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Integral boundary conditions for the time-dependent Schralinger equation:
Superposition of the laser field and a long-range atomic potential

A. M. ErmolaeV
Physique Therique, Facultedes Sciences, Universitébre de Bruxelles, Campus Plaine, CP 227, B-1050 Bruxelles, Belgium

A. V. Selin'
Laboratory of Computing Techniques and Automation, Joint Institute for Nuclear Research, 141980 Dubna, Russian Federation
(Received 9 December 1999; published 9 June 2000

We discuss long-range corrections for the integral boundary condl8®) introduced in A. M. Ermolaev,
I. V. Puzynin, A. V. Selin, and S. I. Vinitsky, Phys. Rev.6®, 4831(1999, in the case of the time-dependent
Schralinger equation with a long-range atomic potential. As in the work of Ermotdeal. the laser-atom
interaction is taken in the dipole approximation. The IBC techniques require the knowledge of the Green’s
function of the problem, beyond some surfaceemote from the atom. We consider the eikonal approximation
(EA) for the Green’s function in the asymptotic region and perform numerical tests on a one-dimensional
problem with the soft Coulomb potential. We demonstrate that the account of long-range corrections, within
the EA, allows us to reduce significantly the size of the space domain required for numerical integration and
improves essentially on the accuracy of the computed spectral distribution for the ejected electrons.

PACS numbes): 42.50.Hz, 32.80.Wr

The numerical solution of the time-dependent Sehro i
dinger equatiofTDSE) for an atom interacting with an ex-  J[V,®]= E{W(X,I)D;t‘b(x,t)—q)(X,t)Dx,t‘I’(X,t)},
ternal time-dependent field is a powerful method particularly
suitable for the case of short laser pulses. In our recent paper e
[1] we have suggested a general method for resolving the D= Vy—i=A(Xx,t). 2
problems arising from the unphysical reflectiofsee, e.g., ¢
[2,3)) of thg_wave pac_ket from the edge of a finite grld if the Here and below we use atomic units=137 is light veloc-
zero conditions are imposed there on the solution of the _ . : .
TDSE. The numerical example considered il was a one- ity, e=—1 is electron charge aml is the vector potential of

. : . X he electric field. The prime gtin Eq. (1) means that the flux
dimensional model atom with a short-range potential. It wa§ . . :
shown there that the integral boundar?/ cponditi(jBC) (2) is computed with¥ and G, taken as functions of the

method allows for a substantial reduction of the grid sizeprlmed var_lables. It IS assu.m.ed in E@) that the initial

once an explicit account of the free Volkov propagator isvave function® (x, o) is r_1egI|g|ny small beyond. cher-

made in the space outside the potential range. wise the_term tha.‘t .takes Into account _the propagatlon‘:pg_/
The main purpose of the present paper is to discuss th f the tail of the initial wave function in the external region

implications for the formulated boundary conditions thatS ould be ad(jed to .qu)' .

may be caused by the presence of a long-range atomic po; If the function¥ is know_n on 'ghe bou.”da.f!’ at times

tential. We note first that the integral condition usedliis r<t, then. one can determine this fgnctlon in the gxternal

a consequence of the Green’s identity for the TDSE and if€9ion at timet with the help ofG,; using the expression

the three-dimensional case it is written in the form

t
\If(x,t)zf dt’f do’ - [P(x],t"),Gas(X,t;x ,t)]
5) a
()
1 similar to one in Eq(1). The term withD'G, in Egs. (1)
@) and (3) represents the so-called parabolic potential of the

double layer which is discontinuous on the surfacd1].
This discontinuity accounts for an extra factor of two in Eq.

t
qf(xg,t):zf dt’fda-’~j’[‘I’(x(’,,t’),GaS(xU,t;x(’,,t’)].
to o

Here o is a closed surface dividing the spaBé into an

interior domain, with the atomic nucleus, and an exterior(l)' . . . . .
domain,x, e o, andG,(x,t:x',t') is a propagator that sat- The semiclassical approximatida] will be used forG 4

isfies TDSE in the exterior domain. The vecids a bilinear which is
flux that for a pair of functionsV(x,t) and ®(x,t) has a 2 | |12
form Gas=(2wi)‘”/2 de IS X t) (4)
aXiO.‘X]-,
*Electronic address: ermolaev@ulb.ac.be wheren is the space dimension aigls the action evaluated
"Electronic address: selin@thsund.jinr.ru along the classical path with the initial and final positions
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x" and x, respectively. For sucl,s, Eq. (1) assures the
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However, the stationary phase analysis of actipnshows

correct matching between the asymptotic semiclassical waviat contributions to Eq(1), which come from suchy,, are
in the external domain and the solution in the interior regionsmall for sufficiently remote surfaces Thus one can expect
where it can be generated, e.g., by some numerical calculdhat the EA formulated above will be useful for the IBC

tions.
For the case of a short-range potential considerdd n

provided thato is not too close to the Coulomb center.
We now consider a one-dimensional atom where the long-

the free Volkov propagator exactly satisfies the TDSE in theange potential is modeled by the soft Coulomb potential
external region beyond the range of the potential and it cam (X)=— 1/\/1+x? [6]. For the purpose of comparison with
be used ass,5. The free Volkov propagator has a simple the advanced numerical method of MillagR] where the
analytical representation convenient for implementing thevave-function-splitting technique and mask functions were

boundary conditiong1) and has the forn(4). The corre-

sponding classical pathg, for S are determined from the
Hamilton equations for the canonically conjugate positipn
and momentun®,

vo: P(7)=0, Q(r)=P— ~A(7). ®

In the case of a long-range potential(x) such as the

Coulomb potential, the use of the free Volkov propagator in
the integral(1) corresponds to cutting-off the potential tail

employed(see alsd?2]) in order to reduce reflections from
the edge of the grid, we shall solve the same TDSE 48]in
with the help of the IBC method.

Correspondingly, the laser pulse of duratibis chosen in
the form

Tt
- —sinz(—) sinwt, 0<t<T,

T (€)

beyond the surface- and neglecting the phase distortion in where T=27N/w, N is the number of laser periods of an-
the asymptotic region. As the exact form of the Coulomb-gular frequencyw, &, is the peak strength of the laser field,
Volkov propagator is unknown we have to adopt an approxi-and £,=&,/w? is the excursion amplitude of the electron.
mation. We shall use the fact that we need the semiclassical We integrate numerically the TDSE with the parameters
Green’s function only in the asymptotic region. Hence it isof the field £,=0.075 a.u.,w=0.152 a.u., andN=50 peri-
natural to use the forrtd) and to replace the exact classical ods taking the ground state as the initial state of the atom and

pathsy for evaluating the actios, by the pathsy,, Eq. (5).
In this case, the action for the Hamiltonian

2

Ps e
H(P.Q. 7)==~ EPA(T)+UL(Q) (6)

along vy, differs from the action without, (Q) by the long-
range correctiorZ[ y,], that is

o D EO X+

2t —Z[ o], (7
where&(t)=—(e/c) [*A(7)dr, and
t
Z[VO]:ft/dTUL(Q(T))- (8

We note that the expressiofY) is a solution of the
Hamilton-Jacobi equation f@ linearized inZ and is similar
to the Glauber eikonal approximati¢B]. The error of such
an approximation is quadratic with respectZoand is of
order (VZ)2.

Setting the path densitydet(7*S/ax;dx|)|~(t—t") ",

one can find that in the external region the eikonal approxi-

mation (EA) (4),(7) for G, satisfies, at fixed time, the
Schralinger equation with the Hamiltoniai$) within an er-
ror of orderO((VZ)?+|AZ|). Hence, for the Coulomb tail,

applying a one-dimensional form of the integral boundary
conditions(1).

For propagating the solutio® (x,t) in the internal re-
gion, —R=x<R, we used the well-known Crank-
Nicholson-Galerkin algorithm. The numerical procedures
used in the present calculations as well as the finite-
difference representation of the boundary conditida)
were similar to those described in REL]. The present IBC
calculations will be compared with the standard solution
T (x,t) of the same problem solved with the homogeneous
Dirichlet boundary conditions, on a large integration grid
R,=3000 a.u.

Let us turn now to the approximation for the Green’s
function G,5, Eq. (4), which uses the actiofi7). We note
that for an arbitrary form of the functioé(t), the analytical
evaluation of the integral in Eq8) is impossible and we
need to develop an approximate method. The direct numeri-
cal calculation of the full distortiorz[ y,] for all t andt’
required in Eq(1) is impractical. A significant simplification
can be achieved if one expands the functiafiaj,] along a
path y, with the initial and final points to be taken as
=x"= =R in the inverse powers dR. Thus

_d(tt)
R2

x| =
+

Z['Yo]lxx’:R:(t_t,){_ +} (10

the error is of ordep ~# in the three-dimensional case and where

0% in the one-dimensional case, whegeis the closest

distance between the pail, connecting the points andx’,
and the Coulomb center. This approximation &g loses

accuracy for thosey, that lie close to the Coulomb center.

fO+EE) 1

t
d(t,t’)= 3 t—t'ft'dTé(T)'

(11)
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-1.0 1 2
| W(E)=5— 2 Kyt lW)P, (12
2.0 e S - T s=1
’ TRy &
< | over two directions of the final momentk= *+ \2E. The
= 3.0 == =g projection of the wave functio® is made onto eigenstates
ke} - e —a lﬂ(l,_z)E of the continuum for the stationary problem, with the
40 .Y R turned-off electric field.
T The direct application of the relatidid) for extending the
-5.0 T "y solution into the external region, as required12), will not
s be considered herg]. Instead, we shall use the fact that at
-6.0 large distances the solution has a semianalytical form. Then

30 40 50 60 7080 100

R (aw) we can apply the method of the stationary phase for evalu-

ating the overlap integrals in E¢L2), in order to obtain the
FIG. 1. The errorA due to the approximationd0) made in the  €ading part, in terms of the Planck’s consténtof the ex-
IBC, shown as a function of the grid si® The error is defined as Pansion for the probability density(E).
A=max/¥(*R,t)—¥(=R,t)|, where ¥, is the solution of The asymptotic behavior of{>} is given by a linear
TDSE obtained on the large griliq=*3000 a.u. The crosses combination of the WKB solution$a?F/axak|Y2e™FK),
(X) correspond to the short-range version of IB&J; the boxes where F(x,k)=[*p(z)dz is the abbreviated action and the
(0O0) correspond to versiotb), and the diamonds¢) correspond  classical momentunp(x) is given by[k®—2v, (x)]¥2 An
to version(c) of the_IBC. The straight lines on the graph represe”tevaluation of the amplitude@/xﬁ’z)ENf) whereW is contin-
the overall uncertainth which depends ol and on the approxi- e into the external region via relatiof® and(4) with the
mation modek, asR™" k=1,2,3. help of the stationary phase method, yields the following
result:
One can treat Eq10) as a multipole expansion in terms of a .
small parameteg,/R. (-) NJ ri Py A N LY
Then we apply the EA fo6,; at three different levels of (1Y) todt PO, Gadk ix ) b =g,
accuracy. Namely(@) with the distortion tern[ y,] omitted 13
from Eq. (7); (b) with only the first term in the expansion

(10) retained inZ[ y4]; and(c) with both expansion terms of where

1/2

(10) kept inZ[ yo]. Case(a) is the crudest one because the . 200+ o .
potential tail is completely neglected beyoadand the so- Gadktix/ t')=|— W (ktxth), (14)
lution propagates in the potential-free space. In the cdpes ax' ok

and(c), distortion in the external region is accounted for.
Figure 1 displays the maximum absolute ertorin the
IBC solution as obtained from the comparison wikh, for
three approximate forms of the boundary conditibn[cases
(@—(c), see Eq(10)]. Itis clearly seen that the error depends
on the grid sizeR as an inverse power &, according to the
approximation in question. In casa), i.e., for the Coulomb

The function W(k,t;x’,t’) is defined asS(x°t;x’,t")
FF(x°k) taken at the stationary poin®, whereS is as-
sumed to be the exact form of the action. This functiin
can be obtained as a solution of the following Cauchy prob-
lem for the Hamilton-Jacobi equatid8]:

tail neglected in the external region~R™? at fixed time. _ ﬂ+H< — ﬂ X/ t’) =0 (15)
As follows from the discussion above, for the Green function at’ ox! ’

G,s in the approximation(4)—(7), A~|d?Z/ox?|~R 3.

Then it is clear that higher-order terms in the expan$id) W=(k,t;x",t'=t)=FF(x',k). (16)

should be neglected. The numerical results of dagare in
accord with this conclusion. For comparison, we note that in An approximate solution of the problerfi5) accurate
[3] the same level accuracy in the wave function requires aniformly with respect tc within to O(v|'), can be written
grid of R= =450 a.u. which is larger by an order of magni- in the following form:
tude than one sufficient in case) of the IBC method. )

For obtaining the spectral distribution of atomic electrons WE (K tx b)) = — k—(t—t’)i F(x'— £(t') + £(1),K)
ejected by the laser field, we need to know the wave function e 2 '
in a sufficiently large space domain. This is particularly true

for the long-range atomic potentials of the present case. The +u,’(x’)ft{§(t)—§( Y7+

method we are considering is completely self-consistent as t/

the solution in the external regidextending into infinity is (17)

constructed with the help of the solution in the internal re-

gion, by applying the extension relati¢®). The IBC spectral distributionv(E) [case(c)] evaluated
The spectral distributiow(E) of the electrons ejected via Egs.(13)—(17) is shown in Figs. 2 and 3, together with

with energyE is given as a sum, thus the distributionwg(E) directly obtained by projecting the
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FIG. 2. The logarithm of the probability densiy(E) of ejected FIG. 3. The same as Fig. 2, but using a large scale to display the

photoelectrons as a function of energyin units of w). The solid  details of the first peak of the series. A “rainbow” structure that
curvewg(E) is obtained by projecting the soft Coulomb eigenstateshad been earlier discussed for a short-range potential inf ®efnd

of the solutionW, evaluated on the large griy. The crosses for a “soft Coulomb” potential in Ref[10] is clearly seen in the
() correspond to applying the short-range verdigrof IBC asin  declining slope of the peak.

Ref. [1], and the diamonds<{ ) correspond to versioic) of the
IBC for R=50 a.u. withw(E) evaluated by the stationary phase

method via Eqs(13)—(17), using the same grid siZ@=50 a.u, The main approximation introduced in the IBC was an

asymptotic form of th&s, based on the EA. The numerical

. ) . method (c) using the expansio(10) is shown to be very
standard solution!’; onto the scattering eigenstates. Both effective for relatively short-time integration intervalS0
agree with each other within 0.1% when the IBC is placed ajaser periods in the present calculatiofor much longer
R=50 a.u. At the same time, using the short-range Versioferyals, the method may need some modifications. These
(@) of the IBC solution givesw(E) accurate within some gy estions as well as the extension to the three-dimensional

10% only. _ case will be considered separately.
In conclusion, we have successfully aplied the IBC to

treat numerically the TDSE with a long-range one- The authors are pleased to acknowledge discussions with
dimensional atomic potential and the atom-laser interactionl.V. Puzynin, S.I. Vinitsky, and O.M. Khudaverdyan.
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