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Time of arrival through interacting environments: Tunneling processes
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We discuss the propagation of wave packets through interacting environments. Such environments generally
modify the dispersion relation or shape of the wave function. To study such effects in detail, we define the
distribution functionPy(T), which describes the arrival timeof a packet at a detector located at poiiWe
calculatePy(T) for wave packets traveling through a tunneling barrier and find that our results actually explain
recent experiments. We compare our results with Nelson’s stochastic interpretation of quantum mechanics and
resolve a paradox previously apparent in Nelson’s viewpoint about the tunneling time.

PACS numbd(s): 03.65.Sq, 03.65.Bz, 73.40.Gk, 04.30.Nk

I. INTRODUCTION However, there is no clear definition of arrival time in
quantum mechanics. This has its root in the well-known fact
We are interested in the behavior of quantum particlesthat time is not an operator but a parameter in quantum me-
that is, wave packets propagating through interacting enviehanics. Though many authors have attempted to define an
ronments. In general, there are two types of environmentoperator of arrival time and construct its eigenstates, a satis-
One is the ordinary mediurtplasma, dielectric, etcwhich  factory formulation has not yet been obtaingd—25. In
consists of “matter”[1-4]. The other is the nontrivial struc- this article we define a distribution functioy(T), which
ture of the vacuum due to field theoretical fluctuatipbsor  describes the arrival time of packets at a detector located at
effects of quantum gravit}6,7]. In both cases, the presence point X. In terms ofPy(T), we can compute a mean arrival
of such environments will modify the dispersion relation of 4jy,e (T)x. Of course we assume an ideal detector and our

particles,E=f(p), or modify the shape of the wave packet. yefinition of Py(T) might not exactly correspond to the
Observation of the arrival time of particles through such en-,

. s : the effects of th dificati %)hysical measurement process. However, concrete calcula-
vironments 1S a way 10 see the etiects ot these modilications, , Py(T) shows us clearly the dynamical properties of

Recently, these effects have been tested in two fields, astro- : f K h hi . .
physics and quantum optics. The first is the observation oPropaggtlon of pac ets t roug _mtera_lctl_ng gnvwonments.
arrival times of photons from distant astrophysical sources We investigate the _a_rn\_/al time _d|str|but|_oﬁx(T) nu-
such asy-ray bursters. Several models of quantum grrclvitymer'c"’IIIy for nanelat|\(|st|g massive par_tlcles_ travelmg
suggest that the velocity of light has an effective energy delfough a potential barrier in one space dimension, that is,
pendence due to the modified dispersion relation induced b§/Nneling processes. This might be a simple model for the
the nontrivial structure of space-time at distances comparabfeXPeriment of Chiao and co-workers. In this case the exis-
to the Planck length. To confirm this effect, it is necessary td€Nce Of & potential barrier(x) causes reflection and trans-
observe a certain difference of the arrival time of photongMission of packets; therefore the behaviorRg{(T) will be

with different energies, ang-ray bursters work for this pur- Nighly nontrivial, depending on various parameters. How to
pose[6]. As a result, a lower bound on the energy scale ofdeal Wlth t!me in tunneling processes is also known as the
quantum gravity is obtainef8]. The second recent test is tunneling time problem. The pro_blem arises from the p_ara,—
observation of tunneling of photons. Chiao and co-worker£0x that a particle under a potential greater than the particle’s
constructed an elaborate stadium for the race between ph§N€rgy seems to move with a purely imaginary velocity. In
tons propagating in the vacuum and through an optical bar€c€nt developments of nanotechnology, the study of the tun-
rier, and measured their arrival timgs2]. They found that nelmg_ time has great S|gn|f!cance because it might e_nable us
the photon tunneling through the barrier arrived at the goal® estimate the response time of nanodevi@4. Various
earlier than the other photon traveling in the vacuum. Al-@PProaches to the tunneling time have been proposed by
though this result implies superluminal velocity of the tun- Many authlor$27—363; however, it seems difficult to define
neling photon, it does not mean causality violation, becaus# Uniquely: Therefore we need to define effective tunneling
in this case the group velocity itself does not transport anyimes for each system and each purpose. We have no inten-
information at all. The apparent superluminality results fromtion of wrestling with the general theory of tunneling time
reshaping of wave packets while tunneling. Similar phenomNoW; therefore, we restrict Qurselveg to analyzing the time of
ena can be found in absorbing me@@. Anyway, in both ~ aPpearance of the packet in the exit of the potential barrier

experiments, measurement of the arrival time of wave pack@nd how it moves after that. These two notions determining
ets plays an essential role. the arrival time difference have usually been confused. In

this article we will distinguish them clearly.

*Electronic address: aoki@hep.s.kanazawa-u.ac.jp
"Electronic address: horikosi@hep.s.kanazawa-u.ac.jp The “systematic projector approach” has been proposed as a
*Electronic address: etsuko@hep.s.kanazawa-u.ac.jp unifying theory of the various times proposed so [f38].
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Finally we consider the real-time stochastic interpretationyhere P represents Cauchy’s principal value. Thafliss
of quantum mechanics introduced by Neld@7]. Since it not Hermitian. The origin of difficulty is the singular behav-
utilizes the real-time trajectories of quantum particles aSor of T at p=0. Recently the regularization df with an
sample paths, we can construct an appropriate time distribyz¢.- o4 momentum cut off15] and an interpretation by

tion from e_:nsemble of sample paths. This S why Nelson_smeans of the positive-operator-valued measure were pro-
approach is expe_cted to be_ effecu_ve_ f(_)r t|me_problems ! osed[16]. However, the validity of this procedure is not
guantum mech_anlcs. In particular, It Is interesting to attac lear[17,18. In the first place, there is no one-to-one corre-
the tunneling time problem from this approach because W@pondence between the operator representation in quantum

can trace thg particle’s rgal-tlme motion even under the t.unt'heory and the classical representation, and it becomes more
neling potential. Actually it has been found that the tunne"ngcomplicated for interacting cases9—27

particle “hesitat_es” in front Of.the bgrrie[138]. This property Now we will not insist on defining an arrival time opera-
Seems paradoxical pecause it implies that the particle tunne{—r; rather, we try to construct an arrival time distribution
ing through the barrier should always be delayed compare irectly. We suppose that there is a detector on the path

W.'th the free one due to this hesitation and it seems ContraLélong the motion of wave packets and it counts the particle
dictory to the advancement of the peak of the wave packet ccording to the value of the wave functigifiX,t) at every

seen in the experiment of Chiao and co-workers. Is it a regy o 1 Supposing the detector is ideal, we directly define

paradox? . . -
It is clear that Nelson’s approach can reproduce an)}he arrival time distribution (T) from ¢/(X,T),
physical quantities of the usual quantum mechanics by aver- px(T)dT
aging them about the sample path ensemble. However, there  Py(T)dT=————, px(T)=|¢(X,T)|%. (4
iS no reason that any “observables” classically defined in J dTpy(T)
0

Nelson’s stochastic procedures should have corresponding
guantities in the standard quantum mechanics. We will com- ) o o )
pute the arrival time distribution in Nelson’s approach and Although Eq.(4) looks like a trivial definition in our pic-

compare it with ouPy(T). Then we clarify the real physical ture, we will derive it, clarifying our system setup and as-

meaning of the “hesitation” and show that there is no para_sumptions. We consider a system consisting of a particle and
dox at all. Furthermore, we mention that Nelson’s interpre-2 detector located at= X. If there is no interaction between

tation can explain the characteristic behavior (@ for ~ them, the system Hamiltonia, and the system statel’)

tunneling particles very well. are given by

Ho=Hp®1+1&Hp, (5)
II. DEFINITION OF THE ARRIVAL TIME DISTRIBUTION

. I : : : [¥)=|y)®|D), (6)
First we will briefly review previous attempts to define a
time of arrival operator and their difficulties. In the 1960s, where H,, is the particle Hamiltonian|) is the particle
Aharonov and Bohm quantized the representation of thatate, and similarlyi, and|D) are those of the detector. We
classical arrival time for the free particle at a poX&0 define the total HamiltoniartH by adding the interaction

[10], HamiltonianH, between the particle and the detector,
« ml 1 1 H=Ho+H,, H=gVy(x)®Vp. )
T= _mBHT: 2 XE+ EX ‘ @D For simplicity, we consider a detector whose state consists

essentially of two components,

Herex andp are the initial position and momentum, respec- 0
tively, where we work in the Heisenberg picture. Becalise )= 1) unreacted,
satisfie§ T,H]=i#%, it seems a good definition. We construct

its eigenstated|T)=T|T).2 However, these eigenstates turn 1
out to be not orthogonal, 1= ol reacted. ®)
Ca ip2T/2mi Corresponding to this representation, we set the interaction
(PIT)=x[6(p) +i6(—p)]/peP 2™, @ potentials
i 1 V(%)= 8(x—X), 9
TT ) s(T-T')— —P——, 3
(TIT" ) a( ) o 3 0 1
Vp= 1 ol (10

2In order to obtain a complete set, one needs two eigenstateghich induces a transitioh )=Vp||)=|1). This choice of
|T,+) for every value ofT [19]. Vp should be meaningful only in the first order gf
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Now we consider the time evolution of the system fromtion by “switching on” the interaction Hamiltonian during
t=0 to T. We prepare the initial statfD(0))=||) and different small time intervals in repeated experiments, in-
evaluate a quantitiry(T), which is the probability that the stead of using the finite time interved,T] and differentiat-
state|D(t)) is found to b€l 1) whent=T. FromRy(T), we  ing with respect tdT.
get Px(T)AT, which is the probability that the transition Under this condition, the evaluation Bi(T) andPy(T)
|1)=]1) occurs in a time intervdlT, T+AT], that is, is straightforward as follows:

AT—0
11

Rx(T)=(¥(T)[¥(T))

1 (7 T
B ﬁfo dtlfo dtp((T;t) [(T;t2)) 8ty — tp)

Next we evaluateRy(T) in terms of the particle wave
function ¢(x,t). We now assume that the detector reacts
only once incoherently, and therefore we calculate only in 1 (7
the first order ofy. Adopting the interaction picture, the time = ﬁjo d((T;0)[%(T;1)), (18
evolution of the state can be represented as follows in the
first order ofg:

d
[T (T)),= Te*(i/ﬁ)fgdtgvm(x,t)®VD|(t)| ¥(0)),®|D(0)), Px(T)= 5T Ry(T)

=|(0))®[D(0)),

0 — 1
o = HEOFM)= (T |u(TeT)
_%fo dtgVy(x,1)[4(0)),® V(1) D(0)), ,
. - %<w<0>|e”*pT’ﬁv;<x>vp<x>e*‘“pT’ﬁ|w<0>>

=|V(0)),+|¥(T)), (12
where T represents the time ordered prod{®t0)), is the g? 5
undetected state an@ (T)), is the detected state, which is - ﬁ5(0)|¢(X,T)| ' (19

written in the Schrdinger picture as

- i (T MO U where at the last step we inserted the complete set
|‘I’(T)>:_%L dtfe” LTV gV (x)e~ e/ ]| 4(0)) (fdx|x)(x|) three times. Although the divergeif0) seems
to break the validity of our formulation, we can remove this

@[e [Ho(T-OVhiy e~ HOUi] D (0)) singularity by replacing the5 function in Eq.(9) with a
) smeared function. We normalize the right hand side of Eq.
(T ) ) (19 to get our expression for the arrival time distribution
- %J’O dily(T:1))@[D(T;1)), (13 P«(T). Using P«(T) we definethe mean arrival timeT)y,

where we introduced

T)x= ocTP T)dT. 20
(T 1))y =[e” [T gV (x)e ™" ][y(0)), (14) T fo K 20

ID(T;t))=[e oMV ype Ho"]ID(0)).  (15)  BecausePy(T) and(T)y have simple and general expres-
sions, we can calculate them easily even for interacting
rcases. OuPy(T) is often called the “presence time distri-
bution” because of its behavior in the classical liff20]. In
order to avoid confusion, we should make clear that the dis-

under our approximation of weak coupling. Now we apply atribution Px(T) may not be interpreted as the probability

We obtainRy(T) in terms of the norm of the detected state

Rx(T)= (¥ (T)|[¥(T)), (16)

macroscopic decoherence condition, distribution of a quantum mechanical time observable. It is
an effective distribution describing a “relative probability.”
(D(T;t)|D(T;tp))=8(t1—t5). 7 Of course, our definition of arrival time distributidd) is

not a unique one. Considering a different system setup, some

This means that the states reacted at different times are opeople have proposed a definition using the curdsgf)
thogonal to each other, that is, once the detection procesgstead ofpy(T)=||? [11],

occurs, the total state effectively loses its coherence and
looks like a mixed state. Of course it is not possible to satisfy

this condition by working in the two-dimensional Hilbert pg((T)dT:‘lX(T—)OI-I-, JX(T):Zm( *5_¢> .
space in Eq(8). We should describe the detector by means f dT3(T) m IX | y—x
of an infinite-dimensional Hilbert space to realize decoher- 0

ence effectively{26]. However, we can avoid this assump- (21
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This definition has the serious problem thB{T) can be
negative in some cases, for example, detection before the
potential barrier. Therefore we cannot ident®y(T) as a
probability distribution. As for detection beyond the poten-
tial barrier as we discuss belowy(T) might effectively
maintain positivity and actually the behavior &5(T) is
found to be similar to ours.

Ill. CALCULATION OF Px(T) FOR TUNNELING
PARTICLES

Now let us calculatePy(T) and{T)y for nonrelativistic
massive particles traveling through a potential baréx)
in one dimension. This is a simple model of tunneling pro-
cesses such as the experiment of Chiao and co-workers.
Solving the time dependent Schlinger equation with some
initial conditions, we can ga(x,t). Except for the free case
it is difficult to solve the partial differential equation analyti-
cally, and therefore we solve it numerically. We now employ
a discretization scheme known as the Crank-Nicholson
method, which conserves the norm @{x,t) even with a
finite discrete time step42]. We work with the unitam=~%

[ko/2]

vy

0.05

0.00
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d=1.5 2k4

h=1.1<E>,

— free
|| —— t=25[4/k,]]

initial

Kt t=50 [4/k,7]

[2/k]

FIG. 1. Snapshots of the wave function squared at various times.

tions Py(T) are plotted for the free and tunneling particles
and the mean arrival timgd')y are shown by dashed lines.

=1 and for the initial condition we prepare a Gaussian Waverhe remarkable feature & (T) is the stretched tail and the

packet,

1\
(//(x,0)=(—2> e—(x—xo)Z/zaZeiko(x—xo), (22)
mo
whose mean energy {&€)=k3/2+ 1/40?, and we set a time
independent square potential barnN&ix) on a sectiorf0,d].
For simplicity, in this article we work with a unique initial
packet. We fix the central wave numbey=2 and in this

shift of the peak caused by spread of the packet. For the free
case,(T)x=50.13 is later thadl =50, which is expected
from the group velocity of the free packet, and “the peak of
Px(T)” =49.94 is earlier tham=50. It is also seen that,
because of the packet's reshapify(T) for the tunneling
particle has a narrower shape than the free one &gl ‘for

the tunneling particle”=47.65 is earlier than the free one.
However, it should be noted that only one detection far from
the barrier cannot describe the dynamics of packets since we

unit we set the width of the initial packet in the configuration gsnoy|q discriminate effects in and out of the potential barrier.

space 0=10(2ky) and the center of initial packekg
—50(2kg). All quantities that have a dimension of time
are measured by the (&) unit. Hereafter we will omit the
units of the numerical values. We change two parameters of
the barrier potential/(x): the widthd and the heighh, and
also the detector locatioX.

Let us begin by watching the motion of wave packets with
anh=1.KE), d=1.5 potential. The snapshots of the motion
are shown in Fig. 1, in which the free packet motion is also
shown for comparison. Both packets spread due to the dis-
persive properties that come from their own masses. The
packet moving through the potential barrier experiences re-
flection and transmission and the peak of the transmitted part
will often advance compared to the free packet. It is usually
explained that this is because the higher momentum compo-
nents of the packet preferably go through the barrier and they
propagate faster than the lower momentum parts due to their
dispersive properties. That is, the advancement results from
reshaping of the transmitted packet. However, tracing the
peak of the packet is often difficult because near the barrier
the peak cannot be clearly identified. Therefore we must use
more well-defined quantitieRy«(T) and(T)x.

Analysis 1: Detection atX=50
Now let us calculatePy(T) and(T)x at X=50 with an

022101-4

Therefore we investigate detection at various points.

Analysis 2: Detection at various points

When we try to give a definite answer to the so-called

[k#/4]

0.10

P(T)

0.00

tunneling time problem, we might have to calculate the dif-

h=2<E> , d=4 2k
T T i T T T T
—— Py(T) free
= Pg(T) tunnel
<T>g free | |

——— <T>_ tunnel

40 50 60 70

T [4/k8]

FIG. 2. The arrival time distribution for detection &
h=2(E), d=4 potential. In Fig. 2, the arrival time distribu- =50(2k,).
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= e---oh=056<E>| 7 || h=1.0<E> /s
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45 h=2.0<E> y 7 h=1.2<E> Vi
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£ L 7 4
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4/
] A
7
N 2.02 - /(/’ 4
&
7
/f
b 2.00
! 1 ! 1 I 1 !
i 0 1 2 3 4
I R TR T d [2/kq]

0 10 20 30 40 50

X [2/ke] FIG. 4. The mean momentum of the transmitted packet.

can be calculated for the transmitted packet. Results for sev-
] ) eral potential conditions are shown in Fig. 4. For “high”
ferenceA =(T)4—(T)o, since this problem demands that we harriers, a wider barrier gives a larger mean momentum in
answer the question “How long does it take for .the particleihe regiond:[0,4]. This is because asgrows the|T,| sup-

to tunnel across the barrier?” However, the differenbe port shifts to the higher momentum side. Therefore the state-
does not make much sense because, as we can see in Figpdent “Higher momentum components of the packet prefer-
the shape of the packet is oscillating frequently at the engply go through the barrier” applies indeed. This kind of

trance of the barrier and it is difficult to distinguish between«g celeration” effect is found in other areas of physies).
the tunneling packet and the reflected one, thaflis, is not

a good physical quantity. On the other hand, the packet has a

relatively clear shape at the exit of the barrier. Therefore we

can analyze what time the packet will appear at the exit of To see the in-barrier effects more definitely, we calculate

the barrier and how it moves after that. the difference between mean arrival times for the tunneling
We calculate(T)y for the exit of the barrier and several packet and the free one at the barrier eitd,

points after that{T)x at X=d,10,20,30,40,50, wittd=4,

h=0.5E),1.1{E),2(E) barrier potentialyFig. 3). We can

see two remarkable features in this figure. The first is that for . . -

high barriers(T)q is earlier than in the free case, but it is Results for. the same potential condltlons as |n_F|g. 4 are

later for low barriers. That is, it seems that the transmitteqShown_ In Fig. 5. At first we see that in the srmiiieg_lonAT

packet arrives at the barrier exit earlier than the free one folS Positive, that is, the tunnellng packet gef[s behind the free

tunneling dominated cases. These are regarded as effectsq€ for any potential height. However, dsncreasesAT

the barrier. The second feature is that, after passing the bapnWs different behaviors according to the potential height.

rier, the tunneling packet moves with a constant mean veloc- ROughly speaking, for a “low” barried T almost stays

ity larger than that of the corresponding free packet. This if0SItive but for a “high” barrierAT becomes negative. The

an effect outside the barrier. These two types of effect are"igh” barrier means that the tunneling modes dominate in

combined to cause nontrivial behaviors of the arrival time (he transmitted packet. In the lardeegion, AT is negative,

For example, in the case df=4, h=0.5E), the tunneling that is, thg tunnel!ng packet goes ahead of the free one fqr

packet arrives at the barrier ext=4 later than the free the tunneling dominated case. We also see a strange behavior

packet; however, after exiting the barrier, the tunne“ngwhereAT changes sign twice and finally becomes positive.

packet catches up with the free one and overtakes X at |he typical case in Fig. 5 is the=1.1(E) barrier. We un-
~15. After all, it depends oX which arrives ai earlier, the derstand this effect as follows. For a very wide barrier, over-

tunneling or the free packet. the-barrier modes dominate in the transmitted packst (

_ 2 H H 1 1] H
We can see the second effect clearly in the Fourier trans= Km/2>h). That is, as in the “low” barrier caseAT be-

formed form of the transmitted packigg4], comes positive again. _
In Fig. 5 we also plotted an analogous quaniity , cal-

culated by the stationary phase method. We defifig as

FIG. 3. The mean arrival time for detection at various points.

Analysis 3: Detection at the barrier exit X=d

AT=(T)§me(T)5ee. 24

poxty= amay [ P gt

follows:
(23
de
whereT, is the transmission amplitude adis the phase. = do , (29
Using an analytically obtaineld’, |, the mean momenturky, o=on
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= /.
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— h=0.5<E> .\; R
N h=1.0<E> <
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= h=1.2<E>
— h=2.0<E>
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'2 = 1 L 1 . N |
0 1 d ’ * 10
; (2l [2/kq]
FIG. 5. The difference between mean arrival times at the barrier FIG. 6. Typical sample paths with hesitation.

exit X=d for the tunneling packet and the free omeT=(T)§"!

—(T)fiee. AT, (shown by dotsis the same quantity calculated by x(t) is described by the Ito-type stochastic differential equa-

the stationary phase method for each potential. tion,
1 1 dx(t) =b(x(t),t)dt+dw(t), (27
AT =\ —7—=— (d=Xo)+ 7, (26)
vg(km)  vg(ko) whereb(x,t) is the so-called drift term, given by the ordi-

where@ is the phase shift of the transmitted wave defined in" 2"y Schrdinger wave functionj(x,t) as

Eq. (23 and vy(E) are the group velocitiesyy(Kky,) 5o

=(dw/d k)|k:km= Km, vg(Kg) =Ko. In the ordinary tunneling b(x,t)= o &(Im+ Re)In y(x,t1). (28
time problem context, is called the phase time. As seen in

Fig. 5, althoughAT,, has good agreement with oiT inthe  The Gaussian noisgw characterizes the stochastic behavior
smalld region, asd increases, the difference becomes clearand should have the following statistical properties:

for h=(E) barriers. This is because for such barriers the
momentum distributiore™ " <~*)*2|T, | is no longer sym-
metric with respect t&,,, and the packet’s peak given by the
stationary phase method loses physical significance.

We would like to close this section by referring to the Starting with an initial distribution ox(0) we solve Eq(27)
relationship between our results and the experiment by Chiaand obtain sample paths. Averaging a physical variable with
and co-workers, that is, tunneling of the massless photon. Ghese sample paths, we can calculate the expectation value
course our model does not describe the propagation of phder the ordinary probability distributiofys(x,t)|2. In this ap-
tons, and we now mention only the qualitative behavior. Beproach, we are able to observe “trajectories” of real-time
cause the energy of the photon in the vacuum is exactlynotion of a particle, that is, to describe the quantum me-
proportional to its momentum, the group velocity of the pho-chanical time evolution by a classical stochastic process.
ton after tunneling is a constast Therefore we get aiX Thus in Nelson’s approach it may be possible to under-
independent constant value of the differerm§=<T>§3”“e' stand an imaginary-time process such as tunneling in real-
_<T>§gee at anyX=d. Since their experimental setup is the time language. It was pointed out that the tunneling particle
tunneling dominated one, it may correspond to our modelhesitates” in front of the barrier as seen in Fig[88]. This
with high and medium wide barriers. Then our results arefact was understood to imply that the particle tunneling

consistent with their experimental observation that the tunthrough the barrier should always be delayed compared with
neling photon arrives earlier than the free photon. the free one because of this hesitation. Is it contradictory to

our results? Nelson’s approach can reproduce physical quan-
tities in standard quantum mechanics, and there cannot be
any conflict.

Now we consider the stochastic interpretation of quantum Now we analyze the mean arrival time in Nelson’s sto-
mechanics introduced by Nelson. This approach interpretshastic interpretation. One intuitive idea of defining the ar-
the motion of particles in quantum mechanics as “real-time” rival time for a sample path is to measure the time for a path
stochastic process¢87]. Nelson substituted the coordinate to reach a detecting point for the first time: “the first time
variablex(t) for a stochastic variable performing the Brown- counting scheme’[39]. However, this notion has no coun-
ian motion in a certain drift force field. The time evolution of terpart in the physical quantities of standard quantum me-

(dw(t))=0, (dw(t)dw(t))= %dt. (29

IV. NELSON'S STOCHASTIC INTERPRETATION
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FIG. 7. Comparison of two methods.

. . . . FIG. 8. Sample paths fakT>0.
chanics. We have to work with the probability of existence

of paths at a pointor a sectioh at some definite time. The _ _ . -
difference between these two notions is that the latter countté’v0 casesAT>0 (AT=0.084),h=2(E), d=0.5in Fig. 8

o ; X ) dAT<0 (AT=-0.138),h=2(E), d=1 in Fig. 9. In
the possibility of a path going beyond the point and comlngan . o
back to it at the measuring time. both figures we also plot the average position of the free

. . N sample pathgx)qee. We should pay attention to the point
We define a probability functiopx(T), (x,t)=(0,25)$b>ecaus«§x>free arrives inx=0 att=25. The
n(x,T) two figures, Fig. 8 and Fig. 9, make a remarkable contrast.
, That is, although in Fig. 8 even the paths that arrivex at
N =0 later thant=25 can pass through the barrier, in Fig. 9
essentially only the paths that arrived>at O earlier thart
=25 can go through it. The “hesitation” property is seen in

T. As stressed before, we will count the number of pathéa\cl)tr; casde?. r|1?1 [Tilr?. 9 rt1howe\r/ler, eve:] V\t”i?] r;)esrlrtiatson,d the
passing a target point over and over again, i.e., we now eni- eraged tunneling path can appear at thé barrierxex

ploy “the multiple counting scheme.” With this scheme, we earlier than the averaged free path because the tunneling

define the arrival time distributioR}(T) and the mean ar- paths arrived ak=0 much earlier thaX)yee. This is the

. . S . key to the mystery between hesitation and advancement.
N ’
rival time (T)y of the particle in Nelson’s stochastic inter- Well, why do the tunneling paths conduct themselves in

pX(T)dx= (30)

whereN is the total number of sample paths am@,T) is
the number of sample paths that exis{ X, X+dx] at time

pretation, such a strange way? In the first place, why does hesitation
N
(TM)dT
PY(T)dT=— (31) h=2<E> , d=1 12k
j dTpX(T) = . o
0 <
X
<T>;‘=f TPY(T)dT. (32
0

We calculateP}(T) and (T)} with an h=2(E), d=1
barrier by solving Eq(27) to getN=10° sample paths. The
result is shown in Fig. 7. The distributid?t>N<(T) agrees with
Py(T) very well; thereforgT)} agrees withT)y . The dis-
tribution given by Nelson’s approach exactly reproduces our
previous results, just as expected. Of course, if we employ
the first time counting schemé’,Q(T) shifts to an earlier
time region and therefor€T)} is smaller than(T)y .

Then, we should answer the paradoxical question, “Why
does a hesitating particle arrive earlier than the free one?”
To answer this question, let us compare the two cases of
AT>0 andAT<O0. First we show typical sample paths for

FIG. 9. Sample paths fakT<O0.
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FIG. 10. Drift velocity forAT>0. FIG. 11. Drift velocity forAT<O0.

occur? The reason is hidden in the time dependence of tHality and significance of them have not been argued much so
drift velocity b(x,t). We showb(x,t) for the same condi- far [40,41].

tions discussed above, especially near the potential barrier

(Fig. 10 and Fig. 1L In the foreground of the barrier, ac-

cording to the interference of the incident packet and the V. SUMMARY

reflected packetb(x,t) oscillates frequently and becomes Supposing an ideal detector, we defined simple expression

null many times. Espeua_ll_ly near the _barner entrareeD, . for the arrival time distributiorPy and the mean arrival time
b(x,t) changes from positive to negative, where the particle

is “trapped.” These effects cause the path’s hesitation. .<T>x’ and a_pplled Temtjﬁe?nalyii of wave packet_tunnel-
At earlier times,b(x,t) is almost always positive value ng. we def|pedAT=<T>d —(T)aand calculatgd it for
but at later times, it becomes almost always negative. In Fig\_/arlous barrier condlthns and_ showed the. .barrler effects
11, this tendency is extreme and realization of the tunnelin learly. In the smalti region,AT is always positive, but as
path is much rarer than in Fig. 10. This is the reason why th creasesAT>_0 for the over-the-ba_rrler case amdl <0
early arrived paths tend to pass the barrier more easily. Aftel2" the tunneling case. After tunneling, the packet usually

all, there is no inconsistency between our results and thE10Ves faster_than the free one because it pr.efe_rentially con-
he,sitation behavior in Nelson's interpretation sists of the higher momentum modes of the incident packet.

Furthermore, Nelson’s interpretation provides us an intui-The. parrier works as an acceleration filter in asense. We also
tive explanation of our results. Let us consider the high po—CIar'f_Ied _that the stationary Ph?‘se me@hod gives a QOOd ap-
tential barrier case. It is important that every transmittedProXimation to our results, particularly n t_he smdlre_glon_.
path hesitates to some extent. In the srdaikgion, because We also confirmed that the stochastic interpretation intro-
of the high transmission rate, even a path arriving=at0 duc_e_d by Nelsor‘\‘ reproQuc$s our result;. Furthermore’ we
relatively late can pass the barrier, and as a result we finﬁlar!f'eq how t.he hesltatlon .Of the tunneling paths in Nel-
AT>0. Asd increases, the transmission rate becomes lower®" > picture is consistent with the advancement of the_tyn-
and only the paths a,rriving at=0 earlier can penetrate neling packet. The_ key observation is that the paths arriving
the barrier, and as a result we fildT<0. Finally, asd at the barrier garller than t.he free mean paths tend. to pen-
becomes very large, the paths arrivingxat0 very early etrate the barrier more easily. We pointed out that this prop-
hesitate there for a very long time; therefak§ becomes erty can be explained by the time depe_ndence_of_ the drift
positive again, y_elocny b(x,t) and foun(_JI that the ,behawor &T is intu-

Of course, we must recall that the “path” in Nelson’s itively understandable with Nelson’s language.
view never corresponds to a real particle in ordinary quan-
tum mechanics, and the explanation we gave above is just an
interpretation. The same is true for an interpretation by the
Bohm trajectory{12,13. It may be interesting to regard the
path as a physical one and to calculate various quantities that We would like to thank T. Hashimoto, E. M. llgenfritz, K.
cannot be calculated in ordinary quantum mechaifibe  Imafuku, K. Morikawa, |. Ohba, T. Tanizawa, H. Terao, and
tunneling timeAN=(T)Y—(T)y, quantities calculated in the M. Ueda for fruitful and encouraging discussions and sug-
first time counting scheme, efc.Although these attempts gestions. We are also grateful to J. G. Muga for comments
may give us deeper insights into quantum dynamics, the vaand for calling our attention to some relevant references.
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