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Direct sampling of exponential phase moments of smoothed Wigner functions

Jaromı´r Fiurášek
Department of Chemical Physics, The Weizmann Institute of Science, Rehovot 76100, Israel

~Received 14 March 2000; published 16 June 2000!

We investigate exponential phase moments of thes-parametrized quasidistributions~smoothed Wigner func-
tions!. We show that the knowledge of these moments as functions ofs provides, together with photon-number
statistics, a complete description of the quantum state. We demonstrate that the exponential phase moments can
be directly sampled from the data recorded in balanced homodyne detection and we present simple expressions
for the sampling kernels. The phase moments are Fourier coefficients of phase distributions obtained from the
quasidistributions via integration over the radial variable in polar coordinates. We performed Monte Carlo
simulations of the homodyne detection and we demonstrate the feasibility of direct sampling of the moments
and subsequent reconstruction of the phase distribution.

PACS number~s!: 42.50.Dv, 03.65.Bz
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I. INTRODUCTION

Quantum-state tomography is a powerful tool allowing
to reconstruct the quantum state of a traveling optical mo
provided that many identical copies of the state can be
pared@1,2#. The idea of homodyne tomography stimulat
research in the field of quantum-state reconstruction of o
simple quantum-mechanical systems. Recently, recons
tions of the quantum state of a molecular vibrational mo
@3# and the motional quantum state of a trapped ion@4,5#
have been reported.

Optical homodyne tomography relies on balanced hom
dyne detection. The signal field is mixed with a strong c
herent local oscillator~LO! at a lossless 50/50 beam splitte
Both the LO and the signal are derived from a comm
master oscillator to ensure a stable phase differenceu be-
tween them. Two photodetectors are placed at the ou
ports of the beam splitter and the measured photocurrent
subtracted. The resulting signal is proportional to the rota
quadrature of the signal modexu . The measurement, whic
yields the probability distributionw(xu ,u) of the quadrature
xu , is repeated for many different phase shiftsu from inter-
val @0,2p#.

The Wigner function of the signal mode can be recove
from the measured statisticsw(xu ,u) by means of inverse
Radon transform@6,1#. Numerical implementation of this in
version is not simple and a filtering algorithm has to be
plied to achieve the desired reconstruction. To avoid th
complications, it was suggested to directly get quantities
interest from the measured data by averaging approp
kernels over the distributionsw(xu ,u). This approach
proved to be very fruitful, and kernels for the direct sampli
of density-matrix elements in the Fock basisrmn @7#, the
moments^a† jak& @8#, Fourier coefficients of the canonica
phase distribution@9#, and for smoothed Wigner function
@10# have been found. A different approach to the quantu
state reconstruction employs a maximum likelihood estim
tion @11#. It was demonstrated recently that this techniq
can be used to estimate photon-number distribution@12# and
even a whole density matrix@13#. For a review, see@14#.

In recent years, great attention has been devoted to
quantum phase. Canonical phase distribution introduced
1050-2947/2000/62~1!/013822~8!/$15.00 62 0138
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London@15# represents a limit of Pegg-Barnett phase form
ism @16#. Recently, an approximate measurement of the
nonical phase distribution, using the phase-coherent sta
has been proposed@17#. One can also construct phase dist
butions from the phase-space quasidistributions@18–20#.
The phase distribution obtained from theQ function ~or
smoothedQ function in the case of imperfect detection! can
be directly measured@21,22#. An operational approach to th
quantum phase, based on the description of a given exp
mental setup, has been proposed by Nohet al. @23#. The
relation between canonical and measured phase distribu
was discussed in@24#. For a recent review, see@20,25#.

Canonical phase distribution as well as phase distributi
obtained from quasidistributions cannot be directly samp
from the homodyne data. One has to reconstruct the Wig
function or the density matrix and then use the definition
the phase distribution to calculate it@26#. This detour via the
Wigner function or the density matrix complicates numeric
data processing and increases error in the final result. H
ever, the exponential phase moments~Fourier coefficients!
of the canonical phase distribution can be directly samp
with the use of appropriate kernels@9#. Phase-number uncer
tainty relations can be verified by sampling the first expon
tial moment of the canonical phase distribution and
photon-number variance@27#. It was also pointed out in@9#
that the exponential phase moments of the Wigner func
can be directly sampled.

But we do not have to restrict ourselves to the exponen
phase moments of canonical phase distribution or the Wig
function. In this paper, we consider direct sampling of t
exponential phase moments of generals-parametrized phase
distributions. We show that it is possible to directly samp
the exponential phase moments of anys-parametrized quasi
distribution for s,2(12h)/h, whereh is the overall de-
tection efficiency. Namely, we find the expressions for t
kernels whose average over data recorded in balanced ho
dyne detection yields the exponential phase moments.
show that a knowledge of these moments as functionss
and the photon-number distribution provides complete ch
acteristics of a given quantum state. The phase moments
Fourier coefficients of the phase distributions defined as
dial integrals of thes-parametrized quasidistributions in th
©2000 The American Physical Society22-1
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JAROMÍR FIURÁŠEK PHYSICAL REVIEW A 62 013822
polar coordinates. We demonstrate that these phase dist
tions can be successfully reconstructed from the sam
phase moments.

The paper is organized as follows. In Sec. II the expon
tial phase moments are introduced and discussed. In Se
simple analytical expressions for the sampling kernels
derived and the influence of imperfect detection is addres
In Sec. IV the results of Monte Carlo simulations are p
sented. Section V contains conclusions. Some mathema
issues are linked to the Appendix.

II. EXPONENTIAL PHASE MOMENTS

The quasidistributions related to variouss orderings of
creation and annihilation operators can be expressed in te
of the density matrixr @28#,

W~a,s!5
1

p2 E e(1/2)subu2Tr@re(a†2a* )b2(a2a)b* #d2b,

~1!

wherea,a† are annihilation and creation operators. One g
the P representation fors51, the Wigner function fors50,
and theQ function for s521. Thes-parametrized quasidis
tributions are mutually related through the convolution

W~q,p,s2!5
1

p~s12s2!

3E
2`

` E
2`

`

expF2
~q2q8!21~p2p8!2

s12s2
G

3W~q8,p8,s1!dq8dp8, ~2!

where q5(a1a* )/A2 and p52 i (a2a* )/A2 are the
usual quadratures, ands1.s2 must hold.

It is convenient to introduce polar coordinatesq
5r cosu, p5r sinu. The phase distributionPs(u) related to
s-parametrized quasidistribution is defined as@20#

Ps~u!5E
0

`

W~r ,u,s!r dr . ~3!

It should be noted that the phase distributionsPs(u) can be
negative fors.21. Only the phase distributions obtaine
from theQ function ~or the smoothedQ function! are posi-
tively defined for every quantum state. Moreover, fors.0,
the distributions can be highly singular generalized fu
tions. Thus we restrict ourselves to the negatives in the
following.

The exponential phase moments are defined as

C l~s!5^exp~ i l u!&s5E
0

2p

Ps~u!eil udu

5E
0

2pE
0

`

W~r ,u,s!eil urdrdu. ~4!
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The momentsC l(s) can be simply determined from an
quasidistributionW(q,p,s0) provided thats0.s. Indeed, in-
serting the relation~2! into Eq. ~4!, we have

C l~s!5E
0

`E
0

2p

FlS r

As02s
D W~r ,u,s0!eil urdrdu. ~5!

The filtering functionsFl(u) are given by

Fl~u!5
1

pE0

`E
0

2p

eil fe2u22r212ur cosfrdrdf. ~6!

Integration over the angle variablef yields the modified
Bessel functionI l(2ur). The resulting integral over the ra
dial variabler can be found in the tables of integrals~Ref.
@29#, p. 306, Eq. 2.15.5.4! and we have

Fl~u!5Ap
u

2
expS 2

u2

2 D F I (u l u21)/2S u2

2 D1I (u l u11)/2S u2

2 D G .
~7!

The first four filtering functions are plotted in Fig. 1. The
start from zero and asymptotically reach unity. The interv
where the functionsFl(r /As02s) are significantly lower
than 1, increases with decreasings. This implies that the
absolute values of the phase momentsC l(s) decrease with
decreasings because the modulation of the phase distribut
Ps(u) is suppressed by the smoothing convolution~2!.

It is remarkable that the functionsFl(u) are closely re-
lated to the exponential phase moments of the coherent
uj&,

C l~j;s!5Fl SA 2

12s
uju D eil c, c5argj. ~8!

To prove this, we notice that the quasidistributionsWs(a) of
the coherent stateuj& are shifted Gaussians,

FIG. 1. Filtering functionsFl(u) for determination of exponen
tial phase momentsC l(s) from the s0-parametrized quasidistribu
tions.
2-2
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DIRECT SAMPLING OF EXPONENTIAL PHASE . . . PHYSICAL REVIEW A 62 013822
W~a,s!5
2

~12s!p
expS 2

2ua2ju2

12s D . ~9!

Inserting this into Eq.~4!, we immediately obtain Eq.~8!.
The filtering functionsFl(u) can be expanded in Taylo

series,

Fl~u!5 (
n50

`

f n,lu
2n1u l u, ~10!

where

f n,l5
u l u
2

~21!n
G~n1u l u/2!

n! ~n1u l u!!
. ~11!

It is convenient to introduce the new parametert, s02s
51/t2. With the help of the expansion~10!, we can rewrite
Eq. ~5! as

C lS s02
1

t2D
5 (

n50

`

f n,lE
0

`E
0

2p

~rt !2n1u l uW~r ,u,s0!eil urdrdu.

~12!

It follows from this formula thatC l(s) are generating func
tions of thes0-ordered moments,

^r 2n1u l ueil u&s0
5

1

~2n1u l u!! f n,l

d2n1u l u

dt2n1u l u
C lS s02

1

t2D U
t50

.

~13!

The limit t→0 should be taken only after the derivative
performed. The generating functionsC l(s) can be used to
determine the momentŝr 2n1u l ueil u&s0

for any ordering pa-

rameters0. Notice, however, that the formula~13! fails for
l 50. The exponential phase moments do not allow us
determine the momentŝr 2n& which are related to photon
number statistics. As an example, consider the Fock s
un&. This state is phase insensitive,C l(s)50 for lÞ0, and
the phase is uniformly distributed over the 2p interval,
Ps(u)51/2p. Note also that the photon-number distributio
p(n) can be recovered from the phase-averaged quadra
distributions@30#.

The s-ordered moments~13! are simply related to more
familiar moments of creation and annihilation operato
With the help ofa5221/2r exp(iu), we find that

^a†nan1 l&s522(n1 l /2)^r 2n1 leil u&s ~14!

and a similar expression holds for^a†n1 lan&s . The formula
~13! allows us to find any momentŝa†man& provided that
mÞn. Complementarily, the moments^a†kak&5^:nk:& can
be determined from the photon-number distribution.

The phase momentsC l(s) are linear combinations o
density-matrix elementsrn1 l ,n ,
01382
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C l~s!5 (
n50

`

cn,l~s!rn1 l ,n , ~15!

where@31#

cn,l~s!5S 2

12sD
n1 l /2

@n! ~n1 l !! #1/2

3 (
k50

n
G~n2k1 l /211!

k! ~n2k!! ~n1 l 2k!! S 2
11s

2 D k

. ~16!

If lÞ0, the relation~15! can be inverted andrn1 l ,n can be
found from C l(s). In principle, the knowledge ofC l(s) at
an infinite but countable number of pointssj can be sufficient
for determination of allrn1 l ,n from Eq. ~15!. Diagonal ma-
trix elements appear only in

C0~s!5 (
n50

`

rnn[Tr r51, ~17!

and this relation cannot be inverted. Only when we kn
both the phase momentsC l(s) and the photon-number dis
tribution p(n)5rnn can we determine all density-matrix e
ementsrmn or, equivalently, all momentŝa†nam&s . Thus
the simultaneous knowledge of the functionsC l(s) andp(n)
provides complete information on the quantum state and
equivalent to the knowledge of the Wigner function or t
density matrix.

III. SAMPLING KERNELS FOR THE EXPONENTIAL
PHASE MOMENTS

Balanced homodyne detection provides statisticsw(xu ,u)
of rotated quadratures,

xu5
1

A2
~ae2 iu1a†e1 iu!, ~18!

whereu is the relative phase between the LO and the sig
mode. The probability distributionw(xu ,u) can be obtained
from the Wigner functionW(q,p) as a marginal distribution
@6#,

w~xu ,u!5 E
2`

` E
2`

`

d~xu2q cosu2p sinu!

3W~q,p!dq dp. ~19!

We would like to sample the momentsC l(s) directly from
the homodyne dataw(xu ,u) with the use of the kernels
Kl(xu ,u;s):

C l~s!5E
2`

` E
0

2p

Kl~xu ,u;s!w~xu ,u!dxu du. ~20!

Theu dependence of the kernels must be of the form exp(ilu)
@9#. Thus we look for the kernels in the form

Kl~xu ,u;s!5Kl~xu ,s!eil u. ~21!
2-3
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In what follows we restrict ourselves to positivel. For nega-
tive l, the exponential moments can be obtained by comp
conjugation,C2 l(s)5C l* (s). Now we substitute Eq.~19!
into Eq. ~20!, perform integration overxu , and rewrite the
remaining integral in polar coordinates. After some algeb
we arrive at

C l~s!5E
0

2pE
0

`F E
0

2p

Kl~r cosf,s!eil fdfG
3W~r ,u!eil urdrdu. ~22!

Comparing the formulas~22! and ~5!, where we sets050,
we conclude that the kernelKl(xu ,s) must fulfill the integral
equation

E
0

2p

Kl~r cosu,s!eil udu5Fl~r /usu1/2!. ~23!

In order to solve this equation, we expand the ker
Kl(xu ,s) in Taylor series,

Kl~xu ,s!5 (
n50

`

an~ l ,s!xu
n . ~24!

This expansion is inserted into Eq.~23! and the integration
over u is carried out, using the formula

E
0

2p

~cosu!2n1 leil udu5
2p

22n1 l S 2n1 l
n D . ~25!

Comparing the Taylor series on the left-hand side of Eq.~23!
with the series~10!, we find the coefficientsan( l ,s). Insert-
ing them back into the series~24!, we arrive at

Kl~xu ,s!5
l

4p (
n50

`

~21!n
G~n1 l /2!

~2n1 l !! S 2xu

usu1/2D 2n1 l

.

~26!

Notice that the kernel is a function of a specific combin
tion of xu ands, u5xu /usu1/2. In the following we useu for
simplicity. Let us discuss the relation between the kern
Kl(u) andKl 12(u). We have

Kl 12~u!52
l 12

4p (
n51

`

~21!n
G~n1 l /2!

~2n1 l !!
~2u!2n1 l

52
l 12

l
Kl~u!1

l 12

4p

G~ l /2!

l !
~2u! l . ~27!

However, the kernelsKl are not uniquely determined. An
polynomial of order lower thanl can be added to kernelKl ,
because all such polynomials are solutions of the homo
neous integral equation

E
0

2p

f ~r cosu!eil u50. ~28!
01382
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Thus we can neglect the last term in the formula~27! and we
can define the kernels for which

Kl 12~u!52
l 12

l
Kl~u! ~29!

holds. It remains to find out the kernelsK1 and K2. The
summation of the series can be found in the Appendix. T
results are

K1~u!5
1

4
erf~u!, ~30!

K2~u!5
1

Ap
E

0

u

e2y2
erfi~y!dy. ~31!

The kernels are plotted in Fig. 2 and Fig. 3, respectively
Combining this result with the recurrence formula~29!,

we finally have

K2l 11~xu ,u;s!5~21! l~2l 11!K1~xu /usu1/2!ei (2l 11)u,

K2l~xu ,u;s!5~21! l 21lK 2~xu /usu1/2!ei2lu. ~32!

FIG. 2. KernelK1(u) for sampling of odd exponential phas
moments.

FIG. 3. KernelK2(u) for sampling of even exponential phas
moments.
2-4
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For largexu , all the kernels tend to the same limit becau
we move to the strong classical field domain and the diff
ences between variouss orderings vanish. The limit for odd
kernels is straightforward. We simply notice that

lim
x→6`

erf~x!561. ~33!

The limit for even kernels can be found if we take into a
count that for largex,

e2x2
erfi~x!'

1

Ap

1

x
. ~34!

Inserting this into Eq.~32!, we have for largexu

K2l~xu ,u;s!'
1

p
l ~21! l 21lnuxuuei2lu1Cl ,se

i2lu. ~35!

HereCl ,s is some constant. The superfluous term contain
this constant can be omitted for reasons discussed above
we can see that as a limit all kernels approach those for
phase moments of the Wigner function@9#:

K2l 115
1

4
~2l 11!~21! lsgn~xu!ei (2l 11)u,

~36!

K2l5
1

p
l ~21! l 21lnuxuuei2lu.

Up to now, we have considered ideal detectors hav
unit quantum efficiency. In a realistic experiment, the det
tion efficiency h is lower than 100% and the smoothe
quadrature distributionsw(xu ,u;h) are recorded@33#,

w~xu ,u;h!5
1

Ap~12h!

3E
2`

`

w~xu8 ,u!expF2
~xu2Ahxu8!2

12h Gd xu8 .

~37!

The smoothed quadrature distributionsw(xu ,u;h) can be
obtained from the scaled and smoothed Wigner function

w~xu ,u;h!5E
2`

` E
2`

`

d~xu2q cosu2p sinu!

3
1

h
WS q

Ah
,

p

Ah
,2

12h

h D dq dp. ~38!

The scaling and smoothing are two factors which must
included in the kernelsKl(xu ,u;s,h). The scaling means
that we must replacexu by xu /Ah. The smoothing tells us
that the kernelsK(xu ,u,s) would provide us with exponen
tial phase momentsC l(s1sh), sh52(12h)/h. Thus we
must replaces with s2sh in all the expressions~32!. It is
obvious that the losses impose a new limit. We can rec
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struct only exponential phase moments for the phase di
butions corresponding tos,sh . The modified kernels are

Kl~xu ,u;s,h!5Kl„xu /Ah,u;s1~12h!/h…, ~39!

and the conditions,2(12h)/h must be fulfilled.

IV. MONTE CARLO SIMULATIONS

In order to test the kernels, we performed Monte Ca
simulations of the homodyne detection and we present h
the results of simulations for the squeezed vacuum stateuz&,

uz&5expS 1

2
za†22

1

2
z* a2D u0&, ~40!

where u0& is the vacuum state. The squeezed vacuum s
belongs to the class of Gaussian states, i.e., states w
quasidistributionsW(q,p,s) have Gaussian form. The phas
distributionPs(u) for the general Gaussian mixed state w
determined in@31,32#. In particular, it holds thatPs(u) of the
squeezed vacuum state can be expressed as@32#

Ps~u!5
1

2p

~Bs
22C2!1/2

Bs2C cos~2u2c!
, ~41!

where

FIG. 4. Reconstructed phase momentsC l(21) of squeezed
vacuum stateuz&, z51.317, i.e.,̂ n&53. Statistical errors are de
noted by error bars.
2-5
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JAROMÍR FIURÁŠEK PHYSICAL REVIEW A 62 013822
Bs5sinh2uzu1~12s!/2,
~42!

C5
1

2
sinh~2uzu!,

andc5argz. The phase moments can be calculated with
help of the residue theorem. One arrives at

C2l~s!5~Bs /C2ABs
2/C221! leil c,

~43!

C2l 21~s!50.

In our simulations, the sampling was performed for 120 v
ues ofu equidistantly placed at the interval@0,2p# and 5000
samples have been made for eachu. We assumed that th
overall detection efficiency ish580% and we used the loss
compensating kernels~39!.

Figure 4 shows the reconstructed phase moments of thQ
function, C l(21). The results are in very good agreeme
with the exact values following from Eq.~43!. Statistical
errors were calculated in a manner described in@9#. As a
rule, error increases with increasingl and this uncertainty is
responsible for the fast oscillations in the reconstructed pr
ability distributionP21(u), see Fig. 5.

The reconstructed momentsC l(s), considered as func
tions of the ordering parameters, are plotted in Fig. 6. Again
we found that the curves are in good agreement with th
theoretical counterparts. Notice that, due to the assu
80% efficiency of the detection, we were able to sample o
moments fors,20.25.

We repeated our simulations also for other types of qu
tum states such as coherent states and displaced Fock s
In all cases, the reconstruction procedure worked well
the sampled moments were in good agreement with the
oretical values. We emphasize that we have used o
63105 samples in our simulations and such an amount
data can be routinely recorded in the experiment.

FIG. 5. Reconstruction of the phase distributionP21(u) of the
squeezed vacuum state from the sampled exponential moment
picted in Fig. 4. The solid line shows the reconstructed distribut
and the dashed line represents the exact shape.
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V. CONCLUSIONS

We have shown that the exponential phase moment
the s-parametrized quasidistributions are generating fu
tions of the moments of creation and annihilation operato
A simultaneous knowledge of photon-number distributi
and the functionsC l(s) provides a complete description o
the quantum state. We have found kernels for direct sa
pling of the momentsC l(s) from quadrature distributions
measured in optical homodyne detection. The detection e
ciencyh imposes a bound on the ordering parameter, we
sample only phase moments fors,2(12h)/h. In the ideal
caseh51 and the Wigner function represents the limit; f
h50.5 the limit is formed by aQ function. We performed
numerical Monte Carlo simulations of homodyne detectio
thereby demonstrating the feasibility of direct sampling
the exponential phase moments from experimental data.
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APPENDIX: SUMMATION OF THE SERIES FOR THE
KERNELS K1 AND K2

Here we sum the Taylor series for kernelsK1(u) and
K2(u). We start with K1(u). Using the formula for the
Gamma function of a half-integer,

G~n11/2!5Ap
~2n!!

22nn!
, ~A1!

the series forK1(u) take on the form

K1~u!5
1

4p (
n50

`

~21!n
2Ap

n!

u2n11

~2n11!
. ~A2!

The derivative of the kernel is

de-
n

FIG. 6. Reconstructed phase momentsC l(s) as functions of the
s parameter.
2-6
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d

du
K1~u!5

1

4 (
n50

`

~21!n
2

Ap

u2n

n!
5

1

4

2

Ap
e2u2

. ~A3!

Integrating the above equation, we arrive at

K1~u!5
1

4
erf~u!. ~A4!

We adopt a similar approach to determineK2(u),

K2~u!5
1

2p (
n50

`

~21!n
n!

~2n12!!
~2u!2n12. ~A5!

We calculate the derivatives

f ~u!5
d

du
K2~u!5

2

2p (
n50

`

~21!n
n!

~2n11!!
~2u!2n11.

~A6!

and

f 8~u!5
d2

du2
K2~u!5

4

2p (
n50

`

~21!n
n!

~2n!!
~2u!2n

5
2

2p (
n51

`

~21!n
~n21!!

~2n21!!
~2u!2n1

2

p
. ~A7!
s

.

tt

.

s.
.

-

y

W

01382
Thus we have

f 8~u!522u f~u!1
2

p
. ~A8!

Let us look for the functionf (u) in the form

f ~u!5
2

p

g~u!

g8~u!
. ~A9!

Substituting this into the above equation, we finish with

g9~u!52ug8~u!,
~A10!

g~u!5
Ap

2
erfi~u!.

Inserting this into Eq.~A9!, we conclude that

K2~u!5
1

Ap
E

0

u

e2y2
erfi~y!dy. ~A11!
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