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Higher-order conductivity corrections to the Casimir force
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The finite conductivity corrections to the Casimir force in two configurations are calculated in the third and
fourth orders in the relative penetration depth of electromagnetic zero oscillations into the metal. The obtained
analytical perturbation results are compared with recent computations. Applications to the experiments on
precision Casimir force measurements are discussed.
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Considerable recent attention has been focused on expetion of frequency. The same computation was repeated in
mental investigation of the Casimir force between metallic[18] with conflicting results. Our analytical calculation of
surfaced 1-5]. In addition, Casimir energies for some pairs higher-order conductivity corrections agrees with the results
of conductors of different shape were studied theoreticallyof [18] in the application range of the perturbative approach.
[6]. The obtained experimental results and the extent of theifts is shown below, the perturbation results obtained in the
agreement with theory were used to establish stronger corgontext of the plasma model are valid with rather high accu-
straints for the parameters of hypothetical long-range intertaCy when the distance between the test bodies is langer
actions predicted by the unified gauge theories, supersymméauch larger than the plasma wavelength.
try, and supergravity7—9]. Let us consider two semi-infinite solids with dielectric

To be confident that data fit theory at a level of aboutPermittivity e(w) separated by a plane-parallel gap of width
several percent, a variety of corrections to the ideal expresd. The surfaces of the bodies are plagesd,a. The Casimir
sion for the Casimir force should be taken into account. Thdorce per unit area acting between these bodies can be found
main contribution is given by the corrections due to finitemost simply following[19-21],
conductivity of the boundary metal, its roughness, and that
due to nonzero temperatueee[10] for review). fic JOCX3dX ”@[

0 p?

The subject of the present paper is the analytical calcula- Fo(@)=— 32724 1
tion of higher-order finite conductivity corrections to the Ca-
simir force in relative penetration depth of electromagnetic (s+p)? -1
zero oscillations into the metal. We consider configurations + ;e -1 ,
of two plane-parallel plates and a sphere above a plate. The (s=p)
first-order finite conductivity correction was found 1] _ P . .
for configuration of two plane-parallel platésee alsq12]). vvlherg s=ve—1+p anhd 8._8(!5)_‘?('”/2‘)&) Is a di-
Later this result was recalculated ih3]. Second-order cor- € eCt.”C permittivity on the imaginary requency axm_s:|_§.

It is common knowledge that the dominant contribution to

rection was first found ifl14] (see alsq10]). The first- and he Casimir force comes from frequencies c/a, We con-
second-order corrections were modified for the configuratior%. . m 1req :
sider the micrometer domain with from a few tenths of a

of a sphere above a disk |d] and]15], respectively, by the micrometer to around a hundred micrometers. Here the
use of the proximity force theorePFT) [16]. The results dominant frequencies are of visible light and infrared optics.

for the Casimir force up to the second power in the relativ this domain. the plasma model works well and the dielec-
penetration depth are now commonly used when discussing. P P
ic permittivity of a metal can be represented as

the recent experiments. They are not sufficient, however,
when an accuracy of about several percent is need¢8,3h —1— 0 w? O =1+ w2/ & 2
the third- and the fourth-order corrections were obtained ap- s(w) wplo®, &(18) 0pl & @

proximately from an interpolation formula. They allowed to \yere the plasma frequenay, is different for different met-
achieve the excellent agreement between theory and expetijs Note that the plasma model does not take into account
ment[5]. But the exact values of the third- and fourth-order rg|axation processes. The relaxation parameter, however, is
corrections remained unknown. much smaller than the plasma frequency. That is why relax-

In [17], numerical calculations of the Casimir force with 4tion could play some role only for large distances between
account of finite conductivity have been attempted based OBIates a>\.=2mclw.. where the corrections to the Ca-
the tabulated data for the complex refractive index as a funcsjmir force F()jue to finipté conductivity are very small.

Let us expand the expression under the integral with re-

spect top in Eq. (1) in powers of a small parameter,
*On leave from North-West Polytechnical Institute, St. Peters-

burg, Russia. a= ¢lwy,=(cl2wpa) (XIp) =(dp/a) (x/2p),  (3)
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versity, Augustusplatz 10/11, 04109 Leipzig, Germany. wheredy=\,/(2) is the effective penetration depth of the
*On leave from A. Friedmann Laboratory for Theoretical Physics,electromagnetic zero-point oscillations into the metal. Note

St. Petersburg, Russia. that in terms of this parametel ») =1+ (1/a?).
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After straightforward calculations one obtains i 4cR j [ (s— ps)ze Xl
3 2
(s+pe)? -1 1 AA 8A 167a 1 p? (s+ps)
———e* =57 1—Fa+—(2A 1)a? (5= p)>2
(s—pe) e’— p? +in[1- e ;. 8
oA (s+p)?
o _ 992 2
* p3( 6+32A-32A%+2p Bearing in mind the further expansions, it is convenient to
perform in Eq.(8) integration by parts with respect ¥0o The
8A result is
—pYa’+ —(2A-1)(2-16A
P hcR (=
Fi(a)=— Sf x3dx
+1682-2p%+ pha’+O(ad) |, A8matio
J (s—pe)?
=d s—pe st+pe)P————
(4 Xfl—f( o)~ (st pe)’p
whereA=e*/(e*—1). (s+pe)?e*—(s—pe)?
In perfect analogy, the other contribution from Eg) is 5 ( 2
S—p
(s=p)?=(s+p)*— 5
(s+p)? (s+p)
X ) + > 5 . 9
(s—p)? (s+p)’e*—(s—p)
+2A(—5+32A—32A%)p3a’ The expansion of the first term under the integral in pow-
ers of the parameter introduced in Eq(3) is
+8A(1+18A—48A%+32A%) ptat
+0(a”)] B (s—pe)?—(s+pe)i— 6 (s —ps)2
X (s+pe)?
[note that this expression actually does not depengd dne (s+pe)?e*—(s—pe)?
to Eq. (3)].
After substitution of Eqgs(4) and (5) into Eq. (1), all 1 4 8A
integrals with respect tp have the formfgdpp * with k T o1 1+ p_x(l AX)a+ p_( 2-x+2Ax)a?

=2 and are calculated immediately. The integrals with re-
spect tox have the form

- xNgmx
fo dX(ex—l)m“ ©

2
+——[2-6p?+3p*+Ax(—6+32A—32A%+2p?
pP=X

—p — 3 8_A _ _ 2
p*)+16A(2A—1)]a°+ a [—8+32A—32A
p*x

and can be easily calculated with the held 22]. Substitut-
ing their values into Eq(l), we obtain after some transfor-
mations the Casimir force between metallic plates with finite
conductivity corrections up to the fourth power in the rela- +pH]at+0(a®) ;. (10
tive penetration depth,

+8p2—4p?+x(2A—1)(2— 16A+ 16A%—2p?

In the same way for the second term under the integral of

16 6 52 640 w2\ 8 E -
g0 _ - 0_ B % g. (9), one obtains
Fo@)=F(a)| 1- 3 a+24¥ . ( 210/ 2
(s—p)2—(s+py2o SP)
X (s+p)?

, ()

2800/ 163w 53‘
9 7350 ) g4

(s+p)2e*—(s—p)?

0 Ay _ (-2 4 1 4 8A

Wherer (a)— (7T hC)/(24(h ) . — 1+—(l—AX)pa-I-—(—2—X+2AX)p2a2
Now let us turn to the configuration of a lens or a sphere e*—1 X X

above a plate. Using the result[@0] for the Casimir energy )

denslty between plates and applying the PFT, we get the + S (—1-16A+32A2— 5AX+ 3242~ 32A%K) p3a®

Casimir force, X
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FIG. 2. Correction factors to the Casimir force in the configu-
FIG. 1. Correction factors to the Casimir force in the configu- ration of a lengspherg above a plate for Ala) and Cu or Au(b)
ration of two plane-parallel plates for Ale) and Cu or Au(b)  podies as a function of the distance. Solid lines represent the results
bodies as a function of the distance. Solid lines represent the resulfy computations[18]; short- and long-dashed lines are obtained

of computations[18]; short- and long-dashed lines are obtained from the fourth- and second-order results of Etp), respectively.
from the fourth- and second-order results of Ef), respectively.

107%%cR
27a8

16372\ &g
7350

F(Y(a)=2mRE{(a)= - (14)

8A —
+ 7(—4+32A—32A2—x+ 18AX a*
agrees with Eq(12). The other coefficients of Eq12) can
be verified in the same way.

We now consider the application range of the expressions
(7) and(12). Let us compare the correction to the force be-
tween two plane-parallel plates given by K@) with com-
putations. These computations were performed1i8] for
three metal$Au, Cu, and A) by the numerical integration of
the formulas which are equivalent to Eq4) and (8). In
doing so, the tabulated dafa3] for the complex refractive

6y 12 53 320 w? 5% index were used. The quantit(i&) was obtained through
1_4§ 5 ; 717 210 ; the imaginary part of the dielectric permittivity by the use of
the dispersion relatiof21].

—48A%x  +32A3x)ptat+0(ad)|. (11)

Substituting Egs(10) and (11) into Eq. (9), we first cal-
culate integrals with respect @ All integrals with respect to
x are of the form(6). Calculating them, we come to the
following result after long but straightforward calculations:

Fi(@)=F%(a)

400 16372 53 In Fig. 1(a), the solid line represents the computational
+ ?( ~ 7350 | 2|’ (120 results of Ref[18] for Fp/Fg’) in the case of Al depending
a on the distance between the plate§ he short-dashed line is

obtained from Eq(7) with the value of the plasma wave-
whereF(9(a)= — (74 cR)/(360%). length \5'=98 nm; the long-dashed line takes account the
Although the result€7) and (12) for two configurations terms of Eq.(7) up to the second power only. It is seen that
were obtained independently, they can be tied by the use d&q. (7) is in excellent agreement with the computational re-
the PFT. By way of example, the energy density associatedults of [18] for all az)\’g'. For example, foma=0.1 um,

with the fourth-order contribution in Ed7) is 0.5um, and 3um it follows from Eq. (7) that F,/F{”
=0.56, 0.85, and 0.97, which can be compared with the

w0 2, 16372\ 5% computations of18]: 0.55, 0.85, and 0.96, respectively.
Eff)(a):f FO)(a)daz - 5 c( 1637 )_3 (13 In Fig. 1(b), the analogical results for Cu and Au are

a 27 7350/ a shown. The dashed lines were obtained wik§"""

=132 nm. For the typical distances indicated above, it fol-
Then the fourth-order contribution to the force between dows from Eq.(7) thatF,/F{”’=0.60, 0.81, and 0.96, which
plate and a lens can be compared with the values 0.48, 0.81, and (186
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The difference in the first values is due)tﬁ“'A“> 100 nm, ample, ata=0.5um for Au and Cu one can find ifil7]

i.e., Eq.(7) is not applicable fon=100 nm in the case of Cu F,/F{")=0.657 and 0.837, respectively, whereas according
and Au. Fora=\S$""", the results agree perfectly well. Note to our resultsF ,/F{”=0.81 for both metals. At the same
that the values of the plasma wavelength, distance and metals for a lens above a plae F(©
=c/mm/(eyJN), wherem is the effective mass of the con- =0.719 and 0.87417], whereas from Eq(12) one gets
duction electrons anill is their density, are not known very F, /Ffo):0.85. As shown above, our results, however, are in
precisely. For Al, usuallp\p' =100 nm is usedi23]. For Au  good agreement with the alternative computationf16i.

and Cu, the valua$"*'=136 nm was estimated recently It is also useful to compare the exact third- and fourth-
[18]. We have chosen,, based on the smallest rms deviation order conductivity corrections obtained above with the ap-
between the computational results and the ones obtaingfoximate ones obtained by the use of the interpolation for-
from Eq.(7) (we usey\guz 132 nm as it was found if24]). mula[5,8]. To take one example, for the force between a lens
It should be noted that the values "_'35“:%0) are insensitive @nd a plate the coefficients near the third- and fourth-order

to 2-3% uncertainties in, for the range of the distances corrections in the interpolation formula are 50.67 and

considered here. +177.33 [compare with—43.57 and+104.13 from Eq.
Now let us turn to the Casimir force between a plate and12)]- For the smallest separatioas= 120 nm in experiment

a lens. The numerical results were obtained 6] by the [2] and&y/a~0.13 for Al, this leads to the 0.5% difference

integration of an equation equivalent to E8). In Fig. 2a),  Only in the results obtained by the interpolation formifa

the results for Al bodies are shown, and in Figbj2 the —and by Eq.(12).

results for Cu or Au bodies are shown. Solid lines represent [N conclusion, we note that the resul® and(12) can be

the computations of18]; short- and long-dashed ones are .relllably useql even for the dls_tanc&i;ass th.an. the character-

obtained from Eq(12) used in full or up to the second-order istic absorption wavelength, if A, <<\, (this is a case, e.g.,

terms. In both figures, the fourth-order perturbation result§or Au and Cu, which are characterized hy~500 nm or

are in excellent agreement with computations for all for Cr with A,~314 nm and\~600 nm[25]). They give

=\,. At the distancea=0.1 um, 0.5um, and 3um in the pOSSIbI!Ity. to calcglate t_he finite conductivity corrections

the case of Al, we have, /F(9'=0.62, 0.89, 0.98 from Eq. © the Casimir force in a simple way. The accuracy of the

(12) and 0.63, 0.88, 0.97 frofi8]. For Cu and Au, Eq(12) obtained analytical results is rather high and cumbersome

givesF,/F(%=0.59, 0.85, 0.97 in agreement with the vaIuescont‘|°Lt‘)t"’ltt.'°nS alre Imt)'t usefd. TtEe genera:clzanon of thellabtm(/je

. Cuau  perturbative calculations for the case of more complicate
1(5)51 Br781)5 0.9718] (note that for the first value; geometrieqe.g., for cubesis of much importance.

It should be emphasized that our analytical results are in The authors are grateful to CNPq for partial financial sup-
disagreement with the computations[df7]. By way of ex-  port.
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