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Coherent quantum feedback
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In the conventional picture of quantum feedback control, sensors perform measurements on the system, a
classical controller processes the results of the measurements, and actuators supply semiclassical potentials to
alter the behavior of the quantum system. In this picture, the sensors tend to destroy coherence in the process
of making measurements, and although the controller can use the actuators to act coherently on the quantum
system, it is processing and feeding back classical information. This paper proposes an alternative method for
quantum feedback control, in which the sensors, controller, and actuators are quantum systems that interact
coherently with the system to be controlled. In this picture, the controller gets, processes, and feeds back
quantuminformation. Controllers that operate using such quantum feedback loops can perform tasks such as
entanglement transfer that are not possible using classical feedback. Necessary and sufficient conditions are
presented for Hamiltonian quantum systems to be controllable and observable using both classical and quan-
tum feedback.

PACS number~s!: 03.65.2w, 89.70.1c
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I. INTRODUCTION

Quantum control theory has a long history@1–12#. Ex-
periments in elementary particles, atoms, solid-state syste
and optics involve the systematic measurement and man
lation of quantum systems. Quantum control theory has c
tributed significantly to the understanding of fundamental
pects of quantum mechanics, including the quantum Z
effect @13,14#, nondemolition measurements@15,16#, and
stochastic quantization@17#. Classical concepts of geometr
control provide a basis for many quantum results@10–12#.
For example, the field of nuclear magnetic resonance
largely concerned with the geometric control of collectio
of interacting nuclear spins@18–20#. Particularly significant
are experimental applications of optimal control theory
quantum systems using NMR and optical techniques@6#. As
quantum technologies have matured@5#, a host of practical
applications of quantum control have been realized in m
lecular dynamics@6#, quantum optics@7,21–24#, and quan-
tum computation@21,22,25–28#. Efforts to protect quantum
information from noise and decoherence@29–31# have led to
proposals for quantum error correction@31# and entangle-
ment purification@32#, which can be thought of in terms o
quantum feedback control. The idea of using quantum in
mation in control situations has been proposed in the con
of quantum ‘‘smart matter’’@33# and in the ‘‘all-optical’’
feedback schemes in@7#. Recent experimental demonstr
tions of quantum teleportation@34# are examples of the ap
plication of feedback control to quantum communications

The rapid development of quantum technologies toge
with the proliferation of results on quantum information a
computation suggest that quantum control theory might p
itably be reexamined from the perspective of quantum inf
mation. This paper presents results on the role of quan
information in quantum control. Control is largely about i
formation @35#: for example, a feedback controller gets i
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formation about the system it is to control, processes t
information, and feeds the information back into the syst
to change its behavior in a desired way. In the conventio
picture of quantum feedback control, a feedback controlle
a classical system that processes classical information
tained by making measurements on the quantum system
be controlled. In contrast, this paper proposes the idea
quantum controller, a device that obtainsquantuminforma-
tion by interacting with the quantum system to be controlle
processes that information using quantum logic, and fe
the information coherently back into the system. As will
shown, a controller that processes quantum information
perform tasks that a controller that processes classical in
mation cannot. This paper analyzes the operation of s
quantum controllers, proposes applications, and pres
simple, experimentally accessible examples.

The analysis will proceed as follows: Experimental e
amples of various types of quantum control will be tak
from quantum optics, atomic physics, and nuclear magn
resonance. Then general theoretical results will be deri
that apply to all quantum systems. Proofs of the theoret
results will be presented in the Appendix so as not to disr
the exposition.

II. CONTROL THEORY

Control theory, quantum or classical, addresses a fun
mental problem@36#: systems do not always behave the w
one wants them to behave. Engines run too fast or
slowly; rooms are too hot or too cold; atoms can decay
nuclear spins dephase more rapidly than one desires. To
prove a system’s behavior, control theory adjoins to the s
tem a second system, called a ‘‘controller,’’ which interac
with the original system in a way that improves its behavi
A governor can be added to an engine to regulate its spee
thermostat can be added to a room to maintain a des
temperature; pulses of electromagnetic radiation can be
plied to an atom or spin to decouple it from its surroundin
and slow its decay or dephasing@37#. Together, the system
©2000 The American Physical Society08-1
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and controller form a joint dynamical system. If the contro
ler is well designed, this joint ‘‘system-controller’’ system
behaves better~according to some appropriate metric! than
the original system on its own.

Controllers are categorized according to the form of th
interaction with the system to be controlled. If the interacti
is one way, so that the controller acts on the system with
obtaining any information about its state, then the contro
is called ‘‘open loop.’’ In ‘‘closed-loop’’ control, by con-
trast, the controller acts on the basis of information tha
obtains about the state of the system. A particularly imp
tant form of closed-loop control is feedback control,
which the controller obtains information about the syst
~i.e., the system acts on the controller via sensors!, processes
it, and feeds it back by acting on the system via actuat
Though more complicated than open-loop control, clos
loop control is typically more accurate as well: the acqu
tion of information about the system allows greater flexib
ity in control strategy.

A. Quantum control

Quantum control is the branch of control theory that a
plies to systems whose behavior is governed by the law
quantum mechanics. Of course, quantum mechanics gov
the behavior of all physical systems—cars and air conditi
ers as well as atoms and nuclear spins. However, quan
control is usually taken to apply specifically to systems su
as atoms, spins, electrons, photons, Bose-Einstein con
sates, etc., whose behavior does not admit an accurate
sical description. Over the last few decades the rapid de
opment of highly precise technologies for manipulati
systems at the quantum scale has greatly expanded the
ertoire of techniques available for quantum control. Stab
powerful lasers, and sophisticated cooling techniques, for
ample, have made the quantum regime much more acces
and controllable than before.

A particularly powerful method of quantum control
termed ‘‘coherent control’’@6,7#. In coherent control, one
manipulates the state of a quantum system by applying s
classical potentials in a fashion that preserves quantum
herence. For example, to drive an atom coherently from
ground to its excited state, one shines on the atom a l
beam whose frequency is tuned to the energy difference
tween the states. The interaction between the beam and
induced dipole moment of the atom causes the atom to
dergo Rabi oscillations, coherently driving the atom betwe
its ground and excited states. Although the laser beam
itself a quantum system, composed of many photons i
coherent state, its effect on the atom~and the atom’s effec
on it! can be adequately modeled by treating the beam a
oscillating semiclassical potential@38,39#. This semiclassica
model of the laser beam is accurate in regimes in which
effect of quantum fluctuations of the photons on the atom
small, and the effect of the atom on the quantum state of
photons~‘‘back reaction’’! is negligible@39#.

Coherent methods can also be used in the context of f
back control. Here a measuring apparatus is used to ex
classical information from the quantum system, and the
02210
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tential applied to the system is a function of the informati
extracted. The measurement apparatus can be treated e
tively classically, as in the Copenhagen interpretation
quantum mechanics@40#. That is, in coherent control an
coherent control with feedback, the system is quantum m
chanical while the controller is effectively classical.

There is no particular reason why the controller must b
fully classical system, however. Although it is often conv
nient to assume that the system to be controlled is quan
mechanical while the controller is classical, the division b
tween ‘‘quantum’’ and ‘‘classical’’ need not take place at th
system-controller boundary. In fact, recent advances in
theory and construction of quantum-information-process
devices such as quantum computers and quantum comm
cation channels@21,22,25–28,31,32,34# suggest that certain
control tasks can be accomplished only when the contro
itself exhibits intrinsically quantum properties. This pap
shows that there are indeed tasks that can only be acc
plished by a controller capable of processing quantum in
mation.

In particular, the accessibility of new technologies f
quantum computation, quantum communications, a
quantum-information processing allows the following inn
vation. In addition to using semiclassical potentials~quantum
systems operating in an effectively classical regime! as con-
trol systems, use quantum systems themselves as part o
controller. For example, one can control the state of an a
using nonclassical~e.g., squeezed! light, in which both quan-
tum fluctuations and the quantum back reaction are sign
cant. Or one can construct a hybrid semiclassical/quan
controller by adjoining to the quantum system to be co
trolled a second quantum system, such as another atom
then acting on the two quantum systems together usin
semiclassical potential. As will be seen below, both of the
methods are potentially more powerful than quantum con
using semiclassical potentials alone. They are more powe
exactly because the incorporation of quantum systems in
controller allows the controller to exchangequantum infor-
mation with the system to be controlled. We will call suc
devices quantum controllers. Quantum controllers are c
trollers of which some or all parts require an intrinsica
quantum description.

B. Controllability and observability

We now present a more precise statement of the theo
ical results to be derived in this paper. Two basic questi
raised by control theory@36# are controllability—can a con-
troller drive a system to a desired state?—a
observability—can the controller’s sensors completely de
mine the state of the system? This paper presents the fol
ing results in quantum-control theory.

First, necessary and sufficient conditions are given fo
finite-dimensional, Hamiltonian quantum system to be co
trollable and observable by a controller that makes meas
ments on the system, thereby generating classical infor
tion, and that feeds that information back to the system
acting on it coherently. Since the controller acts coheren
but processes classical information, this form of control w
8-2
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COHERENT QUANTUM FEEDBACK PHYSICAL REVIEW A62 022108
be called coherent control with classical feedback. Previ
work @1–7# on the problem of coherent control with classic
feedback has focused on controlling a quantum system
desired pure stateucd&: this paper supplements that work b
showing how decohering processes such as measuremen
be used to control the system to a desired mixed state
scribed by a density matrixrd . In addition to functioning as
a sensor, a measurement apparatus can be used as a st
tic actuator to decohere a quantum system and to alter
purity of the system’s state.

Second, the paper proposes a fundamentally diffe
method for quantum feedback control in which the feedb
loop preserves quantum coherence. Here the controller g
quantum information, which carries quantum phases, p
cesses it using quantum logic to preserve those phases
feeds the quantum information coherently back to the s
tem. Since the controller is processing and feeding b
quantum information, this method will be called cohere
control with quantum feedback. Such coherent quant
feedback should be distinguished from the methods of co
ent quantum control with classical feedback described in
previous paragraph: the term ‘‘coherent control’’ refers to
broad variety of highly successful techniques for controlli
quantum systems in a fashion that respects quantum co
ence@6,7#. Both of the methods discussed here use cohe
control. When ‘‘conventional’’ coherent control is used wi
feedback, however, up until now the feedback loop has b
taken to be classical and incapable of preserving quan
coherence. As will be seen below, a coherent controller
uses quantum feedback can accomplish tasks—in partic
the generation, transformation, and transfer
entanglement—that cannot be accomplished by cohe
control with classical feedback. This paper provides nec
sary and sufficient conditions for finite-dimensional Ham
tonian quantum systems to be observable and controllabl
controllers that use coherent quantum feedback. Both
these theoretical results are presented in the contex
simple experiments, readily realizable using quantum op
and nuclear magnetic resonance, that highlight the differe
between coherent control with classical feedback and co
ent control with quantum feedback.

The methods used to derive these results will be thos
geometric control applied to quantum systems@1–12#: these
group-theoretic methods allow the easy mathematical tr
ment of Hamiltonian systems. For the sake of mathemat
simplicity, the systems here will be taken to be finite dime
sional. As all quantum systems with finite energy confined
a finite region of space are effectively finite dimensional, t
is not a great restriction. The methods developed here c
also be extended~at the cost of significant increase in mat
ematical complexity! to infinite-dimensional systems as
Ref. @1#. A greater restriction in the use of geometric cont
methods is the application to closed Hamiltonian systems
particular, the more general case of quantum control is
of an open~i.e., non-Hamiltonian! finite-dimensional system
coupled to an effectively infinite-dimensional environme
as in the case of control of chemical systems in a ther
bath. The mathematical treatment of such systems requir
semigroup@41,42# approach to quantum control. Semigrou
02210
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methods and open quantum systems will be treated in fur
work @43#.

III. FEEDBACK CONTROL OF QUANTUM SYSTEMS

A. Coherent control with classical feedback

The conventional method for controlling a quantum sy
tem using feedback is to make a measurement on the sy
to determine its state and then to apply a semiclassical
tential whose value is conditioned on the result of the m
surement to guide the system coherently to a desired s
As such a controller processes and feeds back classica
formation, this method may be termed coherent control w
classical feedback. In this method of control, although
system itself must be described by the laws of quantum
chanics, the controller can be described classically. As
example of coherent control with classical feedback, c
sider Monroeet al.’s control of the 2S1/2 hyperfine states
uF52,mF52&[u↓&,u F51,mF51&[u↑&, of a single9Be1

ion in an ion trap@22#. Suppose that the ion is originally in
an unknown superpositionuc&5au↓&1bu↑&, and the goal of
the classical feedback loop is to put the ion in the stateu↑&.
The control loop begins by measuring the state of the ion
driving the cyclingu↓&→ 2P3/2uF53,mF53& transition with
s1-polarized light and detecting the resulting ion fluore
cence: fluorescence indicates that the ion is in the stateu↓&. If
the ion is found to be in the stateu↓&, the controller~a clas-
sical digital computer! instructs the actuators~lasers! to ef-
fect a p pulse by driving a Raman transition through th
virtual 2P1/2 level to flip the atom into theu↑& state. The net
effect of the feedback loop is to put the ion in the stateu↑&.
The feedback loop is classical in the sense that the meas
ment provides a classical bit of information, and a classi
controller decides on the basis of that bit whether or not
supply a Raman pulse to drive a coherent quantum trans
in the ion.

From the perspective of control theory, coherent quant
control with classical feedback, though effective, has sev
drawbacks. First of all, measuring a quantum system alm
inevitably disturbs it: even a nondemolition measurem
that leaves the system in the state in which it was measu
still typically alters the state of the system prior to the me
surement@15,16#. The ion of the previous example is orig
nally in an unknown coherent superposition of the grou
and excited states. After fluorescence determines whethe
ion is in its ground state or excited state, the initial quant
coherence between those states is irrevocably lost. Seco
coherent control with classical feedback is stochastic: a
result of the measurement the system jumps to one stat
another probabilistically. Although the ability to apply co
herent operations conditioned on the results of measurem
allows the controller to compensate for the probabilistic n
ture of their results, the introduction of stochastic effe
significantly complicates the control process. A thorough a
revealing analysis of stochastic effects in coherent con
with classical feedback in the context of cavity quantu
electrodynamics can be found in Ref.@7#.

While the conventional view of quantum feedback a
feedforward control looks at classical controllers interact
8-3
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SETH LLOYD PHYSICAL REVIEW A 62 022108
with quantum systems through semiclassical sensors and
tuators, there is no reason why sensors, controllers, and
tuators should not themselves be quantum systems. A
ventional digital or operational-amplifier controller does n
preserve quantum coherence. In contrast, recent deve
ments in quantum computing@21,22,25–27# suggest the pos
sibility of controllers constructed of quantum logic devic
that preserve quantum coherence throughout the feed
loop. As will be shown below, controllers that use a quant
feedback loop can perform a number of tasks that control
that use a classical feedback loop cannot. For example,
can use coherent feedback to guide a quantum system
an unknown initial state to a desired final state without
stroying the initial state. In addition, a controller can use
quantum feedback loop to drive a quantum system to a ta
state that is entangled with another quantum system.
tanglement is a nonlocal quantum phenomenon that ca
be created by controllers using classical feedback loops.

B. Coherent control with quantum feedback

The following examples show how coherent quantu
feedback control can be realized using optical or nucl
magnetic resonance techniques, and serve to highlight
difference between coherent control with classical feedb
and coherent control with quantum feedback. The exam
are selected for their simplicity and experimental access
ity. In each example, the system to be controlled is a sim
quantum system such as an ion or nuclear spins. The q
tum controller consists of other simple quantum syste
such as ions, phonons, and nuclear spins that can be ma
interact with the system to be controlled and that can p
form simple quantum-information processing via techniqu
developed for quantum computing. Note that the simplic
of the quantum controllers and their physical proximity
the system to be controlled does not disqualify them as c
trol devices: after all, classical controllers such as a gove
for an engine or an operational-amplifier feedback contro
for an electric circuit are simple devices that are physica
integrated with the systems that they are designed to con
Indeed, the realization that coherent quantum control w
experimentally possible came from the realization that
effective classical controller could be constructed from
single operational amplifier. As will be seen, an effecti
quantum controller can be constructed from a single ion
single nuclear spin.

First, we discuss how an ion in a trap can be subjecte
coherent quantum feedback. Then we turn to an exampl
quantum feedback using nuclear spins.

C. An ion-trap example

First, examine the problem of controlling the state of t
ion in the ion trap using a quantum controller.~Recall that a
quantum controller is a device that exchanges quantum
formation with the system to be controlled; consequently
least part of a quantum controller requires a quantum
scription.! A simple method for creating a quantum contro
ler is to add a second ion to the trap. The ions can be m
to interact by their common interaction with their center-o
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mass vibrational mode. As before, assume that the ion wh
state we desire to control is in the unknown stateuc&, while
the vibrational mode has been cooled to its ground s
u0&m , and the second, ‘‘controller’’ ion has been prepared
the desired ‘‘target’’ stateuf&c5gu↑&c1du↓&c . Just as in
classical feedback control, by adjoining an additional syst
to act as the controller, we have now created a joint syst
controller system, initially in the state

uc& ^ u0&m^ uf&c . ~1!

Now our job is to show that the joint system can poss
superior properties to the system on its own.

The ion can now be controlled to its ground state us
coherent quantum feedback as follows. First, focus light
the system ion and drive a spin-selectedp pulse on
the red sideband as in@26#: this pulse takesu↑& ^ u0&m to
2 i u↓& ^ u1&m and vice versa, while leavingu↓& ^ u0& un-
changed. The joint system-controller system is now in
state

u↓& ^ ~2 iau1&m1bu0&m) ^ uf&c5u↓& ^ uc8&m^ uf&c .
~2!

We see that the quantum information contained in the or
nal unknown stateuc& of the system has been transferr
coherently to the state of the vibrational mode~‘‘coherent
sensing’’!, albeit in a slightly altered form (a→2 ia).

Second, apply the same procedure to the control ion.
straightforward to verify that the joint system-controller sy
tem is now in the state

u↓& ^ ~2 igu1&m1du0&m) ^ ~au1&c1bu0&c)

5u↓& ^ uf8&m^ uc&c . ~3!

That is, this pulse exchanges the quantum information in
mode with the quantum information in the control ion, on
again slightly altering it in the process. Note that the syst
ion is unaffected by this pulse: this step can be thought o
a form of coherent quantum-information processing with
the quantum controller.

Third, repeat the first step. The resulting state is

uf& ^ u0&m^ uc&c . ~4!

This step coherently implants the target state into the sys
ion ~‘‘coherent actuation’’!, feeding back the quantum infor
mation processed in the second step.

The three steps, coherent sensing, coherent quan
information processing within the quantum controller, a
coherent quantum actuation, complete one cycle of a co
ent quantum feedback loop that obtains quantum informa
about the system, processes it, and feeds it back. The
effect of this coherent quantum feedback loop is to excha
the initial unknown state of the system ion with the targ
state initially stored in the controller ion.

D. Discussion

There are a number of salient differences between co
ent control with classical feedback and coherent control w
8-4
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COHERENT QUANTUM FEEDBACK PHYSICAL REVIEW A62 022108
quantum feedback. As noted above, coherent control w
classical feedback is typically stochastic~an element of
chance is introduced by quantum measurement! and destruc-
tive ~the initial, unknown state of the system is irrevocab
destroyed!. Coherent control with quantum feedback,
contrast, is deterministic~each step in the quantum feedba
loop above is completely reversible! and nondestructive~the
initial unknown state of the system can be restored by rep
ing the feedback loop a second time!. In addition, as will
now be seen, coherent control with quantum feedback ca
used to accomplish tasks that coherent control with class
feedback cannot.

E. A spin example

Let us now turn to a second example of coherent quan
feedback, this time using nuclear magnetic resonance. W
the ion trap example above is technically feasible—ion-t
quantum computers loaded with several ions now exist—
still a difficult experiment. In particular, the problem of fo
cusing a laser on one ion but not the other is a hard
~using two species of ion would allow frequency address
rather than spatial addressing!. NMR, by contrast, has show
itself to be a flexible and experimentally accessible parad
for quantum-information processing@44,45#. NMR quantum
computations on three or more quantum bits involving te
or hundreds of steps are now commonplace.

Let us first rephrase our ion example above in the con
of spins. Consider the problem of taking a quantum spin t
is originally in the stateuc&5au↑&1bu↓&, wherea and b
are unknown, and putting it in the stateu↓&. In coherent con-
trol with classical feedback, the controller begins by mak
a nondemolition measurement of the state of the spin~using,
say, a Stern-Gerlach apparatus!, giving u↑& with probability
uau2 and u↓& with probability ubu2. The control algorithm is
as follows: If the result of the measurement isu↓&, do noth-
ing, while if the result of the measurement isu↑&, put the spin
in a static magnetic fieldB and apply an electromagnet
pulse with frequencyv52mB/\ to flip the spin~herem is
the spin’s magnetic dipole moment!. The spin is now in the
stateu↓& as desired.

As before, coherent control with classical feedback
quires measurement: a measurement apparatus is nece
to generate the classical information that the controller ne
in order to perform feedback in the first place. But the fa
that the feedback process is initiated by a measurem
makes coherent control with classical feedback stocha
and irreversible: although the measurement reveals the
of the spin along some axis, it destroys the original coher
superposition.

To contrast coherent control by classical feedback w
coherent control by quantum feedback, consider a quan
controller consisting of a second spin, initially in the sta
u↓&c , that interacts with the first through the usual sca
interaction termgszsz

c @19,20# so that the Hamiltonian for
the two spins is (\/2)(vsz1vcsz

c1gszsz
c), where vc

52mcB/\Þv is the resonant frequency of the controll
spin. Just as in the case of the ion-trap quantum feedb
loop, in which the controller ion interacted with the syste
02210
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ion via their common center-of-mass mode to obtain, p
cess, and feed back quantum information, here the contro
spin will use its scalar interaction with the system spin
enact a quantum feedback loop.

The quantum feedback loop operates by enhancing
spin-spin interaction using conventional double-resona
techniques@19,20#. For example, applying ap pulse with
frequencyvc1g coherently flips the controller spin if an
only if the system spin is in the stateu↑& ~in practice, instead
of a single ‘‘superselective’’ pulse, a series of ‘‘semisele
tive’’ pulses are used to perform such a conditional sp
flipping operation!. In the parlance of quantum computatio
this operation is called a controlled-NOT or CNOT. The two
spins are now in the stateau↑&u↑&c1bu↓&u↓&c . Clearly, the
controller spin has become correlated with the system spi
the sense that measuring the state of the controller
would reveal the state of the system spin. The controlled-NOT

operation has caused the controller spin to obtain quan
information about the system spin.

In addition to inducing quantum correlation between t
system and controller spins, theCNOT operation has dis-
turbed the state of the system spin: initially in the pure st
uc&, the spin is now in the mixed state described by a den

matrix r85aāu↑&^↑u1bb̄u↓&^↓u. The controller spin is in
an identical mixed state. No irreversible measurement
taken place, however. The disturbance can be removed
the correlation undone by applying a second pulse with
same frequency to flip the second spin back again, return
both spins to their initial states. With a quantum feedba
loop, in contrast to coherent control with classical feedba
the disturbance introduced by the sensors is reversible
can be undone by the actuators.

The stateau↑&u↑&c1bu↓&u↓&c exhibits a peculiarly quan-
tum form of correlation called entanglement. Entangl
states are known to exhibit strange, apparently nonlo
quantum effects, the best known of which is the Einste
Podolsky-Rosen~EPR! effect @46–48#. Creating and control-
ling entangled states is a crucial part of new quantum te
nologies such as quantum cryptography, quant
computation, and teleportation@8,9,25–28,32,33#. The inter-
action between the controller spin and the system spin
entangled system with controller. The key point here is t
entanglement cannot be created without an exchange
quantum information. A classical controller cannot be e
tangled with the quantum system it is controlling. Quantu
feedback loops typically create entanglement between
tem and controller at some stage in their operation.

A second coherent interaction between the two spins n
controls the spin coherently to the stateu↓&: simply apply to
the system in stateau↑&u↑&c1bu↓&u↓&c a pulse with fre-
quencyv1g to flip the first spin if and only if the second
spin is up. The state of the two spins is nowu↓&(au↑&c
1bu↓&c). That is, not only has coherent quantum feedba
put the first spin in the stateu↓&, it has coherently put the
second spin in the initial state of the first spin. No stochas
operation has taken place, and the initial state of the c
trolled spin has not been destroyed: rather, it has been co
ently transferred to the state of the controller.
8-5
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F. Comparison

In both the spin and the ion-trap cases, adjoining a sec
quantum system as part of the controller allows one to c
trol the spin in ways that are not possible using a fully cl
sical controller. In contrast to coherent control with classi
feedback, coherent control with quantum feedback is nei
stochastic nor destructive.

Although both the spin and ion-trap quantum feedba
loops accomplish the same task, an exchange of the
known system state with the known target state of the c
troller, they operate in slightly different ways. Most notic
ably, in the ion-trap quantum feedback loop there is a cl
directionality to the transmission of quantum informatio
The quantum information from the system ion is transfer
first to the center-of-mass mode and then to the control
when the quantum information in the center-of-mass mod
transferred to the control ion, the information on the cont
ion is transferred to the center-of-mass mode and from th
is transferred to the system ion. Here, information mo
around the loop in one direction.

In the spin example, by contrast, although at first glan
the first controlled-NOT operation looks like a classic ‘‘sens
ing’’ operation~the sensor changes in response to the stat
the system!, closer inspection reveals that it actually induc
a two-way flow of quantum information, resulting in a sym
metric, entangled state for the two spins. Similarly, the s
ond controlled-NOT operation looks at first glance like a cla
sic ‘‘actuation’’ operation~act on the system conditioned o
the state of the controller!, it also involves a two-way flow of
quantum information that disentangles the state of the
spins and exchanges the initial controller state with the ini
system state. This effect highlights another feature of qu
tum feedback loops: where in quantum control with class
feedback sensing and actuation are two distinct steps
quantum control with quantum feedback sensing and ac
tion are often indistinguishable. A quantum sensoris a quan-
tum actuator and vice versa. Only in certain well-defin
situations, as in the ion-trap quantum feedback loop, i
possible to identify a unidirectional flow of quantum info
mation around the loop. In a typical quantum feedback lo
quantum information flows both ways.

G. Entanglement transfer

The previous examples of quantum feedback loops w
designed to show simply how quantum feedback differs fr
classical feedback, and how the ability of a controller
exchange quantum information with the controlled syst
allows it to perform feedback control of quantum systems
a way that is neither stochastic nor destructive. Quan
feedback loops can accomplish other tasks that are not
sible classically. Before going on to the theoretical desc
tion of quantum feedback, let us look briefly at one su
task, entanglement transfer.

For the sake of compactness, we describe entanglem
transfer only in the case of spin systems. An ion-trap vers
of entanglement transfer could easily be accomplished
adding a third ion to the trap. Here, the goal of the cont
process is to put the system spin in an entangled s
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(1/&)(u↑&u↑&a1u↓&u↓&a) whereu↑&a andu↓&a are states of a
third spin ~the ‘‘ancilla’’ !. As noted above, such states c
readily be produced by making the system spin interact
rectly with the ancilla spin. Suppose, however, that we
not allowed to make the two spins interact directly. It is
well-known fact that if two quantum systems are not e
tangled initially, they cannot become entangled through
exchange of classical information alone@40#. That is, no
classical feedback loop that exchanges information betw
the system and ancilla can entangle them.

By contrast, because of its ability to transfer quantu
information, a quantum feedback loop that mediates betw
the two spins can readily induce entanglement between th
To accomplish the entanglement transfer, prepare the an
spin in the state (1/&)(u0&a1u1&a), then entangle the an
cilla and controller spins by performing a controlled-NOT on
the controller spin with the ancilla spin as control. The thr
spins are now in the state

~au↑&1bu↓&)~1/& !~ u↑&cu↑&a1u↓&cu↓&a). ~5!

Now perform the quantum feedback procedure giv
above, supplementing it by applying a thirdp pulse with
frequencyvc1g to flip the controller spin if and only if the
system spin is in the stateu↑&. It is easily verified that the
final state is

~1/& !~ u↑&u↑&91u↓&u↓&9)~au↑&81bu↓&8). ~6!

That is, the quantum feedback loop accomplishes the goa
producing the desired entanglement between the system
and the ancilla despite the fact that the system and an
spins never interact directly. By contrast, as noted abov
coherent controller that operates by classical feedback ca
drive the system to such an entangled target state with
acting on the third spin directly.

IV. THEORETICAL CHARACTERIZATION
OF QUANTUM FEEDBACK

Control of quantum systems can be accomplished by
ther classical or quantum controllers. A classical controlle
one whose operation can be described classically: it obt
classical information about a quantum system by meas
ment, processes that information using a classical techn
~e.g., classical digital or analog computation!, and feeds the
processed information back to the quantum system via se
classical potentials. In contrast, a quantum controller is
whose operation cannot be described classically: at least
of its functioning involves obtaining, processing, and feed
back quantum information. As demonstrated in the exp
mental examples above, quantum controllers can accomp
tasks such as entanglement transfer that classical contro
cannot.

We now turn to the theoretical characterization of qua
tum feedback. As noted above, the central questions
control theory asks are whether a system is controllable b
particular control method—can it be driven to a desir
state?—and whether it is observable—can the method de
mine the underlying state of the system? In what follows,
8-6
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COHERENT QUANTUM FEEDBACK PHYSICAL REVIEW A62 022108
derive necessary and sufficient conditions for quantum s
tems to be controllable and observable by a variety of me
ods: open-loop coherent control, closed-loop coherent c
trol with classical feedback, and closed-loop coherent con
with quantum feedback. The first two of these methods h
been well studied in the quantum-control-theory literatu
We present results on them merely for the sake of compl
ness and to lay down a mathematical framework for the d
vation of our results on coherent quantum feedback.

A. Open-loop coherent control

First, we review well-known results in open-loop cohere
control. Open-loop controllers act without obtaining know
edge about the underlying state of the system. More p
cisely, the controller is provided with some informatio
about the system’s initial state, but obtains no further inf
mation during the control process. In the quantum case
open-loop coherent controller acts by applying tim
dependent potentials( ig i(t)Hi to the system. Controllability
is the problem of taking a quantum system from some ini
state to a desired final state. A quantum system is open-
controllable if the potentials can be modulated by vary
g i(t) so as to take the system from an arbitrary known ini
stateuc& to a desired final stateucd&. This form of control-
lability is called open loop because the initial state of t
system is assumed to be known, and no measureme
made on the system. The problem of coherent open-l
controllability of finite-dimensional Hamiltonian quantum
systems has long been known to possess an elegant ge
ric solution @1,2,6,10–12#.

Result 1. Coherent controllability: open-loop case. A
quantum system with HamiltonianH is open-loop control-
lable by a coherent controller if and only if the algebraA
generated from$H,Hi% by commutation is the full algebra o
Hermitian operators for the system.

The spin in the example above is open-loop controlla
by a coherent controller since NMR methods allow it to
taken from any given state to any desired state: the alg
generated by the Hamiltonian corresponding to the st
field Bsz and the applied Hamiltonian,Bxsx sinvt can eas-
ily be seen to generate the full algebra of SU~2! by commu-
tation. Result 1 is a quantum analog of the geometric the
of classical nonholonomic control@10–12#. A familiar ex-
ample of a classical nonholonomic control problem is pa
lel parking: a car cannot be driven sideways directly, but c
still be parked by edging first in one direction and then
another. In the quantum case, the algebraA determines what
set of states can be reached by edging the quantum sy
first in one direction, then in another, a method that can
called ‘‘parking Schro¨dinger’s car.’’

B. Closed-loop quantum control: The role of measurement

Now let us turn to closed-loop quantum control. Cent
to any discussion of closed-loop quantum control with cl
sical feedback~‘‘traditional’’ quantum feedback control! is
the role of measurement. As is well known, measurem
plays an important and often problematic role in quant
mechanics@40#. Fundamental difficulties arise in attemptin
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to describe how quantum-mechanical systems interact w
systems that behave in classical ways~the ‘‘measurement
problem’’!. As noted above, quantum measurements are
chastic and destructive, while the underlying dynamics
quantum mechanics is deterministic and reversible. As a
sult, the treatment of measurement in quantum contro
often the most technically difficult part of the control proce
@7#. In particular, even in the case of quantum control w
classical feedback, measurement is not only a sensing
cess, but a stochastic actuation process as well.

The stochastic nature of measurement in quantum
chanics is useful, as well as problematic. For example, n
that the definition of controllability given above for open
loop coherent control is specific to pure initial and fin
states. This is because open-loop coherent control takes
states to pure states. More generally, if the system’s in
state is described by a known density matrixr, then Hamil-
tonian time evolution of the sort described preserves the
genvalues ofr. If a system is open-loop controllable as d
scribed above, then a known initialr can be taken to anyrd
with the same eigenvalues.

To extend this controllability result to unknown initia
statesr and to arbitrary final statesrd , either we must use
open-system techniques such as thermal relaxation, or
must introduce closed-loop control. Control of open, no
Hamiltonian quantum systems will be discussed in furth
work @43#. Here we examine feedback control of quantu
systems. Suppose that the controller can make measurem
on S @for the sake of simplicity, assume that these measu
ments are projective von Neumann measurements; the m
general case of positive operator valued measures@40# will
be considered elsewhere# corresponding to a finite set o
Hermitian observables$Mj% and then apply potentials
( ig i(mj ,t)Hi that depend on the resultsmj of the measure-
ments. Note that, unlike the classical case in which meas
ments can be assumed to be noninvasive in principle, a q
tum measurement typically has a stochastic, coheren
destroying effect on the system measured. A measu
apparatus for a quantum system is not only a sensor, b
stochastic actuator as well. A quantum systemS is closed-
loop controllable if and only if a closed-loop controller ca
take S from an arbitrary unknown initial stater to any de-
sired final staterd . We then have the following result.

Result 2. Coherent controllability: closed-loop case. A
quantum system with HamiltonianH is closed-loop control-
lable to an arbitrary mixed staterd by a coherent controller
with classical feedback if and only if~i! at least one of the
MjÞI ~that is, the controller can make some nontrivial me
surement on the system! and ~ii ! the algebra generated b
$H,Hi% is the full algebra of Hermitian operators for th
system.

For example, the spin above is clearly closed-loop c
trollable by classical feedback using the techniques
scribed. The proof of this result is given in the Append
The ‘‘if’’ part follows because even when one can make
nondemolition measurement of only a single bit of inform
tion, the open-loop controllability of the system allows th
bit to correspond to projections onto arbitrary subspaces;
peated measurements then allow the value of any operat
8-7
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SETH LLOYD PHYSICAL REVIEW A 62 022108
be determined and the system to be guided to a desired
state. To construct a desired mixturerd , the sensors can now
be used as stochastic actuators to destroy the system’s c
ence in a controlled fashion. The ‘‘only if’’ part follows
because, if the system is not open-loop controllable, then
set of states that can be reached conditioned on the resu
measurements is of lower dimension than the Hilbert sp
of the system.

C. Quantum observability

The close relationship between open- and closed-l
controllability for quantum systems has implications for t
related notion of observability. The classical definition
observability must be somewhat altered for quantum syst
since the irreversible disturbance introduced by measurem
implies that no procedure can reveal an arbitrary unkno
initial state of a quantum system. Accordingly, a quant
system will be called observable by a coherent controller
classical feedback if the proper sequence of controls
measurements can be used to observe any desired featu
the initial state of the system. Specifically, the system
observable if the controller can make a measurement
reveals the projection of the original state along any des
set of orthogonal axes in Hilbert space. Result 2 immedia
implies the following.

Result 3. Observability by classical feedback. A Hamil-
tonian quantum system is observable by a coherent contr
with classical feedback if and only if it is closed-loop co
trollable ~proof in the Appendix.!

In the example above, NMR techniques, together with
ability to measure the component of spin along thez axis,
clearly allow one to measure the spin along any axis.
addition, if one can manipulate the spin so as to measu
along any axis, then one can also manipulate it sufficientl
control its state to any desired state, conditioned on the re
of the measurement.

D. Coherent control with quantum feedback

Now turn to coherent control with quantum feedbac
Here our controller possesses a quantum subsystem tha
be made to interact with the quantum system to be c
trolled. This interaction allows the system to exchange qu
tum information with the controller. The exchange of qua
tum information is not possible when the controller
classical. In addition, we may be able to apply coherent c
trol as above, applying quantum potentials to the system
the quantum subsystem of the controller together.

A quantum system will be said to be controllable by fu
quantum feedback if there is some initial state for the c
troller ~possibly entangled with the state of another quant
system!, a sequence of interactions with the controller an
sequence of applied semiclassical potentials that takes
system from some initial stater to a desired final staterd
which can also be entangled with another quantum syste

More precisely, to allow the exchange of quantum info
mation between system and controller—quantum feedbac
some of the applied potentials that make the system inte
with a quantum controller are coherent interactions of
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form ( ig i(t)HSC
i where HSC

i are Hermitian operators tha
couple the system to the controller andg i(t) is a coupling
constant that can be turned on and off to make the sys
and controller interact.~Alternatively, theHSC

i can be ‘‘on’’
all the time, and suitable ‘‘bang-bang’’ controls applied
the system and controller to effectively turn the couplings
and off @37#; the mathematical exposition is similar for bo
cases and so only the time-dependent interactions will
treated here.! For an interaction to allow the exchange
quantum informationHSC

i cannot equal eitherHS
i

^ I C or
I S^ HC

i , whereI is the identity operator: otherwise the inte
action reduces to coherent control by the application of se
classical potentials as above. As noted above, for a quan
controller, there is no fundamental distinction between s
sors and actuators: an interaction that can function as
actuator can also function as a sensor, and vice versa.~Of
course, some interactions are more useful for sensing fu
tions and some are more useful for actuation.!

Assume that the quantum part of the controller has a H
bert space of large dimension, and that it itself is controlla
by coherent open-loop control as in Sec. IV A above. L
$Oi5trCHSC

i rC% be the set of Hermitian operators that c
act on the system given different statesrC for the controller.
We then have the following result~proof in the Appendix!.

Result 4(a). Quantum controllability (a). A quantum sys-
tem with HamiltonianH is controllable by fully quantum
feedback if and only if the algebraA generated from$H,Oi%
by commutation is the full algebra of Hermitian operators
the system.

More generally, we have the following.
Result 4(b). Quantum controllability (b). A quantum sys-

tem is controllable by fully quantum feedback if and only
the system together with the quantum part of the contro
are controllable by coherent control.

Results 4~a,b! follow directly from the theory of open
quantum systems taken together with the control conce
introduced above@27,40–42# @note that we are assuming th
the quantum part of the controller has a dimension large~at
leastN2) compared with the dimension~N! of the system’s
Hilbert space and that the controller is coherently contr
lable on its own#. Results 4~a! and 4~b! for coherent control
using a quantum feedback loop correspond to results 1 a
for coherent control using a classical feedback loop. T
equivalence between quantum sensors and quantum a
tors implies that when a quantum controller acts on a qu
tum system it almost invariably gets information about t
system, and vice versa. As an example of results~4!, the
two-spin quantum controller in the example above is clea
capable of controlling the other spin to any desired sta
entangled or not.

Just as in the case of coherent control with classical fe
back, care must be taken in defining observability for coh
ent control with quantum feedback: the controller is no
classical device that makes measurements on the system
a quantum system in its own right that becomes correla
with the system. No irreversible measurement ever ta
place. A quantum system will be said to be observable b
quantum controller if the initial state of the system, togeth
8-8
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COHERENT QUANTUM FEEDBACK PHYSICAL REVIEW A62 022108
with all its entanglements with any other quantum syste
can be transferred to an analogous state of the controller.
controller can then use this transferred state as the target
to which to control some other quantum system. This fun
mentally quantum definition of observability is the natu
converse to the quantum definition of controllability in res
4. Given results 1–4, the following result should come as
surprise.

Result 5. Quantum observability. A Hamiltonian quantum
system is observable by a quantum controller if and only
is controllable by the controller.

Proofs of results 4 and 5 are given in the Appendix.
the example of the three spins shows, an interaction wi
quantum controller that puts a Hamiltonian system in a
sired state necessarily transfers the initial state or the sys
together with its entanglements, to an analogous final sta
the controller. As noted above, control of a quantum Ham
tonian system using a classical feedback loop cannot in g
eral determine the initial state of the quantum system. Si
the controller is classical, the quantum state of the sys
certainly cannot be transferred to an analogous classical
of the controller.~It is interesting to note, however, tha
when a classical Hamiltonian controller controls aclassical
Hamiltonian system using a classical feedback loop,
original state of the system is necessarily transferred to
controller.!

V. CONCLUSION

This paper explored the properties of coherent control
ing both classical and quantum feedback, and gave neces
and sufficient conditions for controllability and observabili
of Hamiltonian quantum systems in a variety of settin
Conventional coherent control of quantum systems by c
sical feedback involves the acquisition and processing
classical information. A quantum feedback controller,
contrast, acquires and processes quantum information. Q
tum information, measured in quantum bits or ‘‘qubits,’’ ca
ries quantum phase information as well as classical infor
tion. A controller that feeds back quantum information c
perform tasks, such as entanglement transfer, that contro
that feed back classical information cannot perform. The
tential experimental realizations of quantum controllers d
cussed here were based on nuclear magnetic resonance
paper’s results could also be realized using quantum lo
devices such as ion traps@22#, high-Q cavities in quantum
optics @7,21,23#, and quantum dots@49#. The ‘‘all-optical’’
control proposed in Ref.@7# is a specific example of coheren
quantum feedback control in a quantum optical setting.

Although the difficulty of constructing quantum contro
lers is likely to limit their application initially, such control
lers could play a key role in the development of quant
technologies such as quantum computation and quan
communications. The work of Ramakrishna and Rabitz@6#
has pointed out the close relationship between the open-
geometric quantum control methods described above and
construction of quantum logic gates detailed in Refs.@50#,
@51#. Indeed, the recently reported experimental results
quantum teleportation@34# represent applications of quantu
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feedback control~in these experiments, entangled states
combined with a classical feedback loop to transfer quan
information!. Quantum controllers could have application
a variety of problems, including problems with classical an
logs such as trajectory control, and problems with no cla
cal analog such as preventing decoherence. As the theo
quantum error correction shows@31#, strategies for distur-
bance rejection are harder to devise for quantum syst
than for classical. However, in the same way that polariz
light allows one to observe effects that are not access
with unpolarized light, entangled states generated and
nipulated by quantum controllers might be used to all
more efficient observation and control of a variety of sy
tems. A particularly important open question is the exten
which the controllability and observability results report
here for Hamiltonian quantum systems can be extende
open quantum systems.
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APPENDIX: PROOFS OF RESULTS 1–5

1. Coherent control: Open-loop case

A quantum system with HamiltonianH is open-loop con-
trollable by a coherent controller if and only if the algebraA
generated from$H,Hi% by commutation is the full algebra o
Hermitian operators for the system.

This quantum-control result follows from well-known re
sults in classical geometric control theory@1–4,10–12#: a
simple demonstration is given by Ramakrishnaet al. @6#.
~Note that the many-particle version of this result is a fund
mental result in quantum computation@50,51#: since almost
anyHi together withH generates the full algebra of Hermi
ian operators, almost any quantum logic gate is univers!
The proof is straightforward. The system is open-loop co
trollable if and only if one can generate any unitary opera
UPU(N) whereN is the dimension of the Hilbert spaceH
of the system. By assumption, one can apply a tim
dependent Hamiltonian of the formH(t)5H1( ig i(t)Hi ,
where theg i(t) can be picked by the controller. That is, on
can construct any unitary time evolution of the formU
5T exp@2i*0

t H(t8)dt8# whereT is the time-ordering opera
tor. Expanding the exponential in a power series yields
usual expression

U512 i E
0

t

dt1H~ t1!2E
0

t

dt1E
0

t1
dt2 H~ t1!H~ t2!1¯ .

~A1!

Substituting the explicit expression forH(t) into Eq. ~A1!
and then normal-ordering terms in the orderH,H1 ,H2 ,...
8-9



th

k
ire
ca
e

-
ll
be

es

a

u-

ed

th

s
w
st
a
tra
m
p

he

be

he
-

ul

m

a
y

m

ea-
tem
t, get
l-

te

ent

d-

, as
of

the

ller

es
ure

f

ve,

n is
n

e
ol-

er-
is

t
t a
the
d
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shows that one has sufficient leeway in the choice of
momentŝ g1

m1g2
m2
¯& to construct anyU of the forme2 iHt ,

whereHPA.
An interesting related question is that of trajectory trac

ing: can one make the open-loop system follow any des
trajectory in Hilbert space? The answer to this question
be given by creating a quantum version of Sussman’s th
rem @11,12# for the small-time local controllability of classi
cal nonholonomic systems. A sufficient condition for sma
time local controllability of a quantum system is that one
able to apply not merelyHi , but 2Hi as well: in addition,
one must be able to cancel out all ‘‘bad brackets,’’ expr
sions of commutators of theHi in which eachHi appears
with even multiplicity ~i.e., 0, 2, 4, etc., times!. That is, for
the system to be small-time locally controllable, the b
brackets must be linear combinations of good brackets
lower order. If in addition the system has drift from its nat
ral Hamiltonian H, one must be able to cancel outH by
applying theHi as well.

2. Coherent controllability: Closed-loop case

A quantum system with HamiltonianH is closed-loop
controllable by a coherent controller using a classical fe
back loop if and only if~i! at least one of theMjÞI—that is,
the controller can make some nontrivial measurement on
system—and~ii ! the algebra generated by$H,Hi% is the full
algebra of Hermitian operators for the system.

As noted in the paper, the ‘‘if’’ part of this result hold
because the open-loop controllability of the system allo
one to make any nondemolition measurement, even of ju
single bit of information, function as a nondemolition me
surement that discriminates between members of an arbi
basis$uej&% of pure states for the Hilbert space of the syste
To see that such a nondemolition measurement can be
formed, let$uej&% be a basis with respect to which one of t
measurement operatorsM is diagonal: M5(kmkPk ,
wherePk is a projection operator onto thekth eigenspaceHk
of M, Pk5( uek&PHk

uek&^eku. If each of theHk is one dimen-

sional, thenM already discriminates between the$uej&% per-
fectly, and one can implement the control strategy descri
in the next paragraph. If some of theHk are multidimen-
sional, M can still be made to discriminate between t
$uej&% perfectly by measuringM, using the open-loop con
trollability of the system to applyU1 where U1uej&
5uej 11& if j ÞN5dimH, andU1ueN&5ue1&, and then mea-
suringM again. SinceU1 cyclically permutes theuej&, after
at most N measurements, the sequence of res
mk1

mk2
¯mkN

obtained completely determines whichuej&
the system is in, and the net result is to perform a nonde
lition measurement that discriminates between the$uej&%. To
make a nondemolition measurement corresponding to
other basis$uej8&%, simply use the open-loop controllabilit
of the system to apply aUe8e that mapsuej8&→Ue8euej8&
5uej&, then make a nondemolition measurement to discri
nate between the$uej&% as above, and then applyUe8e

21 to map
uej& back touej8&.
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As long as one can perform such a nondemolition m
surement, a simple control strategy suffices to put the sys
in a desired pure state. First, make such a measuremen
the resultuej& for somej; second, use the open-loop contro
lability of the system@guaranteed by condition~ii !# to con-
struct aU that takesuej&→Uuej&5ucd&. If the desired final
state is a mixed staterd , first write rd in diagonal form:
rd5( j pj ux j&^x j u. Then prepare the system in a pure sta
uc& such thatz^cux j& z25pj . Finally, make a nondemolition
measurement corresponding to$ux j&%. The result is the state
rd . This proves the ‘‘if’’ part of result 2.

To prove the ‘‘only if’’ part of result 2, we show that if
either condition~i! or condition~ii ! is false, then the system
is not controllable. If~i! is false, then the system is trivially
uncontrollable, as the controller can make no measurem
on the system at all. Suppose then that~i! is true but~ii ! is
false, i.e., the algebraA generated from$H,Hi% by commu-
tation is not the full algebra ofN3N Hermitian matrices for
the Lie groupU(N), but rather some subalgebra correspon
ing to a subgroupŨ,U(N). The controller then can drive
the system to any pure state of the formVumk

j &, whereV

PŨ and umk
j & is the kth eigenstate ofM j , and to no other

states. The system is controllable if the set of states$Vumk
j &%

is in fact the set of all pure states for the system. However
we now show, the system can only be driven to a manifold
states of dimension strictly less than the dimension of
manifold of all states. Accordingly, if~i! is true but~ii ! is
false, the system is not controllable by a coherent contro
using classical feedback.

In particular, if ~ii ! is false, the set of reachable stat
cannot include all pure states. The set of all normalized p
states constitutes a (2N21)-dimensional manifold over the
real numbers~i.e., the surface of anN-dimensional sphere o
radius 1 over the complex numbers!. But if Ũ is a strict
subset ofU(N), then the set of points generated byVuej&,
VPŨ and uej& a member of an orthonormal basis as abo
is a set with dimension strictly lower than 2N21; otherwise,
the algebra ofŨ would contain operators of the form
uej&^eku1uek&^ej u, i uej&^eku2 i uek&^ej u for arbitrary k. But
the algebra generated by these operators by commutatio
the full algebra ofU(N), in contradiction to the assumptio
thatŨ was a strict subgroup ofU(N). The set of states of the
form Vumk

j & for a finite number ofmk
j therefore constitutes a

manifold of states with strictly lower dimension than th
manifold of all pure states, and the system is not contr
lable. This proves the ‘‘only if’’ part of result 2.

3. Observability by a coherent controller
using classical feedback

A Hamiltonian quantum system is observable by a coh
ent controller using classical feedback if and only if it
closed-loop controllable.

The ‘‘if’’ part of result 3 follows immediately from the
proof of the ‘‘if’’ part of result 2: part of the proof of resul
2 showed how conrollability could be used to construc
nondemolition measurement that discriminates between
members of any desired basis. The ‘‘only if’’ part is prove
8-10
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as follows. From the proof of result 2, it is clear that, if th
system is not closed-loop controllable, the set of meas
ments that can be made consists of measurements that c
built up of repeated nondemolition measurements co
sponding to operators of the formVMjV

† for someVPŨ
and for someM j . However, the proof of the ‘‘only if’’ part
of result 2 above shows immediately that such measurem
can discriminate only between sets of orthogonal states
can be mapped to the eigenstates of theM j by someV

PŨ. But by the same argument as in result 2, the se
states that can be so mapped to any givenumk

j & constitutes a
manifold of states with strictly lower dimension than th
manifold of all pure states. As a result, almost all states~a set
of measure 1! are members of bases between whose m
bers the controller cannot distinguish. So if the system is
closed-loop controllable, then it is not observable.

4. Quantum controllability

A quantum system with HamiltonianH is controllable by
a coherent controller by fully quantum feedback if and on
if the algebraA generated from$H,Oi% by commutation is
the full algebra of Hermitian operators for the system.

Result 4 can be proved by applying result 1 for the op
loop controllability of Hamiltonian systems to the joint sy
tem consisting of system and controller taken together.
simply construct the algebra of available operations and
what transformations it allows the controller to perform.

In the absence of the applied interactions( ig i(t)HSC
i the

system and controller evolve according to a Hamilton
H ^ I 8% I ^ H8, whereH8 is the Hamiltonian for the control
ler and by assumption can be chosen at will. By result 1,
set of joint time evolutions for the system and control
taken together is given byU5e2 iAt whereAP the algebra
generated by$H ^ I 8% I ^ H8,HSC

i % via commutation. Conse
quently, as long as one of theHSC

i interactions is nontrivial in
the sense described in the text, by varyingH8 and the initial
state rC of the controller and by judiciously varying th
g i(t), we can obtain any operator in the algebraA^ A8,
whereA is the algebra generated from$H,Oi% by commu-
tation, and whereA8 is the full algebra for the controller
~Recall that$Oi5trCHSC

i rC% is the set of Hermitian operator
ica
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that can act on the system given different statesrC for the
controller.!

The ‘‘if’’ part of result 4 now follows because ifA is the
full algebra of Hermitian operators for the system, then
result 1 it is possible to arrange any desired joint unita
evolution for system and controller. In particular, it is po
sible to generate a unitary evolution that exchanges the s
of the system with the state of the register in the contro
that holds the desired staterd , which may be entangled with
some other system: i.e., the operation that takesr ^ rd
→rd^ r is clearly unitary, and so can be generated by
proper schedule of interactions between system and con
ler. This proves the ‘‘if’’ part of result 4.

The ‘‘only if’’ part of result 4 follows because, ifA is not
the full algebra for the system, then the set of transform
tions for the system and controller together does not allow
arbitrary transformation of the state of the system. In parti
lar, no schedule of interactions can apply the transforma

e2 iĀt to the initial state of the system, whereĀ¹A. This
proves the ‘‘only if’’ part of result 4.

5. Quantum observability

A Hamiltonian quantum system is observable by a coh
ent controller using quantum feedback if and only if it
controllable by the controller.

The ‘‘if’’ part of result 5 follows directly from the proof
of the ‘‘if’’ part of result 4: the same schedule of interaction
between controller and system that transfers the desired
from the controller to the systemipso factotransfers the state
of the system, together with all its entanglements, to
controller. The ‘‘only if’’ part of result 5 follows from the
‘‘only if’’ part of result 4. The set of transformations that ca
be effected by the quantum controller consists of unitary
erators for system and controller that lie in the Lie gro
corresponding to the algebraA^ A8. If the algebraA is not
the full algebra for the system, then such operations do
allow the controller to distinguish between two statesuc& and

uc8&5V̄uc&, whereV̄5e2 iĀtPU(N)/Ũ. As a result, if the
algebraA is not the full algebra for the system, then th
system is not observable by the quantum controller. T
proves result 5.
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