
PHYSICAL REVIEW A, VOLUME 62, 014103
Unitary relation between a harmonic oscillator of time-dependent frequency and a simple
harmonic oscillator with and without an inverse-square potential

Dae-Yup Song*
Department of Physics, Sunchon National University, Sunchon 540-742, Korea
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The unitary operator that transforms a harmonic oscillator system of time-dependent frequency into that of
a simple harmonic oscillator of different timescale is found, with and without an inverse-square potential. It is
shown that for both cases, this operator can be used in finding complete sets of wave functions of a generalized
harmonic oscillator system from the well-known sets of the simple harmonic oscillator. Exact invariants of the
time-dependent systems can also be obtained from the constant Hamiltonians of unit mass and frequency by
making use of this unitary transformation. The geometric phases for the wave functions of a generalized
harmonic oscillator with an inverse-square potential are given.

PACS number~s!: 03.65.Ca, 03.65.Bz, 03.65.Ge, 03.65.Fd
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It is certainly of importance to find a complete set of wa
functions for a system of the time-dependent Hamiltonia
@1–17#. It has long been known that a harmonic oscillator
time-dependent frequency with or without an inverse-squ
potential is a system of practical applications~see, e.g., Ref.
@3#!, where the wave functions are described in terms
solutions of the classical equation of motion of the oscilla
without the inverse-square potential@4–8#. In Ref. @9# it has
been shown that, for a generalized harmonic oscillator s
tem, the kernel of the system is determined by the class
action. This is one of the basic reasons for the fact that
wave functions are described by the classical solutions.
the other hand, it has long been noticed that there exist c
sical canonical transformations that relate the~driven! har-
monic oscillators of different parameters~see, e.g., Refs
@8,10#!. Recently, in Ref.@11#, it has been shown that
driven harmonic oscillator of time-dependent frequency
related, through canonical transformations, to the simple
monic oscillator of unit mass and unit frequency but with
different timescale@12,10#. This fact has been used to fin
the wave functions of a driven system that exactly agree w
the known results@9,13#.

In this Brief Report, we will show that for both oscillator
with and without an inverse-square potential, there is a u
tary operator that transforms the harmonic oscillator syste
of time-dependent frequency into those of the unit-mass
unit-frequency oscillators with different timescales. This u
tary operator can be used to find complete sets of wave fu
tions of the systems with time-dependent parameters f
the well-known sets of wave functions of the simple h
monic oscillator with@14# or without an inverse-square po
tential. It has been known that@4–8# there existexactinvari-
ants in the systems of time-dependent parameters that
long been used to find the wave functions@4–8,15–17#. As
might have been implied by the classical treatments thro
canonical transformations, it will also be shown that theex-
act quantum-mechanical invariants in oscillator systems
time-dependentparameters can be obtained from thecon-
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stantHamiltonians of unit mass and frequency~which, cer-
tainly, are invariants in their systems, respectively!, through
the unitary transformation given here and those in Re
@9,13#.

The unit-mass harmonic oscillator of time-dependent f
quencyw0(t) is described by the Hamiltonian

H0~x,p,t !5 p2/2 1 @w0
2~ t !/2# x2, ~1!

with the classical equation of motion

ẍ1w0
2~ t !x50. ~2!

If we denote the two linearly independent solutions of E
~2! as u0(t) and v0(t), the r0(t) defined by r0(t)
5Au0

21v0
2 should satisfy

~d2/dt2! r01w0
2~ t !r02 V0

2/r0
3 50, ~3!

with a time-constantV0([ v̇0u02u̇0v0). Without losing
generality, we assume thatV0 is positive. The wave func-
tions cn

0(x,t) of the system should satisfy the Schro¨dinger
equation

O0~ t !cn
0~x,t !50, ~4!

where O0(t)52 ih(]/]t)1H0(x,p,t). For the simple har-
monic oscillator system of unit mass and frequency wh
time is t, the wave functionscn

s(x,t) should satisfy

Os~t!cn
s~x,t!50, ~5!

where Os(t)52 ih(]/]t)1Hs with Hs5 1
2 (p21x2). If t

andt are related through the relation

dt5 ~V0/r0
2! dt, ~6!

by defining the unitary operator

Uw0~r0 ,V0!5exp@~ i ṙ0/2\r0! x2#

3exp@2 ~ i /2\! ~ lnr0/AV0!~xp1px!#,

~7!
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one may find the relation

~V0/r0
2! Uw0Os~t!Uw0

† ut5t(t)5O0~ t !. ~8!

In Eq. ~7!, the overdot denotes the differentiation with r
spect to timet, while in Eq. ~8! the notation ‘‘ut5t(t)’’ is to
mention thatt should be replaced by the function oft satis-
fying the relation~6!. In a different vein, the relation~8! has
also been noticed in Ref.@18#. Eqs. ~5! and ~8! imply the
following relation in wave functions;

cn
0~x,t !5Uw0cn

sut5t(t) . ~9!

As is well known @1#, the simplest choice of$cn
sun

50,1,2, . . . % may be given as

cn
s~x,t!ut5t(t)5

1

~2nn!Ap\!1/2
e2 i (n11/2)t

3expF2
x2

2\GHnS 1

A\
xD U

t5t(t)

~10!

5
1

~2nn!Ap\!1/2S u0~ t !2 iv0~ t !

r0~ t ! D n11/2

3expF2
x2

2\
1 ic0GHnS 1

A\
xD , ~11!

wherec0 is an arbitrary real number that will be set to ze
from now on. In obtaining Eq.~11!, we make use of the fac
that

dt5 ~V0/r0
2! dt5 i @~ u̇02 i v̇0!/~u02 iv0! 2 ṙ0/r0#dt.

~12!

In order to find a general expression ofcn
0(x,t), we consider

another unitary transformation. By definingdu1
(t) through

the relations

ḋu1
5 1

2 w0
2u1

22 1
2 u̇1

2, ~13!

where u1 is a linear combination ofu0(t) and v0(t), one
may find that the unitary operatorU f given as@13#

U f5exp$~ i /\! [ u̇1x1du1
(t)] %exp@2 ~ i /\! u1p# ~14!

satisfies the following relation:

U fO0U f
†5O0 . ~15!

Therefore, the wave functionscn
0 satisfying the Schro¨dinger

equation of Eq.~4! may in general be written as
01410
cn
0~x,t !5U fUw0cn

s~x,t!ut5t(t)

5
1

A2nn!r0~ t !
S V0

p\ D 1/4S u0~ t !2 iv0~ t !

r0~ t ! D n11/2

3expF i

\
@ u̇1~ t !x1du1

~ t !#G
3expF @x2u1~ t !#2

2\ S 2
V0

r0
2~ t !

1 i
ṙ0

r0
D G

3HnSAV0

\

x2u1~ t !

r0~ t ! D . ~16!

This wave function, of course, agrees with the known o
@9,13,11# if we consideru1 as a~fictitious! particular solu-
tion. If u150, the wave function given in Eq.~16! also
agrees with that in Refs.@7,15–17#.

It may be interesting to find how many free paramet
are in the wave functioncn

0(x,t). First, there are two param
eters in determiningu1(t). In the case ofu150, one may
think that there are four parameters that come from determ
ing u0(t),v0(t). However, one of them is not a free param
eter, since the wave functions are invariant under the mu
plication of u0(t) and v0(t) with the same constant facto
For the simple harmonic oscillator of time-translational sy
metry, one of the remaining three parameters ofu150 is
simply related to a time shifting of the wave function. Th
can be seen from the fact that, for the unit frequency ca
the u0 andv0 can be taken as cos(t1t0) andC sin(t1b1t0),
respectively, with real constantsC,b,t0.

If one considersrs(t) satisfying

d2

dt2 rs1rs2
Vs

2

rs
3 50, ~17!

and a simple harmonic oscillator of unit mass and freque
and with timet8 that is related tot as

dt85
Vs

rs
2 dt,

by defining

Us5expS idrs /dt

2\rs
x2DexpF2

i

2\ S ln
rs

AVs
D ~xp1px!G , ~18!

one may find that

~Vs/rs
2! UsOs~t8!Us

†ut85t8(t)5Os~t!. ~19!

The wave functionsc̃n
s(t) defined by

c̃n
s~t![Uscn

s~x,t8!ut85t8(t)

then satisfy the Schro¨dinger equationOs(t)c̃n
s50. In fact,

c̃n
s(t) is closely related to the wave functions of th

squeezed states@19,20,2#.
3-2



n
of
ee

ee

ith
ia

fi

n
.
-
ns

tant

of

of

BRIEF REPORTS PHYSICAL REVIEW A 62 014103
One may think that a more general expression of the u
tary operator,Uw0, may be obtained by combining use
Uw0 andUs . This, however, is not the case as can be s
from the relation

Uw0~r0 ,V0!Usut5t(t)5Uw0~r0rs ,V0Vs!ut5t(t) , ~20!

which is in accordance with the number counting of fr
parameters incn

0(x,t).
The harmonic oscillator of unit mass and frequency w

an inverse-square potential is described by the Hamilton
@14#

Hin
s 5p2/2 1 x2/2 1 g/x2 . ~21!

We only consider the case ofg.2\2/8, and the region of
x.0. By defininga5 1

2 (118g/\2)1/2 and

Os
in~t!52 i\ ~]/]t! 1Hin

s , ~22!

the wave functionfn
s satisfying the Schro¨dinger equation

Os
in(t)fn

s50 is given as@14#

fn
s[^xufn

s&

5S 4

\ D 1/4S G~n11!

G~n1a11! D
1/2

e2 i (2n1a11)t

3S x2

\ D (2a11)/4

expS 2
x2

2\ DLn
aS x2

\ D . ~23!

By definingO0
in as

O0
in~ t !52 i\

]

]t
1

p2

2
1w0

2~ t !
x2

2
1

g

x2 , ~24!

as in the case without the inverse-square term, one may
the relation

~V0/r0
2! Uw0Os

in~t!Uw0
† ut5t(t)5O0

in~ t !. ~25!

In deriving Eq.~25!, we make use of the commutator relatio

Fxp1px,
1

x2G54i\
1

x2 . ~26!

For a further generalization, we define a unitary operator

Ug5expF i

\
S Max22

Ṁ

4
D x2GexpF i

ln M

4\
~xp1px!G , ~27!

whereM is a positive function oft, anda(t) is a real func-
tion. One may then easily find the relation

UgO0
inUg

†[Oin ~28!

52 i\ ~]/]t ! 1Hin , ~29!

where~see Ref.@9#!
01410
i-

n

n

nd

Hin5
p2

2M ~ t !
2a~ t !~xp1px!1

1

2
M ~ t !c~ t !x21

g

M ~ t !

1

x2

~30!

with

c~ t !5w0
2~ t !1

1

AM

d2AM

dt2
14a222

1

M

d

dt
~Ma!.

For convenience@13#, we consider the equation

~d/dt! ~Mẋ!1w2~ t !x50, ~31!

where w2(t)5w0
2(t)1(1/AM )(d2AM /dt2). The two lin-

early independent solutionsu(t),v(t) of Eq. ~31! can be
given fromu0(t),v0(t) asu(t)5u0 /AM , v(t)5v0 /AM , so
that one may find the relationV05M ( v̇u2u̇v). We also
define ther(t) as r(t)5r0 /AM . The wave functionfn of
the system described by the HamiltonianHin(x,p,t) can then
be obtained as

fn5UGfn
s~t!ut5t(t) ~32!

5S 4V0

\r2 D 1/4S G~n11!

G~n1a11! D
1/2

3S u2 iv
r D (2n1a11)S V0x2

\r2 D (2a11)/4

3expF2
x2

2\
S V0

r2 2 iM
ṙ

r
22iMa D GLn

aS V0x2

\r2 D , ~33!

where

UG5UgUw0 . ~34!

For a50, the wave functionsfn agree with those in Refs
@7,17#. As in Ref. @9#, by considering the kernel of the sys
tem @7#, it may be easy to see that the wave functio
fn(x,t) form a complete set. The form offn in Eq. ~33!
indicates that, even for the system described by the cons
HamiltonianHin

s given in Eq.~21!, there are wave functions
whose probability density distributions pulsate as in those
the squeezed states.

For the system of the HamiltonianHin , if M (t),w0
2(t),

and a(t) are periodic with a periodT, one may study the
nonadiabatic geometric phases@21,22#. The wave function
fn is ~quasi!periodic, only ifr(t) is periodic. The condition
for periodic r(t) with the periodT8(5T or 2T) has been
analyzed in Ref.@23#. Here, we only consider the case
such a periodicr(t). The overall phase change offn under
the T8 evolution is given as

xn52~2n1a11!E
0

T8 V0

r0
2~ t !

dt.
3-3
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The expectation value of theHin can be evaluated by making
use of the relation

Hinfn5S i\
]

]t
UGDfn

s1UGi\
]

]t
fn

s . ~35!

From the fact that

i\
]

]t
fn

s5 i\
dt

dt

]

]t
fn

s5~2n1a11!\
V0

r0
2~ t !

fn
s , ~36!

one may find that the geometric phasegn for the wave func-
tion fn under theT8 evolution is written as

gn5xn1
1

\E0

T8
^fnuHinufn&dt

5
1

\V0
E

0

T8
~M ṙ212Marṙ!dt^fn

sux2ufn
s&

5~2n1a11!
1

V0
E

0

T8
~M ṙ212Marṙ!dt. ~37!

The unitary operators can be used in finding theexact
invariants for the cases without and with the inverse-squ
potential fromHs and Hin

s , respectively. First of all, it is
clear thatHs andHin

s are invariants in the systems they de
scribe, respectively. For the system described byH0(x,p,t),
if we only consider the case ofu150, the invariantI 0 is
obtained by applying the unitary transformation to the inva
ant Hs,

I 05Uw0HsUw0
†

5
1

2V0
F S V0x

r0
D 2

1~r0p2 ṙx!2G , ~38!
01410
re

-

which agrees with those in Refs.@4–7,15,16#. For the system
described byHin(x,p,t), the invariant is again given from
the invariantHin

s as

I in5UGHin
s UG

† 5
1

2V0
F S V0x

r D 2

1$rp2~M ṙ12Mar!x%212r2
g

x2G . ~39!

For the case ofa50, the invariantI in reduces to the known
one @17#. One can explicitly check that the invariantI in in-
deed satisfies the relation

i\ ~]I in/]t ! 1@ I in ,Hin#50. ~40!

Alternatively, making uses of Eqs.~35! and~36! and relying
on the completeness of the set$fn

su n50,1,2, . . . %, a simple
proof of Eq.~40! may also be possible.

In summary, we have found a unitary operator that tra
forms a harmonic oscillator system of time-dependent f
quency into that of a simple harmonic oscillator of differe
timescale, with and without the inverse-square potent
Making use of the unitary operator, the exact invariants a
wave functions of the time-dependent systems have b
evaluated from the well-known results in the correspond
system of constant Hamiltonians. It should be mention
however, that the classical solutions of the time-depend
harmonic oscillator system must be found for actual appli
tions, while the classical equation@see Eq.~2!# is formally
equivalent to a one-dimensional time-independent Sch¨-
dinger equation~of arbitrary potential!. The classical corre-
spondent of unitary transformation is the canonical trans
mation that has been studied in the model@11,10#. It would
be interesting if the relationship could be used in findi
relations among the quantities in classical and quantum
chanics such as that between the geometric phases an
Hannay’s angle~see Ref.@23#!.
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