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Functional approach to quantum decoherence and the classical final limit
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For a wide set of quantum systems it is demonstrated that the quantum regime can be considered as the
transient phase, while the final classical statistical regime is a permanent state. A basis where exact matrix
decoherence appears for these final states is found. The relation with the decoherence of histories formalism is
studied. A set of final intrinsically consistent histories is found.

PACS number~s!: 03.65.Bz
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I. INTRODUCTION

Following the idea that the interplay of observables a
states is the fundamental ingredient of quantum mechan1

we have developed a paper@2# where we have studied th
relation of the state vectorsr of a close isolated quantum
system~that belong to a convex set of statesS), to theob-
servables Owithin this closed system~that belong to a spac
of observablesO). We consider that the essence of this
lation is the mean value of an observableO in a stater,
which is given by the equation:

^O&r5Tr~rO!5~ruO!. ~1!

In fact at the statistical level what we actually measure in
ensemble of identical states, are these kinds of avera
since we cannot either measure directly the stater or mea-
sure it with an infinite precision@3#. Moreover, these aver
ages can be considered, as in the r.h.s. of Eq.~1!, the result
of a linear functional (ruPS acting on a vectoruO)PO, and
therefore we can say thatS,O8, beingO8 the dual of space
O. While for the usual states~mixed or pure! we can use
Tr(rO), there aregeneralized statesthat can be defined a
the functional (ruO) as explained in earlier papers@2#. Many
results were obtained using this formalism~see, e.g.,@2#, @4#,
@5#!.

In this paper we will use the formalism of that in Ref.@2#
to study the so-called ‘‘classical limit problem,’’ namely, th
statistical quantum mechanics→ classical mechanicslimit
that appears in some quantum systems when observed
certain spaces of observablesO. For conceptual reasons w
will divide the problem in two different processes~which
may or may not happen simultaneously!.

1According to W. Zurek, ‘‘The only sensible subject of conside
ation aimed at the interpretation of quantum theory . . . is therela-
tion between the universalstate vectorand the state memory
~records! of somewhat special system—such asobservers—which
are, for necessity, perceiving the Universe from within. It is t
inability to appreciate the consequences of this rather simple
fundamental observation that has led to such desperate measu
the search of an alternative quantum physics@1#.’’
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(a) Statistical process. Namely the limitstatistical quan-
tum mechanics→ statistical classical mechanics,where the
phenomenon ofdecoherencecombined with the disappear
ance of the uncertainty relations in the limit\→0, originates
the classical final stationary state. Almost all of the pap
will be devoted to this problem. We will see how whent
→` the quantum system reaches a classical final station
stater* (q,p), where the statistical dynamics is trivial, sinc
r* (q,p) is time independent, but the systems of the e
semble move according to the nontrivial laws of classi
dynamics. In general we will have an unlocalized statisti
classical state of many identical systems moving in ph
space.

(b) Localization process. It is the evolutionstatistical
classical mechanics→classical mechanics.In some special
cases the evolution privileges a single space-time traject
in such a way that all trajectories~endowed with a non-
negligible positive probability! concentrate around it.2 In this
case we will havecorrelations and localization. Then we
have the statistical classical state of all the systems pra
cally moving along the same trajectory in such a way that
may consider that we are dealing with asingle classical sys-
tem. We will discuss this process in Sec. IV and Appendix

The usual technique to solve these problems is coa
graining. But in our method we will consider not only th
coarse-graining average butall possible averages made usin
the observables of spaceO, thus we are generalizing th
coarse-graining idea.3 In fact, among the observables ofO
there are some that, from the density matrixr, take into
account only some componentr r , the so-called relevant par
of r, and completely neglect the complementary compon
r i , the so-called irrelevant part ofr, i.e., these observable
only measure~macroscopic! properties of what it is consid
ered as the ‘‘system’’~contained inr r) and neglect or aver-
age the~microscopic! properties of the ‘‘environment’’~con-
tained in r i). But we will consider not only this kind of
observable but all observables inO. Therefore the interplay-

ut
s as

2In some cases this phenomenon does not happen for all the
tems but only for a subsystem.

3At least the ‘‘coarse graining’’ as Zurek describes.
©2000 The American Physical Society07-1
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ing of observables and states will take the role of the coa
graining in this paper~see also the end of Sec. IIA!. With this
strategy we can not only obtain all the old results, but a
we will find some new ones.

We will use this method to study the process~a! and to
prove that certain quantum systems evolve from a statis
quantum state to the statistical classical final stationary s
In the same framework we will study the process~b! obtain-
ing the classical motion of a single system.

The paper is organized as follows. In Sec. II we will se
using the Riemann-Lebesgue theorem, that transition~a!
takes place in close systems endowed with a continu
spectrum and with just one bound state~as in the classica
mixing systems!. More general cases will be considered
Sec. II C. The main characteristics of the quantum laws
~1! the non-boolean nature of the way to find the probabi
of two exclusive events~this probability is the square modu
lus of the sum of their amplitudes and not the sum of
probabilities!; ~2! the uncertainty relations.

In the evolution from quantum mechanics to classical s
tistical mechanics the first characteristic disappears~and the
Boolean method of adding probabilities is established! by the
process ofdecoherenceand the uncertainty relations can b
neglected in the limit\→0. Then we can use the laws o
classical statistical mechanics. At this stage four remarks ar
in order.

~i! Using our language the generalized idea of decoh
ence can be introduced in the following way. At the quant
level the average~1! reads

^O&r
(q)5 (

v,v8
rvv8Ov8v ~2!

wherervv8 andOvv8 are the components in some basis
the operatorsr and O, respectively. Equation~2! can be
considered as the average of some quantitiesOvv8 weighted
by some generalized correlationsrvv8 ~since thervv are
probabilities but thervv8 , with vÞv8, are quantum corre
lations!. On the other hand, at the classical level we a
have some quantitiesOv that correspond to a set$v% of the
exhaustive and exclusive alternatives, each one with a~Bool-
ean! probability pv of measurev for the observableO. The
corresponding classical weighted average is

^O&r
(cl)5(

v
pvOv ~3!

where(vpv51. The transition from the quantum phase
the classical one is therefore

(
v,v8

rvv8Ov8v→(
v

pvOv ~4!

at least for someO, which belong to a preferred subspace
O ~i.e. to a subspace expanded by a complete set of com
ing observables~CSCO! that we will define below; the
eigenbasis of this set will be the so-calledfinal pointer ba-
sis!. If in ~4! we takervv5pv and Ovv5Ov , the matrix
rvv8 must become diagonal in the final pointer basis. This
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the essence of the transition~a!, since the above relation wil
be valid for all observables of the CSCO and we will hav

^O&r
(q)→^O&r

(cl) . ~5!

If this transition takes place, Boolean logic is established
the statistical classical system, if we perform the measu
ment with the observables of the preferred CSCO. In
usual parlance we will then say that the density matrices
contain quantum interference terms become diagonal
such away that these interferences are suppressed. The
quantum way to find probabilities of exclusive and exha
tive alternatives, i.e., adding the corresponding amplitu
and computing the norm, becomes the classical Bool
way, just adding the probabilities.

~ii ! In this paper decoherence is essentially studied in s
tems with continuous spectrum. The case of the disc
spectrum, and the causes of decoherence in this case
discussed in Sec. II C.

~iii ! In the case of the continuous spectrum the essenc
the method is the following: IfvPR1 are the eigenvalues o
H and we calln5v2v8, the rvv8 of Eq. ~2! is a function
r(n, . . . ). Then the time limit of its evolution is given by
the Riemann-Lebesgue theorem, which prescribes that

lim
t→`

E
2a

a

e2 intr~n, . . . !dn50 ~6!

if r(n, . . . ) is integrable. All the diagonal terms (n50) and
all the off-diagonal terms (nÞ0) vanish. Therefore this theo
rem cannot be used as a computation method in the cas
continuous spectrum. Nevertheless when we consider
problem within a cube of sizeL, we definervv8 there, and
when we makeL→`, it can be shown that a singular struc-
ture appears forr(n, . . . ) and thecorresponding singula
diagonal term remains as it should. The method introdu
in paper @2# is precisely designed to rigorously deal wi
these singular structures. It has yielded good results in pa
@2#, @5#, @4#.

~iv! Before the classical stationary state limit is reach
usually the system goes through a ‘‘classical phase’’ wh
the state can be considered as classical but it is not yet i
final classical stationary state. But our method can only
used whent→`. It only allows to find the ‘‘statistical clas-
sical final limit.’’ So, we essentially study this final station
ary state but we believe that our method can be general
to cover the classical phase before the final stationary s
so we will discuss these matters in Sec. V. Moreover,
believe that the understanding of the final limit will enhan
the chances to understand the much more difficult prob
of the classical phase, in the clearest and concise way.

In Sec. III we reach to the principal aim of the formalis
of transition~a!, which is to create a bridge between quantu
and classical mechanics, precisely between quantum
chanics and classicalstatistical mechanics at equilibrium
We know that the uncertainty relations disappear, when\
→0 ~more precisely when the characteristic dimension of
system makes\ a negligible quantity!. Then, let us conside
a system where the quantum state is defined by a den
matrix r, and a set of classical trajectories in phase sp
labeled by some constantsx,l 1 , . . . ,l N , a1 , . . . ,aN , where
7-2
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FUNCTIONAL APPROACH TO QUANTUM DECOHERENCE . . . PHYSICAL REVIEW A62 022107
x corresponds to the energy,l 1 , . . . ,l N to other dynamical
momentum variables, and,a1 , . . . ,aN to configuration vari-
ables. The aim of the theory is~1! to transform the matrixr
into a classical density function in phase spacer(q,p) when
\→0, ~2! to decomposer(q,p) as

r~q,p!5 (
x,l 1 , . . . ,l N ,a1 , . . . ,aN

px,l 1 , . . . ,l N ,a1 , . . . ,aN

3rx,l 1 , . . . ,l N ,a1 , . . . ,aN
~q,p!, ~7!

whereq and p are the position and momentum coordina
and the classical densitiesrx,l 1 , . . . ,l N ,a1 , . . . ,aN

(q,p) would
correspond to each classical trajectory4 ~in the classical sens
that it is peaked in the trajectory and thus it rapidly vanish
when going from the near vicinity of the trajectory to the f
zones of the phase space! and px,l 1 , . . . ,l N ,a1 , . . . ,aN

is the
probability of each trajectory.

We will obtain ~when\→0) these results as follows:~1!
r(q,p) will be the Wigner function corresponding to th
matrix r; ~2! rx,l 1 , . . . ,l N ,a1 , . . . ,aN

(q,p) will be the Wigner
functions of the wave packets going along the classical
jectories labeled by the constant of the motionx,l 1 , . . . ,l N ,
and passing by the initial point of coordinatesa1 , . . . ,aN .

We will see that all this happens after a convenient de
herence time and we will obtain the last expansion@cf. Eq.
~42!# and therefore what we consider the best bridge betw
classical and quantum statistical concepts~see paper@6# for a
very similar conclusion!.

We will devote Sec. IV to discuss transition~b!, namely
the localization process. Eventually in some cases this
cess takes place andcorrelations appear and we reach
single classical state if the localization process is effici
enough. Then we can use the laws ofclassical mechanics.
This phenomenon happens if the dynamic of the system
the initial conditions are such that some canonically con
gated variables correlate~see Appendix B!. We will see how
this fact can be incorporated in our formalism. We will dra
our main conclusions and comments in Sec. V.

Appendix A is devoted to compare our results with tho
in the literature. In Appendix B we deal with correlations a
localization. Finally, in Appendix C we translate the resu
into the language of usual decoherence of histories.

II. DECOHERENCE

A. Decoherence in the energy

Let us consider an isolated quantum system withN11
dynamical variables and a Hamiltonian endowed with a c
tinuous spectrum and just one bounded state. So the dis
part of the spectrum ofH has only one valuev0 and the

4The dimension of the phase space considered is 2(N11). Then
there are (N11) momenta and (N11) coordinates. SoN11 is the
number of parameters necessary to label the momenta of the
sical space-time trajectories, andN the number necessary to lab
the origins of the trajectories.
02210
s

s

-

-

n

o-

t

nd
-

e

-
ete

continuous spectrum is, let say, 0<v,` ~how the discrete
spectrum behaves in the continuous limit can be seen in
papers of@7#, @8#!. Eventually we will give the collective
namex to bothv0 andv. Let us assume that it is possible
diagonalize the HamiltonianH, together withN observables
Oi ( i 51, . . . ,N). The operators (H, O1 , . . . ,ON) form a
complete set of commuting observables~CSCO!. For sim-
plicity we also assume a discrete spectrum for theN observ-
ablesOi . Therefore we write

H5v0(
m

uv0 ,m&^v0 ,mu1E
0

`

v(
m

uv,m&^v,mudv,

~8!

where v0,0 is the energy of the ground state, an
m8$m1 , . . . ,mN% labels a set of discrete indexes, which a
the eigenvalues of the observablesO1 , . . . ,ON .
$uv0 ,m&,uv,m&% is a basis of generalized eigenvectors of t
CSCO:

Huv0 ,m&5v0uv0 ,m&, Huv,m&5vuv,m&,

Oi uv0 ,m&5mi uv0 ,m&, Oi uv,m&5mi uv,m&.

The most general observable that we are going to conside
our model reads:

O5 (
mm8

O~v0!mm8uv0 ,m&^v0 ,m8u

1 (
mm8

E
0

`

dvO~v!mm8uv,m&^v,m8u

1 (
mm8

E
0

`

dvO~v,v0!mm8uv,m&^v0 ,m8u

1 (
mm8

E
0

`

dv8O~v0 ,v8!mm8uv0 ,m&^v8,m8u

1 (
mm8

E
0

`E
0

`

dvdv8O~v,v8!mm8uv,m&^v8,m8u,

~9!

where O(v)mm8 , O(v,v0)mm8 , O(v0 ,v)mm8 , and
O(v,v8)mm8 are ordinary functions of the real variablesv
andv8 ~these functions must have some mathematical pr
erties in order to develop the theory; these properties
listed in @2#!. Namely, the most general observables hav
singular component~the second term of the r.h.s. of the la
equation! and a regular part~all the other terms!. If the sin-
gular term would be missing the Hamiltonian~8! would not
belong to the space of the chosen observables@2#. We will
say that these observables belong to a spaceO. This space
has the basis $uv0 ,mm8), uv,mm8), uvv0 ,mm8),
uv0v8,mm8), uvv8,mm8)%:

uv0 ,mm8)8uv0 ,m&^v0 ,m8u, uv,mm8!8uv,m&^v,m8u,

uvv0 ,mm8)8uv,m&^v0 ,m8u,

as-
7-3
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uv0v8,mm8)8uv0 ,m&^v8,m8u,

uvv8,mm8)8uv,m&^v8,m8u. ~10!

The quantum statesr are measured by the observables j
defined, computing the mean values of these observable
the quantum states, i.e., in the usual notation:^O&r

5Tr(r†O) @3#. These mean values, generalized as in pa
@2#, can be considered as linear functionalsr, mapping the
vectorsO on the real numbers, that we can call (ruO) @9#. In
fact, this is a generalization of the usual mean value defi
tion. ThenrPS,O8, whereS is a convenient convex se
contained inO8, the space of linear functionals overO @10#,
@11#. The basis ofO8 ~that can also be considered as t
co-basis of O) is $(v0 ,mm8u, (v,mm8u, (vv0 ,mm8u,
(v0v8,mm8u, (vv8,mm8u% defined as functionals by th
equations:

~v0 ,mm8uv0 ,nn8!5dmndm8n8 ,

~v,mm8uh,nn8!5d~v2h!dmndm8n8 ,

~vv0 ,mm8uhv0 ,nn8!5d~v2h!dmndm8n8 , ~11!

~v0v8,mm8uv0h8,nn8!5d~v82h8!dmndm8n8 ,

~vv8,mm8uhh8,nn8!5d~v2h!d~v82h8!dmndm8n8

and all other (.u.) are zero. In particular we have

~v0 ,mm8uO!5O~v0!mm85^v0 ,muOuv0 ,m8& ~12!

for any OPO. But (v,mm8uO)5O(v)mm8 is not equal to
^v,muOuv,m8&, which is not even defined ifO is given by
Eq. ~9!. Therefore (v,mm8u can only be considered as
functional, being a typical generalized state. Then, a gen
quantum state reads

r5 (
mm8

r~v0!mm8(v0 ,mm8u

1 (
mm8

E
0

`

dvr~v!mm8(v,mm8u

1 (
mm8

E
0

`

dvr~v,v0!mm8(vv0 ,mm8u

1 (
mm8

E
0

`

dv8r~v0 ,v8!mm8(v0v8,mm8u

1 (
mm8

E
0

`

dvE
0

`

dv8r~v,v8!mm8~vv8,mm8u,

~13!

where r(v0)mm and r(v)mm are real and non-negative
r(v,v0)mm85r(v0 ,v)m8m , and r(v,v8)mm8
5r(v8,v)m8m . Moreover,r(v0)mm8 and r(v)mm8 satisfy
the total probability condition
02210
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~ruI !5(
m

r~v0!mm1(
m

E
0

`

dvr~v!mm51, ~14!

where I 5(muv0 ,m&^v0 ,mu1*0
`dv(muv,m&^v,mu is the

identity operator inO. Equation~14! is the extension to state
functionals of the usual condition Trr†51, used whenr is a
density operator.

The time evolution of the quantum stater reads

r~ t !5 (
mm8

r~v0!mm8(v0 ,mm8u

1 (
mm8

E
0

`

dvr~v!mm8(v,mm8u

1 (
mm8

E
0

`

dvr~v,v0!mm8e
i (v2v0)t~vv0 ,mm8u

1 (
mm8

E
0

`

dv8r~v0 ,v8!mm8e
i (v02v8)t(v0v8,mm8u

1 (
mm8

E
0

`

dvE
0

`

dv8r~v,v8!mm8

3ei (v2v8)t~vv8,mm8u ~15!

The mean value of an observableO in a quantum stater
reads

^O&r(t)5~r~ t !uO!

5 (
mm8

r~v0!mm8O~v0!mm8

1 (
mm8

E
0

`

dvr~v,v8!mm8O~v!mm8

1 (
mm8

E
0

`

dvr~v,v0!mm8e
i (v2v0)tO~v,v0!mm8

1 (
mm8

E
0

`

dv8r~v0 ,v8!mm8e
i (v02v8)t

3O~v0 ,v8!mm81 (
mm8

E
0

`

dvE
0

`

dv8r~v,v8!mm8

3ei (v2v8)tO~v,v8!mm8 . ~16!

Using the Riemann-Lebesgue theorem we obtain the w
limit, for all OPO

lim
t→`

^O&r(t)5^O&r
*
, ~17!

where we have introduced the diagonal asymptotic or fi
stationary state functional

r* 5 (
mm8

r~v0!mm8(v0 ,mm8u

1 (
mm8

E
0

`

dvr~v!mm8~v,mm8u. ~18!
7-4
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Therefore, in a weak sense we have

W lim
t→`

r~ t !5r* . ~19!

Thus, any quantum state weakly goes to a linear combina
of the energy diagonal states (v0 ,mm8u and (v,mm8u ~the
energy off-diagonal states (vv0 ,mm8u, (v0v8,mm8u, and
(vv8,mm8u are not present inr* ). This is the case if we
observe and measure the system evolution withany possible
observable of spaceO. Then, from the observational~or gen-
eralized coarse-graining! point of view, we have decoherenc
of the energy levels whent→`, even that, from the strong
limit ~fine-graining! point of view the off-diagonal terms
never vanish, they just oscillate, since we cannot directly
the Riemann-Lebesgue theorem in the operator equa
~15!.

Some observations are in order.
~i! The real existence of the two singular parts ofO andr

is assured by the physics of the problem. The singular pa
the observables is just a necessary generalization of the
gular part of the Hamiltonian, which has a singular partuv)
@Eq. ~8!#. The states must also be singular objects since,
tuitively, we realize that a continuous by continuous mat
will decohere in a matrix with some kind of singularity in th
diagonal. The method is precisely designed to deal with
object.

~ii ! From Eq. ~17! we can again see that what we a
doing is just a generalized version of coarse graining, wh
a projector on the ‘‘relevant’’ part of the system is define
The ‘‘relevant’’ part of the states, (ru is in our case (ruO)
for all OPO, i.e., the ‘‘projection’’ of r on the class of
observables of the form given in Eq.~9!. An ‘‘irrelevant’’
projection would be a (ruO8), whereO8¹O.

B. Decoherence in the other momentum dynamical variables

Having established the decoherence in the energy le
we must consider the decoherence in the other dynam
variablesOi , of the CSCO where we are working. We w
call these variables ‘‘momentum variables.’’ For the sake
simplicity we will consider, as in the previous section, th
the spectra of these dynamical variables are discrete. As
expression ofr* given in Eq. ~18! involves only the time
independent components ofr(t), it is impossible that a dif-
ferent decoherence process would take place to eliminate
off-diagonal terms in the remainingN dynamical variables.
Therefore, the only thing to do is to find if there is a ba
where the off-diagonal components ofr(v0)mm8 and
r(v)mm8 vanish at any time before the final state is reach
This basis in fact exists, it is constant in time, and it will
called thefinal pointer basis.

Let us consider the following change of basis

uv0 ,r &5(
m

U~v0!mruv0 ,m&, uv,r &5(
m

U~v!mruv,m&,

~20!
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where r and m are short notations forr 8$r 1 , . . . ,r N% and
m8$m1 , . . . ,mN%, and@U(x)21#mr5U(x) rm ~x denotes ei-
ther v0,0 or vPR1).

The new basis$uv0 ,r &,uv,r &% verifies the generalized or
thogonality conditions

^v0 ,r uv0 ,r 8&5d rr 8 , ^v,r uv8,r 8&5d~v2v8!d rr 8 ,

^v0 ,r uv,r 8&5^v,r uv0 ,r 8&50.

It is easy to obtain the components of the statesrPS in
the new basis

r~v0!rr 85 (
mm8

@U~v0!21# rmr~v0!mm8@U~v0!#m8r 8 ,

r~v!rr 85 (
mm8

@U~v!21# rmr~v!mm8@U~v!#m8r 8 ,

r~v,v8!rr 85 (
mm8

@U~v!21# rmr~v,v8!mm8@U~v8!#m8r 8 ,

r~v0 ,v8!rr 85 (
mm8

@U~v0!21# rm

3r~v0 ,v8!mm8@U~v8!#m8r 8 ,

r~v,v0!rr 85 (
mm8

@U~v!21# rmr~v,v0!mm8@U~v0!#m8r 8 ,

As r(v0)mm85r(v0)m8m and r(v)mm85r(v)m8m , it is
possible to chooseU(v0) andU(v) in such a way that the
off-diagonal parts ofr(v0) rr 8 and r(v) rr 8 would vanish,
i.e.,

r~v0!rr 85r r~v0!d rr 8 , r~v!rr 85r r~v!d rr 8 .

Therefore, there is a final pointer basis for the observab
given by $uv0 ,rr 8), uv,rr 8), uvv0 ,rr 8), uv0v8,rr 8),
uvv8,rr 8)% and defined as in Eq.~10!. The corresponding
final pointer basis for the states$(v0 ,rr 8u, (v,rr 8u,
(vv0 ,rr 8u, (v0v8,rr 8u, (vv8,rr 8u% diagonalizes the time
independent part ofr(t) and therefore it diagonalizes th
final stater* ,

r* 5W lim
t→`

r~ t !5(
r

r r~v0!(v0 ,rr u

1(
r
E

0

`

dvr r~v!~v,rr u. ~21!

Now we can define thefinal exact pointer observable
@1#:

Pi5(
r

Pr
i ~v0!uv0 ,r &^v0 ,r u

1E
0

`

dv(
r

Pr
i ~v!uv,r &^v,r u. ~22!
7-5
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As H and Pi are diagonal in the basis$uv0 ,r &, uv,r &%, the
set$H,Pi , . . . PN% is precisely the complete set of commu
ing observables~CSCO! related to this basis, wherer* is
diagonal in the corresponding cobasis for states. For simp
ity we define the operatorsPi such thatPr

i (v0)5Pr
i (v)

5r i , thus

Pi uv0 ,r &5r i uv0 ,r &, Pi uv,r &5r i uv,r &. ~23!

Therefore$uv0 ,r &, uv,r &% is the final observers’ pointer ba
sis where there is a perfect decoherence in the correspon
state cobasis. Moreover the generalized states (v0 ,rr u and
(v,rr u are constants of the motion, and therefore these e
pointer observables have a constant statistical entropy
will be ‘‘at the top of the list’’ of Zurek’s ‘‘predictability
sieve’’ @1#. The final pointer basis is therefore defined by t
dynamics of the model and by the quantum state conside

Therefore~i! decoherence in the energy is produced
the time evolution whent→`; ~ii ! decoherence in the othe
dynamical variables can be seen if we choose an adeq
basis, namely the final pointer basis.

Essentially we have given a partial answer, for this ki
of model, to the fundamental question of Gell-Mann a
Hartle @12# ~precisely only an answer in the case whent
→`): For eachH and each initial stater there is only one
final pointer basis and therefore only one ‘‘quasiclassical
main or realm’’ @13#.5

Our main result is Eq.~21!. When t→` then r(t)→r*
and in this state the dynamical variables H,P1 , . . . ,PN are
well defined. Therefore the eventual conjugated variable
these momentum variables (namely, configuration variab
if they exist) are completely undefined.

In fact, callingLi the generator of the displacements alo
the eventual configuration variable conjugated toPi , we
have (Lir* uO)5(r* uLi

†O)5(r* u@Pi ,O#)50 for all OPO
as it can be proved by direct computation using Eqs.~9!,
~11!, ~18!, and~22!. ThenLir* 50, andr* is homogeneous
in these configuration variables.

C. Decoherence characteristic decaying time,
the permanent quantum states case,

and the role of the environment

From the preceding section it may seem that the proc
of decoherence must be found in all the physical system
is not so and there are two reasons.

~i! Characteristic decaying times can be computed us
analytic continuation technics, as in paper@10#. For example,
in particular models we can find the characteristic times
the system~e.g., an oscillator! and the field~e.g., the envi-
ronments or bath! as below Eq.~56! of the last quoted paper
If the maximal characteristic timeg21 is very large, even if
theoretically the decoherence process will always take pl
it will be so slow that the system will behave as a quant

5But of course this unique consistent set depends of the ch
space of observableO ~see more in Appendix C!.
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one for a very long time. Then there will be no measura
decoherence.

~ii ! It may also happen that more than one of theg would
be zero. Then, HamiltonianH has more than one bound stat
let us sayn ~or even part of its spectrum is discrete!. Then
the first term of the r.h.s. of Eq.~16! must be changed to

(
i j

r j i Oi j e
i (v i2v j )t5(

i
r i i Oii 1(

iÞ j
r j i Oi j e

i (v i2v j )t,

~24!

wherei , j 51, . . .n, and as the second term of the r.h.s. do
not vanish whent→`, decoherence does not take plac
This is the case of a theoretical atom, not coupled to
electromagnetic field, where the electrons will remain fo
ever in their exited states, and they will never decay. Th
the atom never goes to a decohered state. But if the ato
coupled to an electromagnetic field~that usually it is called
the ‘‘environment,’’ as in Appendix B! there will be only
one bound state, the second term of the r.h.s. of Eq.~24! will
be absent, and decoherence will occur. In fact, in many
amples the role of the ‘‘environment’’ is just to introduce
continuous spectrum to be coupled in such a way that o
one bound state remains and the decoherence is comple
other cases fluctuations~or imperfections! of continuous na-
ture take the role of the continuous spectrum and produce
average and make the off-diagonal term disappear. Thi
the case of the spin recombination experiment~@3#, p. 180!
that takes place in a single crystal interferometer.

~iii ! More generally, using only observables from a sub
VPO we may only involve some components of the sta
functional, e.g., those constructed with the eigenvectors oH
that eventually expand the spaceV. Then if we only consider
the observables ofV it may be that the components of th
state related with these observables become decohered
cause their decoherence times are small, while the o
components remain undecohered, because they have a l
decoherence time. Then we will have a system that is p
tially decohered and partially not decohered~which in fact is
the case of the universe where there are both classical
quantum phenomena!.

III. THE CLASSICAL STATISTICAL LIMIT

A. Expansion in sets of classical motions

In this section we will use the Wigner integrals that intr
duce an isomorphism between quantum observablesO and
statesr and their classical analogsOW(q,p) and rW(q,p)
@15#:

OW~q,p!5E dl K q2
l

2UOUq1
l

2L expS ilp

\ D ,

rW~q,p!5 S 1

p\ D N11E dl~ruuq1l&^q2lu!expS 2ilp

\ D .

~25!
en
7-6



to

ill
io

r,

o

a
,

is

-

ari-

e,
Sec.
ri-
g

s.

les

e

FUNCTIONAL APPROACH TO QUANTUM DECOHERENCE . . . PHYSICAL REVIEW A62 022107
It is possible to prove that*dq dprW(q,p)5(ruI )51,
but rW is not in general non-negative. It is also possible
deduce that

~rWuOW!5E dq dprW~q,p!OW~q,p!5~ruO!, ~26!

and therefore to the mean value in the classical Liouv
space it corresponds to the mean value in the quantum L
ville space. Moreover, callingL the classical Liouville op-
erator, andL the quantum Liouville–Von Neumann operato
we have

L@rW~q,p!#5@Lr#W~q,p!1O~\!, ~27!

whereLrW(q,p)5 i $HW(q,p),rW(q,p)%PB and

~LruO!5~ru@H,O# !. ~28!

Finally, if O5O1O2, whereO1 and O2 are two quantum
observables, we have

OW~q,p!5O1
W~q,p!O2

W~q,p!1O~\!. ~29!

We will prove that the distribution functionr
*
W(q,p) that

corresponds to the state functionalr* via the Wigner inte-
gral is a non-negative function of the classical constants
the motion, in our caseHW(q,p), P1

W(q,p), . . . , PN
W(q,p),

obtained from the corresponding quantum operatorsH,
P1, . . . , PN .

From Eq.~21! we have

r* 5W lim
t→`

r~ t !5(
r

r r~v0!(v0 ,rr u

1(
r
E

0

`

dvr r~v!~v,rr u, ~30!

so we must compute

rvr
W ~q,p!8S 1

p\ D N11E ~v,rr uuq1l&^q2lu!e2ipldl.

~31!

We know from@2# Sec. II C@or we can directly prove from
Eqs.~21!–~23!# that

~v0 ,rr uHn!5v0
n , ~v,rr uHn!5vn, ~v0 ,rr uPi

n!5r i
n ,

~v,rr uPi
n!5r i

n , ~32!

for i 51, . . . ,N and n50,1,2, . . . . Using the relation~29!
between quantum and classical products of observables
relation~26! between quantum and classical mean values
the limit \→0 ~we will consider that we always take th
limit when we refer to classical equations below! we deduce
that the characteristic property of the distributionrvr

W (q,p),
that corresponds to the state functional (v,rr u, is

E rvr
W ~q,p!@HW~q,p!#ndqdp5vn,

E rvr
W ~q,p!@Pi

W~q,p!#ndqdp5r i
n , ~33!
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for any natural numbern. Thus rvr
W (q,p) must be the

functional:6

rvr
W ~q,p!5cd@HW~q,p!2v#d@P1

W~q,p!2r 1#•••

3d@PN
W~q,p!2r N#. ~34!

For the distributionrv0r
W (q,p), which corresponds to the

state functional (v0 ,rr u, we obtain

rv0r
W ~q,p!5cd@HW~q,p!2v0#d@P1

W~q,p!2r 1#•••

3d@PN
W~q,p!2r N#. ~35!

Therefore, going back to Eq.~30! and since the Wigner re
lation is linear, we have

r
*
W~q,p!5(

r
r r~v0!rv0r

W ~q,p!

1(
r
E

0

`

dvr r~v!rvr
W ~q,p!. ~36!

Also we obtainr
*
W(q,p)>0, becauser r(v0) andr r(v) are

non-negative.
Therefore, the classical stater

*
W(q,p) is a linear combi-

nation of the generalized classical statesrxr
W(q,p) ~wherex is

eitherv0 or v), having well-defined valuesx, r 1, . . . , r N of
the classical observablesHW(q,p), P1

W(q,p), . . . , PN
W(q,p)

and the corresponding classical canonically conjugated v
ables completely undefined since therxr

W(q,p) are not func-
tions of these variables.So we reach, in the classical cas
the same conclusion as in the quantum case (see end of
II B). But now all the classical canonically conjugated va
ablesa0 ,a1 , . . . ,aN do exist since they can be found solvin
the corresponding Poisson brackets differential equation

As the momentaHW,P1
W, . . . ,PN

W , or any function of
these momenta, which we will call genericallyP, are also
constant of the motion, then we haved/dtP52]H/]a50,
wherea is the classically conjugated variable toP. SoH is
just a function ofP and

d

dt
a5

]H~P!

]P
5Ã~P!5const. ~37!

So

a j~ t !5Ã j~P!t1a j~0!, j 50,1, . . . ,N. ~38!

6We must also take into account that, asr* , (x,rr )Li50 ~see the
end of Sec. II B!. Then classicallyLi

Wrxr
W50 @as in Eq.~27!#. So

rxr
W(q,p) cannot be a function of the canonical conjugated variab

to HW,P1
W . . . , PN

W . Then Eqs.~34! and~35! are just multiplied by
a normalization constantc5V21, whereV5(2p)N11 is the vol-
ume of the tori in the bounded case~see below!. The nonintegrable
case and the caseV→` will be considered elsewhere. We hav
omitted theO(\) of Eqs. ~27! and ~29!. If we reintroduce these
O(\) we will see that Eqs.~34! and~35! are only valid in the limit
\→0. If \ is only very small thed are just functions strongly
peaked at the zero value of their variables.
7-7
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MARIO CASTAGNINO AND ROBERTO LAURA PHYSICAL REVIEW A62 022107
Thus~going back to the old coordinates! in the set of classi-
cal motions contained in the densities~34! and~35! the mo-
mentaH,P1 , . . . ,PN , are completely defined and the orig
of the corresponding motions, that we will respectively c
a0(0), a1(0), . . . andaN(0), arecompletely undefined, in
such a way that the motions represented in the last equa
homogeneously fill the surface, whereHW, P1

W , . . . , and
PN

W have constant values, which now turns out to be a us
torus of phase space.7 This is the interpretation that we giv
to the densities~34! and~35!, which are just functions of the
variablesHW, P1

W , . . . , PN
W , but they are not of the class

cal conjugated variablesa0 , a1, . . . , aN .
Then, Eq. ~36! can be considered as the expansion

r
*
W(q,p) in the sets of classical motions contained

rxr
W(q,p), each one with a probabilityr r(x) (x5v0 ,v).

Summing up~i! we have shown that the quantum sta
functionalr(t) evolves to a final diagonal stater* ; ~ii ! this
quantum stater* hasr

*
W(q,p) as its corresponding classic

density; ~iii ! this classical density can be decompos
in sets of classical motions whereHW, P1

W , . . . , PN
W

remain constant. The origin of these motio
a0(0),a1(0), . . . ,aN(0) are homogeneously distribute
~iv! From Eqs. ~34!–~36! we obtained thatr

*
W(q,p)

5 f @HW(q,p),P1
W(q,p), . . . ,PN

W(q,p)#>0.

B. Expansion in terms of classical motions

We can now expand the densities given in Eqs.~34!–~36!
in terms of classical motions. In fact, since

E )
i 50

N

d@ai~q,p!2ai~ t !#)
i 50

N

dai~0!51, ~39!

whereaj (t)5Ã j (PW)t1aj (0), we canwrite Eq. ~36! as

r
*
W~q,p!5E (

r
r r~v0!rv0r

W ~q,p!)
i 50

N

d@ai~q,p!2ai~ t !#

3)
i 50

N

dai~0!1E (
r
E

0

`

dvr r~v!rvr
W ~q,p!

3)
i 50

N

d@ai~q,p!2ai~ t !#)
i 50

N

dai~0!. ~40!

We define

rx,r ,a(0)
W ~q,p,t !8d@HW~q,p!2x#

3d@P1
W~q,p!2r 1#•••d@PN

W~q,p!2r N#

3d@a0~q,p!2a0~ t !#•••d@aN~q,p!

2aN~ t !#, ~41!

which corresponds to the classical distribution of a mot

7If HW, P1
W , . . . ,PN

W are isolating constants of the motion, the to
are not broken@14#. In the nonintegrable case the tori are broke
This case will be considered elsewhere.
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with momenta x, r 1, . . . , r N and initial conditions
a0(0), . . . , aN(0), andtherefore to a single classical mo
tion. So we can write Eq.~40! as

r
*
W~q,p!5E (

r
r r~v0!rv0 ,r ,a(0)

W ~q,p,t !)
i 50

N

dai~0!

1E (
r
E

0

`

dvr r~v!rv,r ,a(0)
W ~q,p,t !)

i 50

N

dai~0!.

~42!

We have proved Eq.~7! as stated in the Introduction.
The densitiesrx,r ,a(0)

W (q,p,t) represent a point in phas
space with momentaHW5x, P1

W5r 1, . . . , PN
W5r N and co-

ordinatesaj (t)5Ã j (PW)t1aj (0), i.e., they represent single
classical trajectories.

Then we have obtained the final classical limit. Whent
→` the quantum state functionalr becomes a diagonal stat
r* . The corresponding classical distributionr

*
W(q,p) can be

expanded as a linear combination of density functio
rv0 ,r ,a(0)

W (q,p,t) and rv,r ,a(0)
W (q,p,t), representing classica

trajectories, each one weighted by their corresponding pr
abilities r r(v0) andr r(v). As the limit whent→` of our
quantum model we have obtained a statistical classical
chanical model@3#, and theclassical statistical realmis ob-
tained.

IV. CORRELATIONS AND LOCALIZATION

From many examples~e.g.,@16#! we know that eventually
correlations and the localization appear whent→`, at least
in some variables and in some quantum systems. For,
ample in Appendix B we give an example obtained using
method, where we can see that correlations appear in v
ablesQ andP, whent→` @see Eq.~B18!#. As this state with
correlations is a final state let us call itr* and let us see how
it can be incorporated in our formalism.

As r* is a final stationary state it can be decomposed
in Eq. ~21!. From Eq.~11! we have

~v0 ,rr uv0,r 8r 8!5d rr 8 , ~v,rr uv ,r 8r 8!5d rr 8 ,

~v0 ,rr uv ,r 8r 8!50. ~43!

Thus from Eq.~43! we have

~r* uv0,rr !5r r~v0!, ~r* uv ,rr !5r r~v!. ~44!

So, givenr* , endowed with correlations and computed
any method~including ours, see Appendix B! we can find the
corresponding initial conditionsr r(v0),r r(v) that yield,
when t→`, to this correlated state.8 In general, all final de-

.

8The remaining initial conditionsr rr 8(v0), r rr 8(v), r rr 8(v,v8),
r rr 8(v0 ,v8), r rr 8(v,v0) are irrelevant since the correspondin
terms disappear whent→`.
7-8
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cohered stationary states~but not any quantum state! can be
decomposed in this way, in particular our correlated stat

We can repeat all these formulas in the classical pers
tive of Sec. III using the relation~26! between quantum an
classical symbols, computing the initial condition
r r(v0),r r(v) using classical formulas:

„r
*
W~q,p!urv0r

W ~q,p!…5r r~v0!,

„r
*
W~q,p!urvr

W ~q,p!…5r r~v!. ~45!

In this way the correlation and localization phenomena
be incorporated in our formalism. But it is difficult to us
coordinatesx,r ,a to directly obtain the final stater* since
this state looks quite unfamiliar in these coordinates, bu
turns out to be the minimal uncertainty wave packet if
study the problem in the usual coordinatesq, p, as we prove
in the Appendix B via an example.9 Furthermore the corre
lation phenomenon only appears if the potential and the
tial conditions are such that all the trajectories with no
negligible probability are concentrated by the dynam
eventually yielding a ‘‘maximally localized’’ or ‘‘minimal
uncertainty’’ wave packet~as in the example of Appendi
n

e

be

m
th

p

02210
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B!. It is difficult to see this fact in the abstract unfamilia
frame of the coordinatesx,r ,a, because the potentials ar
hidden by the diagonalization even if the initial conditio
are obviously present@i.e., in the choicer r(v0), r r(v)].
Anyhow the phenomenon is there, since we obtain locali
tion when t→`. In this way we can consider the localize
wave packet like a single classical system and the limitclas-
sical statistical mechanics→ classical mechanicsis ob-
tained because the motion of the wave packet satisfies
classical equations~38! as in all the trajectories. Now the
processes~a! and ~b! are explained and the limitstatistical
quantum mechanics→classical mechanicsis completed. The
classical realmis present.

V. COMMENTS AND CONCLUSIONS

Some observations are in order.

A. Sketch of the classical limit

Using the final pointer basis obtained in Sec. II B, the tim
dependent Wigner function@namely, the diagonalized ver
sion of Eq.~15!# is
rW~q,p,t !5(
r

r r~v0!rv0r
W ~q,p!1(

r
E

0

`

dvr r~v!rvr
W ~q,p!1(

rr 8
E

0

`

dvr~v,v0!rr 8e
i (v2v0)trvv0rr 8

W
~q,p!

1(
rr 8

E
0

`

dv8r~v0 ,v8!rr 8e
i (v02v8)trv0vrr 8

W
~q,p!1(

rr 8
E

0

`

dvE
0

`

dv8r~v,v8!rr 8e
i (v2v8)trvv8rr 8

W
~q,p!

5r
*
W~q,p!1Dr~q,p,t !, ~46!
ay

the
is

al

here
his

e
s. In
hed

-

than
where the coefficientsr r(v0) andr r(v) are the probabilities
of each ‘‘classical’’ final history, andDr(q,p,t) corresponds
to ‘‘quantum’’ nondecohered histories.10 It is clear that when
t→` ~really after a decoherence timeg21) the terms corre-
sponding to these histories vanish according to Riema
Lebesgue theorem~see paper@2#!.

Now we know~i! that when\→0, rW(q,p,t) satisfies the
classical Liouville equation, namely the laws of classical m
chanics; ~ii ! that r

*
W(q,p)>0, but that the second term

Dr(q,p,t) is not positive definite, sorW(q,p,t)5r
*
W(q,p)

1Dr(q,p,t) is not positive definite and therefore cannot
considered as a classical density. NeverthelessDr vanishes
whent→`, so thatrW(q,p,t) is ‘‘almost’’ positive definite.

9In fact, it is not possible to formulate a general theory inq, p
coordinates because, in order to make the computations, we
know the relation of these coordinates with the energy and o
momenta, and this is only defined in specific models.

10We do not write these histories in detail since they will disa
pear below.
n-

-

Therefore with an adequate ‘‘coarse graining,’’11 the aver-
agedrW(q,p,t) may be positive definite, fort@g21, and
also would satisfy the classical Liouville equation, in its w
towards classical equilibrium. ThisrW(q,p,t) would be a
‘‘classical limit’’ before equilibrium. We will follow this line
of research elsewhere. For the moment it is clear that
nonfinal pointer basis has for limit the final pointer bas
when t→`. This fact may help us to find both the nonfin
pointer basis and the classical limit.

B. Local vs global equilibrium

In the last subsection we have considered the case w
classicality is reached before classical equilibrium. In t
subsection we will see this process in a different way. W
can decompose the global system in a set of local system
these subsystems, classical local equilibrium can be reac
after a timeg21 with positive definite local equilibrium den

ust
er

- 11Or, in our language, observed by an observer space smaller
O.
7-9
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sities ~and, among other things we will be able to define
classical local equilibrium entropy@17#!. Since the classica
local equilibrium densities of each subsystem are posi
definite the classical density of the whole system will
positive definite. But the whole system is out of equilibriu
and its evolution is defined by the classical Liouville equ
tion. Now, as the system is already classical, since all
parts are classical, we can study its evolution towards e
librium with a classical relaxation timet, that we are sup-
posing t.g21, with the usual classical methods~and the
global entropy of classical phenomenological thermodyna
ics will become maximal!.

Of course, if the interaction is such thatt,g21 this pro-
cess is not possible and we will directly reach the final eq
librium without a previous stage of local equilibrium. But th
caset.g21 is the usual one and it takes place if the glob
long-range interactions are unimportant with respect to
local short-range interactions. Therefore the system can
decomposed into a set of many weakly interacting s
systems that can be considered as quasi-isolated. The
interactions transform these quantum subsystems in clas
subsystems in equilibrium, and the system can be descr
as a nonhomogeneous distribution of local subsystem w
classical momentax, l 1 , . . . ,l N . These momenta, and th
subsystems density are different in each of them, produci
state of classical nonequilibrium that will reach equilibrium
due to the global long-range forces at a timet.g21 ~see
@18#!.

C. Final conclusion

Using the interplay of observables and states, that
have considered as functionals over the space of observa
we have found anexact finalpointer basis and anintrinsi-
cally consistent set of final histories. So, given a Hamilton
H and a stater we have found the exact final pointer bas
$ux,r 1 , . . . ,r N&% and we have shown thatr

*
W , the Wigner

function ofr* , can be expanded in Wigner functions corr
sponding to the co-basis (x,r 1 , . . . ,r Nu. To obtain this re-
sults or similar ones almost all the authors use coa
graining methods based in projectors and try to obtai
limit. So they essentially use the weak limit of Eq.~17!,
namely,

lim
t→`

„r~ t !uO…5~r* uO!,;OPO.

But, at least in the classical case, we know that this w
limit exists if and only if the system is mixing@19#. And the
system is mixing if it has a continuous spectrum~@2#, @5#,
@4#! and the present paper can be considered as an exte
of the theorem, which says that the mixing evolutions hav
weak limit towards equilibrium@20# but now formulated in
the quantum case. Thus the only way to deal with the pr
lem ~at least in the limitt→`) in an exact way is to use
method, such as ours, specially adapted to deal with the
gularities inherent to that continuous spectrum. If not we
limited to perform approximate calculations.

Nevertheless approximated methods are important an
some cases, unavoidable to obtain the nonfinal pointer b
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but they can be better understood if they are compared w
exact methods. We will continue our research following th
subject.
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APPENDIX A: COMPARISON WITH THE LITERATURE

In this Appendix we would like to compare our metho
with those that can be found in the literature, where the m
els are studied using the variablesQ andP.

Let us first see what is the shape of the diagonal sta
(v0u, (vu or r* in Q and P. In order to determinate the
diagonal states, liker* , in the configuration and momentum
basis~and also to find the correlations in these variables! we
are forced to go to a particular model where the relat
amongH, Q, andP is defined. We consider a coupled syste
of an oscillator and a bath such that the Hamiltonian re
@21#:

H5
1

2
V~p21q2!1

1

2E v~pv
2 1qv

2 !dv1lE V~v!~qqv

1ppv!dv, ~A1!

where the first term corresponds to the oscillator~with bound
eigenstatesuv i& and ground stateuv0&), the second term to a
field, the ‘‘bath’’ ~with eigenstatesuv1 ,v2 , . . . ,vn&), and
the third is an interaction term~with a p↔q symmetry!,
which leaves just one set of possible final states

r5(v0u

5(
n
E ) dv idv i8r0v1 ,v2 , . . . ,vnv

18 ,v
28 , . . . ,v

n8

3~v0,v1 ,v2 , . . . ,vnv1 ,v28 , . . . ,vn8u, ~A2!

namely, the oscillator in the ground state and the bath in
state~see@21#!. The (v0,v1 ,v2 , . . . ,vnv18 ,v28 , . . . ,vn8u are
generated by the dressed operators that we will define in
~B7!.

Then let us try to get an idea of the form ofr* via a
heuristic reasoning based on the symmetry of the Ham
tonian ~A1!. If we consider a quantum stater and the posi-
tion operatorQ ~that symbolizes either the operatorq or any
of the operatorsqv) and the momentum operatorP ~that
symbolizes eitherp or pv) in the usual case we will have

~DQ!25Tr~Q2r!2@Tr~Qr!#25^Q2&2^Q&2.

~DP!25Tr~P2r!2@Tr~Pr!#25^P2&2^P&2. ~A3!
7-10
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Whenr is a functional, we can generalize these equation

~DQ!25~ruQ2!2@~ruQ!#25^Q2&2^Q&2,

~DP!25~ruP2!2@~ruP!#25^P2&2^P&2, ~A4!

and in general (DQ)2Þ(DP)2. But if r is the diagonal state
r* of Eq. ~18! ~or the states (v0u, (vu) we will have

~ruQ!5~v0uQ!, ~ruQ2!5~v0uQ2!,

~ruP!5~v0uP!, ~ruP2!5~v0uP2!. ~A5!

So, asH has aq-p symmetry everything is symmetric unde
the transformationp↔q ~or q→2 i ]/]q,2 i ]/]q→q) and
therefore (DQ)25(DP)2. This would not be the case ifr
would not be diagonal in the basis whereH is diagonal, since
Q andP are not diagonal in this basis, e.g.,r could commute
with P but not with Q showing, in this case, a clear asym
metry P↔Q. Thus our diagonal states are states such
DQ5DP. Namely, for the ground state we haveDp5Dq, a
well-known fact. If now we introduce in~A1! a small asym-
metric interactionl8W (l8!1) we will haveDQ>DP. On
the contrary if the interaction isl8W(q,qv) (l8@1) the
HamiltonianH can be neglected and the diagonal states
be position eigenvalues~so our results coincide with those o
Refs.@1# and @22#, see a detailed example below!.

APPENDIX B: AN EXAMPLE OF CORRELATIONS
AND LOCALIZATION

There are systems, e.g., the one of Appendix A, with va
ablesQ andP and a bath, where the interaction is such th
Q and P become correlated. Namely, the evolution mak
both DQ andDP bounded, and a wave packet appears t
eventually becomes a minimal uncertainty wave pack
when t→`, then maximal localization appears in the usu
way as mentioned in Sec. IV. As an example, let us now fi
the correlations betweenQ and P in the model of Hamil-
tonian~A1! using our method as explained above and in
paper@4#. Let us first write the Hamiltonian~A1! using cre-
ation and annihilation operators

H5Vb†b1E dkvkak
†ak1E dkVk~ak

†b1b†ak!,

vk5k, k5uku. ~B1!

The coordinateq and the momentump of the oscillator can
be expressed as a function of theb† andb as

q5S \

2mV D 1/2

~b†1b!; p5 i S m\V

2 D 1/2

~b†2b!.

~B2!

We can adimensionalize the last equation definingQ and
P such that

q5S \

mV D 1/2

Q, p5~m\V!1/2P. ~B3!
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Q5
1

A2
~b†1b!, P5 i

1

A2
~b†2b!, ~B4!

b5
1

A2
~Q1 iP !, b†5

1

A2
~Q2 iP !. ~B5!

In the Heisenberg representation the operatorQ evolves
as

Q~ t !5
1

A2
@b†~ t !1b~ t !#

5
1

A2
E dkVkS 1

h2~k!
Ak

†eivkt1
1

h1~k!
Ake

2 ivktD ,

~B6!

where

Ak
†5ak

†1
Vk

h1~k! S b†1E dk8Vk8ak8
†

vk2vk81 i0
D ,

Ak5ak1
Vk

h2~k! S b1E dk8Vk8ak8

vk2vk81 i0
D . ~B7!

The functionsh2(k) and h1(k) and all the details of the
calculations can be found in paper@4#.

Let us consider the initial conditions

^Q& t505Q0 , ^P& t505P0 ~B8!

for the oscillator, and also

^ak
†& t505^ak& t5050, ~B9!

which corresponds to the field being initially in its groun
state. Therefore

^b& t505
1

A2
~Q01 iP0!, ^b†& t505

1

A2
~Q02 iP0!

~B10!

and for the time evolution of the mean value of the coor
nate and momentum of the oscillator we obtain

^Q& t5
1

A2
E dk

Vk
2

h2~k!h1~k!
~eivkt^b†& t501e2 ivkt^b& t50!,

~B11!

^P& t5
i

A2
E dk

Vk
2

h2~k!h1~k!
~eivkt^b†& t502e2 ivkt^b& t50!.

~B12!

The oscillating time dependent factors inside the integr
produce the vanishing of botĥQ& t and ^P& t for very long
times. We can study the poles of the analytic extension of
7-11
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factor Vk
2/h2(k)h1(k), as in@10# and prove that the trajec

tory of ^Q& t and^P& t in the phase space of the oscillator is
spiral ending at̂ Q&5^P&50.

Now we would like to computeDq andDp as a function
of time. In addition to Eqs.~B8! and ~B9! let us assume the
following initial conditions for the oscillator:

^bb†& t505b, ^bb& t505a, ^b†b& t50512b,

^b†b†& t505a* , ~B13!

beinga andb some arbitrary constants. If the field is in i
ground state, we also have

^akak8
† & t505d3~k2k8!,

^ak
†ak8& t505^ak

†ak8
† & t505^akak8& t5050. ~B14!

All other initial mean values of products of pairs of creati
or annihilation operators are zero. This means that we h
taken the oscillator in an arbitrary state and the field in
ground state as initial conditions.

Therefore we have

^Ak
†Ak8

† & t505
VkVk8

h1~k!h1~k8!
a* ,

^Ak
†Ak8& t505

VkVk8

h1~k!h2~k8!
~b21!,

^AkAk8& t505
VkVk8

h2~k!h2~k8!
a, ~B15!

^AkAk8
† & t505d3~k2k8!1

Vk8Vk

h1~k8!~vk82vk1 i0!

1
VkVk8

h2~k!~vk2vk82 i0!

1
VkVk8

h2~k!h1~k8!
b1

VkVk8

h2~k!h1~k8!

3E dk9Vk9
2

~vk2vk92 i0!~vk82vk91 i0!
.

The time evolution of the mean value ofQ(t)2 is given by

^Q~ t !2&5
1

2 K E dkVkS 1

h2~k!
Ak

†eivkt1
1

h1~k!
Ake

2 ivktD
3E dk8Vk8S 1

h2~k8!
Ak8

† eivk8t

1
1

h1~k8!
Ak8e

2 ivk8tD L . ~B16!
02210
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Then, replacing Eqs.~B15! in Eq. ~B16! and always using
the Riemann-Lebesgue theorem we have

lim
t→`

^Q~ t !2&5
1

2E dk
Vk

2

h2~k!h1~k!
5

1

2
, ~B17!

and therefore

lim
t→`

@DQ~ t !#25 lim
t→`

^~Q~ t !2^Q~ t !&!2&5
1

2
.

Making an analogous calculation forP, we have

lim
t→`

DQ5 lim
t→`

DP5
1

A2
, ~B18!

so the wave packet around the spiral trajectory evolves
minimal uncertainty symmetrical wave packet, showing t
localization process in the usual way. This proves the pr
ence of correlations in our model. Reestablishing the un
when t→`, and introducing the velocityv we have

Dq5S \2

2mV D 1/2

, Dv5S \2V

2m D 1/2

. ~B19!

This fact shows that the wave packet is more peaked for
a m than for small am. Then, in some models big mas
particles can be considered as classical while other rem
quantum. Moreover if\→0 the uncertainties disappea
Also the classical limit of the oscillator has a spiral motion
phase space. In fact, if using Eq.~25! we compute the
Wigner function corresponding to the matrix density, we w
find the motion of this classical density that will be center
in the spiral trajectory and having, whent→`, a symmetri-

cal circle of diameter (12 \)1/2 as support.12

APPENDIX C: DECOHERENCE OF HISTORIES

From Sec. V A we can conclude that our notion of histo
of the system is essentially contained in the stater(t). This
history ends in the final equilibrium stater* . In this Appen-
dix we will study the relation of this notion with the usua
histories formalism@18# and compare the results. The com
putation will turn out to be very simple for two reasons.

~i! As in all the paper we will work only in the limitt
→`, where the existence of an exact final pointer basis w
make all the computations quite trivial.

~ii ! Also we will only consider one space of observabl
O and therefore just one set of final consistent histories@24#.
The case of many sets will be considered elsewhere.

Nevertheless we think that the results are of some inte
since~i! for timest@g21 all the exact result obtained in th
limit t→` can be considered as good approximations;~ii !
the existence of a space of observablesO, where we can use

12The cosmological models of papers@23# are other examples tha
we will further develop elsewhere.
7-12
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the Riemann-Lebesgue theorem, perhaps can be consid
as a selection principle to choose the physically relevant c
sistent set@25#.

So let us begin giving the main definitions. Let us co
sider a time dependent basis ofH: $ua(t)&%, and the projec-
tors

Pa~ t !5ua~ t !&^a~ t !u, ~C1!

such that they represent exhaustive and exclusive alterna

(
a

Pa51, PaPb5dabPa . ~C2!

We will call ~fine-grained! history aW to a string of time de-
pendent projectors:13

CaW 5Pa1
~ t1!, . . . ,Pan

~ tn!, t1,•••,tn . ~C3!

For a stater we will call decoherence matrix

M ~aW ,aW 8!5CaW
†
rCaW 8

5Pan
~ tn!, . . . ,Pa1

~ t1!rPa
18
~ t18!, . . . ,Pa

n8
~ tn8!.

~C4!

We introduce this matrix because we consider it as the n
ral generalization of the usual density matrix to the ca
where single projectors are changed by histories.

We will call decoherence functional

D~aW ,aW 8!5Tr M ~aW ,aW 8!, ~C5!

which would be the generalization of the trace of an ordin
matrix.14

We will call candidate probability for the historyaW

p~aW !5Tr M ~aW ,aW !, ~C6!

which would be the generalization of the usual probability
is only a ‘‘candidate probability’’ because, at this stage,
does not satisfy the axioms of the usual Boolean probab
theory.

If

ReD~aW ,aW 8!50 ~C7!

for aW ÅaW 8, we will say that the set of histories isconsistent
or weakly decoherent. In this case it is proved that the set ca
be in principle submitted to the ordinary boolean logic@27#,
and the candidate probability can be considered as the p
ability of each history.

13We can consider a more general case were the exclusive
exhausting set of histories is different at every timet i and therefore
the projectors arePa i

i (t i). But this is not the usual case.
14If some of thea are continuous indices, for them we must u

the generalization of the trace introduced in@2#.
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D~aW ,aW 8!50 ~C8!

for aW ÅaW 8, we will say that the set hasmedium decoherence.
Theorems about records can be proved if the set of histo
has this type of decoherence@26#.

If

M ~aW ,aW 8!50 ~C9!

for aW ÅaW 8 we will say that the set isintrinsically consistent
@1# or that it hasmatrix decoherence. Of course matrix de-
coherence implies medium decoherence, and medium d
herence implies weak decoherence.

Let us now compare all these concepts with our form
ism. We choose:

ua~ t1!&5ux,r 1 , . . . ,r N ;t1&, ~C10!

where we have used the shorthand notation introdu
above. The set of operatorsPa(t)5ua(t)&^a(t)u
5ux,r 1 , . . . ,r N ;t&^x,r 1 , . . . ,r N ;tu will be our ‘‘final pool
of operators’’ if we use the language of@12#. The evolution
of these operators will be

Pa~ t !5e2 iH (t2t1)Pa~ t1!eiH (t2t1)

5e2 ix(t2t1)Pa~ t1!eix(t2t1)

5Pa~ t1!5Pa5ua~0!&^a~0!u. ~C11!

i.e., these operators are constant. Then the projectors are
constant and

CaW 5Pa , ~C12!

and these histories can be labeled with the ordinarya instead
of the aW with the arrow.

In more detail let us first study our ‘‘pool’’ of projector
to compute Eq.~C4! in our formalism and whent→`,

Pa(t)5Pa5ux,r 1 , . . . ,r N&^x,r 1 , . . . ,r Nu5ux,r 1 , . . . ,r N!.
~C13!

~1! r 1 , . . . ,r N are discrete indices and the final stationa
stater* is diagonal in these indices, so this part of the pro
lem is trivial.

~2! x symbolizes (v0 ,v) where onlyv is continuous, so
the treatment ofv0 is also trivial.

The problem is onlyv so, for simplicity, let us only con-
sider this index. The projector reads:

Pv5uv&^vu5uv!. ~C14!

So let us compute

Pvr* Pv85uv&^vur* uv8&^v8u, ~C15!

but first we must find the meaning of this symbol. In th
discrete case we have

ua&^buruc&^du5ua&Tr~ruc&^bu!^du, ~C16!

nd
7-13
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which can be generalized to the continuous case as

ua&^buruc&^du5ua&~ruuc&^bu!^du. ~C17!

Thus

Pvr* Pv85uuv&^vuF E rv9~v9udv9#uv8&^v8u

5uv&F E rv9~v9uv8,v!dv9G^v8u. ~C18!

So, from Eqs. ~11! we have ~1! If vÞv8, it is
Pvr* Pv850. ~2! If v5v8, it is

Pvr* Pv85uv&F E rv9~v9uv!dv9G^vu

5uv&F E rv9d~v92v!dv9G^vu

5rvuv&^vu. ~C19!

So with a symbolic obvious notation~that we will use from
now on! we can say that

Pvr* Pv85uv&rvdvv8^v8u. ~C20!

If now we repeat the reasoning including all the trivial d
crete indices we will obtain the same result sincer* is di-
agonal in these indices. Then, whent→` we have that

M ~aW ,aW 8!→daa8raua&^au ~C21!

and therefore we have final matrix decoherence in a t
long enough. Then we have found the final ‘‘statistical cla
sical domain or realm’’ of Gell-Mann and Hartle. In this wa
final classical behavior emerges from quantum behavior
transition~a! of the Introduction appears in the histories fo
malism. Essentially we have used the weak limit of Eq.~19!
and the fact that it is the only possible limit we can use, sin
r is a functional over the spaceO. But the choice of Eq.
~C10! has an extra bonus: it decomposes the density ma
just in the way that was announced in the Introduction.

From the matrix decoherence we have medium deco
ence and weak decoherence, so we have proved that
quantum system, fulfilling the conditions required in Sec.
has a set of final intrinsically consistent histories, the ess
tial conditions being the continuous spectrum and the e
tence of just one ground state. Classically these histories
be therxr

W(q,p) of Eq. ~46!. This exact final decoherence ha
being obtained using the basis$uxr&%, other near bases obv
ously yield final approximate decoherence. Also basis$uxr&%
will give approximate decoherence in a time long enough

But we must observe that in all cases wherePa(t)5Pa
5const@even if Eq.~C10! is not satisfied# we can immedi-
ately prove medium decoherence with no reference to ma
decoherence. In fact, ifPb5ub&^bu5const we have
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D~bW ,bW 8!5D~b,b8!

5Tr~ ub&^burub8&^b8u!

5^bub8&^burub8&

5dbb8p~b!. ~C22!

These would be the case with thePa of this section and also
for any constantPb . This result seems very trivial but it is
not. The essential property of projector~C13! is that it is
time constant, but our formalism contains other tim
constant projectors. If we go back to Sec. II A we find

Pb(t)5Pb5ux,m1 , . . . ,mN&^x,m1 , . . . ,mNu

5ux,m1 , . . . ,mN!, ~C23!

namely, the projectors related with the basisux,m& before the
diagonalization~20! that yields the basisux,r &. The Pb are
also time constants and yield medium decoherence~only the
Pa yield matrix decoherence!. The main fact is that in orde
to reach the classical statistical mechanics of Sec. III
must use the basisux,r & that diagonalizer* in all indices
@see Eqs.~30!–~36!#. Thus, since our demonstration is bas
in the matrix decoherence in the basisux,r &, these objects are
essential for us. Only after this demonstration we can sp
of classical constants of the motion and classical trajecto
because only then we can pass from the quantum formula
the classical ones.

Then the last result can be translated as follows.
~1! There is final matrix decoherence between any pair

different sets of constants (x,r ) i.e., between any pair of set
of classical trajectories in the phase space. This set of se
trajectories is intrinsically consistent@see Eq.~21!#.

~2! But, of course, any set of functions of the ‘‘r ,’’ such
as the ‘‘m, ’ ’ will define equally well the set of classica
trajectories. But the ‘‘m’’ do not provide a basis with good
defined probabilities, as the ‘‘r ’’ does, since in the basis
‘‘ m’ ’ the r* is not diagonal@see Eq.~18!#. In this case the
set of histories is consistent but not intrinsically consisten

So our point of view is that, even if all sets endowed
medium decoherence can be considered as consistent
there is only one with physical importance, the one w
matrix decoherence, the only one which is an ‘‘intrinsica
consistent set.’’ This idea may help to find the selection pr
ciple searched for in@25#.

Finally, if the potential and the initial conditions are suc
to privilege a history~as in Appendix B! the locations pro-
cess~b! of the Introduction will take place and we will hav
a unique classical object with a unique historyPa . Then we
would find the final ‘‘classical domain or realm’’ of Gell
Mann and Hartle.

We will end this section showing how several requir
ments necessary for a efficient histories decoherence are
isfied by our formalism.

1. Griffiths-Omnès condition

The Griffiths-Omne`s condition for consistency@27#, @28#
is automatically satisfied since
7-14
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Re Tr@ ua&^aur~12ua&^au!ua&^au#50. ~C24!

2. Permanence of the past

If we take our projectors from the pool of the projecto
ua&^au the condition of permanence of the past@12# is trivi-
ally satisfied, since a chain with an certain number ofua&^au
can only be continued repeating this projector. This is
most important property required in@25#.

3. Insensitivity

While quantum states are modified by the measurem
processes, classical states are not sensitive to these mea
ments. This property of classical states is called insensiti
@1#. The projectorPa i

5ua i&^a i u can be considered as a me

surement operator, so ifrbe f ore is the state before the mea
surement andra f ter is the state after the measurement,
will have

ra f ter5(
i

Pa i
rbe f orePa i

5(
i

ua i&^a i urbe f orua i&^a i u

5(
i

Pa i
rbe f orePa i

, ~C25!

wherepi is the probability to measurea i . Now if, after the
decoherence process,rbe f ore is a diagonal matrix, precisely
r* , i.e.,

rbe f ore5(
i

pi ua i&^a i u ~C26!

and we only measure the observers in the CS
$H,P1 , . . . Pn%, so the Pa i

are just thePa5ua&^au. We
have

ra f ter5(
i

ua i&^a i uS (
j

pj ub j&^b j u D ua i&^a i u

5(
i

pi ua i&^a i u5rbe f ore. ~C27!
e,

a A

or

ys
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In fact, the matrixr* is insensitive to the measurement
the CSCO $H,P1 , . . . Pn% ~and also the CSCO
$H,O1 , . . . ,ON% where the operatorsO are related with the
constantsm). This is the maximum insensitivity we can ge

4. Strong decoherence and records

If for any historyaW there is a projectorRa such that$Ra%
is not necessarily a complete set of projectors inH, in the
sense that$Rauc&% is not necessarily a basis ofH, and for
any stater it is

CaW r5Rar, RaRb5dabPa . ~C28!

We will say that we havestrong decoherence~@29#, Eq.
~2.4!!. As theRa are timeless entities and asCaW →Ra , Ra

can be considered as therecordof the historyaW , Ra can also
be considered the record of not one but several decoh
histories, associated by unitary transformations@12#. So re-
ally Ra is the record of an equivalent class of histories.

It is clear that if these records exist we have mediu
decoherence. In fact,

D~aW ,aW 8!5Tr~CaW
†
rCaW 8!

5Tr~RarRa8!

5Tr~rRa8Ra!

5daa8p~aW …. ~C29!

So strong decoherence implies medium decoherence.
In our case these finalRa exist and they are

Ra5ua&^au5uxr&^xru5Pa . ~C30!

Thus the numbersx,r 1 , . . . ,r N can be considered as th
record of the corresponding final history.
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