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Direct sampling of exponential phase moments of smoothed Wigner functions
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We investigate exponential phase moments ofstharametrized quasidistributiosmoothed Wigner func-
tions). We show that the knowledge of these moments as functioapmivides, together with photon-number
statistics, a complete description of the quantum state. We demonstrate that the exponential phase moments can
be directly sampled from the data recorded in balanced homodyne detection and we present simple expressions
for the sampling kernels. The phase moments are Fourier coefficients of phase distributions obtained from the
quasidistributions via integration over the radial variable in polar coordinates. We performed Monte Carlo
simulations of the homodyne detection and we demonstrate the feasibility of direct sampling of the moments
and subsequent reconstruction of the phase distribution.

PACS numbd(s): 42.50.Dv, 03.65.Bz

I. INTRODUCTION London[15] represents a limit of Pegg-Barnett phase formal-
ism [16]. Recently, an approximate measurement of the ca-
Quantum-state tomography is a powerful tool allowing usnonical phase distribution, using the phase-coherent states,
to reconstruct the quantum state of a traveling optical modehas been proposdd7]. One can also construct phase distri-
provided that many identical copies of the state can be presutions from the phase-space quasidistributi¢h8—20.
pared[1,2]. The idea of homodyne tomography stimulatedThe phase distribution obtained from tig@ function (or
research in the field of quantum-state reconstruction of othesmoothedQ function in the case of imperfect detectjoran
simple quantum-mechanical systems. Recently, reconstruge directly measuref®1,22. An operational approach to the
tions of the quantum state of a molecular vibrational modeguantum phase, based on the description of a given experi-
[3] and the motional quantum state of a trapped /5]  mental setup, has been proposed by Mlal. [23]. The
have been reported. relation between canonical and measured phase distributions
Optical homodyne tomography relies on balanced homowas discussed if24]. For a recent review, sd€0,25.
dyne detection. The signal field is mixed with a strong co- Canonical phase distribution as well as phase distributions
herent local oscillatofLO) at a lossless 50/50 beam splitter. obtained from quasidistributions cannot be directly sampled
Both the LO and the signal are derived from a commonfrom the homodyne data. One has to reconstruct the Wigner
master oscillator to ensure a stable phase differeh@®-  function or the density matrix and then use the definition of
tween them. Two photodetectors are placed at the outpuhe phase distribution to calculate #6]. This detour via the
ports of the beam splitter and the measured photocurrents awigner function or the density matrix complicates numerical
subtracted. The resulting signal is proportional to the rotate@data processing and increases error in the final result. How-
quadrature of the signal modg . The measurement, which ever, the exponential phase mometfsurier coefficients
yields the probability distributionv(x,, 8) of the quadrature of the canonical phase distribution can be directly sampled
Xg, is repeated for many different phase shiftfom inter-  with the use of appropriate kerné®]. Phase-number uncer-
val [0,27]. tainty relations can be verified by sampling the first exponen-
The Wigner function of the signal mode can be recoveredial moment of the canonical phase distribution and the
from the measured statistieg(x,,60) by means of inverse photon-number variande7]. It was also pointed out if9]
Radon transforni6,1]. Numerical implementation of this in- that the exponential phase moments of the Wigner function
version is not simple and a filtering algorithm has to be ap-can be directly sampled.
plied to achieve the desired reconstruction. To avoid these But we do not have to restrict ourselves to the exponential
complications, it was suggested to directly get quantities ophase moments of canonical phase distribution or the Wigner
interest from the measured data by averaging appropriatiinction. In this paper, we consider direct sampling of the
kernels over the distributionsv(x,,0). This approach exponential phase moments of generglarametrized phase
proved to be very fruitful, and kernels for the direct samplingdistributions. We show that it is possible to directly sample
of density-matrix elements in the Fock bagis, [7], the the exponential phase moments of ayarametrized quasi-
moments(a'la*) [8], Fourier coefficients of the canonical distribution fors<—(1— 7)/7, where 5 is the overall de-
phase distributio9], and for smoothed Wigner functions tection efficiency. Namely, we find the expressions for the
[10] have been found. A different approach to the quantumkernels whose average over data recorded in balanced homo-
state reconstruction employs a maximum likelihood estimadyne detection yields the exponential phase moments. We
tion [11]. It was demonstrated recently that this techniqueshow that a knowledge of these moments as functions of
can be used to estimate photon-number distributid and  and the photon-number distribution provides complete char-
even a whole density matr{3.3]. For a review, segl4]. acteristics of a given quantum state. The phase moments are
In recent years, great attention has been devoted to theourier coefficients of the phase distributions defined as ra-
guantum phase. Canonical phase distribution introduced bglal integrals of thes-parametrized quasidistributions in the
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polar coordinates. We demonstrate that these phase distribu 1 v v T =
tions can be successfully reconstructed from the sampled — "'"___.
phase moments. 0.8l -7 T
The paper is organized as follows. In Sec. Il the exponen- . , s - -
tial phase moments are introduced and discussed. In Sec. ll| / P
simple analytical expressions for the sampling kernels are _ 0.6 | / ya
derived and the influence of imperfect detection is addressed 3. VA
In Sec. IV the results of Monte Carlo simulations are pre- W N I
, ; : . 0.4} VAV — I=1
sented. Section V contains conclusions. Some mathematica / RAREE P
issues are linked to the Appendix. K4 =
| /7, - |=3
o2t/ ) 7. 4
Il. EXPONENTIAL PHASE MOMENTS / R —
The quasidistributions related to variossorderings of 0 1 > 3 4 5
creation and annihilation operators can be expressed in terms
of the density matrixp [28], u
FIG. 1. Filtering functiond=,(u) for determination of exponen-
W(a,s)= izf e(llz)s‘ﬁ‘zTr[pe(aL“*)B’(a*“)ﬂ*]dz,g, ::?nghase moment¥(s) from the sy-parametrized quasidistribu-
. .

N
The moments¥,(s) can be simply determined from any
wherea,a' are annihilation and creation operators. One get§uasidistribution\(q,p,so) provided thas,>s. Indeed, in-
the P representation fos=1, the Wigner function fos=0,  Serting the relatior2) into Eq. (4), we have
and theQ function fors= — 1. Thes-parametrized quasidis-

Do ; " o . |
tributions are mutually related through the convolution \I,I(S):f f F|( )W(r,e,so)e""rdrde. )
0Jo VSp—S
1
Wap.s)= m(S1—Sp) The filtering functionsF,(u) are given by
Xfw J“‘ ox _(@—9")*+(p—p")? V(e (en o,
Y S-S, Fl(u):;fo fo gllbg=u"=p upcos¢pdpd¢_ (6)
XW(q',p’,s1)dq’dp’, (2

Integration over the angle variabl¢ yields the modified
Bessel functionl|(2up). The resulting integral over the ra-
dial variablep can be found in the tables of integrdRef.
[29], p. 306, Eq. 2.15.5)4and we have
U2
+|(|+1)/2<§”-
7

The first four filtering functions are plotted in Fig. 1. They
start from zero and asymptotically reach unity. The interval,
It should be noted that the phase distributiéhg6) can be  where the functions|(r/\sg—s) are significantly lower
negative fors>—1. Only the phase distributions obtained than 1, increases with decreasisgThis implies that the
from the Q function (or the smoothed function) are posi- absolute values of the phase mometitgs) decrease with
tively defined for every quantum state. Moreover, $0fr0,  decreasing because the modulation of the phase distribution
the distributions can be highly singular generalized func-P¢(6) is suppressed by the smoothing convoluti@h

where q=(a+a*)/\2 and p=—i(a—a*)/\2 are the
usual quadratures, arsg>s, must hold.

It is convenient to introduce polar coordinates
=r cosé, p=r sinf. The phase distributioR¢(#) related to u 2 U2
s-parametrized quasidistribution is defined[26] F(u)=m Sexp — ?)['(Ill—l)/z(f

Ps(a)zjoxW(r,a,s)rdr. (3

tions. Thus we restrict ourselves to the negativen the It is remarkable that the functioris,(u) are closely re-
following. lated to the exponential phase moments of the coherent state
The exponential phase moments are defined as |€),
2 . 2 .
W (s) = (expil 0)>s=f Ps(0)e' ’do ¥ (&5)=F, 1—S|§| e, y=arg. ®
0 _
_ fZﬁfo(r 0,s)el ’rdrd 6. (4) To prove this, we notice that the quasidistributidig «) of
o Jo s the coherent stati) are shifted Gaussians,
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2 2la—¢? -

Wla,s)=3=579P ~ —1=5 | ©) Wi(8)= 2, Coi(S)pnsin, (15)

Inserting this into Eq(4), we immediately obtain Eq38). where[31]
The filtering functionsF,(u) can be expanded in Taylor
series, n+if2 "
Cn,l(s): 1-s [nT(n+1)!]
Fi(w= 2 fouel, (10 T(n—k+1/2+1) [ 1+s\
X KK (N T T—K)! (_ 7 |- (19

where

If 1#0, the relation(15) can be inverted angd, ., , can be
found fromW,(s). In principle, the knowledge o¥(s) at

an infinite but countable number of poirgiscan be sufficient
for determination of alp, ., , from Eq. (15). Diagonal ma-
It is convenient to introduce the new parametgis,—s  trix elements appear only in

= 1/t?. With the help of the expansiofi0), we can rewrite

I T+l

= Y e

13

Eq. (5) as S
% © Vo(9)= 5, pur=Tr p=1 an
1
‘If,(so— t_z) and this relation cannot be inverted. Only when we know

both the phase momen®,(s) and the photon-number dis-
- o (2w 2] - tribution p(n) = p,, can we determine all density-matrix el-
ZHZO fn,|f0 fo (rt)=""W(r, 8,s0)€" “rdrd 6. ementsp,, Of, equivalently, all momentéa™a™),. Thus
the simultaneous knowledge of the functiobigs) andp(n)
(12 provides complete information on the quantum state and it is

) ) equivalent to the knowledge of the Wigner function or the
It follows from this formula that¥,(s) are generating func- density matrix.

tions of thesy-ordered moments,

_ 1 d2n+||| 1
2n+|l| Ll oy — —
e s = @ Iy el V1| ™ 2

IIl. SAMPLING KERNELS FOR THE EXPONENTIAL
PHASE MOMENTS

t Balanced homodyne detection provides statisti€s, , 0)

=0
(13)  of rotated quadratures,

The limit t—0 should be taken only after the derivative is 1
performed. The generating functions (s) can be used to Xo=—(ae ""+a'et?), (18)
determine the momentg 2"*I'le’ %), for any ordering pa- V2

rameterso. Notice, however, that the formuld.3) fails for where 6 is the relative phase between the LO and the signal

Id=t0. The ﬁi(ponennal p?,?se rr]m?]ments ?ot r:jott aIIc;}wtus tcfnode. The probability distributiow(x,,#) can be obtained
etermine e _momem&r ) which are related 10 photon- ¢om the Wigner functionV(q,p) as a marginal distribution
number statistics. As an example, consider the Fock sta%]

[n). This state is phase insensitiw,(s)=0 for |#0, and

the phase is uniformly distributed over therZ2interval, w oo

P<(6) =1/27r. Note also that the photon-number distribution W(Xg,0)= f f d(Xy—qcosf—psino)

p(n) can be recovered from the phase-averaged quadrature e

distributions[30]. X W(q,p)dq dp. (19)

The s-ordered moment$13) are simply related to more
familiar moments of creation and annihilation operators.We would like to sample the moment,(s) directly from

With the help ofa=2"% exp(6), we find that the homodyne datav(x,,6) with the use of the kernels
: ’C|(X{.},6,S)
<a’rnan+I>S:2—(n-¢—|/2)<r2n-¢—lell0>S (14)
s 2
and a similar expression holds fga™"*'a"),. The formula Wi(s)= fﬁwfo Ki(Xg,0;8)W(Xy,0)dx,d0.  (20)

(13) allows us to find any moment&a™a") provided that
m+n. Complementarily, the momenta™a)=(:n*:) can  Theg dependence of the kernels must be of the form iefp(

be determined from the photon-number distribution. [9]. Thus we look for the kernels in the form
The phase moment¥,(s) are linear combinations of _
density-matrix elementgy, | p, Ki(X,0;9) =K, (x4,5)€" . (21
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In what follows we restrict ourselves to positilze=or nega- 0.3
tive I, the exponential moments can be obtained by complex
conjugation, ¥ _,(s)="¥(s). Now we substitute Eq(19) 0.2t
into Eq. (20), perform integration ovek,, and rewrite the
remaining integral in polar coordinates. After some algebra, . 017
we arrive at 3 ol
27 [ 2 X x‘_
\If|(s)=J J “’ K,(r cose,s)e' ?d¢ 017
o Jo|Jo
. -0.2}
XW(r,6)e'rdrd 6. (22 0
Comparing the formulag22) and (5), where we sety,=0, -4 -2 0 2 4
we conclude that the kernBl,(x,,s) must fulfill the integral u
equation
FIG. 2. KernelK,(u) for sampling of odd exponential phase
2 . moments.
f K,(r cosé,s)e' ’do=F,(r/|s|*?). (23
0

Thus we can neglect the last term in the form@a) and we

In order to solve this equation, we expand the kerneFan define the kernels for which

K,(x4,8) in Taylor series, )
. Kis2(U) == —=K(u) (29)

Ki(Xp,5)= 2, an(l,s)x0. (24)
ne iso " 0 holds. It remains to find out the kerneks; and K,. The

_ S . . _ summation of the series can be found in the Appendix. The
This expansion is inserted into E3) and the integration resylts are

over @ is carried out, using the formula

1
2m . 2w [(2n+] Ky(u)= 7 erf(u), (30
. (cos¢9)2“*'e'”’d0:22n+| N ) (25)
1 (u 5,
Comparing the Taylor series on the left-hand side of(28) Ka(u)= TJ; e Yerfi(y)dy. (32)
o

with the serieq10), we find the coefficients,(l,s). Insert-

ing them back into the serig@4), we arrive at The kernels are plotted in Fig. 2 and Fig. 3, respectively.

[

T(n+1/2) | 2x, 2n+1 Combining this result with the recurrence formuy2o),
K,(X,,5)= — E (—1)" we finally have
1(Xg s A =o (2n+1)! |s| 22 |
(26) Koi+1(Xg,0;8)=(—1)" (21 + 1)K (x,/|s| Y2 e P+ D0,
Notice that the kernel is a function of a specific combina- Koi(Xg,0;8)=(— 1)|—1|K2(X0/|S|1/2)ei2|9_ 32)

tion of x, ands, u=x,/|s|* In the following we useu for
simplicity. Let us discuss the relation between the kernels
K,(u) andK,, »(u). We have

1+2 o T(n+1/2)
Kisa(u)==—7— ngl (—1)”(2nT|)!(2U)2nJrI
|42 1+2T(/2) _
STy kg w. @)

However, the kernel&, are not uniquely determined. Any
polynomial of order lower thahcan be added to kerné, ,
because all such polynomials are solutions of the homoge-
neous integral equation

-5

2
f ﬂf(r cosf)e'=0. (29 FIG. 3. KernelK,(u) for sampling of even exponential phase
0 moments.
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For largex,, all the kernels tend to the same limit because 0.6
we move to the strong classical field domain and the differ-

ences between variowsorderings vanish. The limit for odd

kernels is straightforward. We simply notice that 04}t

lim erf(x)=*1. (33

X— o

The limit for even kernels can be found if we take into ac-
count that for large,

ol -U-l= *Dalj@lﬁ@.ﬁ@lﬁ{._l_c}.{_.

11
2 - , , ,
e erMbo="—% 34 0 5 10 15 20
I

Inserting this into Eq(32), we have for large, 0.1

1 . . '
Kai(Xg,0;8)~—1(—1)""tn|x,|e'??+C, €27 (35

m 0.05}

HereC, s is some constant. The superfluous term containing - I‘l‘l

this constant can be omitted for reasons discussed above an;_ 0l ==dedr ':FL _I_& .:I:._I_ EI]% ]
we can see that as a limit all kernels approach those for the I_TJ EP I_TJ [P
phase moments of the Wigner functif@: £

-0.05¢

1 _
Karr1=7(21+1)(~ 1)'sgr(x)e' @17,

-0.1 : : : L
L 36 0 5 10 15 20
Ka=—1(=1)'""In|x,|e"?’, |
_ _ _ FIG. 4. Reconstructed phase momentg(—1) of squeezed
Up to now, we have considered ideal detectors havingacuum statd¢), (=1.317, i.e.(n)=3. Statistical errors are de-
unit quantum efficiency. In a realistic experiment, the detecnoted by error bars.
tion efficiency » is lower than 100% and the smoothed
quadrature distributions/(x,,0; ) are recorded33], struct only exponential phase moments for the phase distri-
butions corresponding te<s, . The modified kernels are

1
W(Xg,0;7)= Jaiom Ki(Xg,0;5,7)=Ki(Xg/\N . 0,5+ (1= n)75), (39
, and the conditiors<—(1— 7)/» must be fulfilled.
- (o= 72| (1=n)ln
X W(Xp,0)exg — ——————|d Xy
- 1-7 IV. MONTE CARLO SIMULATIONS

37) In order to test the kernels, we performed Monte Carlo
simulations of the homodyne detection and we present here

The smoothed quadrature distributiongx,, 6;2) €an be 4 "o i of simulations for the squeezed vacuum kate

obtained from the scaled and smoothed Wigner function,

[ =ex| 5 a2 S a2
W(Xeﬁ???):J j 8(Xg—qcosf—psing) 2 2

where|0) is the vacuum state. The squeezed vacuum state

a P _ﬂ dqdp (38) belongs to the class of Gaussian states, i.e., states whose

\/;' \/; quasidistributiondN(q,p,s) have Gaussian form. The phase
distribution P¢(#) for the general Gaussian mixed state was

The scaling and smoothing are two factors which must bejetermined if31,32. In particular, it holds thalP4( ) of the

included in the kerneldC(x,,6;s,7). The scaling means squeezed vacuum state can be express¢@2is

that we must replacg, by xgl\/;. The smoothing tells us

that the kernel$C(x,,6,s) would provide us with exponen- 1 (BZ-C?)1?

tial phase moment¥,(s+s,), s,=—(1—7)/n. Thus we Ps(6)= 20 B—Ccog260— )’

must replaces with s—s,, in all the expressiong32). It is

obvious that the losses impose a new limit. We can reconwhere

0), (40)

X—W
n

(41)
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0.6}

. 0.4;

P_(®

0.2}

FIG. 5. Reconstruction of the phase distributi®n,(6) of the
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FIG. 6. Reconstructed phase mometitgs) as functions of the

squeezed vacuum state from the sampled exponential moments dgparameter.
picted in Fig. 4. The solid line shows the reconstructed distribution

and the dashed line represents the exact shape.
Bs=sinl?|Z|+(1—5)/2,
(42)

1_
C= sinh2]¢)),

and=arg{. The phase moments can be calculated with th
help of the residue theorem. One arrives at

W, (s)=(Bs/C—\B2/C?—1)'e",

Wy -1(s)=0.

(43

In our simulations, the sampling was performed for 120 val
ues of equidistantly placed at the internja, 2] and 5000
samples have been made for eathWe assumed that the
overall detection efficiency ig=80% and we used the loss-
compensating kernel89).

Figure 4 shows the reconstructed phase moments dthe

V. CONCLUSIONS

We have shown that the exponential phase moments of
the s-parametrized quasidistributions are generating func-
tions of the moments of creation and annihilation operators.
A simultaneous knowledge of photon-number distribution
and the functionsl,(s) provides a complete description of
the quantum state. We have found kernels for direct sam-
é)ling of the moments¥(s) from quadrature distributions
measured in optical homodyne detection. The detection effi-
ciency » imposes a bound on the ordering parameter, we can
sample only phase moments o« — (1— #)/ 5. In the ideal
casen=1 and the Wigner function represents the limit; for
7=0.5 the limit is formed by & function. We performed
numerical Monte Carlo simulations of homodyne detection,
thereby demonstrating the feasibility of direct sampling of
the exponential phase moments from experimental data.
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with the exact values following from Eq43). Statistical
errors were calculated in a manner described9h As a
rule, error increases with increasih@nd this uncertainty is

responsible for the fast oscillations in the reconstructed prob-

ability distributionP _4(6), see Fig. 5.
The reconstructed momentk,(s), considered as func-
tions of the ordering parametsrare plotted in Fig. 6. Again,

APPENDIX: SUMMATION OF THE SERIES FOR THE
KERNELS K,; AND K,

Here we sum the Taylor series for kernéds(u) and
K,(u). We start withK;(u). Using the formula for the
Gamma function of a half-integer,

we found that the curves are in good agreement with their

theoretical counterparts. Notice that, due to the assumed

(2n)!

80% efficiency of the detection, we were able to sample only T(n+12)=\r ——, (A1)
moments fors< —0.25. 27'n!

We repeated our simulations also for other types of quan- .
tum states such as coherent states and displaced Fock stat%‘?. series foK,(u) take on the form
In all cases, the reconstruction procedure worked well and o N
the sampled moments were in good agreement with the the- K, (u)= i 2 (_l)nz_w u (A2)
oretical values. We emphasize that we have used only ! 47 3=0 n' (2n+1)°

6x10° samples in our simulations and such an amount of

data can be routinely recorded in the experiment.

The derivative of the kernel is
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2 u 1 Thus we have
(W=7 E (~D"=—=7—=e " (A
dua a4,
2
Integrating the above equation, we arrive at F(u)=—2uf(u)+ 7 (A8)
1
Ky(u)= 7 erf(u). (Ad)  Let us look for the functiorf(u) in the form
We adopt a similar approach to determidg(u), 2 g(u)
" fuy=———. (A9)
Tg'(u)

1 n!
Kz(U)ZE > (-1 W(ZU)Z“”. (AS5)

n=0

L Substituting this into the above equation, we finish with
We calculate the derivatives

2 ool ] g"(u)=2ug’(u),

f(u)= g Ka(u)= 2 (~ 1) Gy (w™ ™ (AL0)
(AB)
and g(u)= g erfi(u).
f'(u)= d_zsz(u):; i (— 1)n(2 T (2u)2" Inserting this into Eq(A9), we conclude that
du n
z (— 1)” ek (2u )2”+E (A7) K (u)=iJ'ue*y2erfi(y)dy (A11)
—1)! T’ 2 Jato .
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