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Integral boundary conditions for the time-dependent Schrödinger equation:
Superposition of the laser field and a long-range atomic potential
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We discuss long-range corrections for the integral boundary condition~IBC! introduced in A. M. Ermolaev,
I. V. Puzynin, A. V. Selin, and S. I. Vinitsky, Phys. Rev. A60, 4831~1999!, in the case of the time-dependent
Schrödinger equation with a long-range atomic potential. As in the work of Ermolaevet al. the laser-atom
interaction is taken in the dipole approximation. The IBC techniques require the knowledge of the Green’s
function of the problem, beyond some surfaces remote from the atom. We consider the eikonal approximation
~EA! for the Green’s function in the asymptotic region and perform numerical tests on a one-dimensional
problem with the soft Coulomb potential. We demonstrate that the account of long-range corrections, within
the EA, allows us to reduce significantly the size of the space domain required for numerical integration and
improves essentially on the accuracy of the computed spectral distribution for the ejected electrons.

PACS number~s!: 42.50.Hz, 32.80.Wr
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The numerical solution of the time-dependent Sch¨-
dinger equation~TDSE! for an atom interacting with an ex
ternal time-dependent field is a powerful method particula
suitable for the case of short laser pulses. In our recent p
@1# we have suggested a general method for resolving
problems arising from the unphysical reflections~see, e.g.,
@2,3#! of the wave packet from the edge of a finite grid if th
zero conditions are imposed there on the solution of
TDSE. The numerical example considered in@1# was a one-
dimensional model atom with a short-range potential. It w
shown there that the integral boundary condition~IBC!
method allows for a substantial reduction of the grid s
once an explicit account of the free Volkov propagator
made in the space outside the potential range.

The main purpose of the present paper is to discuss
implications for the formulated boundary conditions th
may be caused by the presence of a long-range atomic
tential. We note first that the integral condition used in@1# is
a consequence of the Green’s identity for the TDSE and
the three-dimensional case it is written in the form

C~xs ,t !52E
t0

t

dt8E
s
ds8• j 8@C~xs8 ,t8!,Gas~xs ,t;xs8 ,t8!#.

~1!

Here s is a closed surface dividing the spaceR3 into an
interior domain, with the atomic nucleus, and an exter
domain,xsPs, andGas(x,t;x8,t8) is a propagator that sat
isfies TDSE in the exterior domain. The vectorj is a bilinear
flux that for a pair of functionsC(x,t) and F(x,t) has a
form
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2
$C~x,t !Dx,t* F~x,t !2F~x,t !Dx,tC~x,t !%,

Dx,t5“x2 i
e

c
A~x,t !. ~2!

Here and below we use atomic units,c'137 is light veloc-
ity, e521 is electron charge andA is the vector potential of
the electric field. The prime atj in Eq. ~1! means that the flux
~2! is computed withC and Gas taken as functions of the
primed variables. It is assumed in Eq.~1! that the initial
wave functionC(x,t0) is negligibly small beyonds. Other-
wise the term that takes into account the propagation byGas
of the tail of the initial wave function in the external regio
should be added to Eq.~1!.

If the function C is known on the boundarys at times
t8,t, then one can determine this function in the exter
region at timet with the help ofGas using the expression

C~x,t !5E
t0

t

dt8E
s
ds8• j 8@C~xs8 ,t8!,Gas~x,t;xs8 ,t8!#

~3!

similar to one in Eq.~1!. The term withD8Gas in Eqs. ~1!
and ~3! represents the so-called parabolic potential of
double layer which is discontinuous on the surfaces @1#.
This discontinuity accounts for an extra factor of two in E
~1!.

The semiclassical approximation@4# will be used forGas
which is

Gas5~2p i !2n/2UdetS ]2S

]xi]xj8
D U1/2

eiS(x,t;x8,t8), ~4!

wheren is the space dimension andS is the action evaluated
along the classical pathg with the initial and final positions
©2000 The American Physical Society01-1
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x8 and x, respectively. For suchGas , Eq. ~1! assures the
correct matching between the asymptotic semiclassical w
in the external domain and the solution in the interior reg
where it can be generated, e.g., by some numerical calc
tions.

For the case of a short-range potential considered in@1#,
the free Volkov propagator exactly satisfies the TDSE in
external region beyond the range of the potential and it
be used asGas . The free Volkov propagator has a simp
analytical representation convenient for implementing
boundary conditions~1! and has the form~4!. The corre-
sponding classical pathsg0 for S are determined from the
Hamilton equations for the canonically conjugate positionQ
and momentumP,

g0 : Ṗ~t!50, Q̇~t!5P2
e

c
A~t!. ~5!

In the case of a long-range potentialvL(x) such as the
Coulomb potential, the use of the free Volkov propagator
the integral~1! corresponds to cutting-off the potential ta
beyond the surfaces and neglecting the phase distortion
the asymptotic region. As the exact form of the Coulom
Volkov propagator is unknown we have to adopt an appro
mation. We shall use the fact that we need the semiclass
Green’s function only in the asymptotic region. Hence it
natural to use the form~4! and to replace the exact classic
pathsg for evaluating the actionS, by the pathsg0, Eq. ~5!.
In this case, the action for the Hamiltonian

H~P,Q,t!5
P2

2
2

e

c
PA~t!1vL~Q! ~6!

alongg0 differs from the action withoutvL(Q) by the long-
range correctionZ@g0#, that is

S5
@x2j~ t !2x81j~ t8!#2

2~ t2t8!
2Z@g0#, ~7!

wherej(t)52(e/c)* tA(t)dt, and

Z@g0#5E
t8

t

dt vL„Q~t!…. ~8!

We note that the expression~7! is a solution of the
Hamilton-Jacobi equation forS linearized inZ and is similar
to the Glauber eikonal approximation@5#. The error of such
an approximation is quadratic with respect toZ and is of
order (¹Z)2.

Setting the path densityudet(]2S/]xi]xj8)u'(t2t8)2n,
one can find that in the external region the eikonal appro
mation ~EA! ~4!,~7! for Gas satisfies, at fixed time, the
Schrödinger equation with the Hamiltonian~6! within an er-
ror of orderO„(¹Z)21uDZu…. Hence, for the Coulomb tail
the error is of order%24 in the three-dimensional case an
%23 in the one-dimensional case, where% is the closest
distance between the pathg0, connecting the pointsx andx8,
and the Coulomb center. This approximation forGas loses
accuracy for thoseg0 that lie close to the Coulomb cente
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However, the stationary phase analysis of action~7! shows
that contributions to Eq.~1!, which come from suchg0, are
small for sufficiently remote surfacess. Thus one can expec
that the EA formulated above will be useful for the IB
provided thats is not too close to the Coulomb center.

We now consider a one-dimensional atom where the lo
range potential is modeled by the soft Coulomb poten
vL(x)521/A11x2 @6#. For the purpose of comparison wit
the advanced numerical method of Millack@3# where the
wave-function-splitting technique and mask functions we
employed~see also@2#! in order to reduce reflections from
the edge of the grid, we shall solve the same TDSE as in@3#
with the help of the IBC method.

Correspondingly, the laser pulse of durationT is chosen in
the form

A~ t !5H 2
cE 0

v
sin2S pt

T D sinvt, 0<t<T,

0, t,0, t.T,

~9!

whereT52pN/v, N is the number of laser periods of an
gular frequencyv, E0 is the peak strength of the laser fiel
andj05E0 /v2 is the excursion amplitude of the electron.

We integrate numerically the TDSE with the paramet
of the fieldE050.075 a.u.,v50.152 a.u., andN550 peri-
ods taking the ground state as the initial state of the atom
applying a one-dimensional form of the integral bounda
conditions~1!.

For propagating the solutionC(x,t) in the internal re-
gion, 2R<x<R, we used the well-known Crank
Nicholson-Galerkin algorithm. The numerical procedur
used in the present calculations as well as the fin
difference representation of the boundary condition~1a!
were similar to those described in Ref.@1#. The present IBC
calculations will be compared with the standard soluti
Cst(x,t) of the same problem solved with the homogeneo
Dirichlet boundary conditions, on a large integration gr
Rst53000 a.u.

Let us turn now to the approximation for the Green
function Gas , Eq. ~4!, which uses the action~7!. We note
that for an arbitrary form of the functionj(t), the analytical
evaluation of the integral in Eq.~8! is impossible and we
need to develop an approximate method. The direct num
cal calculation of the full distortionZ@g0# for all t and t8
required in Eq.~1! is impractical. A significant simplification
can be achieved if one expands the functionalZ@g0# along a
path g0 with the initial and final points to be taken asx
5x856R in the inverse powers ofR. Thus

Z@g0#ux5x856R5~ t2t8!H 2
1

R
7

d~ t,t8!

R2
1•••J , ~10!

where

d~ t,t8!5
j~ t !1j~ t8!

2
2

1

t2t8
E

t8

t

dtj~t!. ~11!
1-2
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One can treat Eq.~10! as a multipole expansion in terms of
small parameterj0 /R.

Then we apply the EA forGas at three different levels o
accuracy. Namely,~a! with the distortion termZ@g0# omitted
from Eq. ~7!; ~b! with only the first term in the expansio
~10! retained inZ@g0#; and~c! with both expansion terms o
~10! kept in Z@g0#. Case~a! is the crudest one because t
potential tail is completely neglected beyonds and the so-
lution propagates in the potential-free space. In the case~b!
and ~c!, distortion in the external region is accounted for.

Figure 1 displays the maximum absolute errorD in the
IBC solution as obtained from the comparison withCst for
three approximate forms of the boundary condition~1! @cases
~a!–~c!, see Eq.~10!#. It is clearly seen that the error depen
on the grid sizeR as an inverse power ofR, according to the
approximation in question. In case~a!, i.e., for the Coulomb
tail neglected in the external region,D;R21 at fixed time.
As follows from the discussion above, for the Green funct
Gas in the approximation~4!–~7!, D;u]2Z/]x2u;R23.
Then it is clear that higher-order terms in the expansion~10!
should be neglected. The numerical results of case~c! are in
accord with this conclusion. For comparison, we note tha
@3# the same level accuracy in the wave function require
grid of R56450 a.u. which is larger by an order of magn
tude than one sufficient in case~c! of the IBC method.

For obtaining the spectral distribution of atomic electro
ejected by the laser field, we need to know the wave func
in a sufficiently large space domain. This is particularly tr
for the long-range atomic potentials of the present case.
method we are considering is completely self-consisten
the solution in the external region~extending into infinity! is
constructed with the help of the solution in the internal
gion, by applying the extension relation~3!.

The spectral distributionw(E) of the electrons ejected
with energyE is given as a sum, thus

FIG. 1. The errorD due to the approximations~10! made in the
IBC, shown as a function of the grid sizeR. The error is defined as
D5maxtuCst(6R,t)2C(6R,t)u, where Cst is the solution of
TDSE obtained on the large gridRst563000 a.u. The crosse
(3) correspond to the short-range version of IBC~a!; the boxes
(h) correspond to version~b!, and the diamonds (L) correspond
to version~c! of the IBC. The straight lines on the graph represe
the overall uncertaintyD which depends onR and on the approxi-
mation modek, asR2k,k51,2,3.
01540
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1

2p (
s51

2

z^c1,2E
(2) uC& z2, ~12!

over two directions of the final momenta,k56A2E. The
projection of the wave functionC is made onto eigenstate
c1,2E

(2) of the continuum for the stationary problem, with th
turned-off electric field.

The direct application of the relation~3! for extending the
solution into the external region, as required in~12!, will not
be considered here@7#. Instead, we shall use the fact that
large distances the solution has a semianalytical form. T
we can apply the method of the stationary phase for ev
ating the overlap integrals in Eq.~12!, in order to obtain the
leading part, in terms of the Planck’s constant\, of the ex-
pansion for the probability densityw(E).

The asymptotic behavior ofc1,2E
(2) is given by a linear

combination of the WKB solutionsu]2F/]x]ku1/2e6 iF(x,k),
whereF(x,k)5*xp(z)dz is the abbreviated action and th
classical momentump(x) is given by @k222vL(x)#1/2. An
evaluation of the amplitudeŝc1,2E

(2) uC& whereC is contin-
ued into the external region via relations~3! and~4! with the
help of the stationary phase method, yields the followi
result:

^c1,2E
(2) uC&;E

t0

t

dt8 j @C~x8,t8!,Ĝas
6 ~k,t;x8,t8!#x856R ,

~13!

where

Ĝas
6 ~k,t;x8,t8!5U]2W6

]x8]k
U1/2

eiW6(k,t;x8,t8), ~14!

The function W(k,t;x8,t8) is defined asS(x0,t;x8,t8)
7F(x0,k) taken at the stationary pointx0, whereS is as-
sumed to be the exact form of the action. This functionW
can be obtained as a solution of the following Cauchy pr
lem for the Hamilton-Jacobi equation@8#:

2
]W6

]t8
1HS 2

]W6

]x8
,x8,t8D 50, ~15!

W6~k,t;x8,t85t !57F~x8,k!. ~16!

An approximate solution of the problem~15! accurate
uniformly with respect tok within to O(v l9), can be written
in the following form:

W6~k,t;x8,t8!52
k2

2
~ t2t8!7F„x82j~ t8!1j~ t !,k…

1v l8~x8!E
t8

t

$j~ t !2j~t!%dt1•••.

~17!

The IBC spectral distributionw(E) @case~c!# evaluated
via Eqs.~13!–~17! is shown in Figs. 2 and 3, together wit
the distributionwst(E) directly obtained by projecting the

t
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standard solutionCst onto the scattering eigenstates. Bo
agree with each other within 0.1% when the IBC is placed
R550 a.u. At the same time, using the short-range vers
~a! of the IBC solution givesw(E) accurate within some
10% only.

In conclusion, we have successfully aplied the IBC
treat numerically the TDSE with a long-range on
dimensional atomic potential and the atom-laser interact

FIG. 2. The logarithm of the probability densityw(E) of ejected
photoelectrons as a function of energyE ~in units of v). The solid
curvewst(E) is obtained by projecting the soft Coulomb eigensta
of the solutionCst evaluated on the large gridRst . The crosses
(3) correspond to applying the short-range version~a! of IBC as in
Ref. @1#, and the diamonds (L) correspond to version~c! of the
IBC for R550 a.u. withw(E) evaluated by the stationary phas
method via Eqs.~13!–~17!, using the same grid sizeR550 a.u.
,

-

01540
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The main approximation introduced in the IBC was
asymptotic form of theGas based on the EA. The numerica
method ~c! using the expansion~10! is shown to be very
effective for relatively short-time integration intervals~50
laser periods in the present calculation!. For much longer
intervals, the method may need some modifications. Th
questions as well as the extension to the three-dimensi
case will be considered separately.

The authors are pleased to acknowledge discussions
I.V. Puzynin, S.I. Vinitsky, and O.M. Khudaverdyan.

s

FIG. 3. The same as Fig. 2, but using a large scale to display
details of the first peak of the series. A ‘‘rainbow’’ structure th
had been earlier discussed for a short-range potential in Ref.@9# and
for a ‘‘soft Coulomb’’ potential in Ref.@10# is clearly seen in the
declining slope of the peak.
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