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Analytical investigation of revival phenomena in the finite square-well potential
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We present an analytical investigation of revival phenomena in the finite square-well potential. The classical
motion, revival, and super-revival time scales are derived exactly for wave packets excited in the finite well.
These time scales exhibit a richer dependence on wave-packet energy and on potential-well depth than has
been found in other quantum systems: They explain, for example, the difficulties in exciting wave packets with
strong classical features at the bottom of a finite well, or with clearly resolved super-revivals in a shallow well.

In the proper regions of validity, the time scales predict the instances of wave-packet reformation extremely
accurately. Revivals at the bottom of the well are explored as a “universal” limit of the general theory, which
offers the clearest connection with the series of fractional and full revivals seen in the dynamics of the infinite
square-well potential.

PACS numbefs): 03.65.Ge, 42.50.Md, 73.20.Dx, 02.30.Mv

I. INTRODUCTION n?
E,=27h . (2
Quantum wave packets can be excited with strong classi- 2
cal properties, which move as localized entities along they as
trajectories predicted by classical mechanjigé$ In time,
such wave packets spread out and decay, losing their signa- (n_ﬁ) (n_ﬁ)Z
tures of classical motion. Later in the dynamics, however, En=Eq+27h T, + Pt (©)

there are a series dfactional andfull revivals, windows of

time in which the wave-packet shape and classical motioRhese equations serve as the foundation for two alternate,
resurfacg2]. The revival windows in turn decay away, but at p,t fylly compatible, descriptions of revival phenomena in
even longer times the classical behavior reappears in a serig$s infinite well. The direct polynomial description of E)

of superrevivals[3]. The primary purpose of this paper is to predicts exactly periodic dynamics with period

present an analytical investigation of such classical motion_ 2whIE,. The Taylor series regrouping of E@3) de-
and revival phenomena in the quantum evolution of a par- —

ticle confined in the finite square-well potential. scribes a class;ical_motion perioﬂ_l=2wh/(2nE1) and a

In the theory of revival phenomena, the discrete energy€VVal ime To=7,=2mA/E,. At time T there has been
spectrumE, of a quantum systerthere assumed to depend ON€ revival period an_d'2/T1=2n periods of classical mo-
on a single quantum number[4]) is studied in the imme- tion; thus(for integern) these time scales are synchronized
diate vicinity of a wave packet's mean quantum number and again there is periodic dynamics.
The time scales’;, T,, andTs, appearing in the Taylor- We emphasized E@2) and the “universal” time scale,
series expansion of the energies when written in the form in an analysis of the infinite square wélf]. Time , is

universal in that it does not depend on the mean quantum

— — _ numbem, so wave packets of all energies revive at the same
(n—n) N (n—n)? N (n—n)* n time. By focusing on this description instead of that of Eq.
T, 2T, 3T, o (3), we avoided analyzing the classical motiof,) dynam-
(1) ics of low-energy or poorly localized wave packets that show
no obvious connection with classical mechanics.
. ) , ) Recently, Venugopalan and Agarw#8] investigated
characterize the wave packet's classical motion, revivals, ang5,e packets excited in thiinite square well, and showed
super-revivals, respectivep]. (The signssj==*1 are ad-  nat the periodicity of the dynamics and the exactness of the
justed to insure that times; are positive, withs;=+1in reyivals are broken by the finite potential depth. They dem-
general) These times are related to derivatives of the energy,nstrated that such wave packets exhibit super-revival phe-
spectrum evaluated at=n, so wave packets of different nomena, absent in the infinite well. The authors compared
energies usually have different revival times. numerical calculations of the finite square-well dynamics
The energy levels of thifinite square-well potentidlé]  (studied as functions of the initial wave packet and of the
vary quadratically with quantum numbeE,=En?. This potential-well depth with the dynamics of the anharmonic
has the polynomial form sought by E{l), whether it is  oscillator(for which the energy spectrum is known in closed
written as form). However, their work lacked a direct analytic descrip-
tion of the finite square-well revival phenomena.
In this paper, we derive the finite square-well revival
*Electronic address: daron@optics.rochester.edu times exactly, despite the transcendental nature of the quan-

E,=Eq +27h
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tization equation describing the bound energy levels. Wehe quantum numben=1. Note that the number of bound
show that the two alternate views of the infinite square-wellevelsn,,, supported by the well is

dynamics separate into distinct models for wave packets in
the finite well: “Mean-quantum-number” revivals, which .

follow the regime outlined in Eqg1) and (3), describe re- nmax:'m(w_/z

vival phenomena throughout the well, failing only for wave

packets excited too close to the continuum at the top of thewith int(x) equal to the largest integer smaller thelp thus

well. “Universal” revivals, which generalize the approach the quantization equatiof?) has a unique solutiom for

of Eq. (2), are a limiting case that pertain to wave packetsgach quantum numbere {1,2; - - ,Nma( P)}.

excited at the bottom of the well, offering the clearest con- \ye assume that the particle’s wave function is a coherent
nection with the dynamics seen in the infinite square well. syperposition of bound energy levels centered around mean

quantum numben. The initial wave-packet state is written
as|¢¥(t=0)) and its projection onto thath energy level as
(t=0)). Thus the time evolution of the wave

+1 (8

II. FINITE SQUARE-WELL SYSTEM

We consider wave packets excited in the finite squaré:n:k<¢n_|¢
well, so it is useful to review the notation and standard rePacket|s
sults for this system. The one-dimensional finite square-well

. . X X .. Nmax
potential in quantum mechanics confines a nonrelativistic _ .
particle of massn to a box of lengthL and potential depth y(x.0) ngl eXfL —IEqt/A ]Cnn(X). ©)

V, and is described by

A natural unit of energy in square-well problems is
#2/mL2, and the corresponding unit of timerisL?/%. These
units are assumed and suppressed throughout this paper.

0, |x|<L/2

V =
=1y, Ix>L2.

(4)

Popular quantum mechanics textbogR$ give excellent el-
ementary treatments of this problem. It proves useful to ana-
lyze the system in terms of two dimensionless quantitiss
ing notation from Barkeret al. [10]): the scaled actiona
depends on the particle energywith

. “MEAN-QUANTUM-NUMBER” REVIVALS

In this section, we compute the wave-packet expansion of
the finite square-well energies in the form of Ed). This
provides expressions for the wave-packet time scales, which
we explore in detail. With knowledge of these time scales,

2mE L we connect the square-well wave-packet dynamics with the
a=——s, (5 larger theory of revival phenomena, to make highly accurate

predictions of the dynamics in this system.

and thewell-strength parameter Blepends on the potential

depthV, with A. Wave-packet expansion and time scales

A wave packet excited in the vicinity of mean quantum

b V2mVo L © numbern is associated with a mean scaled actign, via
TR 2 Eq. (7), and a mean enerdy,, via Eq.(5). We examine the

quantization equatioti7) in this vicinity by expanding the
The discrete bound-state energy eigenfunctigngx),  arcsine function in a Taylor series around= «;;. We find
found by solving the time-independent Sotlimger equation  that

in each region of constant potential separately, are superpo-
sitions of left- and right-traveling waves inside the well and
attenuating waves outside. The conditions for the quantiza-
tion of the energy levels supported by the square well are
found by examining the continuity af,(x) and¢/(x) at the

well boundariesX= = L/2). Sprung, Wu, and MartorellL1]
discovered a remarkably simple expression for this quantiza-
tion condition: the bound energies are solutions of the equa-
tion

()

+__la_n77
a+SIn P—

which relates the scaled actiento the quantum number
for a given well strengthP. Choosing the branch- #/2
<sin Ya/P)<n/2 of the multivalued arcsine function, the
ground statdthe lowest positive solutioa) corresponds to
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This equation relates the shifted quantum numiver §) to 0.8
a power series ind— «;,). With an eye toward Eq.l), we
invert this equation to describex(- ;) as a power series in 0.6
(n—n) using the power-series inversion theorgh?], and
compute the energy spectrum nézr E; using Eq.(5). We 0.44
find that e
_ S 0.2
40 [P?= a2 (n-m)m 3
E,=E,+ S 21 2 0 P =100
1+[P = ap] 2 S 70 5 10 15 20 25 30 35 40 45 50 55 60 65
5 5 o S 0.8 Mean quantum number, 0
(P2=2a)+[P?— o 1% (n—n)= | g U
+2 5 = T
(1+[P?=a7]¥?)3 2 3 06711
< [
2 2 — &) b
8a;(P2— %a;)+[P2—a; vz (n—n)m ° 0.4+ "\‘ “ p
— — .. P RSN
2_ 29125 ' [ 2
3 (4P 2 02 % & T
(11) s e
0 \’OQM-:;:“"" ******* oo
Equation(11) has the same form as the standard wave- 0 1/4 172 3/4 1

packet expansion, Eql), so from it we extract the wave-

Mean scaled action, %3
packet times: The classical motion time scale is P

2 291 FIG. 1. Time scaleT,: the classical motion time scale as a
:1+[P _aﬁ] (12) function of mean quantum number and as a function of mean
! a;[PZ—ag]”z' scaled actionw,,/P for well-strength parameter®=12, 35, and
n
100.

the revival time scale is
The key point is that the wave-packet time scales are ana-
4 (l+[P2—a%]1/2)3 lytic functions of the scaled actioa,,, but not of the quan-
To=— (13)  tum numbern. For a given wave packet, the connection
T (p2_2a£)+[|32_a3]3/2 L . -
n n betweena,; andn is established by solving the transcenden-

(with s,= =1, discussed latgrand the super-revival time tal equation(7) numerically, then the time scal¢$2)—(14)
scale is ' are found with this numerical value af,, .

2
6 (l"’[PZ_aF]l/Z)S
T3:_2 2_1 3 2 29112 (14
7 (P = 3 o)+ an [P —a]

B. Exploration of time scales

Plots of the wave-packet time scales are shown in Figs.
1-3 for well strengths oP =12, 35, and 100. We show each
(with s;=—1). Higher-order time scalesT§, etc) are time scale in two cormolementary ways: as a function of
readily computed by continuing the expansidf) and re- mean quantum number (to study the dependence on the
taining additional terms in the inverted series égrandE,,.  Well depth for a given energy leyebnd as a function of

Equations(12)—(14) areexact To elaborate, note that the mean scaled actioa,/P (to study the time scales at the
exact expression for the classical motion time s¢fde ex-  bottom, middigandtop of wells of different depths There
ample, found by comparing Eq(1) with the standard form are onlyny,, discrete energy levels for a given well-strength
for a Taylor expansion, is parameter, but the wave packet’'s mean quantum number or

scaled action need not be restricted to this finite spectrum.
1 1 dE 15 For this reason, each plot shows the time scales as continu-
T, 27k dn n=;' (15 ous quantitiegof n or «,,/P) with small dots placed at the

stationary solutions. Note that plots with respect to quantum
Thus T, can be found using the relationships between thenumber have a domain ofsln=n,,,, so different well

energyE and the scaled actioa in Eq. (5), and betweeny strengths have different domains, whereas plots with respect
and the quantum numbarin Eq. (7). We find this procedure to scaled action are defined on the domamd}/P<1 for

to be cumbersome, especially when generalized to find all values of well strength.

and higher-order time scales. The method presented above, The classical motion time scalg, (Fig. 1) falls off rap-
using the power-series inversion theorem, offers a clear patidly with increasing quantum number or scaled action. To
through such calculations without introducing any approxi-connect this with intuition from classical mechanics, note
mations. that a classical particle with enerdy, travels at speed
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FIG. 3. Time scald 3: the super-revival time scale as a function

of mean quantum numberand as a function of mean scaled action
a, /P for well-strength paramete®®=12, 35, and 100.

FIG. 2. Time scal€T,: the revival time scale as a function of

mean quantum number and as a function of mean scaled action
o, /P for well-strength paramete®@=12, 35, and 100.

dynamics, and this behavior has not been predicted in any

=+/2E,;/m and completes one roundtrip inside the well in
v n P P other quantum system. Unfortunately, for modest values of

time the well-strength parametde.g., the values considered in
oL 1 Fig. 2), the revival time divergence occurs between levels

Ty=—=—. (16 Nmax— 1 andng,,, too close to the continuum limit to be
vooay pertinent for wave-packet states. For extremely deep wells

) ) (P>1000), the divergence iff, does occur below level
Times T, and T are nearly equalwith T,<T,) and are 1. wave-packet states excited in this vicinity are pos-
reconciled by describing the classical motion in a larger welkip|e in principle, but it seems implausible to excite such a

of lengthL + 6L, with state in a physical system in practice. For the rest of this
paper we limit our attention to wave packets excited below
L the T, divergence.
l=— (17) 2 dIverg

The super-revival time scalB; (Fig. 3) varies monotoni-
cally from T;—oo at the well bottom toT;—0 at the well
top. The super-revival time depends strongly on well
strength, unlike the classical motion and revival times; for
example, at the well bottom it scales &g (P+1)%/P?

> .
[P2_ a,g] 1/2

This length correctiodL depends on both well strength and
wave-packet energy and serves as the “penetration depth
(or “tunneling depth”) beyond the square-well boundaries.

3
Equation (17) generalizes thex,=0 limit of 6L due to ~P%
Barkeret al. [10], found by examining the energy levels at
the well bottom. C. Semiclassical time-scale hierarchy
The revival time scalel, (Fig. 2 is equal to (44r)(P The wave-packet time scales of highly excited quantum

+1)?/P? at the well bottom and does not vary significantly systems usually satisfy a hierarcfsj

throughout most of the well. This weak dependence on quan-

tum number is the key to the universal revival limit analyzed Ti<T,2!<T4/3!<- - -, (19

in Sec. IV. Near the top of the well, howevér, diverges,

and at the very top it falls to zero. The quantity inside theand, broadly speaking, a given wave packet has well-

absolute value in E((.l3) switches sign at this divergence, resolved classical motion, revivals, and super-revivals when

with s,= +1 below ands,= —1 above it. these conditions are met. With Rydberg atomic-electron
There is the intriguing possibility ofevival suppression Wave packet$13], for example, this is satisfied in the high-

for wave packets excited witfi,—o. Such wave packets €nergy (semiclassical limit and the inequalities become

evolve from their classical motion directly to super-revival stronger with increasing. In the finite square-well system,
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- 10 FIG. 5. Classical motion dynamics: autocorrelation function
g 107 |C(t)|? of the Gaussian wave packet described in Sec. IIl D, during
= 1064 the first several periods of classical motion. The dashed vertical
1054+ lines are drawn at multiples af,, the predicted classical period.
1044
103 [with T5/(5T,)~95/147~2.16 ata,/P=1/2 for all well
10% strength$ and the cumulative effects df, and T5 interfer-
104 T,/ 'TD) ence lead to rather poor super-revivals for the well strengths
1 1 " 70 30 N % % 6’4 considered. This is quite different than for Rydberg wave
- packets, in which the initial wave-packet shape is better rep-
Mean quantum number, n . . . .
licated during the super-revivals than at the revivals.
quantum numben for (a) P=12 and(b) P=100. sical hierarchy can best be fulfilled in the finite square well.

On one hand, the time scal@g, T,, andTg are as far apart

h ¢ . tor fixed from each other as possible near the bottom of the well: In
the presence of a maximum quantum numiiggy (for fixed g4 "4 “\ve estimate that this occurs in the regionne# 2

well strengthP) has a dramatic impact on the regime in —3 for P=12 andn~10—20 for P=100. On the other

which the various inequalities in the time-scale hierarchy ar'®,and. the classical motiorT¢) and revival {T,) dynamics

satisfied. We study this in Fig. 4, showing the time-scale : - . ;
. ) . ' are only marginally separated in this region, compared to
ratiosT;/(j!T,) as functions of the mean quantum number y g y sep g P

what is possible at higher quantum numbers, and one could
for P=12 andP=100. argue that well-resolved classical motion is at the heart of the

At the top of the welll@sn—np,,, the time-scale ratios physics of revival phenomena.
drop precipitously and the hierarcky8) is not satisfied. The
usual formulation of revival theory does not apply to the
dynamics of wave packets excited here, so we do not explore D. Example of wave-packet dynamics
this regime further. We note, however, that a detailed study e consider a Gaussian-shaped wave packet,
of the behavior at the well top is important for problems
involving the scattering of continuum wave packets excited (X—X0)2 . Py(X—Xg)
abovethe well[14]. P(X,t=0)cexg — > i - ,

The inequalityT,;<T,/2 does not hold at the bottom of 20
the well(with T, /T,;~2 atn=1 for all well strengths Thus
the classical motion and revival dynamics cannot be sepaexcited in a well of strengtiP=100 with n,,,=64 bound
rated for wave packets at the well bottom; this is exploredevels. Initially, the packet is in the center of the wel(
more carefully in Sec. IV B. For shallow welle.g., Fig. =0), with width 0=0.07. and momentunp,=4074/L.
4(a)] the inequality is not satisfied in any part of the well This wave packet is a superposition of approximately 20
(except whereT, diverges. For deeper well$with P=20,  gnergy levels centered aroune: 40 [15]. This corresponds
e.g., Fig. 4b)], the inequality becomes valid away from the {4, 5 mean scaled actiom,~62.161 and wave packet time
bottom, and Wavgpacket states exhibiting classical motio.gjes T,~0.016 293, T,/2~40.4T,, T4/3~854T,, and
can be excited fon=10. T,/4~10.3T5;. Note that the inequalitied; <T,/2! <T,/3!

The inequality T,/2! <T4/3! holds beautifully, even for are well satisfied by this wave packet; the inequality3!
shallow wells with only a few bound states. Wave-packet<T,/4! is satisfied but not strongly. We study the dynamics
revivals are the most prominent and well-resolved feature if this wave packet via the autocorrelation function
square-well dynamics, across the range of possible wave-
packet shapes and energies.

The inequalityT3/3!<T,/4! is not met for shallow wells ) ’
[e.g., Fig. 4a)]. For deeper well§with P=60, e.g., Fig. ICO*=Kw (D] (0))|*=
4(b)], the inequality holds near the middle of the well and
wave-packet super-revivals become observable. However,
the inequalityT /4! <Ts/5! is never satisfied in this region as is common in the literatufe.6].

(19

Nmax 2

El |Cn|2e*iEnI/ﬁ (20)
n=

022102-5



DAVID L. ARONSTEIN AND C. R. STROUD, JR. PHYSICAL REVIEW /62 022102

1 T T . . 1 H H H H H H H
i i Po@ : : 5 5 : P@
0.8 H H H H 081 : : : : : :
06{ i L2 A A A
04 : 04{ ‘ : : ;
a_ ; =
£ o : : £ ol NN\ AW L F o) Vi /2, i
E 1 41 42 % 34500 34501 34502 34503 34504 34505 34506
E : E LT ! ! ! ! ! T
g o) g : : : O
g 08y g 084! s s s
2 § < : : ;
061 061 : i :
04] ! 04] i : =
" /\ " ]\\ /\l\
0 : : : : : R ERLVWWIRUYYVA N VAW L
79 80 ) 81 82 LX) 69005 69006 69007 69008 69009 69010
Time, t/ T, Time, t/T;
FIG. 6. Revival dynamics: autocorrelation functig@(t)|* of FIG. 7. Super-revival dynamics: autocorrelation function

the Gaussian wave packet described in Sec. Il D, dut@ghe  |c(t)|2 of the Gaussian wave packet described in Sec. Il D, during
first revival (r=1) and(b) the second revivalr(=2). The dashed (g) the first revival near the first super-revival<£1,s=1), and(b)
vertical lines are drawn at times given by Eg1), when revivals  the first revival near the second super-revivak(l,s=2). The
are predicted to occur. dashed vertical lines are drawn at times given by @), when
super-revivals are predicted to occur.
1. Classical motion

At times t<T,, the wave-packet evolutio9) is de-  super-revivals at multiples of tim&;/6. Specifically, it has
scribed approximately with a first-order truncation of the en-been showr{17] that when the semiclassical time-scale hi-
ergy spectrunil). This predicts periodic motion with classi- era_rchy is satisfied, wave-packet reformations are predicted
cal periodT ;. The autocorrelation function, plotted in Fig. 5, at times
shows strong peaks at multiples ©f. Although the wave
packet spreads as it moves back and forth in the well due to

the nonlinearities in the energy spectrum, its underlying pe- _ [ STs T,
riodic motion is still readily apparent. tedC,r,8) =\ |md [md 72 |+ 1 53] +c
2. Revivals [ sT;
) ) _ rnd =—|+r(mod 2
At times t<T;, the wave-packet evolutionf9) is de- N 3T, s (mod 6)
scribed approximately with a quadratic truncation of the en- i 2 6 n

ergy spectrun(l). Broadly speaking, there are wave-packet
revivals at multiples of timel,/2. Specifically, it has been
shown[17] that when the semiclassical time-scale hierarchy,. gmall integerss, r, ands serving as indices for the clas-

is satisfied, wave-packet reformations are predicted at timeg;. periods, revivals, and super-revivals, respectively. The

r (mod 2) autocorrelation functioniFig. 7) shows that the wave packet

_ )Tl (21 reaches only 40—60% correlation with its initial shape during
2 the first two super-revivals, although we note that these

. . peaks are comparable to those seen at tifheand 2T in

[with md(x) equal to the integer closest xpandr (modm) Fig. 5. Again there is excellent agreement between the peaks

equal to the integer between 0 amd-1 that is congruentto . . ) A"
. . O in the autocorrelation function and the reformation times pre-
r modulom], for small integers andr serving as indices for dicted by Eq.(22)

the classical periods and revivals, respectively. The autocor-
relation function(Fig. 6) shows that the wave packet corre- ) §
lates strongly with its original shape at the first two revivals. V. "UNIVERSAL” REVIVALS AND THE BOTTOM

There is excellent agreement between the peaks in the auto- OF THE WELL

correlation function and the reformation times predicted by e universality of revivals in thénfinite square well

Eq. (21). arises mathematically from the exact quadratic dependence
of the energyE,=E;n?. Physically, this originates from the
complete confinement of the energy eigenstates inside the
At times t<T,, the wave-packet evolutioi9) is de-  well. Just as the standing waves of a stretched stfvith
scribed approximately with a cubic truncation of the energyperfectly secured engloscillate with frequencies at exact
spectrum (1). Broadly speaking, there are wave-packetharmonics of the fundamental mode and allow for disper-

(22

rT
rnd( 2

o7, Tt

trev(cur):

3. Super-revivals
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sionless wave-packet propagation, the energy eigenmodes «
the infinite square wellwith perfectly confining boundari¢s

have phase oscillations with frequencies at harmonics of the
ground state and allow for universal revival phenomena. In 2
thefinite square well, low-energy eigenstates are largely con- §
fined inside the square well, whereas high-energy eigenstate;’
penetrate appreciably outside. Heuristically, then, we expec <
the closest analogy to infinite square-well wave-packet dy- &

(a) (b)

~
2]
~=
R=

—
(]
v B

@ A

namics to occur at the bottom of the finite well. =
In Sec. IV A we explore the bottom-of-the-well limit of
the mean-quantum-number energy expansidn and show

its connection with the infinite square well. For modest val-

ues of well strengtiie.g.,P<100), there are noticeable in-

accuracies in the predictions of this universal limit. In Sec.

IV B we compare this limit more carefully with the mean-
guantum-number expansion and address the diffi¢tdiiged
in Sec. Ill O of separating the classicall{) and revival
(T,) dynamics near the well bottom.

A. “Universal” revival limit

At the very bottom of the finite square welfor a;=0
andn=0), the energy expansidil) reduces to

E.=27h| —— —— —— - , (23

T2 T4 Te

with times
4 (P+1)2

T T (29
48 (P+1)° 25

Ta=— (% 5

4 7T3 PZ

and so forth. Note that the time scales in E2p) are related
to those in Eq(11) with
Tj:Tj(C(H: 0), (26)

and that the odd-index timesr{,75, etc) diverge at the

2 LA O LA L2 L4 0 L4 L2

Well position, x

FIG. 8. Fractional and full revivals: probability densities

|4(x,1)|? of (a) an initial wave packetmean quantum number
=3), centered at,=L/3 and excited in a well of depth=50; (b)

the first revival of this wave packet at tinfg; (c) the 1/2 fractional
revival at timeT,/4; and(d) the 1/3 fractional revival at tim&,/3.

The light dashed lines correspond to the wave-packet shapes ex-
pected in the infinite square-welP(— =) limit. Note that the finite-

well fractional and full revivals do not reproduce the original wave-
packet shape with the same fidelity seen in the infinite-well limit
because of the higher-order terms in the energy spect&®n or
alternately, because of the penetration of the finite-well eigenstates
¢,(x) beyond the well boundaries.

nmax

P(x,t)~ > exd —i2m(t/ mp)n2]c dn(X).

n=1

(27)

As was first noted by Venugopalan and Aganp&| this has

the same form as the equation describing dynamics in the
infinite square wellc.f. Ref.[7], Eq. (9)], with the finite-
well revival time differing from the infinite-well revival time

by the scaling factor R+1)%/P2. The cycle of fractional
and full revivals we found for the infinite square wél]
carry over directly to finite wellgfor example, see Fig.)8
within the time-limit restriction.

2. Accuracy and limitations of universal predictions

We revisit an example considered by Venugopalan and
Agarwal [8] of an initial Gaussian wave packet in the form
of Eq. (19), with mean positiorxg=L/5, width o=L/10,

bottom of the well and are removed from the energy expanznd momentunp,=0, excited in a well of depttP=12.

sion. In practice, Eq(23) is most useful for small scaled

actions @,<<P) or alternately, small quantum numbens (
<Npmay) [18].

Equation (23) generalizes the form of Eq2) and de-
scribes universal revival phenomena in the finite well, sinc
the time scales; depend only on the well-strength param-
eterP. In the infinite square-well limit P—o°), the revival
time is 7,=4/7 and the higher-order timesr{, 7¢, etc)
diverge, in agreement with previous resylfsg,19.

1. Short-time universal revival model:
Connections with the infinite square well

At timest<7,, the wave-packet evolutiof®) at the bot-

This wave packet is centered around energy leveR in a
well with n,,,,=8 levels. Note that the universal revival
limit condition of validity n<<n,,, iS not well satisfied here;
in fact, no wave packet can rigorously satisfy this condition

8n such a shallow well. Thus this example offers insights into

both the accuracy and the limitations of the universal revival
limit.

At timest<7,, EqQ.(27) predicts wave-packet revivals at
multiples of timer,. Broadly speaking, the autocorrelation
function (Fig. 9 shows the expected peaks at these times.
Note that the peaks at/3 and 2r,/3 in Fig. 9 are caused by
an interesting effect in the wave packefactional revivals:
two of the three subpackets in the spatial wave function dur-

tom of the well is described approximately with a quadraticing the 3 and % fractional revivals overlap, interfere con-

truncation of the energy spectruf®3) as

structively, and correlate strongly with the initial packet.
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FIG. 10. Test of mean-quantum-number revival predictions: au-
) . » .
FIG. 9. Test of universal revival limit: autocorrelation function tocorrelation function|C(t)|* of the Gaussian wave packet de-

|C(t)|? of the Gaussian wave packet described in Sec. IV A 2, dur-S¢ribed in Sec. 1l D. Near timeg) T, and (b) 2T, there are re-

ing the first two revival periods. The dashed vertical lines are drawr¥iVals at the predicted times. Near timés 4T, and (d) 5T, we
at multiples ofr,, the predicted revival time in the universal limit. confirm the estimate of Eq(31), that the revival times are not
simple multiples of timel, once the noninteger nature of the ratio

There are, however, noticeable differences between pre2/T1 becomes significant.

dicted and exact revival peak§ig. 9, magnified inset  npowever, are both much smaller thdi, so for timest
Venugopalan and Agarwal studied these time differences ngT3 the wave-packet dynamics is still governed by a qua-
detail (Ref. [8], Table ) and showed that they diminish rap- dratic truncation of the energy spectru). Recall that in
idly with increasing well-strength parameter. Although theiha infinite well, these times satisﬂylelzzﬁ This gener-
error is only 0.9% in Fig. 9, we have still lost the high degreeyizes at the bottom of the finite wellusing Egs.(28) and

of accuracy enjoyed in Sec. Il D. (29)] to
B. Comparison with mean-quantum-number predictions E —ont 27 I (30
The mean-quantum-number revival formalism is math- T 3(P+1)°

ematically valid at the bottom of the well, but the difficulty Thus the time scal@, is nearly an integer multiple oF
2 1

in separating the classical motion and revival dynamics Preznd we expect quasiperiodic dynamics, with peffad until

vents a simpl'e physical interpretation of its .p.redicFions. Thepe higher-order terms in EG30) become significant. Fig-
universal revival limit offers a greatly simplified picture of ;.5 10a) and 1Gb) show that the first few revivals do co-
the dynamics at the well bottom, but there are small timéncige with multiples of T,. Thus the revival-time differ-
differences between the peaks in the autocorrelation functiognces noted above are precisely the differentes 7,
and the predicted revival times at multiples of timg In petween the mean-quantum-number and universal descrip-
this section, we show that these revival-time differences cafions of revivals.
be understood \{vith a careful analysis of the mean-quantum- This simple picture, of approximately synchronized clas-
number expansiofil). sical motion and revival-time scales, breaks down atjthe
The time scale3; [Egs.(12)—(14)] are analytic functions revival when the ratigT,/T, has drifted by a small fraction
of the mean scaled actiosm,, and can be described at the of an integer. A good “rule of thumb” is that this break-
bottom of the well as a power series in the mean quantundown occurs when

numbem with the help of Eq(23). We find that the classical

2.
motion time is 2m7) — 1

——n’~ —. 31
3(P+1)% 10 (Y
1 2

_(P+1)? .
- (nml2)  3(P+1)3

P2

, (28)  For the wave packet considered in Sec. IV A 2, this estimates
a breakdown at=4.2T,. In Figs. 1Qc) and 1Qd), we con-
firm that the autocorrelation peaks no longer coincide with

and the revival time is multiples of T, at the fourth and fifth revival.

o, Beyond the breakdown of th€&,-periodic dynamics de-

nw) l 29 scribed by Eq(31), the failure of the time-scale hierarchy at

1

nw
5 4.

2
+
(P+1)3

=

4 (P+1)2
P > o the bottom of the well impedes predictions of subsequent
wave-packet reformations as functionsTgf and T,, which

L ) ) were possible in Sec. Il D 3. The dynamics of a specific
The mean-quantum-number description and its universglaye packet can be studied numerically in terms of ampli-
I|m|t_agree(for Flmest<T3 ort< 7.4) when we use only the tudesc, and square-well energiés, , but we do not know if
leading terms inT; and T»; the higher-order terms are the 3 more robust analytic description is possible at the bottom
corrections from universality. of the well for these longer times.

In Sec. Il C, we noted that the inequality <T,/2! does We note that for the wave packet analyzed in Sec. IV A 2,
not hold at the bottom of the well, so the revival-time pre-we predict poorly resolved super-revivals in the vicinity of
dictions of Eq.(21) are not valid. The time scalds andT,, time T5/6~73.6. Venugopalan and Agarwjd] searched for
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