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Time of arrival through interacting environments: Tunneling processes

Ken-Ichi Aoki,* Atsushi Horikoshi,† and Etsuko Nakamura‡

Institute for Theoretical Physics, Kanazawa University, Kakuma-machi Kanazawa 920-1192, Japan
~Received 28 December 1999; published 29 June 2000!

We discuss the propagation of wave packets through interacting environments. Such environments generally
modify the dispersion relation or shape of the wave function. To study such effects in detail, we define the
distribution functionPX(T), which describes the arrival timeT of a packet at a detector located at pointX. We
calculatePX(T) for wave packets traveling through a tunneling barrier and find that our results actually explain
recent experiments. We compare our results with Nelson’s stochastic interpretation of quantum mechanics and
resolve a paradox previously apparent in Nelson’s viewpoint about the tunneling time.

PACS number~s!: 03.65.Sq, 03.65.Bz, 73.40.Gk, 04.30.Nk
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I. INTRODUCTION

We are interested in the behavior of quantum partic
that is, wave packets propagating through interacting e
ronments. In general, there are two types of environm
One is the ordinary medium~plasma, dielectric, etc.! which
consists of ‘‘matter’’@1–4#. The other is the nontrivial struc
ture of the vacuum due to field theoretical fluctuations@5# or
effects of quantum gravity@6,7#. In both cases, the presenc
of such environments will modify the dispersion relation
particles,E5 f (p), or modify the shape of the wave packe
Observation of the arrival time of particles through such
vironments is a way to see the effects of these modificatio
Recently, these effects have been tested in two fields, a
physics and quantum optics. The first is the observation
arrival times of photons from distant astrophysical sour
such asg-ray bursters. Several models of quantum grav
suggest that the velocity of light has an effective energy
pendence due to the modified dispersion relation induced
the nontrivial structure of space-time at distances compar
to the Planck length. To confirm this effect, it is necessary
observe a certain difference of the arrival time of photo
with different energies, andg-ray bursters work for this pur
pose@6#. As a result, a lower bound on the energy scale
quantum gravity is obtained@8#. The second recent test
observation of tunneling of photons. Chiao and co-work
constructed an elaborate stadium for the race between
tons propagating in the vacuum and through an optical b
rier, and measured their arrival times@1,2#. They found that
the photon tunneling through the barrier arrived at the g
earlier than the other photon traveling in the vacuum.
though this result implies superluminal velocity of the tu
neling photon, it does not mean causality violation, beca
in this case the group velocity itself does not transport a
information at all. The apparent superluminality results fro
reshaping of wave packets while tunneling. Similar pheno
ena can be found in absorbing media@9#. Anyway, in both
experiments, measurement of the arrival time of wave pa
ets plays an essential role.
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However, there is no clear definition of arrival time
quantum mechanics. This has its root in the well-known f
that time is not an operator but a parameter in quantum
chanics. Though many authors have attempted to define
operator of arrival time and construct its eigenstates, a sa
factory formulation has not yet been obtained@10–25#. In
this article we define a distribution functionPX(T), which
describes the arrival time of packets at a detector locate
point X. In terms ofPX(T), we can compute a mean arriva
time ^T&X . Of course we assume an ideal detector and
definition of PX(T) might not exactly correspond to th
physical measurement process. However, concrete calc
tion of PX(T) shows us clearly the dynamical properties
propagation of packets through interacting environments

We investigate the arrival time distributionPX(T) nu-
merically for nonrelativistic massive particles travelin
through a potential barrier in one space dimension, tha
tunneling processes. This might be a simple model for
experiment of Chiao and co-workers. In this case the e
tence of a potential barrierV(x) causes reflection and trans
mission of packets; therefore the behavior ofPX(T) will be
highly nontrivial, depending on various parameters. How
deal with time in tunneling processes is also known as
tunneling time problem. The problem arises from the pa
dox that a particle under a potential greater than the partic
energy seems to move with a purely imaginary velocity.
recent developments of nanotechnology, the study of the
neling time has great significance because it might enabl
to estimate the response time of nanodevices@27#. Various
approaches to the tunneling time have been proposed
many authors@27–36#; however, it seems difficult to define
it uniquely.1 Therefore we need to define effective tunneli
times for each system and each purpose. We have no in
tion of wrestling with the general theory of tunneling tim
now; therefore, we restrict ourselves to analyzing the time
appearance of the packet in the exit of the potential bar
and how it moves after that. These two notions determin
the arrival time difference have usually been confused.
this article we will distinguish them clearly.

1The ‘‘systematic projector approach’’ has been proposed a
unifying theory of the various times proposed so far@33#.
©2000 The American Physical Society01-1
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Finally we consider the real-time stochastic interpretat
of quantum mechanics introduced by Nelson@37#. Since it
utilizes the real-time trajectories of quantum particles
sample paths, we can construct an appropriate time distr
tion from ensemble of sample paths. This is why Nelso
approach is expected to be effective for time problems
quantum mechanics. In particular, it is interesting to atta
the tunneling time problem from this approach because
can trace the particle’s real-time motion even under the t
neling potential. Actually it has been found that the tunnel
particle ‘‘hesitates’’ in front of the barrier@38#. This property
seems paradoxical because it implies that the particle tun
ing through the barrier should always be delayed compa
with the free one due to this hesitation and it seems con
dictory to the advancement of the peak of the wave packe
seen in the experiment of Chiao and co-workers. Is it a r
paradox?

It is clear that Nelson’s approach can reproduce a
physical quantities of the usual quantum mechanics by a
aging them about the sample path ensemble. However, t
is no reason that any ‘‘observables’’ classically defined
Nelson’s stochastic procedures should have correspon
quantities in the standard quantum mechanics. We will co
pute the arrival time distribution in Nelson’s approach a
compare it with ourPX(T). Then we clarify the real physica
meaning of the ‘‘hesitation’’ and show that there is no pa
dox at all. Furthermore, we mention that Nelson’s interp
tation can explain the characteristic behavior of^T&X for
tunneling particles very well.

II. DEFINITION OF THE ARRIVAL TIME DISTRIBUTION

First we will briefly review previous attempts to define
time of arrival operator and their difficulties. In the 1960
Aharonov and Bohm quantized the representation of
classical arrival time for the free particle at a pointX50
@10#,

T52m
x

p
→T̂52

m

2 S x̂
1

p̂
1

1

p̂
x̂D . ~1!

Herex andp are the initial position and momentum, respe
tively, where we work in the Heisenberg picture. BecausT̂

satisfies@ T̂,Ĥ#5 i\, it seems a good definition. We constru
its eigenstatesT̂uT&5TuT&.2 However, these eigenstates tu
out to be not orthogonal,

^puT&}@u~p!1 iu~2p!#Apeip2T/2m\, ~2!

^TuT8&}d~T2T8!2
i

p
P

1

T2T8
, ~3!

2In order to obtain a complete set, one needs two eigenst
uT,6& for every value ofT @19#.
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where P represents Cauchy’s principal value. That is,T̂ is
not Hermitian. The origin of difficulty is the singular behav
ior of T̂ at p50. Recently the regularization ofT̂ with an
infrared momentum cut off@15# and an interpretation by
means of the positive-operator-valued measure were
posed@16#. However, the validity of this procedure is no
clear@17,18#. In the first place, there is no one-to-one corr
spondence between the operator representation in qua
theory and the classical representation, and it becomes m
complicated for interacting cases@19–22#.

Now we will not insist on defining an arrival time opera
tor; rather, we try to construct an arrival time distributio
directly. We suppose that there is a detector on the p
along the motion of wave packets and it counts the part
according to the value of the wave functionc(X,t) at every
time t5T. Supposing the detector is ideal, we directly defi
the arrival time distribution PX(T) from c(X,T),

PX~T!dT5
rX~T!dT

E
0

`

dTrX~T!

, rX~T!5uc~X,T!u2. ~4!

Although Eq.~4! looks like a trivial definition in our pic-
ture, we will derive it, clarifying our system setup and a
sumptions. We consider a system consisting of a particle
a detector located atx5X. If there is no interaction betwee
them, the system HamiltonianH0 and the system stateuC&
are given by

H05Hp^ 111^ HD , ~5!

uC&5uc& ^ uD&, ~6!

where Hp is the particle Hamiltonian,uc& is the particle
state, and similarlyHD anduD& are those of the detector. W
define the total HamiltonianH by adding the interaction
HamiltonianH I between the particle and the detector,

H5H01H I , H I5gVp~x! ^ VD . ~7!

For simplicity, we consider a detector whose state cons
essentially of two components,

u↓&5S 0

1D , unreacted,

u↑&5S 1

0D , reacted. ~8!

Corresponding to this representation, we set the interac
potentials

Vp~x!5d~x2X!, ~9!

VD5S 0 1

1 0D , ~10!

which induces a transitionu↓&⇒VDu↓&5u↑&. This choice of
VD should be meaningful only in the first order ofg.

es
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Now we consider the time evolution of the system fro
t50 to T. We prepare the initial stateuD(0)&5u↓& and
evaluate a quantityRX(T), which is the probability that the
stateuD(t)& is found to beu↑& when t5T. FromRX(T), we
get PX(T)DT, which is the probability that the transitio
u↓&⇒u↑& occurs in a time interval@T,T1DT#, that is,

PX~T!DT5RX~T1DT!2RX~T! ¥
DT→0

PX~T!dT5dRX~T!.
~11!

Next we evaluateRX(T) in terms of the particle wave
function c(x,t). We now assume that the detector rea
only once incoherently, and therefore we calculate only
the first order ofg. Adopting the interaction picture, the tim
evolution of the state can be represented as follows in
first order ofg:

uC~T!& I5Te2( i /\)*0
TdtgVpI(x,t) ^ VDI(t)uc~0!& I ^ uD~0!& I

.uc~0!& I ^ uD~0!& I

2
i

\E0

T

dtgVpI~x,t !uc~0!& I ^ VDI~ t !uD~0!& I

[uC~0!& I1uC~T!& I, ~12!

where T represents the time ordered product.uC(0)& I is the
undetected state anduC(T)& I is the detected state, which
written in the Schro¨dinger picture as

uC~T!&52
i

\E0

T

dt@e2[ iH p(T2t)]/\gVp~x!e2 iH pt/\#uc~0!&

^ @e2[ iH D(T2t)]/\VDe2 iH Dt/\#uD~0!&

[2
i

\E0

T

dtuc~T;t !& ^ uD~T;t !&, ~13!

where we introduced

uc~T;t !&[@e2[ iH p(T2t)]/\gVp~x!e2 iH pt/\#uc~0!&, ~14!

uD~T;t !&[@e2[ iH D(T2t)]/\VDe2 iH Dt/\#uD~0!&. ~15!

We obtainRX(T) in terms of the norm of the detected sta

RX~T!5^C~T!uC~T!&, ~16!

under our approximation of weak coupling. Now we apply
macroscopic decoherence condition,

^D~T;t1!uD~T;t2!&5d~ t12t2!. ~17!

This means that the states reacted at different times are
thogonal to each other, that is, once the detection pro
occurs, the total state effectively loses its coherence
looks like a mixed state. Of course it is not possible to sati
this condition by working in the two-dimensional Hilbe
space in Eq.~8!. We should describe the detector by mea
of an infinite-dimensional Hilbert space to realize decoh
ence effectively@26#. However, we can avoid this assum
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tion by ‘‘switching on’’ the interaction Hamiltonian during
different small time intervals in repeated experiments,
stead of using the finite time interval@0,T# and differentiat-
ing with respect toT.

Under this condition, the evaluation ofRX(T) andPX(T)
is straightforward as follows:

RX~T!5^C~T!uC~T!&

5
1

\2E0

T

dt1E
0

T

dt2^c~T;t1!uc~T;t2!&d~ t12t2!

5
1

\2E0

T

dt^c~T;t !uc~T;t !&, ~18!

PX~T!5
]

]T
RX~T!

5
]

]T
^C~T!uC~T!&5

1

\2
^c~T;T!uc~T;T!&

5
g2

\2
^c~0!ueiH pT/\Vp

†~x!Vp~x!e2 iH pT/\uc~0!&

5
g2

\2
d~0!uc~X,T!u2, ~19!

where at the last step we inserted the complete
(*dxux&^xu) three times. Although the divergentd(0) seems
to break the validity of our formulation, we can remove th
singularity by replacing thed function in Eq. ~9! with a
smeared function. We normalize the right hand side of
~19! to get our expression for the arrival time distributio
PX(T). UsingPX(T) we definethe mean arrival timêT&X ,

^T&X5E
0

`

TPX~T!dT. ~20!

BecausePX(T) and ^T&X have simple and general expre
sions, we can calculate them easily even for interact
cases. OurPX(T) is often called the ‘‘presence time distr
bution’’ because of its behavior in the classical limit@20#. In
order to avoid confusion, we should make clear that the d
tribution PX(T) may not be interpreted as the probabili
distribution of a quantum mechanical time observable. It
an effective distribution describing a ‘‘relative probability.

Of course, our definition of arrival time distribution~4! is
not a unique one. Considering a different system setup, s
people have proposed a definition using the currentJX(T)
instead ofrX(T)5ucu2 @11#,

PX
c ~T!dT5

JX~T!dT

E
0

`

dTJX~T!

, JX~T!5
\

m
ImS c*

]c

]x D U
x5X

.

~21!
1-3
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AOKI, HORIKOSHI, AND NAKAMURA PHYSICAL REVIEW A 62 022101
This definition has the serious problem thatJX(T) can be
negative in some cases, for example, detection before
potential barrier. Therefore we cannot identifyPX

c (T) as a
probability distribution. As for detection beyond the pote
tial barrier as we discuss below,JX(T) might effectively
maintain positivity and actually the behavior ofPX

c (T) is
found to be similar to ours.

III. CALCULATION OF PX„T… FOR TUNNELING
PARTICLES

Now let us calculatePX(T) and ^T&X for nonrelativistic
massive particles traveling through a potential barrierV(x)
in one dimension. This is a simple model of tunneling p
cesses such as the experiment of Chiao and co-work
Solving the time dependent Schro¨dinger equation with some
initial conditions, we can getc(x,t). Except for the free case
it is difficult to solve the partial differential equation analyt
cally, and therefore we solve it numerically. We now empl
a discretization scheme known as the Crank-Nichol
method, which conserves the norm ofc(x,t) even with a
finite discrete time step@42#. We work with the unitsm5\
51 and for the initial condition we prepare a Gaussian wa
packet,

c~x,0!5S 1

ps2D 1/4

e2(x2x0)2/2s2
eik0(x2x0), ~22!

whose mean energy iŝE&5k0
2/211/4s2, and we set a time

independent square potential barrierV(x) on a section@0,d#.
For simplicity, in this article we work with a unique initia
packet. We fix the central wave numberk052 and in this
unit we set the width of the initial packet in the configurati
space s510(2/k0) and the center of initial packetx0
5250(2/k0). All quantities that have a dimension of tim
are measured by the (4/k0

2) unit. Hereafter we will omit the
units of the numerical values. We change two parameter
the barrier potentialV(x): the widthd and the heighth, and
also the detector locationX.

Let us begin by watching the motion of wave packets w
anh51.1̂ E&, d51.5 potential. The snapshots of the moti
are shown in Fig. 1, in which the free packet motion is a
shown for comparison. Both packets spread due to the
persive properties that come from their own masses.
packet moving through the potential barrier experiences
flection and transmission and the peak of the transmitted
will often advance compared to the free packet. It is usua
explained that this is because the higher momentum com
nents of the packet preferably go through the barrier and t
propagate faster than the lower momentum parts due to
dispersive properties. That is, the advancement results f
reshaping of the transmitted packet. However, tracing
peak of the packet is often difficult because near the bar
the peak cannot be clearly identified. Therefore we must
more well-defined quantities,PX(T) and ^T&X .

Analysis 1: Detection atXÄ50

Now let us calculatePX(T) and ^T&X at X550 with an
h52^E&, d54 potential. In Fig. 2, the arrival time distribu
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tions PX(T) are plotted for the free and tunneling particl
and the mean arrival timeŝT&X are shown by dashed lines
The remarkable feature ofPX(T) is the stretched tail and th
shift of the peak caused by spread of the packet. For the
case,^T&X550.13 is later thanT550, which is expected
from the group velocity of the free packet, and ‘‘the peak
PX(T)’’ 549.94 is earlier thanT550. It is also seen that
because of the packet’s reshaping,PX(T) for the tunneling
particle has a narrower shape than the free one and ‘‘^T&X for
the tunneling particle’’547.65 is earlier than the free one
However, it should be noted that only one detection far fro
the barrier cannot describe the dynamics of packets since
should discriminate effects in and out of the potential barr
Therefore we investigate detection at various points.

Analysis 2: Detection at various points

When we try to give a definite answer to the so-call
tunneling time problem, we might have to calculate the d

FIG. 1. Snapshots of the wave function squared at various tim

FIG. 2. The arrival time distribution for detection atX
550(2/k0).
1-4
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TIME OF ARRIVAL THROUGH INTERACTING . . . PHYSICAL REVIEW A62 022101
ferenceD5^T&d2^T&0, since this problem demands that w
answer the question ‘‘How long does it take for the parti
to tunnel across the barrier?’’ However, the differenceD
does not make much sense because, as we can see in F
the shape of the packet is oscillating frequently at the
trance of the barrier and it is difficult to distinguish betwe
the tunneling packet and the reflected one, that is,^T&0 is not
a good physical quantity. On the other hand, the packet h
relatively clear shape at the exit of the barrier. Therefore
can analyze what time the packet will appear at the exi
the barrier and how it moves after that.

We calculatê T&X for the exit of the barrier and severa
points after that:̂ T&X at X5d,10,20,30,40,50, withd54,
h50.5̂ E&,1.1̂ E&,2̂ E& barrier potentials~Fig. 3!. We can
see two remarkable features in this figure. The first is that
high barriers^T&d is earlier than in the free case, but it
later for low barriers. That is, it seems that the transmit
packet arrives at the barrier exit earlier than the free one
tunneling dominated cases. These are regarded as effec
the barrier. The second feature is that, after passing the
rier, the tunneling packet moves with a constant mean ve
ity larger than that of the corresponding free packet. This
an effect outside the barrier. These two types of effect
combined to cause nontrivial behaviors of the arrival tim
For example, in the case ofd54, h50.5̂ E&, the tunneling
packet arrives at the barrier exitX54 later than the free
packet; however, after exiting the barrier, the tunnel
packet catches up with the free one and overtakes it aX
.15. After all, it depends onX which arrives atX earlier, the
tunneling or the free packet.

We can see the second effect clearly in the Fourier tra
formed form of the transmitted packet@34#,

c~x,t !5~4ps2!1/4E dk

2p
e2s2(k2k0)2/2uTkueiuei [k(x2x0)2vt] ,

~23!

whereTk is the transmission amplitude andu is the phase.
Using an analytically obtaineduTku, the mean momentumkm

FIG. 3. The mean arrival time for detection at various points.
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can be calculated for the transmitted packet. Results for s
eral potential conditions are shown in Fig. 4. For ‘‘high
barriers, a wider barrier gives a larger mean momentum
the regiond:@0,4#. This is because asd grows theuTku sup-
port shifts to the higher momentum side. Therefore the st
ment ‘‘Higher momentum components of the packet pref
ably go through the barrier’’ applies indeed. This kind
‘‘acceleration’’ effect is found in other areas of physics@28#.

Analysis 3: Detection at the barrier exit XÄd

To see the in-barrier effects more definitely, we calcul
the difference between mean arrival times for the tunnel
packet and the free one at the barrier exitX5d,

DT[^T&d
tunnel2^T&d

free. ~24!

Results for the same potential conditions as in Fig. 4
shown in Fig. 5. At first we see that in the smalld regionDT
is positive, that is, the tunneling packet gets behind the f
one, for any potential height. However, asd increases,DT
shows different behaviors according to the potential heig

Roughly speaking, for a ‘‘low’’ barrierDT almost stays
positive but for a ‘‘high’’ barrierDT becomes negative. Th
‘‘high’’ barrier means that the tunneling modes dominate
the transmitted packet. In the larged region,DT is negative,
that is, the tunneling packet goes ahead of the free one
the tunneling dominated case. We also see a strange beh
whereDT changes sign twice and finally becomes positiv
The typical case in Fig. 5 is theh51.1̂ E& barrier. We un-
derstand this effect as follows. For a very wide barrier, ov
the-barrier modes dominate in the transmitted packet (vm

5km
2 /2.h). That is, as in the ‘‘low’’ barrier case,DT be-

comes positive again.
In Fig. 5 we also plotted an analogous quantityDTw cal-

culated by the stationary phase method. We defineDTw as
follows:

tw[
du

dv U
v5vm

, ~25!

FIG. 4. The mean momentum of the transmitted packet.
1-5
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AOKI, HORIKOSHI, AND NAKAMURA PHYSICAL REVIEW A 62 022101
DTw[S 1

vg~km!
2

1

vg~k0! D ~d2x0!1tw , ~26!

whereu is the phase shift of the transmitted wave defined
Eq. ~23! and vg(E) are the group velocitiesvg(km)
5(dv/dk)uk5km

5km , vg(k0)5k0. In the ordinary tunneling

time problem contexttw is called the phase time. As seen
Fig. 5, althoughDTw has good agreement with ourDT in the
small d region, asd increases, the difference becomes cle
for h.^E& barriers. This is because for such barriers
momentum distributione2s2(k2k0)2/2uTku is no longer sym-
metric with respect tokm , and the packet’s peak given by th
stationary phase method loses physical significance.

We would like to close this section by referring to th
relationship between our results and the experiment by C
and co-workers, that is, tunneling of the massless photon
course our model does not describe the propagation of p
tons, and we now mention only the qualitative behavior. B
cause the energy of the photon in the vacuum is exa
proportional to its momentum, the group velocity of the ph
ton after tunneling is a constantc. Therefore we get anX
independent constant value of the differenceDT5^T&X

tunnel

2^T&X
free at anyX>d. Since their experimental setup is th

tunneling dominated one, it may correspond to our mo
with high and medium wide barriers. Then our results
consistent with their experimental observation that the t
neling photon arrives earlier than the free photon.

IV. NELSON’S STOCHASTIC INTERPRETATION

Now we consider the stochastic interpretation of quant
mechanics introduced by Nelson. This approach interp
the motion of particles in quantum mechanics as ‘‘real-tim
stochastic processes@37#. Nelson substituted the coordina
variablex(t) for a stochastic variable performing the Brow
ian motion in a certain drift force field. The time evolution

FIG. 5. The difference between mean arrival times at the bar
exit X5d for the tunneling packet and the free one:DT[^T&d

tunnel

2^T&d
free. DTw ~shown by dots! is the same quantity calculated b

the stationary phase method for each potential.
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x(t) is described by the Ito-type stochastic differential equ
tion,

dx~ t !5b„x~ t !,t…dt1dw~ t !, ~27!

whereb(x,t) is the so-called drift term, given by the ord
nary Schro¨dinger wave functionc(x,t) as

b~x,t !5
\

m

]

]x
~ Im1Re!ln c~x,t !. ~28!

The Gaussian noisedw characterizes the stochastic behav
and should have the following statistical properties:

^dw~ t !&50, ^dw~ t !dw~ t !&5
\

m
dt. ~29!

Starting with an initial distribution ofx(0) we solve Eq.~27!
and obtain sample paths. Averaging a physical variable w
these sample paths, we can calculate the expectation v
for the ordinary probability distributionuc(x,t)u2. In this ap-
proach, we are able to observe ‘‘trajectories’’ of real-tim
motion of a particle, that is, to describe the quantum m
chanical time evolution by a classical stochastic process

Thus in Nelson’s approach it may be possible to und
stand an imaginary-time process such as tunneling in r
time language. It was pointed out that the tunneling parti
‘‘hesitates’’ in front of the barrier as seen in Fig. 6@38#. This
fact was understood to imply that the particle tunneli
through the barrier should always be delayed compared w
the free one because of this hesitation. Is it contradictory
our results? Nelson’s approach can reproduce physical q
tities in standard quantum mechanics, and there canno
any conflict.

Now we analyze the mean arrival time in Nelson’s s
chastic interpretation. One intuitive idea of defining the
rival time for a sample path is to measure the time for a p
to reach a detecting point for the first time: ‘‘the first tim
counting scheme’’@39#. However, this notion has no coun
terpart in the physical quantities of standard quantum m

r FIG. 6. Typical sample paths with hesitation.
1-6
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chanics. We have to work with the probability of existen
of paths at a point~or a section! at some definite time. The
difference between these two notions is that the latter co
the possibility of a path going beyond the point and com
back to it at the measuring time.

We define a probability functionrX
N(T),

rX
N~T!dx5

n~X,T!

N
, ~30!

whereN is the total number of sample paths andn(X,T) is
the number of sample paths that exist in@X,X1dx# at time
T. As stressed before, we will count the number of pa
passing a target point over and over again, i.e., we now
ploy ‘‘the multiple counting scheme.’’ With this scheme, w
define the arrival time distributionPX

N(T) and the mean ar
rival time ^T&X

N of the particle in Nelson’s stochastic inte
pretation,

PX
N~T!dT5

rX
N~T!dT

E
0

`

dTrX
N~T!

, ~31!

^T&X
N5E

0

`

TPX
N~T!dT. ~32!

We calculatePX
N(T) and ^T&X

N with an h52^E&, d51
barrier by solving Eq.~27! to getN5106 sample paths. The
result is shown in Fig. 7. The distributionPX

N(T) agrees with
PX(T) very well; thereforê T&X

N agrees witĥ T&X . The dis-
tribution given by Nelson’s approach exactly reproduces
previous results, just as expected. Of course, if we emp
the first time counting scheme,PX

N(T) shifts to an earlier
time region and thereforêT&X

N is smaller than̂ T&X .
Then, we should answer the paradoxical question, ‘‘W

does a hesitating particle arrive earlier than the free on
To answer this question, let us compare the two case
DT.0 andDT,0. First we show typical sample paths fo

FIG. 7. Comparison of two methods.
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two cases,DT.0 (DT50.084),h52^E&, d50.5 in Fig. 8
and DT,0 (DT520.138), h52^E&, d51 in Fig. 9. In
both figures we also plot the average position of the f
sample pathŝx& free. We should pay attention to the poin
(x,t)5(0,25) becausêx& free arrives inx50 at t525. The
two figures, Fig. 8 and Fig. 9, make a remarkable contr
That is, although in Fig. 8 even the paths that arrive ax
50 later thant525 can pass through the barrier, in Fig.
essentially only the paths that arrived atx50 earlier thant
525 can go through it. The ‘‘hesitation’’ property is seen
both cases. In Fig. 9, however, even with ‘‘hesitation,’’ th
averaged tunneling path can appear at the barrier exitx5d
earlier than the averaged free path because the tunne
paths arrived atx50 much earlier than̂x& free. This is the
key to the mystery between hesitation and advancement

Well, why do the tunneling paths conduct themselves
such a strange way? In the first place, why does hesita

FIG. 8. Sample paths forDT.0.

FIG. 9. Sample paths forDT,0.
1-7
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occur? The reason is hidden in the time dependence of
drift velocity b(x,t). We showb(x,t) for the same condi-
tions discussed above, especially near the potential ba
~Fig. 10 and Fig. 11!. In the foreground of the barrier, ac
cording to the interference of the incident packet and
reflected packet,b(x,t) oscillates frequently and become
null many times. Especially near the barrier entrancex50,
b(x,t) changes from positive to negative, where the parti
is ‘‘trapped.’’ These effects cause the path’s hesitation.

At earlier times,b(x,t) is almost always positive valu
but at later times, it becomes almost always negative. In
11, this tendency is extreme and realization of the tunne
path is much rarer than in Fig. 10. This is the reason why
early arrived paths tend to pass the barrier more easily. A
all, there is no inconsistency between our results and
hesitation behavior in Nelson’s interpretation.

Furthermore, Nelson’s interpretation provides us an in
tive explanation of our results. Let us consider the high
tential barrier case. It is important that every transmit
path hesitates to some extent. In the smalld region, because
of the high transmission rate, even a path arriving atx.0
relatively late can pass the barrier, and as a result we
DT.0. As d increases, the transmission rate becomes lo
and only the paths arriving atx.0 earlier can penetrat
the barrier, and as a result we findDT,0. Finally, asd
becomes very large, the paths arriving atx.0 very early
hesitate there for a very long time; thereforeDT becomes
positive again.

Of course, we must recall that the ‘‘path’’ in Nelson
view never corresponds to a real particle in ordinary qu
tum mechanics, and the explanation we gave above is jus
interpretation. The same is true for an interpretation by
Bohm trajectory@12,13#. It may be interesting to regard th
path as a physical one and to calculate various quantities
cannot be calculated in ordinary quantum mechanics~the
tunneling timeDN5^T&d

N2^T&0
N , quantities calculated in the

first time counting scheme, etc.!. Although these attempt
may give us deeper insights into quantum dynamics, the

FIG. 10. Drift velocity forDT.0.
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lidity and significance of them have not been argued much
far @40,41#.

V. SUMMARY

Supposing an ideal detector, we defined simple expres
for the arrival time distributionPX and the mean arrival time
^T&X , and applied them to analysis of wave packet tunn
ing. We definedDT[^T&d

tunnel2^T&d
free and calculated it for

various barrier conditions and showed the barrier effe
clearly. In the smalld region,DT is always positive, but asd
increases,DT.0 for the over-the-barrier case andDT,0
for the tunneling case. After tunneling, the packet usua
moves faster than the free one because it preferentially c
sists of the higher momentum modes of the incident pac
The barrier works as an acceleration filter in a sense. We
clarified that the stationary phase method gives a good
proximation to our results, particularly in the smalld region.

We also confirmed that the stochastic interpretation int
duced by Nelson reproduces our results. Furthermore,
clarified how the ‘‘hesitation’’ of the tunneling paths in Ne
son’s picture is consistent with the advancement of the t
neling packet. The key observation is that the paths arriv
at the barrier earlier than the free mean paths tend to p
etrate the barrier more easily. We pointed out that this pr
erty can be explained by the time dependence of the d
velocity b(x,t) and found that the behavior ofDT is intu-
itively understandable with Nelson’s language.

ACKNOWLEDGMENTS

We would like to thank T. Hashimoto, E. M. Ilgenfritz, K
Imafuku, K. Morikawa, I. Ohba, T. Tanizawa, H. Terao, an
M. Ueda for fruitful and encouraging discussions and su
gestions. We are also grateful to J. G. Muga for comme
and for calling our attention to some relevant references

FIG. 11. Drift velocity forDT,0.
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