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Wave-packet methods involving the numerical solution of the time-dependenid8ueo equation have
been used with great success in the calculation of cross sections for dissociative recombination of molecular
ions by electron impact in the high energy region where the “boomerang” mjad8lube and A. Herzenberg,
Phys. Rev. Al1, 1314(1975] is valid. We extend this method to study low-energy dissociative recombination
where this approximation is no longer appropriate. We apply the method to the “direct” low-energy disso-
ciative recombination of HD. Our results are in excellent agreement with calculations using the multichannel
quantum defect method.

PACS numbe(s): 34.80.Gs

[. INTRODUCTION diate vibrational sum can be assumed to be complete. Domke
and Estradd9] have extended the wave-packet method to

Wave-packet methods, that is, numerical solutions of théhe low-energy region in the case of dissociative attachment.
time-dependent Schdinger equation, are standard tech- However, their work concentrated on the effects of the “non-
niques in the study of the dynamics of chemical reactionslocal” nature of the interaction, that is, that the coupling
dating back to their introduction in this area by Heller in thebetween the electron plus neutral continuum and the
1970s[1]. One of the important features of time-dependentnegative-ion resonance cannot be expressed as a simple func-
methods is the ability it gives one to follow explicitly the tion of the internuclear separation. In the case of DR, due to
time evolving dynamics, providing tremendous insight intothe strength of the Coulomb potential that is explicitly in-
the mechanisms of processes and a better understanding @fded, the coupling remains local. However, the assumption
the collision. It is equivalent to having the ability to stop an Of closure over intermediate vibrational states is no longer
experiment in midcollision and examine the state distribu-valid.
tions to determine the characteristics of the system that are In Sec. II, we will review the time-dependent wave-packet
most important in defining the products observed. Since théethod as applied to DR. We will derive the extension to the
wave packet is described by its value on a numerical grid ofase of low-energy electrons. In Sec. Ill, we apply this
points, there are no serious problems with coupled potentiaimethod to the low-energy DR of HD and compare it to
energy surfacef2,3] or a three-body continuurf¥], which ~ available multichannel quantum defeQDT) calcula-
can be difficult to handle with basis set techniques. It easiljiions.
handles a high density of quantum channels, including the
three-body final states. Wave-packet methods have the addi- II. METHOD
tional advantage that the cross section is obtained at all en- ) )
ergies for a single calculation. In fact, in the case of disso- The wave-packet method proceeds by the direct integra-
ciative recombinatiofDR) and dissociative excitatiofDE)  tion of the time-dependent Sciinger equation:
of molecular ions by electrons, a single wave-packet evolu- J
tion will provide the cross sections and final-state distribu- i—W(r,t)=H(r,t)¥(r,t), )
tions for all electron energies, i.e., all the information for a at
complete description of the process. ) ] ]

These aspects of the wave-packet technique make it where, as throughout this paper, atomic units are us_ed. D_R
natural method to use to study DR and DE of molecular ionQroceeds by capture of the e_Iectron into a resonant dissocia-
following collisions with electrons. We have used this livé state. The molecule begins to fragment, moving on the
method to study DR in B [5], HeH" [6,7], and DE in excned-state(resonar)tpotennal—engrgy surface. Dyrmg this
HeH*' [8]. In these previous studies, we found that at highP'0¢€Ss, the .molecule can re-emit .the elecl(@ntopmzé_,
energies where the “local” approximation was valid, ab possibly I_eaylng the molecular ion in an.exc[ted V|brat.|on'al
initio approach where the resonance parameters were detgate- T_h's IS Fe“e”ed to as resonant vibrational excitation
mined using the complex Kohn variational method and the VE_)‘ It is poss!ble t_hat autoionization can leave the m_ole_cu-
used as input to the wave-packet method produced goof]Ir lon in the _wpratlonal continuum, Ie_ad_mg to c_hssomaﬂon
agreement with experiment. These calculations demonstraté:H the lon. This is _refgrrgd to as dissociative excitaliDi).
the feasibility of the wave-packet method for the calculation.':'na"y’ if no autoionization oceurs, the molequle fragmepts
of DR and DE, and clearly showed that the time-depende to [‘?“tra,', products. The differential equation governing
approach is sound and competitive with any other method/liS “direct” DR process has been previously derividd],
that might be considered in this energy region. and for the case of a diatomic, is given by

However, the wave-packet method for DR, as previously 1 2
applied, can only be used with the “local” approximation; — —— — +E, (R —E|¥(R) =W, 2
that is, at sufficiently high energy, closure over the interme- 21 9R?
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FIG. 1. Potential-energy curves for dissociative recombination.

lon (solid curvé resonancédotted curve (a) HeH", where vibra-
tional closure{Eq. (5)] is satisfied.(b) H3 , where vibrational clo-
sure[Eq. (5)] is not satisfied.

whereW is defined as
W= Ve(R)| X (R=172 (xy, Vel P (R) |, (3

Where)(vj are the vibrational states of the ion, wig) as the
initial vibrational state,u as the reduced mass of the di-
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52 T(R)
R—i_ErES(R)_IT_E P (R)

=~ Ve(R)x,,(R).

2u
(6)

This is the so-called “boomerang” modgl1l]. In this case,
the Hamiltonian in Eq(1) becomes

1P £ R T(R) .
= ﬂﬁﬂL res( R —i——, (7)
and the initial wave packet
Y (R,t=0)=Ve(R)x, (R). )
The cross section is given by
28 )
U(E):?|T(E)| : 9)

where T(E) is given by the projection of the wave packet
T(R) onto the asymptotic scattering wave functions. The
projection is done at long times when the wave packet has
reached the asymptotic region of the potential and the auto-
ionization loss has gone to zef®(E) is given by[12]

T(E)= Iim(—i jw¢k(R)\If(R)dR>, (10)
t—oo 0

wherek is the wave number ang,(R) are the energy nor-
malized, asymptotic scattering wave functions. For a di-
atomic, when the potential is constant, these states are just
plane waves given by

B(R= 5o

The generalization of these equations to polyatomic systems
is obvious.
Contrast this to the case of HO[see Fig. 1b)], where at

(11

atomic, ¥ (R) as the wave function on the dissociating reso-|,, energies, the sum in E@5) is much smaller than 1, so
nant state, and/g as the electronic-coupling between the e 5ction of the Hamiltonian oW in Eq. (1) becomes

electronic-scattering continuum and the resonant states
related to the autoionization widh(R) by

T'(R)=27|Ve(R)|2 (4)

We note that we assume a “local” form, that is, that the
interaction Vg is a function of the internuclear separation
only. The sum is a sum over the open vibrational states of the
ion and an integral over the continuum vibrational states. For

some systems, for example, HéHisee Fig. 1a)], one can

assume that the sum over vibrational levels is complete, that

IS

; |XUj><XUj|:1’ (5)

2

2 e Eres®)

\I’(R) + Ononloc( R),
(12

H(R)‘I’(R)=( -

where the nonlocal operat@,,,,{R) is defined by

Onontod R) = ~17Ve(R) 2 Xu,(R)

X

[ arx mverwRY|. a3

The initial wave function and definition of the cross section
remain the same. Note that now the operatiofain ¥ (R)
involves an integration oveR, so H becomes a nonlocal

where again the sum runs over both the bound and corpperator. The Hamiltonian is also energy-dependent, since as

tinuum vibrational functions, leading to the following equa-

tion for the nuclear motiof11]:

new vibrational channels open, a new term must be included
in the sum.
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ll. RESULTS 10714 , , , ,
This method was applied to tlilewave contribution to the 105 | 1
direct DR of HD". Thed-wave component dominates at low o)
energy, where this effect is important. This system has been < 100 L ]
studied by a number of groups. The cross section at very low & e - —
energy (<120 me\ shows a great deal of structure as a § wre ]
function of energy due to the coupling to the Rydberg states @
of HD. Schneideeet al.[13] has used the MQDT method to 8 1018 [ e ]
perform a careful analysis of this cross section, separating 2 S
the effects of the Rydberdthe “indirect” mechanism from I L L L L
0 0.2 0.4 0.6 0.8 1

the “direct” mechanism. In our calculation, the curves and
couplings are taken from Schneidsral.[13] and the wave-
packet results are compared to their first order and second- FIG. 2. Cross section fai-wave contributions to the direct DR
order multichannel quantum-defect results. The first- anaf HD". The present time-dependent wave-packet regsitid
second-order MQDT treatments refer to the perturbative exline) are compared to time-dependent wave-packet results using the
pansion of the Lippman-Schwinger equation for the elec-‘boomerang” approximation(dotted ling, the first-order MQDT
tronic reaction matrix[14,15. The first-order MQDT in- treatment(long dashed ling and the second-order MQDT treat-

cludes the electronic interaction between the dissociativd€nt(short dashed line

state and the electron-ion states only once, with a normaliza-, . - S
tion factor that accounts for autoionization back to the eleca—rhIS leads to additional autoionization into the channel and

tronic continuum. The second-order MQDT adds a term intherefore a lower cross section.
which the electronic interaction acts twice and the initial
electron-ion state is coupled indirectly with itself and the
other ionization channels. In both the first- and second-order Tpe time-dependent wave-packet method has just been
treatment, nonadiabatic interactions are included through th&pplied to just a handful of DR and DE problems. We have
variations of the quantum defects with the internuclear dissphown that this method can be used to study low-energy DR,
tance. _ where the boomerang model is no longer valid. For diatom-
The time-dependent wave packsolutions to Eq(7) and  jcs; this represents an interesting alternative to the MQDT
Eq. (1)] was calculated on af-grid, and the numerical treatments that are already available. Although the wave-
integration of the wave packet was carried out using theyacket method can be used in systems where the crossing of
Crank-Nicholson method16]. Convergence studies were the resonance and ion is near the equilibrium of the ion, and
done on both the grid and the time parameters. It was founghe nonlocal form must be employed, it is more efficient at
that a grid of 1000 points with a spacing of 0.2 a.uRRand  high energy where a number of resonant states are involved
a time step of 0.2 a.u. for 6000 steps was sufficient to conp, the DR process and a large number of channels are open.
verge the calculation. To determine the cross section usingne real power of the wave-packet method is in the study of
Eq. (10), both the projection of the wave packet onto planepr and DE in polyatomic systems where more than one
waves and the exact states of the final poter{alculated degree of freedom is important.
using a finite difference method 7]) were investigated. It Ope jssue that has not yet been addressed is the inclusion
was found that the use of the exact states allowed for morgs Rydberg states in the calculation. Unlike dissociative at-
rapid convergence. _ tachment, at very low energies the cross section for DR is
We first show results comparing the.“bo'omerang” mOdelstroneg affected by the effects of Rydberg stafte “in-
to the MQDT results, using the Hamiltonian from B@)  direct” mechanism We are currently developing a time-
and the initial wave function defined in E(). As can be  gependent method that explicitly includes the Rydbergs in

seen in Fig. 2, the cross section is much lower due to thene calculation, leading to a coupled set of time-dependent
high autoionization rate resulting from the unphysical loss ofgchr@inger equations that must be solved.

flux into closed vibrational states of the ion. In Fig. 2, we

also compare the Wave-pgcket results_, using the_sam_e initial ACKNOWLEDGMENTS

wave function, but now using the Hamiltonian defined in Eq.

(11). As can be seen in Fig. 2 at very low energies, where The author would like to thank Annick Suzor-Weiner for
only one vibrational channel is open, the wave-packet andiscussions leading to the development of this work, and
both MQDT calculations are in perfect agreement. As thdoan Schneider for many helpful discussions and for the cal-
energy is increased, the first-order MQDT results begin taculation of MQDT cross sections that allowed for a direct
deviate from the second-order and the wave-packet calculazomparison with the wave-packet results. The author ac-
tion. The small difference between the second-order an&nowledges support from the National Science Foundation,
wave-packet calculations are due to higher orders that hav@rant No. PHY-97-22136. Part of this work was performed
been neglected in the MQDT, but are accounted for with theinder the auspices of the U.S. Department of Energy by the
wave-packet treatment. The step structure seen in the crohiversity of California Lawrence Livermore National
section is due to the opening of new vibrational channelsLaboratory under Contract No. W-7405-Eng-48.

020701-3

Energy (eV)

IV. CONCLUSIONS



RAPID COMMUNICATIONS

A. E. OREL PHYSICAL REVIEW A 62 020701R)

[1] For a review, see E. J. Heller, Acc. Chem. RB%.368(1981). [10] A. Giusti-Suzor, J. N. Bardsley, and C. Derkits, Phys. Rev. A

[2] A. E. Orel and K. C. Kulander, Chem. Phys. Lel#l6 428 28, 682(1983.
(1988. [11] A. Herzenberg, J. Phys. B 548(1968; D. T. Birtwistle and
[3] R. Heather, X.-P. Jiang, H. Metiu, J. D. Bjorken, and I. A. Herzenbergibid. 4, 53(1971); L. Dube and A. Herzenberg,
Dunietz, J. Chem. Phy$€0, 2555(1988. Phys. Rev. Al1, 1314(1975.
[4] C. Leforestier, R. H. Bisseling, C. Cerjan, M. D. Feit, R. [12] C. W. McCurdy and J. L. Turner, J. Chem. Phy8, 6773
Freisner, A. Goldberg, A. Hammerich, G. Jolicard, W. Kar- (1983.
rlein, H. -D. Meyer, N. Lipkin, O. Roncero, and R. Kosloff, J. [13] |, £, Schneider, O. Dulieu, and A. Giusti-Suzor, J. Phy24
[5] A. E. Orel and K. C. Kulander, Phys. Rev. Leftl, 4315

[14] A. Giusti, J. Phys. BL3, 3867(1980.

(1993. [15] S. L. Guberman and A. Giusti-Suzor, J. Chem. PI9f5.2602

[6] A. E. Orel, K. C. Kulander, and T. N. Rescigno, Phys. Rev.

(1991).
Lett. 74, 4807 (1995.
[16] A. Goldberg, H. M. Schev, and J. Schwartz, Am. J. PI35.
7] A. L A. E. I, Phys. Rev. 1(1 .
[7] arson and Orel, Phys. Rev. 39, 3601(1999 177 (1967,

[8] A. E. Orel and K. C. Kulander, Phys. Rev.54, 4992(1996.

[9] W. Domke and H. Estrada, J. Phys.28, L205 (1988. [17]D. G. Truhlar, J. Chem. Phy&0, 123(1972.

020701-4



