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Time-dependent wave-packet study of the direct low-energy dissociative recombination of HD¿
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Wave-packet methods involving the numerical solution of the time-dependent Schro¨dinger equation have
been used with great success in the calculation of cross sections for dissociative recombination of molecular
ions by electron impact in the high energy region where the ‘‘boomerang’’ model@L. Dube and A. Herzenberg,
Phys. Rev. A11, 1314~1975!# is valid. We extend this method to study low-energy dissociative recombination
where this approximation is no longer appropriate. We apply the method to the ‘‘direct’’ low-energy disso-
ciative recombination of HD1. Our results are in excellent agreement with calculations using the multichannel
quantum defect method.

PACS number~s!: 34.80.Gs
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I. INTRODUCTION

Wave-packet methods, that is, numerical solutions of
time-dependent Schro¨dinger equation, are standard tec
niques in the study of the dynamics of chemical reactio
dating back to their introduction in this area by Heller in t
1970s@1#. One of the important features of time-depende
methods is the ability it gives one to follow explicitly th
time evolving dynamics, providing tremendous insight in
the mechanisms of processes and a better understandi
the collision. It is equivalent to having the ability to stop a
experiment in midcollision and examine the state distrib
tions to determine the characteristics of the system that
most important in defining the products observed. Since
wave packet is described by its value on a numerical grid
points, there are no serious problems with coupled poten
energy surfaces@2,3# or a three-body continuum@4#, which
can be difficult to handle with basis set techniques. It ea
handles a high density of quantum channels, including
three-body final states. Wave-packet methods have the a
tional advantage that the cross section is obtained at all
ergies for a single calculation. In fact, in the case of dis
ciative recombination~DR! and dissociative excitation~DE!
of molecular ions by electrons, a single wave-packet evo
tion will provide the cross sections and final-state distrib
tions for all electron energies, i.e., all the information for
complete description of the process.

These aspects of the wave-packet technique make
natural method to use to study DR and DE of molecular io
following collisions with electrons. We have used th
method to study DR in H3

1 @5#, HeH1 @6,7#, and DE in
HeH1 @8#. In these previous studies, we found that at h
energies where the ‘‘local’’ approximation was valid, anab
initio approach where the resonance parameters were d
mined using the complex Kohn variational method and th
used as input to the wave-packet method produced g
agreement with experiment. These calculations demonstr
the feasibility of the wave-packet method for the calculat
of DR and DE, and clearly showed that the time-depend
approach is sound and competitive with any other met
that might be considered in this energy region.

However, the wave-packet method for DR, as previou
applied, can only be used with the ‘‘local’’ approximatio
that is, at sufficiently high energy, closure over the interm
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diate vibrational sum can be assumed to be complete. Do
and Estrada@9# have extended the wave-packet method
the low-energy region in the case of dissociative attachm
However, their work concentrated on the effects of the ‘‘no
local’’ nature of the interaction, that is, that the couplin
between the electron plus neutral continuum and
negative-ion resonance cannot be expressed as a simple
tion of the internuclear separation. In the case of DR, due
the strength of the Coulomb potential that is explicitly i
cluded, the coupling remains local. However, the assump
of closure over intermediate vibrational states is no lon
valid.

In Sec. II, we will review the time-dependent wave-pack
method as applied to DR. We will derive the extension to
case of low-energy electrons. In Sec. III, we apply th
method to the low-energy DR of HD1, and compare it to
available multichannel quantum defect~MQDT! calcula-
tions.

II. METHOD

The wave-packet method proceeds by the direct integ
tion of the time-dependent Schro¨dinger equation:

i
]

]t
C~r ,t !5H~r ,t !C~r ,t !, ~1!

where, as throughout this paper, atomic units are used.
proceeds by capture of the electron into a resonant disso
tive state. The molecule begins to fragment, moving on
excited-state~resonant! potential-energy surface. During thi
process, the molecule can re-emit the electron~autoionize!,
possibly leaving the molecular ion in an excited vibration
state. This is referred to as resonant vibrational excitat
~VE!. It is possible that autoionization can leave the mole
lar ion in the vibrational continuum, leading to dissociatio
of the ion. This is referred to as dissociative excitation~DE!.
Finally, if no autoionization occurs, the molecule fragmen
into neutral products. The differential equation governi
this ‘‘direct’’ DR process has been previously derived@10#,
and for the case of a diatomic, is given by

S 2
1

2m

]2

]R2
1Eres~R!2ED C~R!5W, ~2!
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whereW is defined as

W52VE~R!S xv i
~R!2 ip(

j
^xv j

uVEuC&xv j
~R! D , ~3!

wherexv j
are the vibrational states of the ion, withxv i

as the

initial vibrational state,m as the reduced mass of the d
atomic,C(R) as the wave function on the dissociating res
nant state, andVE as the electronic-coupling between th
electronic-scattering continuum and the resonant state.VE is
related to the autoionization widthG(R) by

G~R!52puVE~R!u2. ~4!

We note that we assume a ‘‘local’’ form, that is, that t
interactionVE is a function of the internuclear separatio
only. The sum is a sum over the open vibrational states of
ion and an integral over the continuum vibrational states.
some systems, for example, HeH1 @see Fig. 1~a!#, one can
assume that the sum over vibrational levels is complete,
is

(
j

uxv j&^xv j u51, ~5!

where again the sum runs over both the bound and c
tinuum vibrational functions, leading to the following equ
tion for the nuclear motion@11#:

FIG. 1. Potential-energy curves for dissociative recombinati
Ion ~solid curve! resonance~dotted curve!. ~a! HeH1, where vibra-
tional closure@Eq. ~5!# is satisfied.~b! H2

1, where vibrational clo-
sure@Eq. ~5!# is not satisfied.
02070
-

e
r

at

n-

S 2
1

2m

]2

]R2
1Eres~R!2 i

G~R!

2
2ED C~R!

52VE~R!xv i
~R!. ~6!

This is the so-called ‘‘boomerang’’ model@11#. In this case,
the Hamiltonian in Eq.~1! becomes

H52
1

2m

]2

]R2
1Eres~R!2 i

G~R!

2
, ~7!

and the initial wave packet

C~R,t50!5VE~R!xv i
~R!. ~8!

The cross section is given by

s~E!5
2p3

E
uT~E!u2, ~9!

whereT(E) is given by the projection of the wave pack
C(R) onto the asymptotic scattering wave functions. T
projection is done at long times when the wave packet
reached the asymptotic region of the potential and the a
ionization loss has gone to zero.T(E) is given by@12#

T~E!5 lim
t→`

S 2 i E
0

`

fk~R!C~R!dRD , ~10!

wherek is the wave number andfk(R) are the energy nor-
malized, asymptotic scattering wave functions. For a
atomic, when the potential is constant, these states are
plane waves given by

fk~R!5A m

2pk
eikR. ~11!

The generalization of these equations to polyatomic syst
is obvious.

Contrast this to the case of HD1 @see Fig. 1~b!#, where at
low energies, the sum in Eq.~5! is much smaller than 1, so
the action of the Hamiltonian onC in Eq. ~1! becomes

H~R!C~R!5S 2
1

2m

]2

]R2
1Eres~R!D C~R!1Ononloc~R!,

~12!

where the nonlocal operatorOnonloc(R) is defined by

Ononloc~R!52 ipVE~R!(
j

xv j
~R!

3S E
0

`

dR8xv j
~R8!VE~R8!C~R8! D . ~13!

The initial wave function and definition of the cross secti
remain the same. Note that now the operation ofH on C(R)
involves an integration overR, so H becomes a nonloca
operator. The Hamiltonian is also energy-dependent, sinc
new vibrational channels open, a new term must be inclu
in the sum.

.
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III. RESULTS

This method was applied to thed-wave contribution to the
direct DR of HD1. Thed-wave component dominates at lo
energy, where this effect is important. This system has b
studied by a number of groups. The cross section at very
energy ~,120 meV! shows a great deal of structure as
function of energy due to the coupling to the Rydberg sta
of HD. Schneideret al. @13# has used the MQDT method t
perform a careful analysis of this cross section, separa
the effects of the Rydbergs~the ‘‘indirect’’ mechanism! from
the ‘‘direct’’ mechanism. In our calculation, the curves a
couplings are taken from Schneideret al. @13# and the wave-
packet results are compared to their first order and sec
order multichannel quantum-defect results. The first- a
second-order MQDT treatments refer to the perturbative
pansion of the Lippman-Schwinger equation for the el
tronic reaction matrix@14,15#. The first-order MQDT in-
cludes the electronic interaction between the dissocia
state and the electron-ion states only once, with a norma
tion factor that accounts for autoionization back to the el
tronic continuum. The second-order MQDT adds a term
which the electronic interaction acts twice and the init
electron-ion state is coupled indirectly with itself and t
other ionization channels. In both the first- and second-or
treatment, nonadiabatic interactions are included through
variations of the quantum defects with the internuclear d
tance.

The time-dependent wave packet@solutions to Eq.~7! and
Eq. ~11!# was calculated on anR-grid, and the numerica
integration of the wave packet was carried out using
Crank-Nicholson method@16#. Convergence studies wer
done on both the grid and the time parameters. It was fo
that a grid of 1000 points with a spacing of 0.2 a.u. inR and
a time step of 0.2 a.u. for 6000 steps was sufficient to c
verge the calculation. To determine the cross section u
Eq. ~10!, both the projection of the wave packet onto pla
waves and the exact states of the final potential~calculated
using a finite difference method@17#! were investigated. It
was found that the use of the exact states allowed for m
rapid convergence.

We first show results comparing the ‘‘boomerang’’ mod
to the MQDT results, using the Hamiltonian from Eq.~7!
and the initial wave function defined in Eq.~8!. As can be
seen in Fig. 2, the cross section is much lower due to
high autoionization rate resulting from the unphysical loss
flux into closed vibrational states of the ion. In Fig. 2, w
also compare the wave-packet results using the same in
wave function, but now using the Hamiltonian defined in E
~11!. As can be seen in Fig. 2 at very low energies, wh
only one vibrational channel is open, the wave-packet
both MQDT calculations are in perfect agreement. As
energy is increased, the first-order MQDT results begin
deviate from the second-order and the wave-packet calc
tion. The small difference between the second-order
wave-packet calculations are due to higher orders that h
been neglected in the MQDT, but are accounted for with
wave-packet treatment. The step structure seen in the c
section is due to the opening of new vibrational chann
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This leads to additional autoionization into the channel a
therefore a lower cross section.

IV. CONCLUSIONS

The time-dependent wave-packet method has just b
applied to just a handful of DR and DE problems. We ha
shown that this method can be used to study low-energy
where the boomerang model is no longer valid. For diato
ics, this represents an interesting alternative to the MQ
treatments that are already available. Although the wa
packet method can be used in systems where the crossin
the resonance and ion is near the equilibrium of the ion,
the nonlocal form must be employed, it is more efficient
high energy where a number of resonant states are invo
in the DR process and a large number of channels are o
The real power of the wave-packet method is in the study
DR and DE in polyatomic systems where more than o
degree of freedom is important.

One issue that has not yet been addressed is the inclu
of Rydberg states in the calculation. Unlike dissociative
tachment, at very low energies the cross section for DR
strongly affected by the effects of Rydberg states~the ‘‘in-
direct’’ mechanism!. We are currently developing a time
dependent method that explicitly includes the Rydbergs
the calculation, leading to a coupled set of time-depend
Schrödinger equations that must be solved.
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FIG. 2. Cross section ford-wave contributions to the direct DR
of HD1. The present time-dependent wave-packet results~solid
line! are compared to time-dependent wave-packet results using
‘‘boomerang’’ approximation~dotted line!, the first-order MQDT
treatment~long dashed line!, and the second-order MQDT trea
ment ~short dashed line!.
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