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Analytical investigation of revival phenomena in the finite square-well potential
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We present an analytical investigation of revival phenomena in the finite square-well potential. The classical
motion, revival, and super-revival time scales are derived exactly for wave packets excited in the finite well.
These time scales exhibit a richer dependence on wave-packet energy and on potential-well depth than has
been found in other quantum systems: They explain, for example, the difficulties in exciting wave packets with
strong classical features at the bottom of a finite well, or with clearly resolved super-revivals in a shallow well.
In the proper regions of validity, the time scales predict the instances of wave-packet reformation extremely
accurately. Revivals at the bottom of the well are explored as a ‘‘universal’’ limit of the general theory, which
offers the clearest connection with the series of fractional and full revivals seen in the dynamics of the infinite
square-well potential.

PACS number~s!: 03.65.Ge, 42.50.Md, 73.20.Dx, 02.30.Mv
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I. INTRODUCTION

Quantum wave packets can be excited with strong cla
cal properties, which move as localized entities along
trajectories predicted by classical mechanics@1#. In time,
such wave packets spread out and decay, losing their si
tures of classical motion. Later in the dynamics, howev
there are a series offractional and full revivals, windows of
time in which the wave-packet shape and classical mo
resurface@2#. The revival windows in turn decay away, but
even longer times the classical behavior reappears in a s
of super-revivals@3#. The primary purpose of this paper is
present an analytical investigation of such classical mo
and revival phenomena in the quantum evolution of a p
ticle confined in the finite square-well potential.

In the theory of revival phenomena, the discrete ene
spectrumEn of a quantum system~here assumed to depen
on a single quantum numbern @4#! is studied in the imme-
diate vicinity of a wave packet’s mean quantum numbern̄.
The time scalesT1 , T2, and T3, appearing in the Taylor-
series expansion of the energies when written in the form

En5En̄12p\F ~n2n̄!

T1
1s2

~n2n̄!2

T2
1s3

~n2n̄!3

T3
1•••G

~1!

characterize the wave packet’s classical motion, revivals,
super-revivals, respectively@5#. ~The signssj561 are ad-
justed to insure that timesTj are positive, withs1511 in
general.! These times are related to derivatives of the ene
spectrum evaluated atn5n̄, so wave packets of differen
energies usually have different revival times.

The energy levels of theinfinite square-well potential@6#
vary quadratically with quantum number,En5E1n2. This
has the polynomial form sought by Eq.~1!, whether it is
written as
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En52p\Fn2

t2
G ~2!

or as

En5En̄12p\F ~n2n̄!

T1
1

~n2n̄!2

T2
G . ~3!

These equations serve as the foundation for two altern
but fully compatible, descriptions of revival phenomena
the infinite well. The direct polynomial description of Eq.~2!
predicts exactly periodic dynamics with periodt2
52p\/E1. The Taylor series regrouping of Eq.~3! de-
scribes a classical motion periodT152p\/(2n̄E1) and a
revival time T25t252p\/E1. At time T2 there has been
one revival period andT2 /T152n̄ periods of classical mo-
tion; thus~for integern̄) these time scales are synchroniz
and again there is periodic dynamics.

We emphasized Eq.~2! and the ‘‘universal’’ time scalet2
in an analysis of the infinite square well@7#. Time t2 is
universal in that it does not depend on the mean quan
numbern̄, so wave packets of all energies revive at the sa
time. By focusing on this description instead of that of E
~3!, we avoided analyzing the classical motion (T1) dynam-
ics of low-energy or poorly localized wave packets that sh
no obvious connection with classical mechanics.

Recently, Venugopalan and Agarwal@8# investigated
wave packets excited in thefinite square well, and showed
that the periodicity of the dynamics and the exactness of
revivals are broken by the finite potential depth. They de
onstrated that such wave packets exhibit super-revival p
nomena, absent in the infinite well. The authors compa
numerical calculations of the finite square-well dynam
~studied as functions of the initial wave packet and of t
potential-well depth! with the dynamics of the anharmoni
oscillator~for which the energy spectrum is known in close
form!. However, their work lacked a direct analytic descri
tion of the finite square-well revival phenomena.

In this paper, we derive the finite square-well reviv
times exactly, despite the transcendental nature of the q
©2000 The American Physical Society02-1
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tization equation describing the bound energy levels.
show that the two alternate views of the infinite square-w
dynamics separate into distinct models for wave packet
the finite well: ‘‘Mean-quantum-number’’ revivals, whic
follow the regime outlined in Eqs.~1! and ~3!, describe re-
vival phenomena throughout the well, failing only for wav
packets excited too close to the continuum at the top of
well. ‘‘Universal’’ revivals, which generalize the approac
of Eq. ~2!, are a limiting case that pertain to wave pack
excited at the bottom of the well, offering the clearest co
nection with the dynamics seen in the infinite square we

II. FINITE SQUARE-WELL SYSTEM

We consider wave packets excited in the finite squ
well, so it is useful to review the notation and standard
sults for this system. The one-dimensional finite square-w
potential in quantum mechanics confines a nonrelativi
particle of massm to a box of lengthL and potential depth
V0 and is described by

V~x!5H 0, uxu<L/2

V0 , uxu.L/2.
~4!

Popular quantum mechanics textbooks@9# give excellent el-
ementary treatments of this problem. It proves useful to a
lyze the system in terms of two dimensionless quantities~us-
ing notation from Barkeret al. @10#!: the scaled actiona
depends on the particle energyE with

a5
A2mE

\

L

2
, ~5!

and thewell-strength parameter Pdepends on the potentia
depthV0 with

P5
A2mV0

\

L

2
. ~6!

The discrete bound-state energy eigenfunctionsfn(x),
found by solving the time-independent Schro¨dinger equation
in each region of constant potential separately, are supe
sitions of left- and right-traveling waves inside the well a
attenuating waves outside. The conditions for the quant
tion of the energy levels supported by the square well
found by examining the continuity offn(x) andfn8(x) at the
well boundaries (x56L/2). Sprung, Wu, and Martorell@11#
discovered a remarkably simple expression for this quant
tion condition: the bound energies are solutions of the eq
tion

a1sin21S a

PD5
np

2
, ~7!

which relates the scaled actiona to the quantum numbern
for a given well strengthP. Choosing the branch2p/2
<sin21(a/P)<p/2 of the multivalued arcsine function, th
ground state~the lowest positive solutiona) corresponds to
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the quantum numbern51. Note that the number of boun
levelsnmax supported by the well is

nmax5 intS P

p/2D11 ~8!

@with int(x) equal to the largest integer smaller thanx#; thus
the quantization equation~7! has a unique solutiona for
each quantum numbernP$1,2,•••,nmax(P)%.

We assume that the particle’s wave function is a coher
superposition of bound energy levels centered around m
quantum numbern̄. The initial wave-packet state is writte
as uc(t50)& and its projection onto thenth energy level as
cn5^fnuc(t50)&. Thus the time evolution of the wav
packet is

c~x,t !5 (
n51

nmax

exp@2 iEnt/\#cnfn~x!. ~9!

A natural unit of energy in square-well problems
\2/mL2, and the corresponding unit of time ismL2/\. These
units are assumed and suppressed throughout this pape

III. ‘‘MEAN-QUANTUM-NUMBER’’ REVIVALS

In this section, we compute the wave-packet expansion
the finite square-well energies in the form of Eq.~1!. This
provides expressions for the wave-packet time scales, w
we explore in detail. With knowledge of these time scal
we connect the square-well wave-packet dynamics with
larger theory of revival phenomena, to make highly accur
predictions of the dynamics in this system.

A. Wave-packet expansion and time scales

A wave packet excited in the vicinity of mean quantu
numbern̄ is associated with a mean scaled actiona n̄ , via
Eq. ~7!, and a mean energyEn̄ , via Eq.~5!. We examine the
quantization equation~7! in this vicinity by expanding the
arcsine function in a Taylor series arounda5a n̄ . We find
that

~n2n̄!p

2
5~a2a n̄!1

1

F12S a n̄

P
D 2G1/2S a2a n̄

P
D

1

a n̄

P

2F12S a n̄

P
D 2G3/2S a2a n̄

P
D 2

1

112S a n̄

P
D 2

6F12S a n̄

P
D 2G5/2S a2a n̄

P
D 3

1•••. ~10!
2-2
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This equation relates the shifted quantum number (n2n̄) to
a power series in (a2a n̄). With an eye toward Eq.~1!, we
invert this equation to describe (a2a n̄) as a power series in
(n2n̄) using the power-series inversion theorem@12#, and
compute the energy spectrum nearE5En̄ using Eq.~5!. We
find that

En5En̄1
4a n̄ @P22a n̄

2
#1/2

11@P22a n̄
2
#1/2

F ~n2n̄!p

2
G

12
~P222a n̄

2
!1@P22a n̄

2
#3/2

~11@P22a n̄
2
#1/2!3

F ~n2n̄!p

2
G 2

2
8a n̄

3

~P22 1
4 a n̄

2
!1@P22a n̄

2
#1/2

~11@P22a n̄
2
#1/2!5

F ~n2n̄!p

2
G 3

2•••.

~11!

Equation~11! has the same form as the standard wa
packet expansion, Eq.~1!, so from it we extract the wave
packet times: The classical motion time scale is

T15
11@P22a n̄

2
#1/2

a n̄ @P22a n̄
2
#1/2

, ~12!

the revival time scale is

T25
4

p U ~11@P22a n̄
2
#1/2!3

~P222a n̄
2
!1@P22a n̄

2
#3/2U ~13!

~with s2561, discussed later!, and the super-revival time
scale is

T35
6

p2

~11@P22a n̄
2
#1/2!5

~a n̄P22 1
4 a n̄

3
!1a n̄ @P22a n̄

2
#1/2

~14!

~with s3521). Higher-order time scales (T4, etc.! are
readily computed by continuing the expansion~10! and re-
taining additional terms in the inverted series fora n̄ andEn̄ .

Equations~12!–~14! areexact. To elaborate, note that th
exact expression for the classical motion time scale~for ex-
ample!, found by comparing Eq.~1! with the standard form
for a Taylor expansion, is

1

T1
5

1

2p\

dE

dn U
n5n̄

. ~15!

Thus T1 can be found using the relationships between
energyE and the scaled actiona in Eq. ~5!, and betweena
and the quantum numbern in Eq. ~7!. We find this procedure
to be cumbersome, especially when generalized to findT2
and higher-order time scales. The method presented ab
using the power-series inversion theorem, offers a clear p
through such calculations without introducing any appro
mations.
02210
-

e

ve,
th
-

The key point is that the wave-packet time scales are a
lytic functions of the scaled actiona n̄ , but not of the quan-
tum numbern̄. For a given wave packet, the connectio
betweena n̄ andn̄ is established by solving the transcende
tal equation~7! numerically, then the time scales~12!–~14!
are found with this numerical value ofa n̄ .

B. Exploration of time scales

Plots of the wave-packet time scales are shown in F
1–3 for well strengths ofP512, 35, and 100. We show eac
time scale in two complementary ways: as a function
mean quantum numbern̄ ~to study the dependence on th
well depth for a given energy level! and as a function of
mean scaled actiona n̄ /P ~to study the time scales at th
bottom, middle, and top of wells of different depths!. There
are onlynmax discrete energy levels for a given well-streng
parameter, but the wave packet’s mean quantum numbe
scaled action need not be restricted to this finite spectr
For this reason, each plot shows the time scales as con
ous quantities~of n̄ or a n̄ /P) with small dots placed at the
stationary solutions. Note that plots with respect to quant
number have a domain of 1<n<nmax, so different well
strengths have different domains, whereas plots with res
to scaled action are defined on the domain 0<a n̄ /P<1 for
all values of well strength.

The classical motion time scaleT1 ~Fig. 1! falls off rap-
idly with increasing quantum number or scaled action.
connect this with intuition from classical mechanics, no
that a classical particle with energyEn̄ travels at speed

FIG. 1. Time scaleT1: the classical motion time scale as

function of mean quantum numbern̄ and as a function of mean
scaled actiona n̄ /P for well-strength parametersP512, 35, and
100.
2-3
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v5A2En̄ /m and completes one roundtrip inside the well
time

Trt5
2L

v
5

1

a n̄

. ~16!

Times T1 and Trt are nearly equal~with Trt,T1) and are
reconciled by describing the classical motion in a larger w
of lengthL1dL, with

dL5
L

@P22a n̄
2
#1/2

. ~17!

This length correctiondL depends on both well strength an
wave-packet energy and serves as the ‘‘penetration dep
~or ‘‘tunneling depth’’! beyond the square-well boundarie
Equation ~17! generalizes thea n̄50 limit of dL due to
Barker et al. @10#, found by examining the energy levels
the well bottom.

The revival time scaleT2 ~Fig. 2! is equal to (4/p)(P
11)2/P2 at the well bottom and does not vary significan
throughout most of the well. This weak dependence on qu
tum number is the key to the universal revival limit analyz
in Sec. IV. Near the top of the well, however,T2 diverges,
and at the very top it falls to zero. The quantity inside t
absolute value in Eq.~13! switches sign at this divergence
with s2511 below ands2521 above it.

There is the intriguing possibility ofrevival suppression
for wave packets excited withT2→`. Such wave packets
evolve from their classical motion directly to super-reviv

FIG. 2. Time scaleT2: the revival time scale as a function o

mean quantum numbern̄ and as a function of mean scaled acti
a n̄ /P for well-strength parametersP512, 35, and 100.
02210
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dynamics, and this behavior has not been predicted in
other quantum system. Unfortunately, for modest values
the well-strength parameter~e.g., the values considered i
Fig. 2!, the revival time divergence occurs between lev
nmax21 and nmax, too close to the continuum limit to be
pertinent for wave-packet states. For extremely deep w
(P@1000), the divergence inT2 does occur below leve
nmax21; wave-packet states excited in this vicinity are po
sible in principle, but it seems implausible to excite such
state in a physical system in practice. For the rest of t
paper we limit our attention to wave packets excited bel
the T2 divergence.

The super-revival time scaleT3 ~Fig. 3! varies monotoni-
cally from T3→` at the well bottom toT3→0 at the well
top. The super-revival time depends strongly on w
strength, unlike the classical motion and revival times;
example, at the well bottom it scales asT3}(P11)5/P2

;P3.

C. Semiclassical time-scale hierarchy

The wave-packet time scales of highly excited quant
systems usually satisfy a hierarchy@5#

T1!T2/2!!T3/3!!•••, ~18!

and, broadly speaking, a given wave packet has w
resolved classical motion, revivals, and super-revivals w
these conditions are met. With Rydberg atomic-elect
wave packets@13#, for example, this is satisfied in the high
energy ~semiclassical! limit and the inequalities becom
stronger with increasingn̄. In the finite square-well system

FIG. 3. Time scaleT3: the super-revival time scale as a functio

of mean quantum numbern̄ and as a function of mean scaled actio
a n̄ /P for well-strength parametersP512, 35, and 100.
2-4
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the presence of a maximum quantum numbernmax ~for fixed
well strengthP) has a dramatic impact on the regime
which the various inequalities in the time-scale hierarchy
satisfied. We study this in Fig. 4, showing the time-sc
ratiosTj /( j !T1) as functions of the mean quantum numb
for P512 andP5100.

At the top of the well~as n̄→nmax), the time-scale ratios
drop precipitously and the hierarchy~18! is not satisfied. The
usual formulation of revival theory does not apply to t
dynamics of wave packets excited here, so we do not exp
this regime further. We note, however, that a detailed st
of the behavior at the well top is important for problem
involving the scattering of continuum wave packets exci
abovethe well @14#.

The inequalityT1!T2/2 does not hold at the bottom o
the well~with T2 /T1'2 at n̄51 for all well strengths!. Thus
the classical motion and revival dynamics cannot be se
rated for wave packets at the well bottom; this is explo
more carefully in Sec. IV B. For shallow wells@e.g., Fig.
4~a!# the inequality is not satisfied in any part of the we
~except whereT2 diverges!. For deeper wells@with P>20,
e.g., Fig. 4~b!#, the inequality becomes valid away from th
bottom, and wave-packet states exhibiting classical mo
can be excited forn̄>10.

The inequalityT2/2!!T3/3! holds beautifully, even for
shallow wells with only a few bound states. Wave-pac
revivals are the most prominent and well-resolved feature
square-well dynamics, across the range of possible wa
packet shapes and energies.

The inequalityT3/3!!T4/4! is not met for shallow wells
@e.g., Fig. 4~a!#. For deeper wells@with P>60, e.g., Fig.
4~b!#, the inequality holds near the middle of the well a
wave-packet super-revivals become observable. Howe
the inequalityT4/4!!T5/5! is never satisfied in this regio

FIG. 4. Time-scale ratios:Tj /( j !T1) as a function of mean

quantum numbern̄ for ~a! P512 and~b! P5100.
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@with T5 /(5T4)'95/14p'2.16 at a n̄ /P51/2 for all well
strengths#, and the cumulative effects ofT4 andT5 interfer-
ence lead to rather poor super-revivals for the well streng
considered. This is quite different than for Rydberg wa
packets, in which the initial wave-packet shape is better r
licated during the super-revivals than at the revivals.

There is no simple conclusion for how the full semicla
sical hierarchy can best be fulfilled in the finite square we
On one hand, the time scalesT3 , T4, andT5 are as far apart
from each other as possible near the bottom of the well
Fig. 4, we estimate that this occurs in the region ofn'2
23 for P512 and n'10220 for P5100. On the other
hand, the classical motion (T1) and revival (T2) dynamics
are only marginally separated in this region, compared
what is possible at higher quantum numbers, and one co
argue that well-resolved classical motion is at the heart of
physics of revival phenomena.

D. Example of wave-packet dynamics

We consider a Gaussian-shaped wave packet,

c~x,t50!}expF2
~x2x0!2

2s2
1 i

px~x2x0!

\ G , ~19!

excited in a well of strengthP5100 with nmax564 bound
levels. Initially, the packet is in the center of the well (x0
50), with width s50.07L and momentumpx540p\/L.
This wave packet is a superposition of approximately
energy levels centered aroundn̄540 @15#. This corresponds
to a mean scaled actiona n̄'62.161 and wave packet tim
scales T1'0.016 293,T2/2'40.4T1 , T3/3'854T2, and
T4/4'10.3T3. Note that the inequalitiesT1!T2/2!!T3/3!
are well satisfied by this wave packet; the inequalityT3/3!
!T4/4! is satisfied but not strongly. We study the dynam
of this wave packet via the autocorrelation function

uC~ t !u25 z^c~ t !uc~0!& z25U(
n51

nmax

ucnu2e2 iEnt/\U2

, ~20!

as is common in the literature@16#.

FIG. 5. Classical motion dynamics: autocorrelation functi
uC(t)u2 of the Gaussian wave packet described in Sec. III D, dur
the first several periods of classical motion. The dashed vert
lines are drawn at multiples ofT1, the predicted classical period.
2-5
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1. Classical motion

At times t!T2, the wave-packet evolution~9! is de-
scribed approximately with a first-order truncation of the e
ergy spectrum~1!. This predicts periodic motion with class
cal periodT1. The autocorrelation function, plotted in Fig.
shows strong peaks at multiples ofT1. Although the wave
packet spreads as it moves back and forth in the well du
the nonlinearities in the energy spectrum, its underlying
riodic motion is still readily apparent.

2. Revivals

At times t!T3, the wave-packet evolution~9! is de-
scribed approximately with a quadratic truncation of the
ergy spectrum~1!. Broadly speaking, there are wave-pack
revivals at multiples of timeT2/2. Specifically, it has been
shown@17# that when the semiclassical time-scale hierarc
is satisfied, wave-packet reformations are predicted at tim

t rev~c,r !5S F rndS rT2

2T1
D1cG1F r ~mod 2!

2 G DT1 ~21!

@with rnd(x) equal to the integer closest tox, andr (modm)
equal to the integer between 0 andm21 that is congruent to
r modulom#, for small integersc andr serving as indices for
the classical periods and revivals, respectively. The auto
relation function~Fig. 6! shows that the wave packet corr
lates strongly with its original shape at the first two reviva
There is excellent agreement between the peaks in the a
correlation function and the reformation times predicted
Eq. ~21!.

3. Super-revivals

At times t!T4, the wave-packet evolution~9! is de-
scribed approximately with a cubic truncation of the ene
spectrum ~1!. Broadly speaking, there are wave-pack

FIG. 6. Revival dynamics: autocorrelation functionuC(t)u2 of
the Gaussian wave packet described in Sec. III D, during~a! the
first revival (r 51) and~b! the second revival (r 52). The dashed
vertical lines are drawn at times given by Eq.~21!, when revivals
are predicted to occur.
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super-revivals at multiples of timeT3/6. Specifically, it has
been shown@17# that when the semiclassical time-scale h
erarchy is satisfied, wave-packet reformations are predic
at times

tsr~c,r ,s!5S F rndS F rndS sT3

3T2
D1r G T2

2T1
D1cG

1F rndS sT3

3T2
D1r ~mod 2!

2
G1Fs ~mod 6!

6 G D T1 ,

~22!

for small integersc, r , ands serving as indices for the clas
sical periods, revivals, and super-revivals, respectively. T
autocorrelation function~Fig. 7! shows that the wave packe
reaches only 40–60% correlation with its initial shape dur
the first two super-revivals, although we note that the
peaks are comparable to those seen at timesT1 and 2T1 in
Fig. 5. Again there is excellent agreement between the pe
in the autocorrelation function and the reformation times p
dicted by Eq.~22!.

IV. ‘‘UNIVERSAL’’ REVIVALS AND THE BOTTOM
OF THE WELL

The universality of revivals in theinfinite square well
arises mathematically from the exact quadratic depende
of the energy,En5E1n2. Physically, this originates from the
complete confinement of the energy eigenstates inside
well. Just as the standing waves of a stretched string~with
perfectly secured ends! oscillate with frequencies at exac
harmonics of the fundamental mode and allow for disp

FIG. 7. Super-revival dynamics: autocorrelation functi
uC(t)u2 of the Gaussian wave packet described in Sec. III D, dur
~a! the first revival near the first super-revival (r 51,s51), and~b!
the first revival near the second super-revival (r 51,s52). The
dashed vertical lines are drawn at times given by Eq.~22!, when
super-revivals are predicted to occur.
2-6
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sionless wave-packet propagation, the energy eigenmod
the infinite square well~with perfectly confining boundaries!
have phase oscillations with frequencies at harmonics of
ground state and allow for universal revival phenomena
thefinite square well, low-energy eigenstates are largely c
fined inside the square well, whereas high-energy eigens
penetrate appreciably outside. Heuristically, then, we exp
the closest analogy to infinite square-well wave-packet
namics to occur at the bottom of the finite well.

In Sec. IV A we explore the bottom-of-the-well limit o
the mean-quantum-number energy expansion~11! and show
its connection with the infinite square well. For modest v
ues of well strength~e.g.,P<100), there are noticeable in
accuracies in the predictions of this universal limit. In S
IV B we compare this limit more carefully with the mean
quantum-number expansion and address the difficulty~raised
in Sec. III C! of separating the classical (T1) and revival
(T2) dynamics near the well bottom.

A. ‘‘Universal’’ revival limit

At the very bottom of the finite square well~for a n̄50
and n̄50), the energy expansion~11! reduces to

En52p\Fn2

t2
2

n4

t4
2

n6

t6
2•••G , ~23!

with times

t25
4

p

~P11!2

P2
, ~24!

t45
48

p3

~P11!5

P2
, ~25!

and so forth. Note that the time scales in Eq.~23! are related
to those in Eq.~11! with

t j5Tj~a n̄50!, ~26!

and that the odd-index times (t1 ,t3, etc.! diverge at the
bottom of the well and are removed from the energy exp
sion. In practice, Eq.~23! is most useful for small scale
actions (a n̄!P) or alternately, small quantum numbers (n̄
!nmax) @18#.

Equation ~23! generalizes the form of Eq.~2! and de-
scribes universal revival phenomena in the finite well, sin
the time scalest j depend only on the well-strength param
eterP. In the infinite square-well limit (P→`), the revival
time is t254/p and the higher-order times (t4 , t6, etc.!
diverge, in agreement with previous results@7,8,19#.

1. Short-time universal revival model:
Connections with the infinite square well

At times t!t4, the wave-packet evolution~9! at the bot-
tom of the well is described approximately with a quadra
truncation of the energy spectrum~23! as
02210
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n51
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exp@2 i2p~ t/t2!n2#cnfn~x!. ~27!

As was first noted by Venugopalan and Agarwal@8#, this has
the same form as the equation describing dynamics in
infinite square well@c.f. Ref. @7#, Eq. ~9!#, with the finite-
well revival time differing from the infinite-well revival time
by the scaling factor (P11)2/P2. The cycle of fractional
and full revivals we found for the infinite square well@7#
carry over directly to finite wells~for example, see Fig. 8!
within the time-limit restriction.

2. Accuracy and limitations of universal predictions

We revisit an example considered by Venugopalan a
Agarwal @8# of an initial Gaussian wave packet in the for
of Eq. ~19!, with mean positionx05L/5, width s5L/10,
and momentumpx50, excited in a well of depthP512.
This wave packet is centered around energy leveln̄52 in a
well with nmax58 levels. Note that the universal reviva
limit condition of validity n̄!nmax is not well satisfied here
in fact, no wave packet can rigorously satisfy this conditio
in such a shallow well. Thus this example offers insights in
both the accuracy and the limitations of the universal revi
limit.

At times t!t4, Eq. ~27! predicts wave-packet revivals a
multiples of timet2. Broadly speaking, the autocorrelatio
function ~Fig. 9! shows the expected peaks at these tim
Note that the peaks att2/3 and 2t2/3 in Fig. 9 are caused by
an interesting effect in the wave packet’sfractional revivals:
two of the three subpackets in the spatial wave function d
ing the 1

3 and 2
3 fractional revivals overlap, interfere con

structively, and correlate strongly with the initial packet.

FIG. 8. Fractional and full revivals: probability densitie

uc(x,t)u2 of ~a! an initial wave packet~mean quantum numbern̄
53), centered atx05L/3 and excited in a well of depthP550; ~b!
the first revival of this wave packet at timeT2; ~c! the 1/2 fractional
revival at timeT2/4; and~d! the 1/3 fractional revival at timeT2/3.
The light dashed lines correspond to the wave-packet shapes
pected in the infinite square-well (P→`) limit. Note that the finite-
well fractional and full revivals do not reproduce the original wav
packet shape with the same fidelity seen in the infinite-well lim
because of the higher-order terms in the energy spectrum~23!, or
alternately, because of the penetration of the finite-well eigenst
fn(x) beyond the well boundaries.
2-7
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There are, however, noticeable differences between
dicted and exact revival peaks~Fig. 9, magnified inset!.
Venugopalan and Agarwal studied these time difference
detail ~Ref. @8#, Table I! and showed that they diminish rap
idly with increasing well-strength parameter. Although t
error is only 0.9% in Fig. 9, we have still lost the high degr
of accuracy enjoyed in Sec. III D.

B. Comparison with mean-quantum-number predictions

The mean-quantum-number revival formalism is ma
ematically valid at the bottom of the well, but the difficult
in separating the classical motion and revival dynamics p
vents a simple physical interpretation of its predictions. T
universal revival limit offers a greatly simplified picture o
the dynamics at the well bottom, but there are small ti
differences between the peaks in the autocorrelation func
and the predicted revival times at multiples of timet2. In
this section, we show that these revival-time differences
be understood with a careful analysis of the mean-quant
number expansion~1!.

The time scalesTj @Eqs.~12!–~14!# are analytic functions
of the mean scaled actiona n̄ , and can be described at th
bottom of the well as a power series in the mean quan
numbern̄ with the help of Eq.~23!. We find that the classica
motion time is

T15
~P11!2

P2 F 1

~ n̄p/2!
1

2

3~P11!3 S n̄p

2
D 1•••G , ~28!

and the revival time is

T25
4

p

~P11!2

P2 F11
2

~P11!3 S n̄p

2
D 2

1•••G . ~29!

The mean-quantum-number description and its unive
limit agree~for times t!T3 or t!t4) when we use only the
leading terms inT1 and T2; the higher-order terms are th
corrections from universality.

In Sec. III C, we noted that the inequalityT1!T2/2! does
not hold at the bottom of the well, so the revival-time pr
dictions of Eq.~21! are not valid. The time scalesT1 andT2,

FIG. 9. Test of universal revival limit: autocorrelation functio
uC(t)u2 of the Gaussian wave packet described in Sec. IV A 2, d
ing the first two revival periods. The dashed vertical lines are dra
at multiples oft2, the predicted revival time in the universal limi
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however, are both much smaller thanT3, so for times t
!T3 the wave-packet dynamics is still governed by a qu
dratic truncation of the energy spectrum~1!. Recall that in
the infinite well, these times satisfyT2 /T152n̄. This gener-
alizes at the bottom of the finite well@using Eqs.~28! and
~29!# to

T2

T1
52n̄1

2p2

3~P11!3
n̄31•••. ~30!

Thus the time scaleT2 is nearly an integer multiple ofT1,
and we expect quasiperiodic dynamics, with periodT2, until
the higher-order terms in Eq.~30! become significant. Fig-
ures 10~a! and 10~b! show that the first few revivals do co
incide with multiples ofT2. Thus the revival-time differ-
ences noted above are precisely the differencesT22t2
between the mean-quantum-number and universal des
tions of revivals.

This simple picture, of approximately synchronized cla
sical motion and revival-time scales, breaks down at thej th
revival when the ratiojT2 /T1 has drifted by a small fraction
of an integer. A good ‘‘rule of thumb’’ is that this break
down occurs when

2p2 j

3~P11!3
n̄3'

1

10
. ~31!

For the wave packet considered in Sec. IV A 2, this estima
a breakdown at'4.2T2. In Figs. 10~c! and 10~d!, we con-
firm that the autocorrelation peaks no longer coincide w
multiples ofT2 at the fourth and fifth revival.

Beyond the breakdown of theT2-periodic dynamics de-
scribed by Eq.~31!, the failure of the time-scale hierarchy a
the bottom of the well impedes predictions of subsequ
wave-packet reformations as functions ofT1 andT2, which
were possible in Sec. III D 3. The dynamics of a spec
wave packet can be studied numerically in terms of am
tudescn and square-well energiesEn , but we do not know if
a more robust analytic description is possible at the bott
of the well for these longer times.

We note that for the wave packet analyzed in Sec. IV A
we predict poorly resolved super-revivals in the vicinity
time T3/6'73.6. Venugopalan and Agarwal@8# searched for

r-
n

FIG. 10. Test of mean-quantum-number revival predictions:
tocorrelation functionuC(t)u2 of the Gaussian wave packet de
scribed in Sec. III D. Near times~a! T2 and ~b! 2T2 there are re-
vivals at the predicted times. Near times~c! 4T2 and ~d! 5T2 we
confirm the estimate of Eq.~31!, that the revival times are no
simple multiples of timeT2 once the noninteger nature of the rat
T2 /T1 becomes significant.
2-8
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the first super-revival of this wave packet by looking f
local maxima in the autocorrelation function and estima
that this occurs much sooner, at time 153(4/p)'19.1. With
the mean-quantum-number revival interpretation, we beli
that they found maxima in the beating between theT1 andT2

dynamics, in a regime before the effects ofT3 were signifi-
cant.
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