback schemes if7]. Recent experimental demonstra-  Control theory, quantum or classical, addresses a funda-
tions of quantum teleportatiof84] are examples of the ap- mental problenj36]: systems do not always behave the way
plication of feedback control to quantum communications. one wants them to behave. Engines run too fast or too
The rapid development of quantum technologies togetheslowly; rooms are too hot or too cold; atoms can decay or
with the proliferation of results on quantum information and nuclear spins dephase more rapidly than one desires. To im-
computation suggest that quantum control theory might profprove a system’s behavior, control theory adjoins to the sys-
itably be reexamined from the perspective of quantum infortem a second system, called a “controller,” which interacts
mation. This paper presents results on the role of quantuwith the original system in a way that improves its behavior.
information in quantum control. Control is largely about in- A governor can be added to an engine to regulate its speed; a
formation [35]: for example, a feedback controller gets in- thermostat can be added to a room to maintain a desired
temperature; pulses of electromagnetic radiation can be ap-
plied to an atom or spin to decouple it from its surroundings
*Electronic address: slloyd@mit.edu and slow its decay or dephasifig7]. Together, the system
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and controller form a joint dynamical system. If the control- tential applied to the system is a function of the information
ler is well designed, this joint “system-controller” system extracted. The measurement apparatus can be treated effec-
behaves bettefaccording to some appropriate mefrtban  tively classically, as in the Copenhagen interpretation of
the original system on its own. . _quantum mechanicf40]. That is, in coherent control and
Controllers are categorized according to the form of theircoherent control with feedback, the system is quantum me-
interaction with the system to be controlled. If the interactionchanical while the controller is effectively classical.
is one way, so that the controller acts on the system without There is no particular reason why the controller must be a
obtaining any information about its state, then the controllerfu"y classical system, however. Although it is often conve-

is called “open loop.” In “closed-loop™” control, by con- gt 1o assume that the system to be controlled is quantum

trast, the controller acts on the basis of information that ity,o panical while the controller is classical, the division be-

obtains about the state of the system. A particularly IMpOrseen “quantum” and “classical” need not take place at the

tant form of closed—loop_ cor_1tro| IS .feedback control, in system-controller boundary. In fact, recent advances in the
which the controller obtains information about the system

(i.e., the system acts on the controller via sens@ocesses 'éhev?ry and ﬁonstructr:?nmof q#]anttuTﬂn':%rmatlgtn—%roc?rsr:ngi
it, and feeds it back by acting on the system via actuators evices such as quantum computers and quantum communi-

Though more complicated than open-loop control, closedgation channel$21,22,25-28,31,32,34uggest that certain

loop control is typically more accurate as well: the acquisi-CONtrol tasks can be accomplished only when the controller
tion of information about the system allows greater flexibil- [tSelf exhibits intrinsically quantum properties. This paper

ity in control strategy. shows that there are indeed tasks that can only be accom-
plished by a controller capable of processing quantum infor-
mation.
A. Quantum control In particular, the accessibility of new technologies for

quantum computation, quantum communications, and
uantum-information processing allows the following inno-
ation. In addition to using semiclassical potentigsantum

Quantum control is the branch of control theory that ap-
plies to systems whose behavior is governed by the laws

?huagtuhm mecr}ar;llcsr.] Of c<|)urset, quantum megha_nlcs %(.)t\.'er@§/stems operating in an effectively classical regime con-
€ behavior of all physical Systems—cars and air conditions, systems, use quantum systems themselves as part of the

ers as yveII as atoms and nuclear SpIns. However, quantum, \voller. For example, one can control the state of an atom
control is usually taken to apply specifically to systems suchJ ;

as atoms, spins, electrons, photons, Bose-Einstein condefyi, 4, crations and the quantum back reaction are signifi-

Sf’ﬂes’ etc.,_ vv_hose behavior does not admit an accu_rate cl ant. Or one can construct a hybrid semiclassical/quantum
sical description. Over the last few decades the rapid deve Sontroller by adjoining to the quantum system to be con-
opment of highly precise technologies for manipulatingt

rolled a second quantum system, such as another atom, and
systems at the quantum ;cale has greatly expanded the 'HRen acting on the two quantum systems together using a
ertoire of techniques available for quantum control. Stable

o . . semiclassical potential. As will be seen below, both of these

powerful lasers, and sophisticated c_oollng techniques, fore_ methods are potentially more powerful than quantum control

amdple, hav”e rg]ladithebql;antum regime much more accessi ging semiclassical potentials alone. They are more powerful

and contro ? let an (—;-(lare. hod of i exactly because the incorporation of quantum systems in the
A particularly powerful method of quantum control is controller allows the controller to exchangeantum infor-

termgd coherent control'(8,7]. In coherent CoerI.’ ON€  mationwith the system to be controlled. We will call such
manipulates the state of a quantum system by applying semjy

) 2 ) evices quantum controllers. Quantum controllers are con-
classical potentials in a fash_mn that preserves quantum “rollers of which some or all parts require an intrinsically
herence. For example, to drive an atom coherently from it .

. . ; uantum description.

ground to its excited state, one shines on the atom a lase
beam whose frequency is tuned to the energy difference be-
tween the states. The interaction between the beam and the
induced dipole moment of the atom causes the atom to un- We now present a more precise statement of the theoret-
dergo Rabi oscillations, coherently driving the atom betweerical results to be derived in this paper. Two basic questions
its ground and excited states. Although the laser beam imised by control theor}36] are controllability—can a con-
itself a quantum system, composed of many photons in &oller drive a system to a desired state?—and
coherent state, its effect on the atdand the atom’s effect observability—can the controller’'s sensors completely deter-
on it) can be adequately modeled by treating the beam as anine the state of the system? This paper presents the follow-
oscillating semiclassical potentig88,39. This semiclassical ing results in quantum-control theory.
model of the laser beam is accurate in regimes in which the First, necessary and sufficient conditions are given for a
effect of quantum fluctuations of the photons on the atom idinite-dimensional, Hamiltonian quantum system to be con-
small, and the effect of the atom on the quantum state of th&ollable and observable by a controller that makes measure-
photons(“back reaction”) is negligible[39]. ments on the system, thereby generating classical informa-

Coherent methods can also be used in the context of feedion, and that feeds that information back to the system by
back control. Here a measuring apparatus is used to extraatting on it coherently. Since the controller acts coherently
classical information from the quantum system, and the pobut processes classical information, this form of control will

B. Controllability and observability
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be called coherent control with classical feedback. Previoumethods and open quantum systems will be treated in further
work [1-7] on the problem of coherent control with classical work [43].
feedback has focused on controlling a quantum system to a
desired pure stately): this paper supplements that work by |11 FEEDBACK CONTROL OF QUANTUM SYSTEMS
showing how decohering processes such as measurement can
be used to control the system to a desired mixed state de-
scribed by a density matrixy. In addition to functioning as The conventional method for controlling a quantum sys-
a sensor, a measurement apparatus can be used as a stocke®-using feedback is to make a measurement on the system
tic actuator to decohere a quantum system and to alter tHe determine its state and then to apply a semiclassical po-
purity of the system’s state. tential whose value is conditioned on the result of the mea-
Second, the paper proposes a fundamentally differergsurement to guide the system coherently to a desired state.
method for quantum feedback control in which the feedbaclds such a controller processes and feeds back classical in-
loop preserves quantum coherence. Here the controller gaifigrmation, this method may be termed coherent control with
qguantum information, which carries quantum phases, proelassical feedback. In this method of control, although the
cesses it using quantum logic to preserve those phases, aggstem itself must be described by the laws of quantum me-
feeds the quantum information coherently back to the syschanics, the controller can be described classically. As an
tem. Since the controller is processing and feeding backexample of coherent control with classical feedback, con-
quantum information, this method will be called coherentsider Monroeet al’s control of the 2S,,, hyperfine states
control with quantum feedback. Such coherent quantumiF=2me=2)=||),| F=1me=1)=|1), of a single®Be*
feedback should be distinguished from the methods of cohefion in an ion trap[22]. Suppose that the ion is originally in
ent quantum control with classical feedback described in than unknown superpositid) = a| | )+ 8| 1), and the goal of
previous paragraph: the term “coherent control” refers to athe classical feedback loop is to put the ion in the sfate
broad variety of highly successful techniques for controllingThe control loop begins by measuring the state of the ion by
quantum systems in a fashion that respects quantum cohetriving the cycling| | )— 2P,|F =3,mg=3) transition with
ence[6,7]. Both of the methods discussed here use coherent+-polarized light and detecting the resulting ion fluores-
control. When “conventional” coherent control is used with cence: fluorescence indicates that the ion is in the §tatéf
feedback, however, up until now the feedback loop has beethe ion is found to be in the statg), the controller(a clas-
taken to be classical and incapable of preserving quantursical digital computerinstructs the actuatordasers to ef-
coherence. As will be seen below, a coherent controller thafiect a = pulse by driving a Raman transition through the
uses quantum feedback can accomplish tasks—in particulavirtual 2P, level to flip the atom into thé]) state. The net
the generation, transformation, and transfer ofeffect of the feedback loop is to put the ion in the stdpe
entanglement—that cannot be accomplished by coherefthe feedback loop is classical in the sense that the measure-
control with classical feedback. This paper provides necesment provides a classical bit of information, and a classical
sary and sufficient conditions for finite-dimensional Hamil- controller decides on the basis of that bit whether or not to
tonian quantum systems to be observable and controllable tlgupply a Raman pulse to drive a coherent quantum transition
controllers that use coherent quantum feedback. Both aih the ion.
these theoretical results are presented in the context of From the perspective of control theory, coherent quantum
simple experiments, readily realizable using quantum opticsontrol with classical feedback, though effective, has several
and nuclear magnetic resonance, that highlight the differencdrawbacks. First of all, measuring a quantum system almost
between coherent control with classical feedback and cohernevitably disturbs it: even a nondemolition measurement
ent control with quantum feedback. that leaves the system in the state in which it was measured
The methods used to derive these results will be those dftill typically alters the state of the system prior to the mea-
geometric control applied to quantum systerhs12: these  suremen{15,16. The ion of the previous example is origi-
group-theoretic methods allow the easy mathematical trearally in an unknown coherent superposition of the ground
ment of Hamiltonian systems. For the sake of mathematicadnd excited states. After fluorescence determines whether the
simplicity, the systems here will be taken to be finite dimen-ion is in its ground state or excited state, the initial quantum
sional. As all quantum systems with finite energy confined tacoherence between those states is irrevocably lost. Secondly,
a finite region of space are effectively finite dimensional, thiscoherent control with classical feedback is stochastic: as a
is not a great restriction. The methods developed here coulesult of the measurement the system jumps to one state or
also be extendetht the cost of significant increase in math- another probabilistically. Although the ability to apply co-
ematical complexity to infinite-dimensional systems as in herent operations conditioned on the results of measurements
Ref.[1]. A greater restriction in the use of geometric controlallows the controller to compensate for the probabilistic na-
methods is the application to closed Hamiltonian systems. Iture of their results, the introduction of stochastic effects
particular, the more general case of quantum control is thatignificantly complicates the control process. A thorough and
of an open(i.e., non-Hamiltoniapfinite-dimensional system revealing analysis of stochastic effects in coherent control
coupled to an effectively infinite-dimensional environment,with classical feedback in the context of cavity quantum
as in the case of control of chemical systems in a thermatlectrodynamics can be found in RET).
bath. The mathematical treatment of such systems requires a While the conventional view of quantum feedback and
semigroupg 41,42 approach to quantum control. Semigroup feedforward control looks at classical controllers interacting

A. Coherent control with classical feedback
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with quantum systems through semiclassical sensors and agass vibrational mode. As before, assume that the ion whose
tuators, there is no reason why sensors, controllers, and astate we desire to control is in the unknown state while
tuators should not themselves be quantum systems. A coithe vibrational mode has been cooled to its ground state
ventional digital or operational-amplifier controller does not|0)m, and the second, “controller” ion has been prepared in
preserve quantum coherence. In contrast, recent develogie desired “target” statg¢).=y|T)c+6]l)c. Just as in
ments in quantum computif@1,22,25—27suggest the pos- classical feedback control, by adjoining an additional system
sibility of controllers constructed of quantum logic devicesto act as the controller, we have now created a joint system-
that preserve quantum coherence throughout the feedbaéRntroller system, initially in the state

loop. As will be shown below, controllers that use a quantum

feedback loop can perform a number of tasks that controllers 1) ®[0)m®|B)e. (1)

that use a classical feedback Ioop cannot. For example, thgy,w our job is to show that the joint system can possess
can use cohe_re_:r_lt feedback to gu_lde a quantum system fro@uperior properties to the system on its own.

an unknown initial state to a desired final state without de-  The ion can now be controlled to its ground state using

stroying the initial state. In addition, a controller can use &gherent quantum feedback as follows. First, focus light on
quantum feedback loop to drive a quantum system to a targef,o system ion and drive a spin-selected pulse on

state that is entangled with another quantum system. Efpe red sideband as if26]: this pulse takeg])®|0),, to
tanglement is a nonlocal quantum phenomenon that canno_tiu>®|1> and vice versa, while leavingl)®|0) un-
. . m 1
be created by controllers using classical feedback loops. changed. The joint system-controller system is now in the
state
B. Coherent control with quantum feedback

The following examples show how coherent quantum [De(=ialLnt BlO)m @ |d)e=|1) 8|4 )n®[¢)c. @

feedback control can be realized using optical or nuclear

magnetic resonance techniques, and serve to highlight thg/e see that the quantum information contained in the origi-
difference between coherent control with classical feedbackal unknown statdy) of the system has been transferred

and coherent control with quantum feedback. The examplegoherently to the state of the vibrational motteoherent

are selected for their simplicity and experimental accessibilsensing’), albeit in a slightly altered formd— —ia).

ity. In each example, the system to be controlled is a simple  second, apply the same procedure to the control ion. It is

quantum system such as an ion or nuclear spins. The quastrajghtforward to verify that the joint system-controller sys-
tum controller consists of other simple quantum system$em is now in the state

such as ions, phonons, and nuclear spins that can be made to

interact with the system to be controlled and that can per- [1)®(=iy]1)m+ 8|0)m) @ (a|1)c+ B|0)c)
form simple quantum-information processing via techniques B ,
developed for quantum computing. Note that the simplicity =lDel¢hm@ ) 3

of the quantum controllers and their physical proximity 10y, is, this pulse exchanges the quantum information in the
the system to be controlled does not disqualify them as coffy, e yith the quantum information in the control ion, once

trol device;: after all, class_ical contro]lgrs such as a governeégam slightly altering it in the process. Note that the system
for an engine or an _operan_onal—amplyﬂer feedback cont_rolleqon is unaffected by this pulse: this step can be thought of as
for an electric circuit are simple devices that are physicall

) . . Ya form of coherent quantum-information processing within

integrated with the systems that they are designed to contr

Indeed. th lization that coh ¢ : ol he quantum controller.

naeed, the reaiization that coherent quanium control was - rpjqq repeat the first step. The resulting state is

experimentally possible came from the realization that an

effective classical controller could be constructed from a |$)®]|0)m®| ). (4)

single operational amplifier. As will be seen, an effective

quantum controller can be constructed from a single ion oif his step coherently implants the target state into the system

single nuclear spin. ion (“coherent actuationy, feeding back the quantum infor-
First, we discuss how an ion in a trap can be subjected tonation processed in the second step.

coherent quantum feedback. Then we turn to an example of The three steps, coherent sensing, coherent gquantum-

guantum feedback using nuclear spins. information processing within the quantum controller, and
coherent quantum actuation, complete one cycle of a coher-
C. An ion-trap example ent quantum feedback loop that obtains quantum information

. . . about the system, processes it, and feeds it back. The net
. First, examine the problem of controlling the state of theggtet of this coherent quantum feedback loop is to exchange
ion in the ion trap using a quantum controlléRecall thata e jnitial unknown state of the system ion with the target
quantum controller is a device that exchanges quantum ins;a initially stored in the controller ion.

formation with the system to be controlled; consequently, at
least part of a quantum controller requires a quantum de-
scription) A simple method for creating a quantum control-
ler is to add a second ion to the trap. The ions can be made There are a number of salient differences between coher-

to interact by their common interaction with their center-of- ent control with classical feedback and coherent control with

D. Discussion
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guantum feedback. As noted above, coherent control witlon via their common center-of-mass mode to obtain, pro-
classical feedback is typically stochastian element of cess, and feed back quantum information, here the controller
chance is introduced by quantum measuremand destruc- spin will use its scalar interaction with the system spin to
tive (the initial, unknown state of the system is irrevocably enact a quantum feedback loop.
destroyed Coherent control with quantum feedback, by The quantum feedback loop operates by enhancing the
contrast, is deterministieach step in the quantum feedback spin-spin interaction using conventional double-resonance
loop above is completely reversibland nondestructivéhe  techniqueq19,2Q. For example, applying ar pulse with
initial unknown state of the system can be restored by repeafrequencyw.+ y coherently flips the controller spin if and
ing the feedback loop a second timén addition, as will  only if the system spin is in the stat®) (in practice, instead
now be seen, coherent control with quantum feedback can bef a single “superselective” pulse, a series of “semiselec-
used to accomplish tasks that coherent control with classicdive” pulses are used to perform such a conditional spin-
feedback cannot. flipping operation. In the parlance of quantum computation
this operation is called a controlled>T or CNOT. The two
E. A spin example spins are now in the state|7)|1).+ B|1)|]).. Clearly, the

Let us now turn to a second example of coherent quantun&_‘ontm”er spin has become correlated with the system spin i.n
feedback, this time using nuclear magnetic resonance. Whil e sense that measuring the state .Of the controller spin
the ion trap example above is technically feasible—ion-tragould reveal the state of the system spin. The contralied-
quantum computers loaded with several ions now exist—it i9Peration has caused the controller spin to obtain quantum
still a difficult experiment. In particular, the problem of fo- information about the system spin. _

cusing a laser on one ion but not the other is a hard one !n addition to inducing quantum correlation between the
(using two species of ion would allow frequency addressingsystem and controller spins, thenoT operation has dis-
rather than spatial addressinIMR, by contrast, has shown turbed the state of the system spin: initially in the pure state
itself to be a flexible and experimentally accessible paradignfi), the spin is now in the mixed state described by a density
for quantum-information processirig4,45. NMR quantum  matrix p’ = aa|1)(1|+88|1)(l|. The controller spin is in
computations on three or more quantum bits involving tensn identical mixed state. No irreversible measurement has
or hundreds of steps are now commonplace. taken place, however. The disturbance can be removed and

Let us first rephrase our ion example above in the contexthe correlation undone by applying a second pulse with the
of spins. Consider the problem of taking a quantum spin thagsame frequency to flip the second spin back again, returning
is originally in the statdy)=a|1)+B||), wherea and B  both spins to their initial states. With a quantum feedback
are unknown, and putting it in the stgfg. In coherent con- |oop, in contrast to coherent control with classical feedback,
trol with classical feedback, the controller begins by makingthe disturbance introduced by the sensors is reversible and
a nondemolition measurement of the state of the &gmg,  can be undone by the actuators.
say, a Stern-Gerlach apparatugiving |1) with probability The statea|1)|1)c+ 8|1 )1 ) exhibits a peculiarly quan-
|| and||) with probability | 3|2. The control algorithm is  tum form of correlation called entanglement. Entangled
as follows: If the result of the measurement |5 do noth-  states are known to exhibit strange, apparently nonlocal
ing, while if the result of the measurement $, put the spin  quantum effects, the best known of which is the Einstein-
in a static magnetic fiel® and apply an electromagnetic Podolsky-RoselEPR) effect[46—48. Creating and control-
pulse with frequencyw=2uB/# to flip the spin(herew is  ling entangled states is a crucial part of new quantum tech-
the spin’s magnetic dipole momenthe spin is now in the nologies such as quantum cryptography, quantum
state||) as desired. computation, and teleportatid8,9,25—28,32,3B The inter-

As before, coherent control with classical feedback re-action between the controller spin and the system spin has
quires measurement: a measurement apparatus is necess@fiyangled system with controller. The key point here is that
to generate the classical information that the controller needsntanglement cannot be created without an exchange of
in order to perform feedback in the first place. But the factquantum information. A classical controller cannot be en-
that the feedback process is initiated by a measurememéngled with the quantum system it is controlling. Quantum
makes coherent control with classical feedback stochastifeedback loops typically create entanglement between sys-
and irreversible: although the measurement reveals the stagem and controller at some stage in their operation.
of the spin along some axis, it destroys the original coherent A second coherent interaction between the two spins now
superposition. controls the spin coherently to the stat® simply apply to

To contrast coherent control by classical feedback withthe system in stater|1)|7)c+ B|1)|]). a pulse with fre-
coherent control by quantum feedback, consider a quantuuencyw+ vy to flip the first spin if and only if the second
controller consisting of a second spin, initially in the statespin is up. The state of the two spins is ndw(a|7).
|1)c, that interacts with the first through the usual scalar+lg|l>c)_ That is, not only has coherent quantum feedback
interaction termyo,0; [19,20 so that the Hamiltonian for put the first spin in the statg), it has coherently put the
the two spins is £/2)(wo,+ w05+ yo,035), where w,  second spin in the initial state of the first spin. No stochastic
=2u:B/h+# w is the resonant frequency of the controller operation has taken place, and the initial state of the con-
spin. Just as in the case of the ion-trap quantum feedbadkolled spin has not been destroyed: rather, it has been coher-
loop, in which the controller ion interacted with the systemently transferred to the state of the controller.
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F. Comparison (AV2)(I 1) 1Yat11)]1)a) where|T), and|] ), are states of a

In both the spin and the ion-trap cases, adjoining a secon@i‘ird_Spin (the “ancilla”). As 'noted above, such s}ates can
guantum system as part of the controller allows one to con[eadlly be produced by making the system spin interact di-

trol the spin in ways that are not possible using a fully clas-reCtIy with the ancilla spin. Suppose, however, that we are

sical controller. In contrast to coherent control with cIassicaInOt allowed to make the two spins interact directly. It is a

. . .. well-known fact that if two quantum systems are not en-
feedbacl_<, coherent cor_1tro| with quantum feedback is nelthetrangled initially, they cannot become entangled through the
stochastic nor destructive.

thouah both th . qi exchange of classical information alofi40]. That is, no
Although both the spin and ion-trap quantum feedback|assical feedback loop that exchanges information between
loops accomplish the same task, an exchange of the ufpe system and ancilla can entangle them.

known system state .With. the kn_own target state of the.con— By contrast, because of its ability to transfer quantum
troller, they operate in slightly different ways. Most notice- jnformation, a quantum feedback loop that mediates between
ably, in the ion-trap quantum feedback loop there is a cleathe two spins can readily induce entanglement between them.
directionality to the transmission of quantum information. To accomplish the entanglement transfer, prepare the ancilla
The quantum information from the system ion is transferredspin in the state (¥2)(|0)a+]1)4), then entangle the an-
first to the center-of-mass mode and then to the control iongjlia and controller spins by performing a controllsdT on

when the quantum information in the center-of-mass mode ighe controller spin with the ancilla spin as control. The three
transferred to the control ion, the information on the controlgping are now in the state

ion is transferred to the center-of-mass mode and from there
is transferred to the system ion. Here, information moves (a|T)+FBIINAN2) (T That]L)elL)a)- (5)
around the loop in one direction.

In the spin example, by contrast, although at first glance Now perform the quantum feedback procedure given
the first controlledNoT operation looks like a classic “sens- above, supplementing it by applying a third pulse with
ing” operation(the sensor changes in response to the state dfequencyw.+ vy to flip the controller spin if and only if the
the systeny closer inspection reveals that it actually inducessystem spin is in the stat¢). It is easily verified that the
a two-way flow of quantum information, resulting in a sym- final state is
metric, entangled state for the two spins. Similarly, the sec-
ond controlledNoT operation looks at first glance like a clas- V2T + DI (el 1)+ BI1)). (6)
sic “actuation” operation(act on the system conditioned on ) .
the state of the controllgrit also involves a two-way flow of ' natis, the quantum feedback loop accomplishes the goal of
quantum information that disentangles the state of the tw&"0ducing the desired entanglement between the system spin
spins and exchanges the initial controller state with the initia®"d the ancilla despite the fact that the system and ancilla
system state. This effect highlights another feature of quanSPINS never interact directly. By contrast, as noted above, a
tum feedback loops: where in quantum control with cIassicaFO_herem controller that operates by classical feedback cannot
feedback sensing and actuation are two distinct steps, ifl'Ve the system to such an entangled target state without
quantum control with quantum feedback sensing and actud2Cting on the third spin directly.
tion are often indistinguishable. A quantum sensa quan-
tum actuator and vice versa. Only in certain well-defined IV. THEORETICAL CHARACTERIZATION
situations, as in the ion-trap quantum feedback loop, is it OF QUANTUM FEEDBACK
possible to identify a unidirectional flow of quantum infor-
mation around the loop. In a typical quantum feedback lOOpth
guantum information flows both ways.

Control of quantum systems can be accomplished by ei-
er classical or quantum controllers. A classical controller is
one whose operation can be described classically: it obtains
classical information about a quantum system by measure-
ment, processes that information using a classical technique
The previous examples of quantum feedback loops werée.g., classical digital or analog computagioand feeds the
designed to show simply how quantum feedback differs fromprocessed information back to the quantum system via semi-
classical feedback, and how the ability of a controller toclassical potentials. In contrast, a quantum controller is one
exchange quantum information with the controlled systemwhose operation cannot be described classically: at least part
allows it to perform feedback control of quantum systems inof its functioning involves obtaining, processing, and feeding
a way that is neither stochastic nor destructive. Quantunback quantum information. As demonstrated in the experi-
feedback loops can accomplish other tasks that are not posiental examples above, quantum controllers can accomplish
sible classically. Before going on to the theoretical descriptasks such as entanglement transfer that classical controllers
tion of quantum feedback, let us look briefly at one suchcannot.
task, entanglement transfer. We now turn to the theoretical characterization of quan-
For the sake of compactness, we describe entanglemeitm feedback. As noted above, the central questions that
transfer only in the case of spin systems. An ion-trap versiorcontrol theory asks are whether a system is controllable by a
of entanglement transfer could easily be accomplished byparticular control method—can it be driven to a desired
adding a third ion to the trap. Here, the goal of the controlstate?—and whether it is observable—can the method deter-
process is to put the system spin in an entangled statmine the underlying state of the system? In what follows, we

G. Entanglement transfer

022108-6



COHERENT QUANTUM FEEDBACK PHYSICAL REVIEW A62 022108

derive necessary and sufficient conditions for quantum syso describe how quantum-mechanical systems interact with
tems to be controllable and observable by a variety of methsystems that behave in classical walse “measurement

ods: open-loop coherent control, closed-loop coherent comproblem™). As noted above, quantum measurements are sto-
trol with classical feedback, and closed-loop coherent controthastic and destructive, while the underlying dynamics of
with quantum feedback. The first two of these methods havguantum mechanics is deterministic and reversible. As a re-
been well studied in the quantum-control-theory literaturegyt, the treatment of measurement in quantum control is

We present results on them merely for the sake of completesften the most technically difficult part of the control process
ness and to |a.y down a mathematical framework for the de”[?]_ In particu|ar' even in the case of quantum control with

vation of our results on coherent quantum feedback. classical feedback, measurement is not only a sensing pro-
cess, but a stochastic actuation process as well.
A. Open-loop coherent control The stochastic nature of measurement in quantum me-

First, we review well-known results in open-loop coherentChanlcs IS U.SE.Ef.UI’ as well as pr(_)_blem_atlc. For example, note
that the definition of controllability given above for open-

control. Open-loop controllers act without obtaining knowl- loop coherent control is specific to pure initial and final

edge about the underlying state of the system. More prestates This is because open-loop coherent control takes pure
cisely, the controller is provided with some information ' P P P

about the system’s initial state, but obtains no further infor-StateS. to pure states. l\/ll(ore general_ly, i th? system s.||n|t|al
mation during the control process. In the quantum case, @] tat_e |s_descr|bed_by a Kknown densny_mam)t en Hamil- .
open-loop coherent controller acts by applying time- Onian time evolution of the sort described preserves the ei-
dependent potentials; y;(t)H; to the system. Controllability genvalues Op. If a system Is 99‘?“"009 controllable as de-
is the problem of taking a quantum system from some initialsc.rlbed above, then a known initiaican be taken to any;
state to a desired final state. A quantum system is open-loo\fc\J”th the same eigenvalues. I
controllable if the potentials can be modulated by varying To extend th|s_contrqllab|l|ty result _to unknown initial
v;(t) so as to take the system from an arbitrary known initiaIStateSp and to arbnyary final statesy, either we must use
state|) to a desired final statg/y). This form of control- open-system techniques such as thermal relaxation, or we
must introduce closed-loop control. Control of open, non-

lability is called open loop because the initial state of the Lo . . .
. Hamiltonian quantum systems will be discussed in further
system is assumed to be known, and no measurement IS

work [43]. Here we examine feedback control of quantum
made on the system. The problem of coherent open-loo
. T ) oo ystems. Suppose that the controller can make measurements
controllability of finite-dimensional Hamiltonian quantum N
on S[for the sake of simplicity, assume that these measure-

systems has long been known to possess an elegant 9€0MSents are projective von Neumann measurements; the more
ric solution[1,2,6,10-12 Proj '

Result 1. Coherent controllability: open-loop casa general case of positive operator valued measp#ekwill
quantum sy.stem with HamiltoniaH is- open-loop control- be cqnsidered elsewhgreorresponding to a finite set. of
lable by a coherent controller if and only if the algebda Hermitian observablegM;} and then apply potentials

generated frodH,H;} by commutation is the full algebra of =iyi(m; ,hH; that depend on the results, of the measure-
Hermitian operators for the system. ments. Note that, unlike the classical case in which measure-

The spin in the example above is open-loop controllabl ments can be assumed to be noninvasive in principle, a quan-
Sum measurement typically has a stochastic, coherence-

by a coherent controller since NMR methods allow it to be estroving effect on the svstem measured. A measurin
taken from any given state to any desired state: the algebr% ying Y . ’ 9
paratus for a quantum system is not only a sensor, but a

i i ap
generated by the Hamﬂtoman correspondmg to the Statl(gtochastic actuator as well. A quantum syst8ns closed-
field Bo, and the applied Hamiltonia, o, sinwt can eas- : .

. loop controllable if and only if a closed-loop controller can
lly be seen to generate the full algebra of @lby commu- take S from an arbitrary unknown initial statge to any de-
tation. Result 1 is a quantum analog of the geometric theorgired final stat We{hen have the followin resu)llt

of classical nonholonomic contr¢ll0—-12. A familiar ex- Result 2 ngcrj]érent controllability: cIosed—?oo cége
ample of a classical nonholonomic control problem is paral- ' Y- P

; . ) : uantum system with Hamiltoniad is closed-loop control-
lel parking: a car cannot be driven sideways directly, but Car?able o anyarbitrary mixed stajey by a coherentpcontroller

still be parked by edging first in one direction and then "Mwith classical feedback if and only {f) at least one of the

another. In the guantum case, the algerdetermines what M7 (that is, the controller can make some nontrivial mea
) J. , -
set of states can be reached by edging the quantum syst Mfement on the systoand (ii) the algebra generated by

first in one direction, then in another, a method that can b : e
called “parking Schidinger's car.” s;'sglri is the full algebra of Hermitian operators for the

For example, the spin above is clearly closed-loop con-
trollable by classical feedback using the techniques de-

Now let us turn to closed-loop quantum control. Centralscribed. The proof of this result is given in the Appendix.
to any discussion of closed-loop quantum control with clas-The “if” part follows because even when one can make a
sical feedback(“traditional” quantum feedback contrplis ~ nondemolition measurement of only a single bit of informa-
the role of measurement. As is well known, measuremention, the open-loop controllability of the system allows that
plays an important and often problematic role in quantunbit to correspond to projections onto arbitrary subspaces; re-
mechanic§40]. Fundamental difficulties arise in attempting peated measurements then allow the value of any operator to

B. Closed-loop quantum control: The role of measurement
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be determined and the system to be guided to a desired pufgrm 3, y;(t)Hk. where Hi. are Hermitian operators that
state. To construct a desired mixtyrg, the sensors can now couple the system to the controller ang(t) is a coupling

be used as stochastic actuators to destroy the system’s cohgpnstant that can be turned on and off to make the system
ence in a controlled fgsh|on. The “only if’ part follows and controller interactAlternatively, theHx. can be “on”
because, if the system is not open-loop_controllable, then thg)| the time, and suitable “hang-bang” controls applied to
set of states that can be reached conditioned on the results g, system and controller to effectively turn the couplings on
measurements is of lower dimension than the Hilbert spacg off[37]; the mathematical exposition is similar for both

of the system. cases and so only the time-dependent interactions will be
treated heré.For an interaction to allow the exchange of
quantum informationHgc cannot equal eitheHs®I¢ or

The close relationship between open- and closed-loopsw Hy., wherel is the identity operator: otherwise the inter-
controllability for quantum systems has implications for the action reduces to coherent control by the application of semi-
related notion of observability. The classical definition of ojassical potentials as above. As noted above, for a quantum
observability must be somewhat altered for quantum systemgynirolier, there is no fundamental distinction between sen-
since the irreversible disturbance introduced by measuremeg}, .« and actuators: an interaction that can function as an

implies that no procedure can reveal an arbitrary unknow%ctuator can also function as a sensor, and vice vé@ia
initial state of a quantum system. Accordingly, a quantum ' '

. course, some interactions are more useful for sensing func-
system will be called observable by a coherent controller b3f'ons and some are more useful for actuation
classical feedback if the proper sequence of g:ontrols and ssume that the quantum part of the controller has a Hil-
mea§grements can be used to observg any desired featurgb%rt space of large dimension, and that it itself is controllable
the initial state of the system. Specifically, the system ISv coherent open-loop control as in Sec. IVA above. Let
observable if the controller can make a measurement th _ i o

- o . i=trcHgopc} be the set of Hermitian operators that can
reveals the projection of the original state along any desire

C . : ct on the system given different staggsfor the controller.
isrﬁ:)ﬁ(l;;)rttﬁggf]glrllsvlvﬁlxges in Hilbert space. Result 2 immediatel e then have the following resulproof in the Appendix

Result 3. Observability by classical feedbagk Hamil- Result 4(a). Quantum controllability (aj quantum sys-

. . m with HamiltonianH is controllable by fully quantum
tonian quantum system is observable by a coherent controll f . .
with classical feedback if and only if it is closed-loop con- eedback if and only if the algebcd generated fronfH, O;}

trollable (proof in the Appendix. by commutation is the full algebra of Hermitian operators for

In the example above, NMR techniques, together with théhel\/lsgrsgen;‘nera” e have the followin
ability to measure the component of spin along thaxis, R Itg4 b Y Wt v troll b'I'\tNI g i
clearly allow one to measure the spin along any axis. I:bi esult 4(b). Quantum controllability (bj quantum sys-

C. Quantum observability

addition, if one can manipulate the spin so as to measure m1s c;orr:]tr?IIab!ﬁ tr)yv\fil{l::yﬂ?uanturr:: friedbﬁ(:kf'{hand onr}[lry |||f ;
along any axis, then one can also manipulate it sufficiently t € system 1ogemne € quantum part of the controfie

control its state to any desired state, conditioned on the resuft © controllable by coher_ent control.
of the measurement. Results 4a,b follow directly from the theory of open

quantum systems taken together with the control concepts
introduced abov§27,40—42 [note that we are assuming that
the quantum part of the controller has a dimension ldege

Now turn to coherent control with quantum feedback.leastN?) compared with the dimensiofN) of the system’s
Here our controller possesses a quantum subsystem that chiilbert space and that the controller is coherently control-
be made to interact with the quantum system to be conlable on its own. Results 4a) and 4b) for coherent control
trolled. This interaction allows the system to exchange quanusing a quantum feedback loop correspond to results 1 and 2
tum information with the controller. The exchange of quan-for coherent control using a classical feedback loop. The
tum information is not possible when the controller is equivalence between quantum sensors and quantum actua-
classical. In addition, we may be able to apply coherent contors implies that when a quantum controller acts on a quan-
trol as above, applying quantum potentials to the system anaim system it almost invariably gets information about the
the quantum subsystem of the controller together. system, and vice versa. As an example of res(@#is the

A quantum system will be said to be controllable by fully two-spin quantum controller in the example above is clearly
guantum feedback if there is some initial state for the concapable of controlling the other spin to any desired state,
troller (possibly entangled with the state of another quantunentangled or not.
system, a sequence of interactions with the controller and a Just as in the case of coherent control with classical feed-
sequence of applied semiclassical potentials that takes thHmack, care must be taken in defining observability for coher-
system from some initial state to a desired final statgy ent control with quantum feedback: the controller is not a
which can also be entangled with another quantum systemclassical device that makes measurements on the system, but

More precisely, to allow the exchange of quantum infor-a quantum system in its own right that becomes correlated
mation between system and controller—quantum feedback-with the system. No irreversible measurement ever takes
some of the applied potentials that make the system interagiace. A quantum system will be said to be observable by a
with a quantum controller are coherent interactions of thequantum controller if the initial state of the system, together

D. Coherent control with quantum feedback
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with all its entanglements with any other quantum systemsfeedback controlin these experiments, entangled states are
can be transferred to an analogous state of the controller. Thmbined with a classical feedback loop to transfer quantum
controller can then use this transferred state as the target statdormation. Quantum controllers could have application to
to which to control some other quantum system. This fundaa variety of problems, including problems with classical ana-
mentally quantum definition of observability is the naturall0gs such as trajectory control, and problems with no classi-
converse to the quantum definition of controllability in result @l analog such as preventing decoherence. As the theory of
4. Given results 1—4, the following result should come as ndluantum error correction show81], strategies for distur-
surprise. bance rejection are harder to devise for quantum systems
Result 5. Quantum observabilith Hamiltonian quantum than for classical. However, in the same way that polarized

system is observable by a quantum controller if and only if itl'ght allows one to observe effects that are not accessible
is controllable by the controller. with unpolarized light, entangled states generated and ma-

Proofs of results 4 and 5 are given in the Appendix. Asnlpulated_ _by quantum _controllers might be “S‘?d to allow
the example of the three spins shows, an interaction with pore eff|C|er_1t observatlon and control Of. a variety of sys-
' troller that puts a H 'It’ . tem i d fems. A patrticularly important open question is the extent to
quantum controlier that puts a Hamiftonian system In a ey, piep the controllability and observability results reported
sired state necessarily transfers the initial state or the syste

o ) ere for Hamiltonian quantum systems can be extended to

together with its entanglements, to an analogous final state
- '0pen guantum systems.

the controller. As noted above, control of a quantum Hamil-
tonian system using a classical feedback loop cannot in gen-
eral determine. the init@al state of the quantum system. Since ACKNOWLEDGMENTS
the controller is classical, the quantum state of the system _
certainly cannot be transferred to an analogous classical state This work was supported by grants from ONR and from
of the controller. (It is interesting to note, however, that DARPA/_ARQ under the Quantum Informafcion and Compu-
when a classical Hamiltonian controller controlglassical  tation Inltlatlve(QUIC)_. The <'_:1uth0r would like to acknov_vl—
Hamiltonian system using a classical feedback loop, thedge helpful dISCl_JSSIonS with 1. Chu_ang, H. Mabuchi, D.
original state of the system is necessarily transferred to th&owell, H. A. Rabitz, and J. J.-E. Slotine.
controller)

V. CONCLUSION APPENDIX: PROOFS OF RESULTS 1-5

This paper explored the properties of coherent control us- 1. Coherent control: Open-loop case

ing both classical and quantum feedback, and gave necessary A quantum system with Hamiltoniald is open-loop con-
and sufficient conditions for controllability and observability trollable by a coherent controller if and only if the algebta

of Hamiltonian quantum systems in a variety of settings.generated frondH,H;} by commutation is the full algebra of
Conventional coherent control of quantum systems by clasHermitian operators for the system.

sical feedback involves the acquisition and processing of This quantum-control result follows from well-known re-
classical information. A quantum feedback controller, bysults in classical geometric control theofy—4,10-12 a
contrast, acquires and processes quantum information. Quasimple demonstration is given by Ramakrisheial. [6].
tum information, measured in quantum bits or “qubits,” car- (Note that the many-particle version of this result is a funda-
ries quantum phase information as well as classical informamental result in quantum computatip0,51]: since almost
tion. A controller that feeds back quantum information cananyH; together withH generates the full algebra of Hermit-
perform tasks, such as entanglement transfer, that controlleian operators, almost any quantum logic gate is universal.
that feed back classical information cannot perform. The poThe proof is straightforward. The system is open-loop con-
tential experimental realizations of quantum controllers distrollable if and only if one can generate any unitary operator
cussed here were based on nuclear magnetic resonance; this U(N) whereN is the dimension of the Hilbert spade
paper’s results could also be realized using quantum logiof the system. By assumption, one can apply a time-
devices such as ion trapg2], high-Q cavities in quantum dependent Hamiltonian of the forid (t)=H+=;y;(t)H;,
optics [7,21,23, and quantum dotg49]. The “all-optical”  where they;(t) can be picked by the controller. That is, one
control proposed in Ref7] is a specific example of coherent can construct any unitary time evolution of the fortch
guantum feedback control in a quantum optical setting. =7 exp:—if})H(t’)dt’] where T is the time-ordering opera-

Although the difficulty of constructing quantum control- tor, Expanding the exponential in a power series yields the
lers is likely to limit their application initially, such control- ysyal expression

lers could play a key role in the development of quantum

technologies such as quantum computation and quantum t t ty

communications. The work of Ramakrishna and Raffz U=1-i fodtlH(tl)_ fodtlfo diz H(t)H(tp) + -+
has pointed out the close relationship between the open-loop (A1)
geometric quantum control methods described above and the

construction of quantum logic gates detailed in R§&Q],

[51]. Indeed, the recently reported experimental results irBubstituting the explicit expression fét(t) into Eq. (Al)
guantum teleportatiof84] represent applications of quantum and then normal-ordering terms in the ordérH;,H,,...
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shows that one has sufficient leeway in the choice of the As long as one can perform such a nondemolition mea-
moments( yle?Z- -} to construct anyJ of the forme ™", surement, a simple contro_l strategy suffices to put the system
whereH e A. in a desired pure state. First, make such a measurement, get
k_the result e;) for somej; second, use the open-loop control-

ing: can one make the open-loop system follow any desireJJ"ib”ity of the systemlguaranteed by conditiofii)] to con-

trajectory in Hilbert space? The answer to this question caguruct au that takes ei>_’u|ej>:.|wd>' If the desired fmaII
) . . . State is a mixed statpy, first write py in diagonal form:
be given by creating a quantum version of Sussman’s theo-

rem[11,17 for the small-time local controllability of classi- pa=2;Pjlx;){xj|. Then prepare the system in a pure state

. 2: . . .y
cal nonholonomic systems. A sufficient condition for small- mza::sre:r:]:;ls lcp:l))ﬁéélspoﬁljdinzgguﬁ njl’ikeer{eisrl]mgilogigg
time local controllability of a quantum system is that one be 170

. - pq- This proves the “if” part of result 2.
able to apply not merelyd;, but —H; as well: in addition, To prove the “only if’ part of result 2, we show that if
one must be able to cancel out all “bad brackets,’

! _ _ ' EXPreSyither condition(i) or condition(ii) is false, then the system
sions of commutators of thel; in which eachH; appears s not controllable. If(i) is false, then the system is trivially
with even multiplicity (i.e., 0, 2, 4, etc., timgsThat is, for  yncontrollable, as the controller can make no measurement
the system to be small-time locally controllable, the badgp the system at all. Suppose then tfiatis true but(ii) is
brackets must be linear combinations of good brackets ofgjse. j.e., the algebral generated fronfH,H;} by commu-
lower order. If in addition the system has drift from its natu- tation is not the full algebra dfi x N Hermitian matrices for

ral HamiltonianH, one must be able to cancel oHt by  the |je groupU(N), but rather some subalgebra correspond-

applying theH; as well ing to a subgrougJ CU(N). The controller then can drive
the system to any pure state of the fontml), whereV

2. Coherent controllability: Closed-loop case €0 and|m}) is thekth eigenstate oM, and to no other
states. The system is controllable if the set of stitée|)}

A guantum system with Hamiltoniakd is closed-loop is in fact the set of all pure states for the system. However, as
controllable by a coherent controller using a classical feed- P Y : '

back loop if and only ifi) at least one of the\{; | —that is we now show, the system can only be driven to a manifold of

the controller can make some nontrivial measurement on th%tates of dimension strictly less than the dimension of the

. 1 manifold of all states. Accordingly, ifi) is true but(ii) is
system—andii) t_h_e algebra generated Bid, H;} is the full false, the system is not controllable by a coherent controller
algebra of Hermitian operators for the system. using classical feedback

As noted in the paper, the “if” part of this result holds 9 :

Ly In particular, if (i) is false, the set of reachable states
because the open-loop controllability of the system allows ! .
. .~ _“cannot include all pure states. The set of all normalized pure
one to make any nondemolition measurement, even of just

single bit of information, function as a nondemolition mea- States constitutes a Re-1)-dimensional manifold over the

surement that discriminates between members of an arbitrarrf/aaI humbergi.e., the surface of ah-dimensional sphere of

basis{|e;)} of pure states for the Hilbert space of the systemfadius 1 over the complex numbgrsut if U is a strict

To see that such a nondemolition measurement can be petubset ofu(N), then the set of points generated Yie;),
formed, let{|e;)} be a basis with respect to which one of the Ve U and|e;) a member of an orthonormal basis as above,
measurement operatord/! is diagonal: M=X,mP,, is a setwith dimension strictly lower tharN2- 1; otherwise,
whereP, is a projection operator onto theh eigenspac@{,  the algebra ofU would contain operators of the form

of M, Py=Z2¢ )3 |€)(&d. If each of the, is one dimen-  |e;)(e |+ |e (g, ile;) (el —ile)(g| for arbitrary k. But
sional, thenM already discriminates between tfie;)} per-  the algebra generated by these operators by commutation is
fectly, and one can implement the control strategy describethe full algebra ofU(N), in contradiction to the assumption

in the next paragraph. If some of ti¢, are multidimen- thatU was a strict subgroup @ (N). The set of states of the
sional, M can still be made to discriminate between theform V|m\) for a finite number o}, therefore constitutes a
{lej)} perfectly by measuringd, using the open-loop con- manifold of states with strictly lower dimension than the
trollability of the system to applyU, where U.[e;)  manifold of all pure states, and the system is not control-
=|ej4q) if j#N=dim™, andU , |ey)=|e,), and then mea- |able. This proves the “only if’ part of result 2.

suringM again. SinceJ , cyclically permutes th¢ej), after

at most N measurements, the sequence of results 3. Observability by a coherent controller

My, My, "My obtained completely determines whigh;) using classical feedback

the system is in, and the net result is to perform a nondemo-
lition measurement that discriminates between{teg)}. To
make a ryond,emoll_tlon measurement corresponding F(_) arl:'losed—loop controllable.

other basig|ej)}, simply use the open—loop,) controllak?ll|ty The “if” part of result 3 follows immediately from the

of the system to apply &Jere that maps|ej)—Ueel€/)  proof of the “if” part of result 2: part of the proof of result
=|e;), then make a nondemolition measurement to discrimi2 showed how conrollability could be used to construct a
nate between thie;)} as above, and then appli;; to map  nondemolition measurement that discriminates between the
lej) back to|ej). members of any desired basis. The “only if” part is proved

An interesting related question is that of trajectory trac

A Hamiltonian quantum system is observable by a coher-
ent controller using classical feedback if and only if it is
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as follows. From the proof of result 2, it is clear that, if the that can act on the system given different staigsfor the
system is not closed-loop controllable, the set of measurecontroller)
ments that can be made consists of measurements that can betpe “if* part of result 4 now follows because ifl is the

built up of repeated nondemolition measurements _correfy|| algebra of Hermitian operators for the system, then by
sponding to operators of the forMM;V' for someVeU  result 1 it is possible to arrange any desired joint unitary
and for someM ;. However, the proof of the “only if” part  evolution for system and controller. In particular, it is pos-
of result 2 above shows immediately that such measuremengsble to generate a unitary evolution that exchanges the state
can discriminate only between sets of orthogonal states thaff the system with the state of the register in the controller
can be mapped to the eigenstates of Me by someV  that holds the desired statg, which may be entangled with

e U. But by the same argument as in result 2, the set osome other system: i.e., the operation that takespq
states that can be so mapped to any givef) constitutes a —pa®p is clearly unitary, and so can be generated by the
manifold of states with strictly lower dimension than the proper schedule of interactions between system and control-
manifold of all pure states. As a result, almost all stéteset  ler. This proves the *if” part of result 4.

of measure Lare members of bases between whose mem- The “only if” part of result 4 follows because, ifl is not

bers the controller cannot distinguish. So if the system is nothe full algebra for the system, then the set of transforma-
closed-loop controllable, then it is not observable. tions for the system and controller together does not allow an

arbitrary transformation of the state of the system. In particu-
lar, no schedule of interactions can apply the transformation

e At to the initial state of the system, whefe¢ A. This
proves the “only if” part of result 4.

4. Quantum controllability

A quantum system with HamiltoniaH is controllable by
a coherent controller by fully quantum feedback if and only
if the algebraA generated fror{H,O;} by commutation is
the full algebra of Hermitian operators for the system.

Result 4 can be proved by applying result 1 for the open- A Hamiltonian quantum system is observable by a coher-
loop controllability of Hamiltonian systems to the joint sys- ent controller using quantum feedback if and only if it is
tem consisting of system and controller taken together. Weontrollable by the controller.
simply construct the algebra of available operations and see The “if” part of result 5 follows directly from the proof
what transformations it allows the controller to perform.  of the “if” part of result 4: the same schedule of interactions

In the absence of the applied interactidtiy;(t)Hscthe  between controller and system that transfers the desired state
system and controller evolve according to a Hamiltonianfrom the controller to the systeipso factotransfers the state
Hel'@loH’, whereH' is the Hamiltonian for the control- of the system, together with all its entanglements, to the
ler and by assumption can be chosen at will. By result 1, theontroller. The “only if” part of result 5 follows from the
set of joint time evolutions for the system and controller“only if” part of result 4. The set of transformations that can
taken together is given by =e "' whereA e the algebra be effected by the quantum controller consists of unitary op-
generated byH® ' & ®H’,Hisc} via commutation. Conse- erators for system and controller that lie in the Lie group
qguently, as long as one of thé interactions is nontrivial in ~ corresponding to the algebsé® A’. If the algebraA is not
the sense described in the text, by varyigand the initial ~ the full algebra for the system, then such operations do not
state pc of the controller and by judiciously varying the allow the controller to distinguish between two stdigsand
vi(t), we can obtain any operator in the algebdz A’, |4"y=V|), whereV=e "Ate U(N)/U. As a result, if the
where A is the algebra generated frofil,O;} by commu-  algebraA is not the full algebra for the system, then the
tation, and whered’ is the full algebra for the controller. system is not observable by the quantum controller. This
(Recall tha{ O; =trcHspc} is the set of Hermitian operators proves result 5.

5. Quantum observability
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