PHYSICAL REVIEW A, VOLUME 62, 014103

Unitary relation between a harmonic oscillator of time-dependent frequency and a simple
harmonic oscillator with and without an inverse-square potential
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The unitary operator that transforms a harmonic oscillator system of time-dependent frequency into that of
a simple harmonic oscillator of different timescale is found, with and without an inverse-square potential. It is
shown that for both cases, this operator can be used in finding complete sets of wave functions of a generalized
harmonic oscillator system from the well-known sets of the simple harmonic oscillator. Exact invariants of the
time-dependent systems can also be obtained from the constant Hamiltonians of unit mass and frequency by
making use of this unitary transformation. The geometric phases for the wave functions of a generalized
harmonic oscillator with an inverse-square potential are given.

PACS numbsg(s): 03.65.Ca, 03.65.Bz, 03.65.Ge, 03.65.Fd

It is certainly of importance to find a complete set of wavestant Hamiltonians of unit mass and frequen@yhich, cer-
functions for a system of the time-dependent Hamiltoniangainly, are invariants in their systems, respectiyetiirough
[1-17). It has long been known that a harmonic oscillator ofthe unitary transformation given here and those in Refs.
time-dependent frequency with or without an inverse-squaré9,13].
potential is a system of practical applicatioisee, e.g., Ref. The unit-mass harmonic oscillator of time-dependent fre-
[3]), where the wave functions are described in terms ofluencywy(t) is described by the Hamiltonian
solutions of the classical equation of motion of the oscillator o > 5
without the inverse-square potentjd8|. In Ref.[9] it has Ho(x,p,t)= p*/2 + [wo(1)/2] X7, @
been shown that, for a generalized harmonic oscillator sysyjith the classical equation of motion
tem, the kernel of the system is determined by the classical
action. This is one of the basic reasons for the fact that the X+ w3(t)x=0. %)
wave functions are described by the classical solutions. On
the other hand, it has long been noticed that there exist clagft we denote the two linearly independent solutions of Eq.
sical canonical transformations that relate tdeiven) har-  (2) as Ug(t) and vg(t), the po(t) defined by po(t)
monic oscillators of different parametetsee, e.g., Refs. =+/Ug+uvg should satisfy
[8,10]). Recently, in Ref[11], it has been shown that a S ) 5 3
driven harmonic oscillator of time-dependent frequency is (d/dt%) po+wy(t)po— o/ po =0, )
related, through canonical transformations, to the simple har- . . . . )
monic oscillator of unit mass and unit frequency but with aWith @ time-constantQq(=veUo—Uguo). Without losing
different timescald 12,10. This fact has been used to find Qe”era(';ty' we assume thél, is posiiive. The wave func-
the wave functions of a driven system that exactly agree witflons '_r/’n(x't) of the system should satisfy the Sctimger
the known result$9,13]. equation

In this Brief Report, we will show that for. both osci_llators . Oo(t) #2(x,1) =0, )
with and without an inverse-square potential, there is a uni-
tary operator that transforms the harmonic oscillator systemgnere O,(t)= —ih(a/dt) +Ho(x,p,t). For the simple har-

of j[ime-dependent.frequengy inFo those_of the unit-ma}ss a_”Fhonic oscillator system of unit mass and frequency whose
unit-frequency oscillators with different timescales. This Uni-time is 7. the wave functionssS(x, 7) should satisfy
’ n ’

tary operator can be used to find complete sets of wave func-

tions of the systems with time-dependent parameters from O4(7) 3(x,7)=0, (5)
the well-known sets of wave functions of the simple har-

monic oscillator with[14] or without an inverse-square po- where Og(7)= —ih(d/d7)+HS with H3=1(p2+x?). If t
tential. It has been known thp4—8| there exisexactinvari- and 7 are related through the relation

ants in the systems of time-dependent parameters that have

long been used to find the wave functigds-8,15—-17. As dr= (Q¢/p3) dt, (6)

might have been implied by the classical treatments through

canonical transformations, it will also be shown that éxe Py defining the unitary operator
act quantum-mechanical invariants in oscillator systems of .
time-dependenparameters can be obtained from tben- Uwo(po. o) =exd (i po/ 2% pg) X*]

xexd — (i/2#) (Inpo/ Qo) (xp+ px)],
*Electronic address: dsong@sunchon.ac.kr (7)
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one may find the relation

(20/p3) UnoOs( 1)U ol - -y =Oo(1). ®)

In Eq. (7), the overdot denotes the differentiation with re-
spect to timet, while in Eq.(8) the notation ‘|,_ " is to
mention thatr should be replaced by the function o$atis-
fying the relation(6). In a different vein, the relatio(8) has
also been noticed in Ref18]. Egs.(5) and (8) imply the
following relation in wave functions;

P2, = U0t 1= oty - (9)

As is well known [1], the simplest choice of#;|n
=0,1,2 ...} may be given as

1 )
S _ —i(n+1/2)r
‘//n(x, T) | r=7(t) (2”n! \/ﬁ)l/Z

y p[ X H(l ) (10
exg — =5 |Hp| —=x
2h \/ﬁ 7=17(t)
_ 1 (Uo(t)_ivo(t)y“/z
(2"t Jah) Y2\ po(t)
><ep[ X2+'c H ! ) (12)
X — — 1 —X
2n M BT

wherecg is an arbitrary real number that will be set to zero

from now on. In obtaining Eq(11), we make use of the fact
that

d7= (Qo/ph) dt=i[(Uo—ivo)/(Ug—ive) — po/poldt.
(12

In order to find a general expression @ﬁ(x,t), we consider

another unitary transformation. By defininﬁ,l(t) through
the relations

13

whereu, is a linear combination ofig(t) and vy(t), one
may find that the unitary operattt; given as[13]

Us=exp{(i/h) [ux+ Sy, (D]texd — (i/h)uip] (14
satisfies the following relation:
U;OqUT=0,. (15)

Therefore, the wave functiong satisfying the Schidinger
equation of Eq(4) may in general be written as
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(0 =UUpot3 (%, 7)] = 1)

1 ( )1/4(
V2"l po(t)

xexp{%—[ul(t)XJr 5u1(t)]}

o

XHp,

Qo

o Up(t) —ivg(t)
h

po(t)

>n+1/2

Cwu®P 9 @)
2\ pg() " po

[Qgx—u 1(t))

fi po(t) |
This wave function, of course, agrees with the known one
[9,13,11 if we consideru,; as a(fictitious) particular solu-
tion. If u;=0, the wave function given in Eq.16) also
agrees with that in Ref$7,15-17.

It may be interesting to find how many free parameters
are in the wave functioﬂfﬂ(x,t). First, there are two param-
eters in determiningi;(t). In the case olu;=0, one may
think that there are four parameters that come from determin-
ing ug(t),vo(t). However, one of them is not a free param-
eter, since the wave functions are invariant under the multi-
plication of ug(t) andvy(t) with the same constant factor.
For the simple harmonic oscillator of time-translational sym-
metry, one of the remaining three parametersup£0 is
simply related to a time shifting of the wave function. This
can be seen from the fact that, for the unit frequency case,
theugy andv, can be taken as cds(ty) andC sin(t+ B+tp),

respectively, with real constan@, 3,t,.
If one considerg(7) satisfying

(16)

d2

dr?

QZ
pstps— —3=0,
p

S

(17)

and a simple harmonic oscillator of unit mass and frequency
and with timer’ that is related tor as

Qs
dr'=—dr,
S
by defining
idps/dr i Ps
Us—ex;{ 2 pe )exp{—ﬁ(ln\/fS (xp+px)|, (18
one may find that
(QdpD) UOL( UL —r(n=0(n). (19

The wave functiong/S(7) defined by

';/'/rs]( T)E Uslprsl(xy 7,)|T’=T’(T)

then satisfy the Schdinger equatiorO4(7)%5=0. In fact,

Tpﬁ(r) is closely related to the wave functions of the
squeezed statg49,20,3.
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One may think that a more general expression of the uni- p? 1 ) g
tary operator,U,,,, may be obtained by combining use of Hm=m—a(t)(xp+ pX)+ 5 M(DC(OX+ s
U,o andUg. This, however, is not the case as can be seen (30)
from the relation
with
UWO(pOYQO)US|T:T(t):UWO(popS’QOQS)|T:T(I)! (20)
L . . d2JyMm d
which is in accordance with the number counting of free c(t) =w2(t) + —— +4a2 2__ M
parameters in2(x,t). (1) =we(®) \/— d? m at M@
The harmonic oscillator of unit mass and frequency with

an inverse-square potential is described by the Hamiltoniafor convenienc¢l3], we consider the equation
[14]
d/dt) (Mx)+w?(t)x=0, 31
=p?/2 + x%12 + g/x?. (22) (dfd) (Mx)+wi() 3y
where w2(t) =w3(t) + (1/yM)(d>|M/dt?). The two lin-
early independent solutions(t),v(t) of Eg. (31) can be
given fromug(t),vo(t) asu(t)=uy/VM, v(t)=ve/\M, so

O"(r)=—ih (3la7) +HS,, (22)  that one may find the relatioflo=M (vu—uv). We also

define thep(t) asp(t)=po/M. The wave functiong,, of

the wave functiong? satisfying the Schidinger equation the system described by the Hamiltonidp (x,p,t) can then

We only consider the case gf>—ﬁ2/8, and the region of
x>0. By defininga=%(1+8g/#%?)*? and

Oisn(T) $2=0 is given ag14] be obtained as
=(x|¢n) $n=Ucdn(7)| =7 (32)
1/4 1/2
- f) (M) -iGntatl)s (4Q0\™ T(n+1) |2
h I'int+ta+1) = hpz r(n+a+1)
(2a+1)/4 2 2
% % exp{—%)L“(%). 23 X(u_iv)(2n+a+1) QOXZ)(2a+l)/4
P hp?
By defining O}’ as (00 b Q¥
Xexp — 53| —=—iM=-2iMa| |Li| =], (33
g p? X2 g 20\ p p fip
(t)——lﬁ +7+w0(t)—+ =, (29

as in the case without the inverse-square term, one may finfhere
the relation
UGZUgUWo. (34)
(Q0/p§) UnoOL (1)U ol = 1= 0F (1). (25) , , ,
For a=0, the wave functiong, agree with those in Refs.
In deriving Eq.(25), we make use of the commutator relation [7,17]. As in Ref.[9], by considering the kernel of the sys-
tem [7], it may be easy to see that the wave functions
. ¢n(x,t) form a complete set. The form ap,, in Eq. (33)
:4'ﬁ7- (26) indicates that, even for the system described by the constant
HamiltonianH;, given in Eq.(21), there are wave functions
For a further generalization, we define a unitary operator Whose probablhty density distributions pulsate as in those of
the squeezed states.
i
ngex;{%

For the system of the Hamiltonial,,, if M(t),w3(t),
27 and a(t) are periodic with a period, one may study the
whereM is a positive function of, anda(t) is a real func-
tion. One may then easily find the relation

oy L
Xp DX,F

4

M ‘InM

Max?— — | x?|ex |7 (Xp+pX)|,
nonadiabatic geometric phasgxl,22. The wave function

¢, is (quasjperiodic, only ifp(t) is periodic. The condition

for periodic p(t) with the periodT’(=T or 2T) has been

analyzed in Ref[23]. Here, we only consider the case of

UgO{)”UQEO”‘ (28) such a perio_di(p(_t). _The overall phase change &f, under

the T’ evolution is given as

=—i# (3ldt) +H,,, (29

:—(2n+a+l)f

where(see Ref[9]) o(t)
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The expectation value of the;, can be evaluated by making
use of the relation

i J G S H J s
Hindn= |ﬁau ¢n+UG|ﬁE¢n- (35
From the fact that
.ﬁﬁ S__th& S_(ons +1ﬁQO s (36
l (9t¢n_| dt (97‘¢n_( n+a ) po(t)d)n! ( )

one may find that the geometric phagefor the wave func-
tion ¢, under theT’ evolution is written as

1 (v
'Yn:Xn'l'%Jo <¢n|Hin|¢n>dt
1 T "2 . S|y2| 4S
“hag), Me +2Mapp)dt(¢p|x*| pp)

1 v .
=(2n+a+1)Q—OJOT (Mp?+2Mapp)dt. (37

The unitary operators can be used in finding thect

invariants for the cases without and with the inverse-squarg

potential fromH® and H;,, respectively. First of all, it is
clear thatH® andH;, are invariants in the systems they de-
scribe, respectively. For the system describedHgyx,p,t),

if we only consider the case af;=0, the invariantl is
obtained by applying the unitary transformation to the invari-

antHs,

I0=UW0HSUJ\,0

5

2

1 N2
+(pop—px)

=20, (39
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which agrees with those in Refgl-7,15,18. For the system
described byH;,(x,p,t), the invariant is again given from
the invariantH;, as

(39

. g
+{pp—(Mp+2Map)x}*+2p° 5

For the case 0&d=0, the invariant;, reduces to the known
one[17]. One can explicitly check that the invariah in-
deed satisfies the relation

iﬁ(alin/at)+[|in,Hin]:0. (40)

Alternatively, making uses of Eq§35) and(36) and relying
on the completeness of the §et’| n=0,1,2 ...}, a simple
proof of Eq.(40) may also be possible.

In summary, we have found a unitary operator that trans-
forms a harmonic oscillator system of time-dependent fre-
quency into that of a simple harmonic oscillator of different
timescale, with and without the inverse-square potential.
Making use of the unitary operator, the exact invariants and
wave functions of the time-dependent systems have been
evaluated from the well-known results in the corresponding
ystem of constant Hamiltonians. It should be mentioned,
however, that the classical solutions of the time-dependent
harmonic oscillator system must be found for actual applica-
tions, while the classical equatidsee Eq.(2)] is formally
equivalent to a one-dimensional time-independent Schro
dinger equatior(of arbitrary potentigl The classical corre-
spondent of unitary transformation is the canonical transfor-
mation that has been studied in the model,10. It would
be interesting if the relationship could be used in finding
relations among the quantities in classical and quantum me-
chanics such as that between the geometric phases and the
Hannay's angldsee Ref[23]).
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