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Functional approach to quantum decoherence and the classical final limit
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For a wide set of quantum systems it is demonstrated that the quantum regime can be considered as the
transient phase, while the final classical statistical regime is a permanent state. A basis where exact matrix
decoherence appears for these final states is found. The relation with the decoherence of histories formalism is
studied. A set of final intrinsically consistent histories is found.

PACS numbd(s): 03.65.Bz

I. INTRODUCTION (a) Statistical processNamely the limitstatistical quan-
tum mechanics— statistical classical mechanicghere the
Following the idea that the interplay of observables andphenomenon oflecoherence&eombined with the disappear-
states is the fundamental ingredient of quantum mechanicsince of the uncertainty relations in the limit-0, originates
we have developed a papgt] where we have studied the the classical final stationary state. Almost all of the paper
relation of the state vectorsp of a close isolated quantum il be devoted to this problem. We will see how when
system(that belong to a convex set of stai€ to theob- . the quantum system reaches a classical final stationary
servables Qwithin this closed systerithat belong to a space state), (q,p), where the statistical dynamics is trivial, since
of observables?). We consider that the essence of this re-, (4 by is time independent, but the systems of the en-
lation is the mean value of an observal@ein a statep,

o . semble move according to the nontrivial laws of classical
which is given by the equation:

dynamics. In general we will have an unlocalized statistical
classical state of many identical systems moving in phase
space.

In fact at the statistical level what we actually measure in an (b) Localization processit is the evolutionstatistical

ensemble of identical states, are these kinds of average§assical mechanics-classical mechanicsn some special

since we cannot either measure directly the spate mea-  CaS€S the evolution privileges a single space-time trajectory,
sure it with an infinite precisiofi3]. Moreover, these aver- N such a way that all trajectorie@ndowed with a non-
ages can be considered, as in the r.h.s. of(Eqg.the result negligible positive probabll_ltyconcentrat(_a ar_ound 3tin this

of a linear functional f| € S acting on a vectofO) e O, and ~ case we will _ha_lvecorrela_tlons and localization. Then we _
therefore we can say th&C ©’, being®’ the dual of space have the .statlst|cal classical state of a}ll the systems practi-
O. While for the usual state@mixed or purg we can use cally moving along the same trajectory in such away that we
Tr(pO), there aregeneralized statethat can be defined as May consider that we are dealing wittsiagle classical sys-
the functional p|O) as explained in earlier papdi®]. Many €M We will discuss this process in Sec. IV and Appendix B.

results were obtained using this formali¢see, e.g.[2], [4], The usual technique to solve these problems is coarse
[5]). graining. But in our method we will consider not only the

In this paper we will use the formalism of that in REZ] coarse-graining average alt possible averages made using
to study the so-called “classical limit problem,” namely, the the observables of spad@, thus we are generalizing the
statistical quantum mechanics classical mechanicmit ~ coarse-graining idealn fact, among the observables 6f
that appears in some quantum systems when observed usiltfre are some that, from the density matix take into
certain spaces of observablés For conceptual reasons we account only some componegyt, the so-called relevant part
will divide the problem in two different processéwhich  Of p, and completely neglect the complementary component

may or may not happen simultaneoysly pi, the so-called irrelevant part @i, i.e., these observables
only measurgmacroscopit properties of what it is consid-

ered as the “system’(contained inp,) and neglect or aver-
age the(microscopi¢ properties of the “environment(con-

tained inp;). But we will consider not only this kind of
observable but all observablesdh Therefore the interplay-

(0),=Tr(pO)=(p|0). oY)

tAccording to W. Zurek, “The only sensible subject of consider-
ation aimed at the interpretation of quantum tlyear. is therela-
tion between the universastate vectorand the state memory
(record$ of somewhat special system—suchaiservers—which
are, for necessity, perceiving the Universe from within. It is the
inability to appreciate the consequences of this rather simple but?in some cases this phenomenon does not happen for all the sys-
fundamental observation that has led to such desperate measurestass but only for a subsystem.
the search of an alternative quantum physids’ 3At least the “coarse graining” as Zurek describes.
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ing of observables and states will take the role of the coarsthe essence of the transiti¢a), since the above relation will
graining in this papefsee also the end of Sec. NAWVith this  be valid for all observables of the CSCO and we will have
strategy we can not only obtain all the old results, but also (@ (cl)

we will find some new ones. <O>p _><O>p : ()

We will use this method to study the process and to  f this transition takes place, Boolean logic is established in
prove that certain quantum systems evolve from a statisticahe statistical classical system, if we perform the measure-
quantum state to the statistical classical final stationary statgnent with the observables of the preferred CSCO. In the
In the same framework we will study the procébsobtain-  usual parlance we will then say that the density matrices that
ing the classical motion of a single system. contain quantum interference terms become diagonal, in

The paper is organized as follows. In Sec. Il we will see,such away that these interferences are suppressed. Then the
using the Riemann-Lebesgue theorem, that transit@n quantum way to find probabilities of exclusive and exhaus-
takes place in close systems endowed with a continuouve alternatives, i.e., adding the corresponding amplitudes
spectrum and with just one bound std#s in the classical and computing the norm, becomes the classical Boolean
mixing systems More general cases will be considered inWay, just adding the probabilities. _ o
Sec. Il C. The main characteristics of the quantum laws are (i) In this paper decoherence is essentially studied in sys-
(1) the non-boolean nature of the way to find the probabilityl€ms with continuous spectrum. The case of the discrete
of two exclusive eventéthis probability is the square modu- spectrum, and the causes of decoherence in this case, are

lus of the sum of their amplitudes and not the sum of thediscussed in Sec. Il C. .
probabilities; (2) the uncertainty relations (iii) In the case of the continuous spectrum the essence of

. S " .
In the evolution from quantum mechanics to classical staﬁzrr? dethgdcglth_e foﬂovymt%elb € Rofalge t?g) e.'sggnfvar‘llgt?gn()f
tistical mechanics the first characteristic disappéarsi the w o=, Mep,, OTE]. (2 1S a funcl

. P . p(v, ...). Then the time limit of its evolution is given by
Boolean method of adding probabllmeg IS estab!ls)mydthe the Riemann-Lebesgue theorem, which prescribes that
process ofdecoherencend the uncertainty relations can be

neglected in the limi;—0. Then we can use the laws of . Cint
classical statistical mechanicat this stage four remarks are 1“m 7ae p(v,...)dv=0 (6)
in order. o

(i) Using our language the generalized idea of decoherif ,(y, . . .) isintegrable. All the diagonal terms/&0) and
ence can be introduced in the following way. At the quantumg| the off-diagonal termsi# 0) vanish. Therefore this theo-

level the averagél) reads rem cannot be used as a computation method in the case of
continuous spectrum. Nevertheless when we consider the
<O>(q): 2 PowOur ) problem within a cube of size, we definep,,, there, and
p ww . .
00 when we maké.— oo, it can be shown that drgyular struc-

ture appears forp(v, ...) and thecorresponding singular
wherep,,,» andO,,, are the components in some basis ofdiagonal term remains as it should. The method introduced
the operatorsp and O, respectively. Equatiori2) can be in paper[2] is precisely designed to rigorously deal with
considered as the average of some quantligs: weighted  these singular structures. It has yielded good results in papers
by some generalized correlatiops,,, (since thep,, are  [2], [5], [4].
probabilities but the,,,, with 0 # o', are quantum corre- (iv) Before the classical stationary state limit is reached
lations. On the other hand, at the classical level we alsaysually the system goes through a “classical phase” where
have some quantitieS,, that correspond to a s¢b} of the  the state can be considered as classical but it is not yet in its

exhaustive and exclusive alternatives, each one wiBoal-  final classical stationary state. But our method can only be
ear) probability p,, of measurew for the observabl®©. The  used whert—. It only allows to find the “statistical clas-
corresponding classical weighted average is sical final limit.” So, we essentially study this final station-
ary state but we believe that our method can be generalized
<O>(cl):2 p,O 3) to cover _the _classical phase before_: the final stationary state,
P i so we will discuss these matters in Sec. V. Moreover, we

believe that the understanding of the final limit will enhance
whereX p,=1. The transition from the quantum phase tothe chances to understand the much more difficult problem

the classical one is therefore of the classical phase, in the clearest and concise way.
In Sec. lll we reach to the principal aim of the formalism
E E of transition(a), which is to create a bridge between quantum
pww’ow’w% pwo (4) : : :
oy - and classical mechanics, precisely between quantum me-

chanics and classicatatistical mechanics at equilibrium.
at least for som®, which belong to a preferred subspace of We know that the uncertainty relations disappear, when
O (i.e. to a subspace expanded by a complete set of commut-0 (more precisely when the characteristic dimension of the
ing observable(CSCO that we will define below; the system makeé a negligible quantity Then, let us consider
eigenbasis of this set will be the so-callBdal pointer ba- a system where the quantum state is defined by a density
sig). If in (4) we takep,,=p, andO,,=0,, the matrix matrix p, and a set of classical trajectories in phase space
Pwe’ Must become diagonal in the final pointer basis. This idabeled by some constamtgl{, ... |y, a1, .. .,ay, Where
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X corresponds to the energly,, ... |y to other dynamical
momentum variables, andy, . .. ,ay to configuration vari-
ables. The aim of the theory {§) to transform the matriy

into a classical density function in phase spa¢e,p) when
i—0, (2) to decompose(q,p) as
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continuous spectrum is, let says@<c (how the discrete
spectrum behaves in the continuous limit can be seen in the
papers of[7], [8]). Eventually we will give the collective
namex to bothwy andw. Let us assume that it is possible to
diagonalize the Hamiltoniahl, together withN observables

O; (i=1,... N). The operatorsH, O4, ...,0y) form a
complete set of commuting observabl&SCO. For sim-
plicity we also assume a discrete spectrum forkhebserv-
ablesO; . Therefore we write

(7
H=w0% |w0,m><w0,m|+Jo w% |w,m){w,m|dw,
(8)

é/vhere we<0 is the energy of the ground state, and
m={m, ...,my} labels a set of discrete indexes, which are
the eigenvalues of the observable®,,...,0Oy.
{lwg,m),|@,m)} is a basis of generalized eigenvectors of the
CSCo:

whereq and p are the position and momentum coordinates
and the classical densitie@h ,,,,, Iyoage .. aN(q,p) would

correspond to each classical trajecfolip the classical sense
that it is peaked in the trajectory and thus it rapidly vanishe
when going from the near vicinity of the trajectory to the far
zones of the phase spacand Px.I, ay is the

probability of each trajectory.

We will obtain (when7 —0) these results as followsl)
p(q,p) will be the Wigner function corresponding to the
matrix p; (2) pxi,, ... 1y .a;....ay(d:P) Wil be the Wigner
functions of the wave packets going along the classical tra-
jectories labeled by the constant of the motighy, ... ||y,
and passing by the initial point of coordinates, . . . ,ay. The most general observable that we are going to consider in

We will see that all this happens after a convenient decoour model reads:
herence time and we will obtain the last expandioh Eq.
(42)] and therefore what we consider the best bridge between
classical and quantum statistical concepte pape6] for a
very similar conclusiohn

We will devote Sec. IV to discuss transitigh), namely
the localization process. Eventually in some cases this pro-
cess takes place antbrrelations appear and we reach a
single classical state if the localization process is efficient
enough. Then we can use the lawsotdssical mechanics
This phenomenon happens if the dynamic of the system and
the initial conditions are such that some canonically conju-
gated variables correlateee Appendix B We will see how
this fact can be incorporated in our formalism. We will draw
our main conclusions and comments in Sec. V.

Appendix A is devoted to compare our results with those
in the literature. In Appendix B we deal with correlations and
localization. Finally, in Appendix C we translate the results
into the language of usual decoherence of histories.

H|wg,my= wolwg,m), H|w,my=w|w,m),

Oj|wg,m)=mj|wg,m), Oj|w,m)=mj|w,m).

0= 2, O(wo)mn|@o,m){wo,m'|

mm’

—I—Z J doO(®)mm |@,m){w,m’|
mm’ Y0

-I-E J dwO(w,®o) mm | @, My wg,m’|
mm’ Y0

+ > J dw’'O(wg, " )mm |we,M){w’,m’|
mm’ Y0

+E J f dode’O(w,0")pw|e,m){w’,m’|,
mm J0 JO

9

where O(w)mm, y O(w,wo)mmr y O(wo,w)mmr y and
O(w,w")mny are ordinary functions of the real variables
andw’ (these functions must have some mathematical prop-
erties in order to develop the theory; these properties are
. ) listed in[2]). Namely, the most general observables have a
Let us consider an isolated quantum system Wth1  gingular componentthe second term of the r.h.s. of the last
dynamical variables and a Hamiltonian endowed with a CONgquation and a regular partall the other terms If the sin-
tinuous spectrum and just one bounded state. So the discreégbr term would be missing the Hamiltoni&8) would not
part of the spectrum oH has only one valuas, and the  pejong to the space of the chosen observaféswWe will
say that these observables belong to a sgac&his space
has the basis {|wg,mm), |o,mm), |wwy,mm),
|wow’,mm’), oo’ ,mm’)}:

II. DECOHERENCE

A. Decoherence in the energy

“The dimension of the phase space considered i+21). Then
there are 4+ 1) momenta andN+ 1) coordinates. Sbl+ 1 is the
number of parameters necessary to label the momenta of the C|a§mo,mm')i|w0,m)(wo,m’|,
sical space-time trajectories, ahdlthe number necessary to label
the origins of the trajectories.

|w,mm’)=|w,m){w,m’|,
lowe,mm’)=|w,m){wy,m’|,
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wow’,mm)=|wy,M{w’,m’][, o
o )= lao,myto’ (=2 p(wo)mmt 2 Jo dop(@)mm=1, (14
oo’ ,mm')=|w,m}{w’,m|. (10

where | =2 | oo, MY wg,m|+ [gdo= | o,m){w,m| is the
The quantum states are measured by the observables justidentity operator inD. Equation(14) is the extension to state
defined, computing the mean values of these observables fanctionals of the usual condition B =1, used whem is a
the quantum states, i.e., in the usual notatiq®),  density operator.
=Tr(p'0) [3]. These mean values, generalized as in paper The time evolution of the quantum staiereads
[2], can be considered as linear functionalsmapping the

vectorsO on the real numbers, that we can cal|@) [9]. In p(t)= 2 p(@0) mmy (g, M|

fact, this is a generalization of the usual mean value defini- mn'

tion. Thenpe SCO’, whereS is a convenient convex set o

contained in®’, the space of linear functionals ovér[10], + f dwp(®)mm (0, mm’|
[11]. The basis of®’ (that can also be considered as the mm’ /0

co-basis of O) is {(wg,mM|, (w,mm|, (wwy,mmn’|, m _
(wow',mm'|, (ww’,mm'|} defined as functionals by the +> f dwp(®,00)mm €@ P wwy,mn|
equations: mm’ JO
(a)o,mm,|wo,nn,):5mn5m/nr, + 2 f dw’p(wo,w’)mm,ei(“’of“’,)t(wow',mm’|
mm’ 40

(0,mm'[7,nn")=6(w=7) SnnSmn »

+E f dwf do'p(w,0")nmw
mm’ J0 0

xe @ e we' mm| (15)

(wwg,mm | pwy,nN")=8(w— 1) Smndmn'» (1)

(wOw,!mm,|wO77’!nn,):5((‘),_77,)5mn5m’n’a .
The mean value of an observalilein a quantum statg

(wo' ,mm g7 ,nn")=8(w—7)8(»' = 5") Sxndmn’ reads

O =(p(1)|O

and all other (|.) are zero. In particular we have (0)y=(p(1IO)
(a)o,mm’|0)=O(w0)mmr=<w0,m|0|w0,m’) (12) :n%, p(wo)mm’o(wo)mm'

for any O e O. But (w,mm’'|O)=0(w) iS Not equal to L —
(@,m|O]w,m"), which is not even defined i is given by + E, 0 dop(w,0")mmw O(@)mar
Eq. (9). Therefore ,mm'| can only be considered as a mm

functional, being a typical generalized state. Then, a generic © L — e
y ’ (a) , )t
quantum state reads ﬂ%{ o dop(w,00)mwe" ™ " O(w,wo)mny
p=2 p(@0)mmr(wo,mm'| + 2 f do’p(wg, @) e @0~
mm’ mm’ 70
+E J dwp(w)mm’((’)vmm,| XO(wOaw,)mm’+E f dwf do’p(@,0")mn
mm' JO mm’ 40 0

0 , Xei((l)*w’)to (l),wl . 16)
+ E JO dop(w,wq) (@, mm | ( Jmm (
mm’

Using the Riemann-Lebesgue theorem we obtain the weak
limit, for all Oe O

—I—E J do'p(wg, ") mm (@’ ,mm'|
mm’ Y0

|im<O>p(t)=<O>p*, (17)
t—oo
+ 2 J de do'p(w,0") (0o’ ,mm'|, where we have introduced the diagonal asymptotic or final
mm’ <0 0 stationary state functional

13

— — _ = (0o, mmf
where p(wg)mm and p(w)mm are real and non-negative, px=2 plwolmm(wo |

bl mm’
p(@,®0) mmy = p(@0, @) m'm, and P(wyw,)njm’ -
:p(a)’,w)mrm . Moreovel’,p(wo)mm/ and p(w)mm/ SatISfy 4 E f dwp(a))mm/(a),mm’|. (18)
the total probability condition mm’ J0
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Therefore, in a weak sense we have wherer andm are short notations for={r,, ... ry} and
m={my, ... ,my}, and[U(x) " 1]m=U(X)m (X denotes ei-
ther wy<0 or we R™).

WIimp(t)=p, . (19 The new basig$|wg,r),|w,r)} verifies the generalized or-

t—oo

thogonality conditions

. L <w01r|w01r,>:5rr’7 <w,r|a)',r’>:5((1)—(u’)5rr/,
Thus, any quantum state weakly goes to a linear combination

of the energy diagonal states{,mn’| and (@,mm’| (the (wg,r|w,r"y=(w,r|wgy,r')=0.
energy off-diagonal statesw@y,,mm'|, (w0’ ,mm’|, and . _ .
(ww’,mm'| are not present i, ). This is the case if we It is easy to obtain the components of the statesS in

observe and measure the system evolution with possible ~ the new basis

observable of spac®. Then, from the observationér gen-

eralized coarse-grainingoint of view, we have decoherence  ;(4,0). = > [U(wo) 1rmp(@0)mm[U(@o) I »

of the energy levels wheti—, even that, from the strong mm

limit (fine-graining point of view the off-diagonal terms

never vanish, they just oscillate, since we cannot directly use

the Riemann-Lebesgue theorem in the operator equation

(15).
Some observations are in order. .
(i) The real existence of the two singular part<déndp plo,0" )= 2, [U(®) " Timp(@,0" ) mm[U(e") e,

is assured by the physics of the problem. The singular part of mm

the observables is just a necessary generalization of the sin-

gular part of the Hamiltonian, which has a singular gar} plwg, @)= 2 [U(wo) Ym

[Eqg. (8)]. The states must also be singular objects since, in- mm’

tu.itively, we r(_ealize thgt a.continuou.s by cqntinuogs .matrix X p(@0,®" ) [U(@") e »

will decohere in a matrix with some kind of singularity in the

diagonal. The method is precisely designed to deal with this

object. p(0,00)r =2 [U(@0) imp(@,00)mm[U(@0) I
(i) From Eq.(17) we can again see that what we are mm'’

doing is just a generalized version of coarse graining, wher(/%‘S 2(©00) my = p(@0)mrr AN P(@) iy = p(@) s it iS

a projector on the “relevant” part of the system is deﬂned.possible t0 choostl (wg) and U(w) in such a way that the

The “relevant” part of the states,p( is in our case §|O) L :
for all OO, i.e., the “projection” of p on the class of iog diagonal parts ofp(wo)r;+ and p(w)rr would vanish,

observables of the form given in E¢). An “irrelevant”
projection would be ag|O’), whereO' & O.

plw)yr= 2, [U(w)71]rmp(w)mm’[u(w)]m’r’ )

p(wo)ir =p(@)Srrr s p(@)rr=pr(@) Sy

_ _ _ Therefore, there is a final pointer basis for the observables
B. Decoherence in the other momentum dynamical variables  given by {lwg,rr"), |w,rr’), |ow,rr'), |wow’,rr'),

Having established the decoherence in the energy levelg®’,rr ')} and defined as in E¢10). The corresponding
we must consider the decoherence in the other dynamicdinal pointer basis for the state§(wo,rr’[, (w,rr’l,
variablesO;, of the CSCO where we are working. We will (0o,IT’|, (wow’, 1’|, (ww’,rr’[} diagonalizes the time
call these variables “momentum variables.” For the sake ofindependent part op(t) and therefore it diagonalizes the
simplicity we will consider, as in the previous section, thatfinal statep, ,
the spectra of these dynamical variables are discrete. As the

gxpression ofp, given in Eq.(1_8).in.volves .only the time p, =WIlimp(t)= >, pr(w0)(wo,IT|
independent components pft), it is impossible that a dif- oo T

ferent decoherence process would take place to eliminate the

off-diagonal terms in the remaininy dynamical variables. fm

Therefore, the only thing to do is to find if there is a basis +Z o dwp()(w,rr]. (21)

where the off-diagonal components of(wg)my and . . _
p(w)my vanish at any time before the final state is reached. Now we can define théinal exact pointer observables
This basis in fact exists, it is constant in time, and it will be [1]:
called thefinal pointer basis
Let us consider the following change of basis Pi:Z P (wo)| g, ){(wo.T|

|w0=r>:§n‘4 U(C’)O)mr|‘1’01m>v |a),r>=% U(w)mr|w!m>=

(20) +f0 do2, Pi(w)|or)o,r|. 22
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As H and P; are diagonal in the basi§w,r), |o,r)}, the  one for a very long time. Then there will be no measurable
set{H,P;, ...Py} is precisely the complete set of commut- decoherence.

ing observablegCSCO related to this basis, where, is (i) It may also happen that more than one of thevould
diagonal in the corresponding cobasis for states. For simplidse zero. Then, Hamiltoniald has more than one bound state,
ity we define the operator®; such thatP}(wg)=P;(w) let us sayn (or even part of its spectrum is discret&hen
=r,, thus the first term of the r.h.s. of Eq16) must be changed to

Pilwo,r)=rilwg,r), Pilo,r)=rilo,r). (23 ; pjioijel(wiiwj)tzzi piioii+§j p;jiOjje'leimeit,
(24)

Therefore{| wg,r), |w,r)} is the final observers’ pointer ba-
sis where there is a perfect decoherence in the corresponding
state cobasis. Moreover the generalized statesrf| and  wherei,j=1, .. .n, and as the second term of the r.h.s. does
(w,rr| are constants of the motion, and therefore these exaetot vanish whent—o, decoherence does not take place.
pointer observables have a constant statistical entropy arnthis is the case of a theoretical atom, not coupled to the
will be “at the top of the list” of Zurek’s “predictability  electromagnetic field, where the electrons will remain for-
sieve” [1]. The final pointer basis is therefore defined by theever in their exited states, and they will never decay. Then
dynamics of the model and by the quantum state considerethe atom never goes to a decohered state. But if the atom is

Therefore(i) decoherence in the energy is produced bycoupled to an electromagnetic fietthat usually it is called
the time evolution when— o; (i) decoherence in the other the “environment,” as in Appendix Bthere will be only
dynamical variables can be seen if we choose an adequat®e bound state, the second term of the r.h.s. of Z4).will
basis, namely the final pointer basis. be absent, and decoherence will occur. In fact, in many ex-

Essentially we have given a partial answer, for this kindamples the role of the “environment” is just to introduce a
of model, to the fundamental question of Gell-Mann andcontinuous spectrum to be coupled in such a way that only
Hartle [12] (precisely only an answer in the case when one bound state remains and the decoherence is complete. In
—): For eachH and each initial statp there is only one other cases fluctuationsr imperfectiony of continuous na-
final pointer basis and therefore only one “quasiclassical doture take the role of the continuous spectrum and produce the

main or realm”[13].° average and make the off-diagonal term disappear. This is
Our main result is Eq(21). When t-o then p(t)—p, the case of the spin recombination experimgB8i, p. 180
and in this state the dynamical variables®, ... ,Py are  that takes place in a single crystal interferometer.

well defined. Therefore the eventual conjugated variables to (iii) More generally, using only observables from a subset
these momentum variables (namely, configuration variables) e O we may only involve some components of the state
if they exist) are completely undefined functional, e.g., those constructed with the eigenvectoid of
In fact, callingl; the generator of the displacements alongthat eventually expand the spa@e Then if we only consider
the eventual configuration variable conjugatedRp, we  the observables of) it may be that the components of the
have (Lip,|0)=(p,|Li0)=(p,|[P;,0]1)=0 forall Oe ©® state related with these observables become decohered, be-
as it can be proved by direct computation using E§,  cause their decoherence times are small, while the other
(11), (18), and(22). ThenL;p, =0, andp, is homogeneous components remain undecohered, because they have a larger
in these configuration variables. decoherence time. Then we will have a system that is par-
tially decohered and partially not decohef@dich in fact is
the case of the universe where there are both classical and

C. Decoherence characteristic decaying time, quantum phenomeha

the permanent quantum states case,
and the role of the environment

From the preceding section it may seem that the process Ill. THE CLASSICAL STATISTICAL LIMIT
of decoherence must be found in all the physical systems. It
is not so and there are two reasons.

(i) Characteristic decaying times can be computed using In this section we will use the Wigner integrals that intro-
analytic continuation technics, as in pap&@]. For example, duce an isomorphism between quantum observablesd
in particular models we can find the characteristic times forstatesp and their classical analogd"(q,p) and p"¥(q,p)
the system(e.g., an oscillatgrand the field(e.g., the envi- [15]:
ronments or bathas below Eq(56) of the last quoted paper. )

If the maximal characteristic timg ! is very large, even if o%(q p):f d)\<q— E‘Oq+ §> exr{”\—p)
theoretically the decoherence process will always take place, ' 2 2 h)’
it will be so slow that the system will behave as a quantum

A. Expansion in sets of classical motions

1 N+1 2i\
pam=( ] [ anollarnia-sped 24P

SBut of course this unique consistent set depends of the chosen
space of observabl@® (see more in Appendix C (25

022107-6
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It is possible to prove thafdq dpp"¥(q,p)=(p|l)=1, for any natural numbem. Thus p‘f,’r(q,p) must be the
but p is not in general non-negative. It is also possible tofunctional®

deduce that oY (q.p)=coHY(q,p) — 0] ST PY(q.p)— 1] -
(PW|OW):J dq dppW(q,p)OW(q,p)=(p|O), (26) X5[ijv(q7p)_rN]- (34)

space it corresponds to the mean value in the quantum Liou- .

state functional ¢q,rr|, we obtam
ville space. Moreover, callind. the classical Liouville op- ©o.rr].

erator, and. the quantum Liouville—VVon Neumann operator, pwor(q,p)zcé[HW(q,p)— o] 5[P‘1N(q,p)— re]---
we have w
X o[ PN(q.p)—rul. (35)
L[p"(a,p)]1=[1p]"(q,p)+O(%), (27)
. Therefore, going back to Eq30) and since the Wigner re-

(Lp|O)=(p|[H,0]). (28)

Finally, if O=0,0,, whereO,; and O, are two quantum
observables, we have

O"(q,p)=07(q,p)03(q,p) + O(#). (29

Pe(A,P)= 2 pr(@0)pu(a,P)

+Z foxdwmw)pivr(q,p). (36)

We will prove that the distribution functiop!’(q,p) that  Also we obtainp.'(q,p)=0, because,(wo) andp,(w) are
corresponds to the state functiongl via the Wigner inte- non-negative.
gral is a non-negative function of the cIaSS|caI constants of Therefore, the classical stapé"(q p) is a linear combi-

the motion, in our casel"'(q,p), PY(q,p), ... ,PN(a.p),  nation of the generalized classical stgi®qq,p) (wherex s
obtained from the correspondlng quantum operatblrs eitherwg or w), having well-defined values rq, ... ,ry of
Pi... ,Py. the classical observables"(q,p), PY(q,p), ... ,Py(d.p)
From Eq.(21) we have and the corresponding classical canonically conjugated vari-
) ables completely undefined since tbﬁ(q,p) are not func-
Px =Wl|mp(t)=2r pr(wo)(wo,Ir| tions of these variableSo we reach, in the classical case,

t—oo

the same conclusion as in the quantum case (see end of Sec.

o Il B). But now all the classical canonically conjugated vari-
+ f dop () (w,rr], (300 ablesay,ay, . . . ,ay do exist since they can be found solving
r 0 . . . . .
the corresponding Poisson brackets differential equations.
so we must compute As the momentaHW,PY, ... PY or any function of
N+1 2iph these momenta, which we will call generically, are also
pur(0,p)= (o,rr{[g+N){q—A[)e”P dX. constant of the motion, then we hagédtIT= — gH/da=0,

(31  wherea is the classically conjugated variablelh SoH is

just a function oflI and
We know from[2] Sec. Il C[or we can directly prove from

Egs.(21)—(23)] that %az a:;_[m =w(II)=const. (37
(wo,rr[HM=wg, (o, rrHN=0", (w,rr|P)=r{, So
(w,rr|PH=rl, (32 aj(t)=w;(I)t+a;0), j=01,...N. (39

fori=1,...Nandn=0,1,2... . Usmg the relation(29)

between quantum and classical products of observables and

relation (26) between quantum and classical mean values, in ®We must also take into account that @s, (x,rr)L;=0 (see the
the limit #—0 (we will consider that we always take this end of Sec. Il B. Then classicallyl;"p\Y=0 [as in Eq.(27)]. So
limit when we refer to classical equations beJome deduce pyy(qg,p) cannot be a function of the canonical conjugated variables
that the characteristic property of the distributiaf{ (q,p),  toH",PY... ,P\/. Then Eqs(34) and(35) are just multiplied by

that corresponds to the state functional(r |, is a normalization constard=V~*, whereV=(27)"** is the vol-
ume of the tori in the bounded ca&ee below. The nonintegrable
f p¥(q,p)[HY(q,p)]"dqdp=w", case and the casé—o will be considered elsewhere. We have
omitted theO(#) of Egs. (27) and (29). If we reintroduce these

O(#h) we will see that Eqs(34) and(35) are only valid in the limit
w w, n _.n h—0. If 4 is only very small thes are just functions strongly
f Pur(Q,P)LPT(a,p) ] dqdp=r7, (33 peaked at the zero value of their variables.
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Thus(going back to the old coordinajem the set of classi-
cal motions contained in the densiti€®}) and(35) the mo-

mentaH,P4, ..

ap(0), a4(0), ...

PHYSICAL REVIEW A62 022107

with  momenta x, rq,...
a,(0), ...

, 'y and initial conditions
,an(0), andtherefore to a single classical mo-

.,Pn, are completely defined and the origin tion. So we can write Eq40) as
of the corresponding motions, that we will respectively call
anday(0), arecompletely undefined, in

N
such a way that the motions represented in the last equatiom\iv(q,p)=J Z pr(wo)PX)vo,r,a(O)(q,p,t)il:[O da;(0)

homogeneously fill the surface, wheke”, PY, ...

variablesH", P ...
cal conjugated variables,, as, ... ,ay.

, and
PY have constant values, which now turns out to be a usual
torus of phase spaceThis is the interpretation that we give
to the densitie$34) and(35), which are just functions of the

, P/, but they are not of the classi-

" N
+fz j dp, ()9, 200D T] day(0).
r 0 i=0

(42

Then, Eq.(36) can be considered as the expansion ofWe have proved Ed7) as stated in the Introduction.

p‘,ﬁv(q,p) in the sets of classical motions contained in

p‘)ﬁ\f(q,p), each one with a probability, (x) (X=wq,»).

The densitiesol{‘y’r‘a 0(0,p,t) represent a point in phase
space with momentdlW=x, P}'=r,,... ,P¥{=ry and co-

Summing up(i) we have shown that the quantum stateordinatesa; (t) =w;(P¥)t+a;(0), i.e., they represent single

functionalp(t) evolves to a final diagonal stagg ; (ii) this
guantum state, haSp\,’)’(q,p) as its corresponding classical
density; (iii) this classical density can be decomposed

classical trajectories.
Then we have obtained the final classical limit. When
— oo the quantum state functionalbecomes a diagonal state

; ; ; W pW w . The corresponding classical distributi ,p) can be
In sets of classical motions whedd™ Py . ... . Py Z;panded as 21 Iinegr combination ofpg(é?]s?til functions
remain constant. The origin of these motions™y 1) and oW 1) representing classical
a0(0),a,(0), . .. ,an(0) are homogeneously distributed: Puwq.r.a©(d:P:1) @ndp, a0)(a,pt), representing classica

(iv) From Egs. (34—(36) we obtained thatp)’(q,p)
=f[H"(a,p),P}(a.p). . .. P\ (a,p)]=0.

B. Expansion in terms of classical motions

We can now expand the densities given in EG4)—(36)
in terms of classical motions. In fact, since

N N
i:HO 5[ai<q,p>—ai<t>]i1]o da(0)=1, (39

Whereaj(t):mj(PW)tJraj(O), we canwrite Eq. (36) as

N
piv(q,p)=J 2 prlwo)plp(ap ]l daiap)—ait)]

N

<1 daq<0>+f2 fwdwprw)pz,vr(q,p)
i=0 r 0
N N
Xi:Ho 6[ai<q,p>—ai<t>]i[[0 day(0). (40)
We define
Per.a0)(a.p,0) =3[ HY(q,p) —X]
X S[PY(a,p)—r1]--- [ PX(a,p)— 1]
X 8lag(q,p)—ao(t)]- - - dlan(q,p)
—ay(h)], (41)

trajectories, each one weighted by their corresponding prob-
abilities p,(wg) and p,(w). As the limit whent—-oo of our
quantum model we have obtained a statistical classical me-
chanical mode[3], and theclassical statistical realnis ob-
tained.

IV. CORRELATIONS AND LOCALIZATION

From many example&®.g.,[16]) we know that eventually
correlations and the localization appear when, at least
in some variables and in some quantum systems. For, ex-
ample in Appendix B we give an example obtained using our
method, where we can see that correlations appear in vari-
ablesQ andP, whent—« [see Eq(B18)]. As this state with
correlations is a final state let us calpif and let us see how
it can be incorporated in our formalism.

As p, is a final stationary state it can be decomposed as
in Eqg. (21). From Eqg.(11) we have

(wo, It |wor 'tV =61, (o,rr|or't")=68,,

(wo,rr|wr'r’)=0. (43
Thus from Eq.(43) we have
(x| @oIm)=pr(wg), (pylorr)=plw). (44
So, givenp, , endowed with correlations and computed by

any methodincluding ours, see Appendix)Bve can find the
corresponding initial conditiong,(wg),p,(w) that yield,

which corresponds to the classical distribution of a motionwhent— o, to this correlated stateln general, all final de-

FHW, PY, ..., P are isolating constants of the motion, the tori  ®The remaining initial conditiong,, (o), pr (@), prr/(w,0"),
are not brokeri14]. In the nonintegrable case the tori are broken. p,;/(wg,»"), py/(w,00) are irrelevant since the corresponding
This case will be considered elsewhere. terms disappear wher- .
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cohered stationary statélsut not any quantum statean be B). It is difficult to see this fact in the abstract unfamiliar
decomposed in this way, in particular our correlated state. frame of the coordinates,r,a, because the potentials are
We can repeat all these formulas in the classical perspediidden by the diagonalization even if the initial conditions
tive of Sec. Ill using the relatiof26) between quantum and are obviously preserti.e., in the choicep,(wg), p;()].
classical symbols, computing the initial conditions Anyhow the phenomenon is there, since we obtain localiza-

pr(wp),pr(w) using classical formulas: tion whent—oo. In this way we can consider the localized
W W wave packet like a single classical system and the lofais-
(P (A,P)| P oy (A,P)) = pr(@o), sical statistical mechanics— classical mechanicss ob-
tained because the motion of the wave packet satisfies the
eXM(q,p)pY.(a,p))=p/(®). (45  classical equation$38) as in all the trajectories. Now the

processesa) and (b) are explained and the limgtatistical

In this way the correlation and localization phenomena Carhuantum mechanies classical mechanics Comp|eted_ The
be incorporated in our formalism. But it is difficult to use classijcal realmis present.

coordinatesx,r,a to directly obtain the final statp, since
this state looks quite unfamiliar in these coordinates, but it
turns out to be the minimal uncertainty wave packet if we
study the problem in the usual coordinatp®, as we prove Some observations are in order.
in the Appendix B via an exampfeFurthermore the corre-
lation phenomenon only appears if the potential and the ini-
tial conditions are such that all the trajectories with non-
negligible probability are concentrated by the dynamics Using the final pointer basis obtained in Sec. Il B, the time
eventually yielding a “maximally localized” or “minimal dependent Wigner functiotnamely, the diagonalized ver-
uncertainty” wave packetas in the example of Appendix sion of Eq.(15)] is

V. COMMENTS AND CONCLUSIONS

A. Sketch of the classical limit

PM(A,P.0=2 prl@)puy(@.p)+ 2 fo dwp(@)py(d.p)+ 2 fo dwp(w,wo)y €~ Dp1 (a,p)
rr’

e} - . Y w oo o] - . N w
+2 | do'plwg,0 )y €@l (qp)+2 | do| do'ple,w) €@l (q,p)
i’ JO 0 i/ JO 0

=py(9,p)+Ap(q,p,t), (46)

where the coefficients,(wo) andp,(w) are the probabilities Therefore with an adequate “coarse graining,the aver-
of each “classical” final history, and p(q,p,t) corresponds agedpV(q,p,t) may be positive definite, fot>y*, and
to “quantum” nondecohered historié&lt is clear that when also would satisfy the classical Liouville equation, in its way
t—o (really after a decoherence time 1) the terms corre- towards classical equilibrium. This"/(q,p,t) would be a
Sponding to these histories vanish according to Riemann‘iCl&SSiC&' limit” before equilibrium. We will follow this line
Lebesgue theorerfsee papef2]). of re'search. elsewhe_re. For the_ m_oment'it is clgar that @he
Now we know(i) that whenk —0, p¥(q,p,t) satisfies the nonfinal pointer basis has for limit the final pointer bg5|s
classical Liouville equation, namely the laws of classical me-Whent—w. This fact may help us to find both the nonfinal
chanics; (i) that pZ"(q,p)BO, but that the second term POINter basis and the classical limit.
Ap(q,p,t) is not positive definite, S@W(q,p,t)zp\f’(q,p)
+Ap(q,p,t) is not positive definite and therefore cannot be
considered as a classical density. Neverthelgss/anishes In the last subsection we have considered the case where
whent—, so thatp'V(q,p,t) is “almost” positive definite. ~ classicality is reached before classical equilibrium. In this
subsection we will see this process in a different way. We
can decompose the global system in a set of local systems. In
these subsystems, classical local equilibrium can be reached

In f.aCt’ It Is not pos.s'ble to formulate a general thgorqu a{ter a timey ! with positive definite local equilibrium den-
coordinates because, in order to make the computations, we mus

know the relation of these coordinates with the energy and other
momenta, and this is only defined in specific models.

%we do not write these histories in detail since they will disap- 'Or, in our language, observed by an observer space smaller than
pear below. 0.

B. Local vs global equilibrium
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sities (and, among other things we will be able to define abut they can be better understood if they are compared with
classical local equilibrium entropyl7]). Since the classical exact methods. We will continue our research following this
local equilibrium densities of each subsystem are positivesubject.

definite the classical density of the whole system will be

positive definite. But the whole system is out of equilibrium ACKNOWLEDGMENTS

and its evolution is defined by the classical Liouville equa- o

tion. Now, as the system is already classical, since all its We are very grateful for the hospitality of Jonathan Hal-
parts are classical, we can study its evolution towards equiiwell, and the Imperial CollegglLondon, where the re-
librium with a classical relaxation time, that we are sup- Search of this subject was began by one ofMsC.). This
posing 7>y~ %, with the usual classical methodand the ~WOrk was partially supported by Grant Nos.

global entropy of classical phenomenological thermodynam&!1*-CT94-0004 and PSS-0992 of the European Com-
ics will become maximal munity, PID 3183/93 of CONICET, EX053 of the Buenos

Of course, if the interaction is such that y~* this pro- Aires University, and also grants from Fundatiantorchas

cess is not possible and we will directly reach the final equi@2nd the OLAM Foundation.

librium without a previous stage of local equilibrium. But the

caser> vy~ !is the usual one and it takes place if the global APPENDIX A: COMPARISON WITH THE LITERATURE
long-range interactions are unimportant with respect to the

local short it " Therefore th : In this Appendix we would like to compare our method
ocal short-range nteractions. hereloré the system can t\ﬁ“/ith those that can be found in the literature, where the mod-
decomposed into a set of many weakly interacting sub-

: 7 els are studied using the variabl@sand P.
systems that can be considered as quasi-isolated. The Iocaisl_et us first see what is the shape of the diagonal states

s e, S s 8255 Bho, (0] r . In Q and P. I order 0 cterminte te
y q ' y agonal states, likp, , in the configuration and momentum

2lsa :sizglnrr:?(;nn:)grir;ecius d|st|r |but_|rohne:; l&%?\g;ﬁgsyz:]edmthvé ItIBasis(and also to find the correlations in these variables
Pl NG ’ are forced to go to a particular model where the relation

subsystems density are different in each of them, producing gmongH, Q. andP is defined. We consider a coupled system

state of classical nonequilibrium that will regch egf'“b“um’ of an oscillator and a bath such that the Hamiltonian reads
due to the global long-range forces at a time y~ - (see [21]:

[18]).

. 2, 2, L 2, 2
C. Final conclusion H=§Q(p +q )+§ o(p,+0,)do+\ | V(w)(qq,

Using the interplay of observables and states, that we N )d
have considered as functionals over the space of observables, PP,)dw,

we have found arexact finalpointer basis and amtrinsi- — \here the first term corresponds to the oscilldteith bound

cally consistent set of final histories. So, given a Ham'lton'a”eigenstate&m and ground statkw,)), the second term to a

H and a state we have found the exact final pointer basisﬁe|d the “bath” (with eigenstatedw, ,w, wy)), and
H il LI | n H

(A1)

W .

{Ix.r1, ... .rn)} and we have shown that;’, the Wigner o third is an interaction ternwith a p—q symmetry,
function of p,. , can be expanded in Wigner functions corre-yhich leaves just one set of possible final states
sponding to the co-basix(r, ... Iy|. To obtain this re-
sults or similar ones almost all the authors use coarse-  p=(w|
graining methods based in projectors and try to obtain a
limit. So they essentially use the weak limit of E(.7), :2 j H dwido! pou. o, ool ol Ny
namely, n 192 n®1:93 n

lim (p(t)|O)=(p,|0),VOeO. X(wow1,w5, ... 00,0, ... ol (A2)

t—o0

namely, the oscillator in the ground state and the bath in any
But, at least in the classical case, we know that this weaktate(see[21]). The (@ow1,@3, ... W01, @, ... ;| are
limit exists if and only if the system is mixingl9]. And the  generated by the dressed operators that we will define in Eq.
system is mixing if it has a continuous spectrufg], [5], (B7).
[4]) and the present paper can be considered as an extensionThen let us try to get an idea of the form pf via a
of the theorem, which says that the mixing evolutions have geuyristic reasoning based on the symmetry of the Hamil-
weak limit towards eqUIllbrIun{ZO] but now formulated in tonian (Al) If we Consider a quantum Staﬁeand the posi_
the quantum case. Thus the only way to deal with the probtion operatorQ (that symbolizes either the operatpor any
lem (at least in the limitt—c) in an exact way is to use a of the operators],) and the momentum operat®® (that

method, such as ours, specially adapted to deal with the siiymnolizes eithep or p,,) in the usual case we will have
gularities inherent to that continuous spectrum. If not we are

limited to perform approximate calculations. (AQ)?=Tr(Q%p)—[Tr(Qp)1*=(Q?)—(Q)2.
Nevertheless approximated methods are important and, in
some cases, unavoidable to obtain the nonfinal pointer basis, (AP)2=Tr(P%p)—[Tr(Pp)1?=(P?)—(P)2.  (A3)
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Whenp is a functional, we can generalize these equation aghen

AO)2= 2y _ 2_/02\ _ 2

(AQ)°=(p|QM) ~[(p|Q)1=(Q*)~(Q) Q:%bub), P=i%(b*—b), -

(AP)?=(p|P2)—[(p|P) 2=(P)—~(P)2,  (Ad) 2 2
and in general £Q)%+ (AP)2. But if p is the diagonal state 1 . s Lo
p, Of Eq.(18) (or the statesdy|, (w|) we will have b= E(Q-HP)’ b _E(Q iP). (BS)

(pIQ)=(wo|Q), (p|Q%) =(wo|Q?), In the Heisenberg representation the oper&oevolves
as
(pIP)=(wolP), (p|P?)=(wo|P?). (A5)
1
So, asH has ag-p symmetry everything is symmetric under  Q(t)= —[bT(t)+b(t)]
the transformatiorp«<q (or q— —idldq,—idldg—q) and V2
therefore AQ)2=(AP)2. This would not be the case jf 1 1 1
would not be diagonal in the basis whetes diagonal, since = _J' dkvk<—Alei‘”kt+ Akei‘“kt)'
Q andP are not diagonal in this basis, e.g.could commute V2 7-(k) 7+(K)
with P but not with Q showing, in this case, a clear asym- (B6)
metry P« Q. Thus our diagonal states are states such that
AQ=AP. Namely, for the ground state we had@=Aq,a where
well-known fact. If now we introduce ifAl) a small asym-
metric interactiol’W (N’ <1) we will haveAQ=AP. On - Vi . dk’Vk/al,
the contrary if the interaction i&'W(q,q,) (A\'>1) the Ac=at ) b +f—. :
HamiltonianH can be neglected and the diagonal states will 7 W~ w10
be position eigenvaludso our results coincide with those of ,
Refs.[1] and[22], see a detailed example belpw Av=a,+ Vi (b+f dk"Vieay ) B7)
K . ﬂ—(k) wk—wkr+i0

APPENDIX B: AN EXAMPLE OF CORRELATIONS . .
AND LOCALIZATION The fUI’]CtIOﬂS?],(k) and 77+(k) and all the details of the

calculations can be found in papet].

There are systems, e.g., the one of Appendix A, with vari- [ et us consider the initial conditions
ablesQ andP and a bath, where the interaction is such that
Q and P become correlated. Namely, the evolution makes (Q=0=Qo, (P)t=0=Po (B8)
both AQ and AP bounded, and a wave packet appears tha% i
eventually becomes a minimal uncertainty wave packet/Or the oscillator, and also
whent— o, then maximal localization appears in the usual (@) _o=(a)_o=0 (B9)
way as mentioned in Sec. IV. As an example, let us now find K/t=07AGk/t=0"""
the correlations betweeQ and P in the model of Hamil-  \yhich corresponds to the field being initially in its ground
tonian (A1) using our method as explained above and in thestate. Therefore
paper[4]. Let us first write the HamiltoniafAl) using cre-

ation and annihilation operators 1 : 1
bY_g=— +iPy), (bYY_o=—= —iP
< >t 0 \/E(QO 0) < >t 0 \/E(QO O)
H=QbTb+f dkwkalakJrf dkV(ajb+bTay), (B10)
and for the time evolution of the mean value of the coordi-
o=k, k=]k|. (B1) nate and momentum of the oscillator we obtain
The coordinateg and the momenturp of the oscillator can 1 VE
be expressed as a function of theandb as —— _® (aletypt —lwyt
p <Q>t \/Ef dk’l]_(k)’r]+(k) (e k<b >t:0+e k<b>t:0)1
1/2 m 1/2 (Bll)
I t . Y el t_
q <2mQ (b'™+b); p |( 5 ) (b"—=b). | v
B2 I k : _
( ) <P>I:EJ dk‘/],(k)?]Jr(k) (elwkt<bT>t:0_e Iwkt<b>t:O)'
We can adimensionalize the last equation defirghgnd (B12)

P such that
The oscillating time dependent factors inside the integrals

% 1/2 .
q=|—| Q p=(mi0)p. (B3) produce the vanishing of bot{Q), and(P)t_for very _Iong
mqQ times. We can study the poles of the analytic extension of the
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factor VZ/ 7_(k) . (k), as in[10] and prove that the trajec- Then, replacing Eqs(B15) in Eq. (B16) and always using
tory of {(Q), and(P), in the phase space of the oscillator is a the Riemann-Lebesgue theorem we have

spiral ending a{Q)=(P)=0. )

Now we would like to computéq andAp as a function lim (Q(1)2) = EJ dk Vi _t (B17)
of time. In addition to Eqs(B8) and (B9) let us assume the e 2 n-(K)ynp, (k) 2’
following initial conditions for the oscillator:
and therefore
(bb")—o=8, (bb)_g=a, (b'b)_o=1-p,
) . 1
(b'b™) o= a*, (B13) IM[AQ(H =M ((Q(H) —(Q(1))*)= 5.
t—oo t—o
being @ and 8 some arbitrary constants. If the field is in its , )
ground state, we also have Making an analogous calculation f& we have
T _ L 1
(@ )i=0=(k—k), imAQ=lmAP=-— (B18)

t—o t—oo \/z,

so the wave packet around the spiral trajectory evolves to a
All other initial mean values of products of pairs of creation minimal uncertainty symmetrical wave packet, showing the
or annihilation operators are zero. This means that we haviocalization process in the usual way. This proves the pres-
taken the oscillator in an arbitrary state and the field in theence of correlations in our model. Reestablishing the units,

(afa )i—o=(afa) )i—o=(axac)i—o=0.  (B14)

ground state as initial conditions.
Therefore we have

V.V,
ATAT, _ _ . YkYK *
Ao 0
V.V,
AlALY _g=— K (g—1),
(AA =0 7l+(k)77—(k')('8 )
(AcAi) e (B15
Nieg=—————a,
O (K- (K')
Vi Vi
AAY o= 83(k—k’
Ao O o=t 10
. YAYS |
n-(K)(wx— wy —i0)
7Kk () p (k')

dk"VZ,
— .
((J)k_ Wy — | O)((l)k/ - (1)k/!+ | 0)

The time evolution of the mean value @{t)? is given by

<Q(t)2>=1 Jdek( ! Alelod 4 Age ot
2 7-() 7 (k)
1 5
Xf dk’ V. —Ak,elwkrt
7-(k")
1 .
" (kf)Ak’elwk,t)>- (B16)
7+

whent—o, and introducing the velocity we have

hZ 1/2 hZQ 1/2
Aq_(ZmQ) : Av_( Zm) '
This fact shows that the wave packet is more peaked for big
a m than for small am. Then, in some models big mass
particles can be considered as classical while other remain
quantum. Moreover ifA—0 the uncertainties disappear.
Also the classical limit of the oscillator has a spiral motion in
phase space. In fact, if using ER5 we compute the
Wigner function corresponding to the matrix density, we will
find the motion of this classical density that will be centered
in the spiral trajectory and having, whéa-o, a symmetri-

cal circle of diameter {%)'? as support?

(B19)

APPENDIX C: DECOHERENCE OF HISTORIES

From Sec. V A we can conclude that our notion of history
of the system is essentially contained in the sggtg. This
history ends in the final equilibrium stage . In this Appen-
dix we will study the relation of this notion with the usual
histories formalisn{18] and compare the results. The com-
putation will turn out to be very simple for two reasons.

(i) As in all the paper we will work only in the limit
—oo, where the existence of an exact final pointer basis will
make all the computations quite trivial.

(i) Also we will only consider one space of observables
O and therefore just one set of final consistent histdr2€s.
The case of many sets will be considered elsewhere.

Nevertheless we think that the results are of some interest
since(i) for timest>y~ ! all the exact result obtained in the
limit t—c can be considered as good approximatidiis;
the existence of a space of observalflesvhere we can use

12The cosmological models of papds3] are other examples that
we will further develop elsewhere.
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the Riemann-Lebesgue theorem, perhaps can be consideredIf

as a selection principle to choose the physically relevant con- o

sistent sef25]. D(a,a’)=0 (C8
So let us begin giving the main definitions. Let us con-  _

sider a time dependent basisf {|a(t))}, and the projec- for a#a’, we will say that the set hasedium decoherence

tors Theorems about records can be proved if the set of histories
has this type of decoherenf26].
P()=]a(t)){a(t)], (CD If
such that they represent exhaustive and exclusive alternatives M(a,a')=0 (C9)
> P.=1, P.Py=0.4P.. (c2 for a#a’ we will say that the set imtrinsically consistent
a [1] or that it hasmatrix decoherenceOf course matrix de-

R coherence implies medium decoherence, and medium deco-
We will call (fine-grainedl history « to a string of time de- herence implies weak decoherence.
pendent projectors’ Let us now compare all these concepts with our formal-
ism. We choose:

Cz;z: Pal(tl)l s !Pan(tn)v t<---<t,. (C3)
la(ty))=[%,re, ... rysta), (C10

For a statep we will call decoherence matrix o
where we have used the shorthand notation introduced

M(&,&’)=CEpCC;/ above. The set of operatorsPa(t)=|a(F)><a(t)|
=[X,Fq, oo PNGE(X T, Pyt will be our “final pool
=P, (ty), ... 1Pal(tl)ppa]’_(ti)1 o Pa(t). of operators” if we use the language [df2]. The evolution
n n

of these operators will be
(C4)
Pa(t):e*iH(tftl)Pa(tl)eiH(tftl)
We introduce this matrix because we consider it as the natu- ) )
ral generalization of the usual density matrix to the case =e (TP (t;)eX("1)
where single projectors are changed by histories. _ 5 _
We will call decoherence functional =Pal(ty)=Po=[a(0))(a(0)]. (C1D

i.e., these operators are constant. Then the projectors are time

D(a,a")=TrM(a,a’), (€9 constant and
which would be the generalization of the trace of an ordinary C:=P_, (C12
matrix 1* ©o
We will call candidate probability for the historfv and these histories can be labeled with the ordiraiystead
A o of the & with the arrow.
p(a)=TrM(a,a), (Co) In more detail let us first study our “pool” of projectors

. o - to compute Eq(C4) in our formalism and whet— o,
which would be the generalization of the usual probability. It

is only a “candidate probability” because, at this stage, it Py =Po=[X.r1, .. . FN)(X,T 1, oo IN=[X0T g, o).
does not satisfy the axioms of the usual Boolean probability (C13

theory. . - ' .
If y Q) rq, ... ry are discrete indices and the final stationary

statep, is diagonal in these indices, so this part of the prob-
> >y lem is trivial.
ReD(a,a’)=0 C . . .
(a,a") € (2) x symbolizes fy,w) where onlyw is continuous, so
the treatment ofv is also trivial.
The problem is onlyw so, for simplicity, let us only con-
sider this index. The projector reads:

for a#a’, we will say that the set of histories eéonsistent
or weakly decoherentn this case it is proved that the set can
be in principle submitted to the ordinary boolean lo@],
and the candidate probability can be considered as the prob- P,=|o)w|=|o). (C14)
ability of each history. ¢

So let us compute

P P, = ! 1, C1
Bwe can consider a more general case were the exclusive and wPx "o |w><w|p*|w Ko | (C19
exhausting set of histories is different at every titpand therefore  pyt first we must find the meaning of this symbol. In the

the projectors ar@‘ai(ti). But this is not the usual case. discrete case we have
1f some of thea are continuous indices, for them we must use
the generalization of the trace introduced 2. |a)(b|p|c)(d|=|a)Tr(p|c){b|){d|, (Cle
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which can be generalized to the continuous case as D(,é.,é’)=D(ﬂ,,3')
[a)(bp[c)(d|=|a)(p[|c)(b|)(d]. (C17) =Tr(|B)BlelB")B']
s = (618 Blpl8")
=08 P(B). (C22
PupxPor= ||w><w|U por(0"do"]|o" o' These would be the case with tRe, of this section and also

for any constanP. This result seems very trivial but it is
" A not. The essential property of project@@13 is that it is
:|“’>Upw”(“’ |0 0)dw k“’ - €18 fime constant, but our formalism contains other time-
constant projectors. If we go back to Sec. Il A we find

So, from Egs.(11) we have (1) If w#w’, it is

PopsPui=0.(2) If w=w’, itis Ppy=Pp=Ix.my, ... my){x,my, ... my|
=|x,mq, ... My, (C23
Pup«Por :|w>U Pw"(w"|w)dw"}<w| namely, the projectors related with the bagisn) before the
diagonalization(20) that yields the basifx,r). The P, are
:|w>U S — w)dw"}(aﬂ also time constants and yield medium decoherdnogy the
Por P, yield matrix decoherengeThe main fact is that in order

to reach the classical statistical mechanics of Sec. Ill we
must use the basis,r) that diagonalizep, in all indices

_ ) ) ) ) [see Eqgs(30)—(36)]. Thus, since our demonstration is based
So with a symbolic obvious notatiofthat we will use from i, the matrix decoherence in the babsisr ), these objects are

=pu|@)(w]. (C19

now on we can say that essential for us. Only after this demonstration we can speak
of classical constants of the motion and classical trajectories
PupsxPu =[@)puduu{e]. (C20  because only then we can pass from the quantum formulas to

the classical ones.
If now we repeat the reasoning including all the trivial dis- Then the last result can be translated as follows.

crete indices we will obtain the same result sipgeis di- (1) There is final matrix decoherence between any pair of
agonal in these indices. Then, whier« we have that different sets of constants () i.e., between any pair of sets
of classical trajectories in the phase space. This set of sets of
M(&!&,)_)(Saa'pa|a><a| (C21) trajectories is intrinsically consistefgee Eq.(21)].

(2) But, of course, any set of functions of the,” such

as the “m,” will define equally well the set of classical

and therefore we have final matrix decoherence in a tim?ra'ectories But the f1” do not provide a basis with qood
long enough. Then we have found the final “statistical clas- J X P g

sical domain or realm” of Gell-Mann and Hartle. In this way fd‘erl;:,r]et?]ep;ob?sblrlllgte Ziagf)ntg[i ree (Ijzoqe(sl,S)s]ln; etr']?s t:aeS:?ﬁ'es
" J .

final classical behavior emerges from quantum behavior anget of histories is consistent but not intrinsically consistent
transition(a) of the Introduction appears in the histories for- y :

malism. Essentially we have used the weak limit of B e?j(i)uronu:jg(?é)nr:e?;::;eewcljnthba; cec:/r?sri]dltl;raeltlj S:;Scir;i(i)sv::ri Zfets
and the fact that it is the only possible limit we can use, sinc '

p is a functional over the spaa®. But the choice of Eq. here is only one with physical importance, the one with

(C10 has an extra bonus: it decomposes the density matri)r(natrix decoherence, the only one which is an “intrinsically

just in the way that was announced in the Introduction. consistent set.” This idea may help to find the selection prin-

From the matrix decoherence we have medium decoherc-'ple. searqhed for ”ﬁ25.]' N -
Finally, if the potential and the initial conditions are such

ence and weak decoherence, so we have proved that ay privilege a history(as in Appendix B the locations pro-

guantum system, fulfilling the conditions required in Sec. Il, . : .
has a set of final intrinsically consistent histories, the essengeusr?i(szgfctlggsliggloggggr\]/v\illlrlmnatlati(r?i ptljaecﬁiggg W_T_r\]'é'g Cv?ave
tial conditions being the continuous spectrum and the exis- que . J . qu ¥ .

ould find the final “classical domain or realm” of Gell-

tence of just one ground state. Classically these histories wi
be thep!V(q,p) of Eq. (46). This exact final decoherence has ann an_d Hartle._ . . .
Pxrid: . ' We will end this section showing how several require-

being qbtained using the badjsr)}, other near bases_ obvi- ments necessary for a efficient histories decoherence are sat-
ously yield final approximate decoherence. Also békis)} isfied by our formalism

will give approximate decoherence in a time long enough.

But we must observe that in all cases whéxgt)=P,
=const[even if Eq.(C10) is not satisfiedlwe can immedi-
ately prove medium decoherence with no reference to matrix The Griffiths-Omne condition for consistencj27], [28]
decoherence. In fact, P ;=|B)(B|=const we have is automatically satisfied since

1. Griffiths-Omnes condition
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ReTi|a)(alp(1~|a)(a])|a)al]=0.  (C24

the
{H,04, ..

2. Permanence of the past

If we take our projectors from the pool of the projectors
|@)(a| the condition of permanence of the pfke)] is trivi-
ally satisfied, since a chain with an certain numbejrcof «|

can only be continued repeating this projector. This is the

most important property required [25].

3. Insensitivity

PHYSICAL REVIEW A2 022107

In fact, the matrixp, is insensitive to the measurement of
CsCO {H,Pq,...P,} (and also the CSCO
. ,On} where the operator® are related with the
constantan). This is the maximum insensitivity we can get.

4. Strong decoherence and records

If for any historya there is a projectoR,, such thafR,}
is not necessarily a complete set of projectorsdnin the
sense thafR,|#)} is not necessarily a basis &f, and for
any statep it is

While quantum states are modified by the measurement

processes, classical states are not sensitive to these measure-

ments. This property of classical states is called insensitivity

[1]. The projectoiP,, =|e;){a;| can be considered as a mea-

surement operator, so jfyefore IS the state before the mea-
surement ang,se, iS the state after the measurement, we
will have

PafterZEi PaipbeforepaiZEi |ai><ai|pbeforlai><ai|

:Ei Paipbeforepai1 (CZS)

wherep; is the probability to measure; . Now if, after the

We will say that we havestrong decoherencg 29|, Eq.
(2.4). As theR,, are timeless entities and &,—R,, R,

can be considered as thecord of the history&, R, can also
be considered the record of not one but several decohered
histories, associated by unitary transformatiph2]. So re-
ally R, is the record of an equivalent class of histories.

It is clear that if these records exist we have medium
decoherence. In fact,

D(a,a’)=TrCEpC;))

decqherence processyeiore IS @ diagonal matrix, precisely =Tr(R,pR,)
A = Tr(pRR,)

PbeforeIEi: pil ai){ e (C26) =5,.p(a). (C29
and we only measure the observers in the CSCO

{H,Pq, ..
have

Py}, so theP, are just theP,=|a)(a|. We

Pafter:Ei |ai><ai|(; Pj|,3j></5’j|) i) (i

:Ei pi|ai><ai|:pbefore- (c2v

So strong decoherence implies medium decoherence.
In our case these fin&, exist and they are

R.=|a){a|=|xr}{xr|=P,. (C30

Thus the numberx,rq, ... ,ry can be considered as the
record of the corresponding final history.
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