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Perturbative expansion for the master equation and its applications
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We construct generally applicable small-loss rate expansions for the density operator of an open system.
Successive terms of those expansions yield characteristic loss rates for dissipation processes. Three applica-
tions are presented in order to give further insight into the context of those expansions. The first application, of
a two-level atom coupling to a bosonic environment, shows the procedure and the advantage of the expansion,
whereas the second application that consists of a single mode field in a cavity with linewidthk due to partial
transmission through one mirror illustrates a practical use of those expansions in quantum measurements, and
the third one, for an atom coupled to modes of a lossy cavity shows another use of the perturbative expansion.

PACS number~s!: 42.50.Dv, 03.65.2w, 05.30.Fk
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The study of open quantum systems has recently attra
the attention of physicists from various fields: cosmolo
@1#, condensed matter@2#, quantum optics@3–7#, particle
physics @8#, quantum measurement@9,10#, and quantum
computation@11,12#. The problem can be described gene
ally as interest in the effective dynamics of one subsystem
several interacting subsystems. A formal framework to
scribe the effective dynamics of such a subsystem is set u
Ref. @13#, and ashort-time perturbative expansionfor coher-
ence loss has also been constructed@14#. To some extent~for
example, if we are interested in a behavior for finite tim!,
however, time is not as good as the loss rate as a perturb
parameter. Motivated by this and recent experimental de
opments@15–20# as well as the analysis of models related
them@21–24#, we construct generallysmall-loss rate expan
sionsfor dissipation. The results suggest that these are us
in many areas such as high-Q cavity QED@15–20#, quantum
computation@11,12,21–26#, quantum measurement@27,28#,
quantum optics@3–7#, etc.

We consider an open quantum system, the total Ham
tonian describing such a system is expressed as

H5H01Henv1HI , ~1!

whereH0 andHenv indicate the free Hamiltonian of the sys
tem and of the environment, respectively.HI is the interac-
tion Hamiltonian between the system and the environmen
is well known that the form of the master equation depe
on the precise kind of the system-environment interaction
order to derive a master equation for a quite generalHI , let
us suppose that, in the Schro¨dinger picture,HI can be written
as @3,4#

HI5\(
m

~Xm
1Am1Xm

2Am
† !, ~2!

where theXm
6 are eigenoperators of the system satisfying

@H0 ,Xm
6#56\vmXm

6 . ~3!
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This form is quite general, since any system operator can
decomposed into eigenoperators ofH0. As shown in Refs.
@3,4#, we can write the master equation in the following for
~in the Schro¨dinger picture!:

ṙ~ t !52 i @H0 ,r#1
1

2 (
m

Km~2Xm
2rXm

12Xm
1Xm

2r

2rXm
1Xm

2!1
1

2 (
m

Gm~2Xm
1rXm

22Xm
2Xm

1r

2rXm
2Xm

1!, ~4!

where

Km52 ReF E
0

`

dteivmt Trenv$Am~t!Am
† ~0!renv%G ,

Gm52 ReF E
0

`

dteivmt Trenv$Am
† ~t!Am~0!renv%G ,

r(t)5r(t,Km ,Gm) stands for the density operator of th
system andrenv denotes the density operator of the enviro
ment. Notice from Eq.~4! that Gm should vanish at zero
temperatureT50, while Km should not if Am are indeed
destruction operators of some kind. In case the constantGm
and Km are smaller than any one of the internal coupli
parameters of the system, the density operator may be
panded in powers ofKm andGm @29#,

r~ t,Km ,Gm!

5r~ t,0,0!1(
m

]r

]Km
Km1(

m

]r

]Gm
Gm

1
1

2 (
m,n

]2r

]Km]Kn
KmKn1

1

2 (
m,n

]2r

]Gm]Gn
GmGn

1(
m,n

]2r

]Gm]Kn
GmKn1••• . ~5!
©2000 The American Physical Society19-1



fin

u-

th
is
om

s
p
is
r

ill

vel
ster

-

ord-

or-

the
ral.
s
that

, but
the

e

X. X. YI, C. LI, AND J. C. SU PHYSICAL REVIEW A62 013819
Substituting this expression into the master equation, we
the following set of equations:

ṙ~ t,0,0!52 i @H0 ,r~ t,0,0!#, ~6!

]ṙ

]Gm
52 i FH0 ,

]r

]Gm
G1

1

2
„2Xm

1r~ t,0,0!Xm
22Xm

2Xm
1r~ t,0,0!

2r~ t,0,0!Xm
2Xm

1
…,

]ṙ

]Km
52 i FH0 ,

]r

]Km
G1

1

2
„2Xm

2r~ t,0,0!Xm
12Xm

1Xm
2r~ t,0,0!

2r~ t,0,0!Xm
1Xm

2
…, ~7!

]2ṙ

]Km]Kn
52 i FH0 ,

]r

]Km]Kn
G

1
1

2 S 2Xm
2

]r

]Kn
Xm

12Xm
1Xm

2
]r

]Kn
2

]r

]Kn
Xm

1Xm
2D

1
1

2 S 2Xn
2

]r

]Km
Xn

12Xn
1Xn

2
]r

]Km
2

]r

]Km
Xn

1Xn
2D ,

]2ṙ

]Gm]Gn
52 i FH0 ,

]r

]Gm]Gn
G

1
1

2 S 2Xm
1

]r

]Gn
Xm

22Xm
2Xm

1
]r

]Gn
2

]r

]Gn
Xm

2Xm
1D

1
1

2 S 2Xn
1

]r

]Gm
Xn

22Xn
2Xn

1
]r

]Gm

2
]r

]Gm
Xn

2Xn
1D ,

]2ṙ

]Km]Gn
52 i FH0 ,

]r

]Km]Gn
G

1
1

2 S 2Xm
2

]r

]Gn
Xm

12Xm
1Xm

2
]r

]Gn
2

]r

]Gn
Xm

1Xm
2D

1
1

2 S 2Xn
1

]r

]Km
Xn

22Xn
2Xn

1
]r

]Km
2

]r

]Km
Xn

2Xn
1D .

~8!

Generally speaking, given an initial condition,r(0,0,0), we
can solve Eq.~6! exactly, which gives the zeroth order sol
tion for the density operatorr(t,0,0). Substituting the zeroth
order solution into Eq.~7!, ]r/]Km or ]r/]Gm can be cal-
culated. Following this procedure, successive terms of
expansion~5! could be worked out, though the calculation
complicated. Some words of caution are now in order. Fr
the mathematical point of view, the expansion~5! holds if
and only if the series converges. This may be satisfied ea
in physics for a large number of open systems. For exam
in a high-Q cavity, the loss rate of the atom-cavity system
small enough to permit us to expand the density operato
01381
d
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powers of the loss rate. At the end of this section, we w
present some discussion about this point in details.

To illustrate the advantage of the expansion~5!, we
present here a simplest model, which describes a two-le
atom coupling to a bose-mode environment. The ma
equation of such a system is given by@3#

ṙ52
1

2
iV@sz ,r#1

1

2
g$2s2rs12rs1s22s1s2r%,

~9!

with

g52p ReF E
0

`

eivmt Trenv$bm~t!bm
† ~0!renv%G ,

wherebm
† (bm) stands for the creation~annihilation! opera-

tor of themth mode of the environment,V is the Rabi fre-
quency, andsz(s

1,s2) denote the Pauli matrices. To ob
tain the form of the master equation given in Eq.~9!, the
environment was assumed to be in its vacuum state. Acc
ing to Eq.~5!, ^sz(t)& reads

^sz~ t !&5Tr@r~ t,0,0!sz#1g TrS ]r

]g
szD

1
1

2
g2 TrS ]2r

]g2
szD 1••• . ~10!

The first term in Eq.~10! is ^sz(0)&. In order to calculate
Tr@(]r/]g)sz#, we first evaluate Tr@(]ṙ/]g)sz#, it is given
that

TrS ]ṙ

]g
szD 52^sz~0!&. ~11!

Using the same procedure as mentioned, we arrive at

TrS ]2ṙ

]g2
szD 52^sz~0!&t. ~12!

Equations~11! and ~12! together give

^sz~ t !&5^sz~0!&2gt^sz~0!&1
g2

2!
t2^sz~0!&1••• .

~13!

Using the algebra of Pauli matrices, we obtain straightf
wardly from the master equation that

^sz~ t !&5^sz~0!&e2gt. ~14!

A comparison between Eqs.~14! and ~13! shows that for
small g, the expansions are a quite good approach for
two level dissipative system, and this result is quite gene

Noticing that Eq.~13! is expanded in the product of los
rate and time, we present here the other example to show
these expansions are generally in powers of the loss rate
not in the product of time and the loss rate. Consider
master equation given in Eq.~9!. As mentioned above, we
calculate^sz(t)& in order to illustrate the advantage of th
9-2
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PERTURBATIVE EXPANSION FOR THE MASTER . . . PHYSICAL REVIEW A 62 013819
expansions. The results of^sz(t)& show no difference be
tween the short-time expansions and the small loss-rate
pansions. To show the difference between the two exp
sions, we calculatêsx(t)&. For simplicity, we only presen
the results up to first order ofg. It follows from Eq.~5! that

^sx~ t !&5Tr@r~ t,0,0!sx#1g TrS ]r

]g
sxD1••• . ~15!

It is easy to show that@setting\51,̂ sx(0)&51&#

Tr@r~ t,0,0!sx#5cos~Vt !.

In order to compute Tr@(]r/]g)sx#, we have to calculate
Tr@(]ṙ/]g)sx#. Based on the expansions, we arrive at

TrS ]ṙ

]g
sxD 5TrS 2 i FH0 ,

]r

]g
sxG D1

1

2
„2s2r~ t,0,0!s1sx

2r~ t,0,0!s1s2sx2s1s2r~ t,0,0!sx…

[a1b.

Simple calculation gives

a52V TrS ]r

]g
syD .

As stated above, in order to computea, we have to calculate
Tr@(]ṙ/]g)sy#. Using the same procedure as above,
show that

a52V2E
0

t

dt8 TrS ]r

]g
sxD2„cos~Vt8!21…

and

b52cos~Vt !.

The results fora andb together give

]2y~ t !

]t2
1V2y~ t !52V sin~Vt !,

with y(t)[Tr@(]r/]g)sx# and initial conditionsy(t50)
50,ẏ(t)u t50521. This is a two order differential equatio
and can be solved easily; oncey(t) is known,^sx(t)& up to
first order ofg is given. It is obvious that results given abov
are indeed different from the short time expansions, since
results given by short time expansions are in powers of t
t.

The results up to first order ofg(15) and an exact numeri
cal results are illustrated in Fig. 1. The parameters chosen
V52, and time is in units ofV. In Fig. 1 the scattering line
represents the exact numerical results, whereas the dot
and the solid line show the results from the expansion. T
dot line and the solid line are for differentg, andg for dot
line is smaller than one in solid line, those curves show t
the expansions~15! are indeed a good approximation to th
exact solution.
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We need to point out that, for most open systems, aver
values of meaningful quantities cannot be obtained exactl
any way. Therefore the expansions of the density oper
provide a practical approach to the exact solution. For
ample, consider a single-mode field in a lossy cavity. T
density operator for that mode obeys the following mas
equation in the Schro¨dinger picture@3,4#:

ṙ52 i @v fa
†a,r#1

k

2
~2ara†2a†ar2ra†a!, ~16!

wherek is the linewidth of the cavity mode with frequenc
v f . In most textbooks, the solution of the master equation
given in terms of diagonal matrix elements^nurun& in a sta-
tionary state. Given an initial condition for the density o
erator, the evolution ofr, however, is more useful than th
stationary solution. In what follows, we present a solution
the master equation in a number state~Fock state! basis.

For a high-Q cavity, the linewidthk due to partial trans-
mission through one mirror is so small that we can expanr
in powers ofk:

r~ t !5r0~ t !1
]r

]k
k1

1

2

]2r

]k2
k21••• . ~17!

In a number state basis$un&,n50,1,2,3 . . .%, the expansion
can be written as

r~ t !5(
m,n

rmn
0 ~ t !um&^nu1(

m,n
(
k51

`
1

k!

]krmn

]kk
um&^nukk.

~18!

Here the subscripts on the density operatorrmn indicate ma-
trix elements ofr in the number basis andr0 is the solution
of Eq. ~16! with k50. With this notation, it follows from
Eqs.~6!, ~7!, and~8! that

FIG. 1. sx(t) vs time t; the parameter chosen isV52. The
scattering line represents the exact numerical results, wherea
solid line and the dotted line show the results from the expansiog
in the solid line and the dotted line is different; dotted line:g
50.01; solid line:g50.05.
9-3
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rmn
0 ~ t !5rmn

0 ~0!e2 i (m2n)v f t,

]krmn

]kk
5ck~ t !e2 iv f (n2m)t. ~19!

This iterative equation gives the density operator expans
of the system under consideration. Here,rmn(0) stands for
the initial condition ofr, and

ck~ t !5E
0

t

Fk~ t8!eiv f (n2m)t8dt8,

F1~ t !5A~n11!~m11!rm11,n11
0 ~ t !2

1

2
mrmn

0 ~ t !

2
1

2
nrmn

0 ~ t !, ~20!

Fk~ t !5A~n11!~m11!
]k21rm11,n11

]kk21

2
m1n

2

]k21rm,n

]kk21
, k52,3,4 . . . .

The master equation in the form~16! is widely used in field-
quadrature measurement@27,28#. As shown in Refs.@27,28#,
different approximations to Eq.~16! correspond to differen
measurement schemes, therefore the expansions~6!–~8! for
the density operator provide a different method to deve
quantum measurement theory. In contrast to the short t
perturbative expansions@14#, the expansions~6!–~8! hold for
finite time as long as the linewidthk is small. In other words,
whether the expansions hold does not depend on timet.

In addition to quantum measurement, these expans
have use in high-Q cavity QED. There are many interestin
features in cavity QED. One of them is spontaneous em
sion. Spontaneous emission is so fundamental that it is
ally regarded as an inherent property of matter. The ma
equation for a single atom coupling to a mode of a los
cavity is given in the interaction picture under rotating-wa
and dipole approximations by@15#

ṙ I5
g

2
~2s2r Is

12s1s2r I2r Is
1s2!

1
k

2
~2ar Ia

†2a†ar I2r Ia
†a!, ~21!

wherer I stands for the reduced density operator of the s
tem that consists of an atom and a cavity mode,g denotes
the linewidth of the atom, andk describes the loss rate of th
cavity. This is different from Eq.~9! in which the loss of the
single-mode field is neglected. It is well known that t
emission spectrum may be expressed in terms of ave
values of the atom operatorsW . In this sense, we may calcu
late the average value of the atom operator to replace c
puting the emission spectrum without any loss of genera
01381
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Moreover, the study of many other effects in cavity QE
such as atomic dipole squeezing@30#, population trapping
@31#, and atomic collapse-and-revival phenomenon@32# may
be reduced to calculate and analyze the average value o
atom operator. In the remainder of this paper, based on
expansion scheme, we compute the average value of an
operator given byA5l (1)s11l (2)s21l (z)sz . For this
end, we first of all list the expansions of the density opera
r I(t) in the interaction picture

r I~ t !5r I
0~ t !1

]r I~ t !

]k
k1

]r I~ t !

]g
g1

1

2

]2r I~ t !

]k2
k2

1
1

2

]2r I~ t !

]g2
g21

1

2

]2r I~ t !

]g]k
gk1••• . ~22!

Here,

ṙ I
0~ t !50,

]ṙ I~ t !

]g
5

1

2
„2s2r I

0~ t !s12s1s2r I
0~ t !2r I

0~ t !s1s2
…,

]ṙ I~ t !

]k
5

1

2
„2ar I

0~ t !a†2a†ar I
0~ t !2r I

0~ t !a†a…,

]2ṙ I~ t !

]g2
5

1

2 S 2s2
]r I

]g
s12s1s2

]r I

]g
2

]r I

]g
s1s2D ,

]2ṙ I~ t !

]k2
5

1

2 S 2a
]r I

]k
a†2a†a

]r I

]k
2

]r I

]k
a†aD ,

]2ṙ I~ t !

]g]k
5

1

2 S 2s2
]r I

]k
s12s1s2

]r I

]k
2

]r I

]k
s1s2D

1
1

2 S 2a
]r I

]g
a†2a†a

]r I

]g
2

]r I

]g
a†aD .

It is easy to show that for any atom operatorA,

TrS ]nṙ I~ t !

]kn
AD 5TrS ]nṙ I~ t !

]km]gn2m
AD 50 ~23!

for n>mÞ0, while

TrS ]ṙ I

]g
AD 5

1

2
Tr@r0~ t !B#,

TrS ]nṙ I

]gn
AD 5

1

2
TrS ]n21r I

]gn21
BD , ~24!

where B524l (1)s124l (2)s2. Equations~23! and ~24!
suggest that the average value for any atom operator ca
calculated analytically as an expansion in powers ofk andg,
provided r0(t) ~the zeroth order density operator in th
Schrödinger picture! is known. Generally speaking, given
initial condition forr, ther0(t) that obeys the von Neuman
9-4
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equation can be given readily. For the model presen
above, the von Neumann equation is given by

ṙ052 i @H0 ,r0#, ~25!

whereH0 denotes the free Hamiltonian for the cavity-ato
system~Jaynes-Cummings model!

H05v fa
†a1

1

2
vasz1g~a†s21s1a!. ~26!

If the cavity-atom system is initially in a stateue,n&5ue&
^ un&, i.e., the atom is in its excited state, while the sing
mode cavity is in the number stateun&, thenr0(t) reads

r0~ t !5uc0~ t !&^c0~ t !u, ~27!

where
p

ve
a
io

qu
l
d

f

01381
d

-

uc0~ t !&5
1

2
sinun11~e2 iE1(n11)t2e2 iE2(n11)t!ug,n11&

1S sin2
un11

2
e2 iE1(n11)t

1cos2
un11

2
e2 iE2(n11)tD ue,n&, ~28!

E6~n11!5
v f

2
~2n11!6Ad21g2~n11!,

un115arctan
2gAn11

d
, d5v f2va . ~29!

It follows from Eqs.~6!–~8! that
Tr@r0~ t !A#5
1

4
Tr@r0~ t !B#1l (z)(

n
H Usin2

un11

2
e2 iE1(n11)t1cos2

un11

2
e2 iE2(n11)tU2

2sin2 un11 sin2@Ad21g2~n11!t#J ,

Tr@Br0~ t !#5(
n

H 22l (1) sinun~e2 iE1(n)t2e2 iE2(n)t!S sin2
un11

2
eiE1(n11)t1cos2

un11

2
eiE2(n11)tD

22l (2)S sin2
un11

2
e2 iE1(n11)t1cos2

un11

2
e2 iE2(n11)tD sinun~eiE1(n)t2eiE2(n)t!J . ~30!
in

the
y
ers
ey
co-

ou-
ly,
nite
e-
Then successive perturbative terms of average value u
second order ofg for an atom operator are given by

^A&~ t !5Tr@r0~ t !A#1
g

2E0

t

Tr@r0~ t8!B#dt8

2
g2

2 E
0

t

dt8E
0

t8
Tr@r0~ t9!B#dt91••• . ~31!

Based on the short-time expansion,^A&(t)5Tr@Ar(t)#.A0
1A1t1A2t21•••, in powers oft, whereA05Tr@Ar(0)#,
A15Tr@A(]r/]t)(0)# and A25 1

2 Tr@A(]2r/]t2)(0)#. This
is quite different from the results given by Eq.~31!.

Although we are currently investigating the perturbati
expansion for an open system, we opt here for a few qu
tative comments. Mathematically, the perturbative expans
is a good approach to the exact solution of the master e
tion so long as the loss ratesg and k are smaller than al
other internal coupling constants of the system. This con
tion holds for high-Q cavities from the physical point o
view. In fact, an optical cavity of;20 mm diameter has
g/2p;125 MHz and k/2p;100 kHz for reasonableQ
;109. Thus the ratiog/k;103. Eveng/k;104 seems fea-
to

li-
n
a-

i-

sible for microspheres@33#. Generally, in the optical domain
g/g;102, great enough for the perturbative expansion
powers ofg to hold.

In the end of this paper, we turn our attention to study
decoherence inN two-level atoms. This problem is usuall
related to the register in quantum computer. A few pap
@11,12,34# have been published on this subject, but a k
additional feature of the present paper is to study the de
herence from a new aspect. If the system consists ofN two-
level atoms, the decoherence is due to the inevitable c
pling of theN atoms to the external environment. General
the environment may be treated as that consists of an infi
number of oscillators. The Hamiltonian describing such d
coherence process takes the form

H5Hs1Henv1HI ,

Hs5(
i 51

N

V is i
z ,

~32!

Henv5 (
k51

`

vkbk
†bk ,
9-5
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HI5(
i 51

N

(
k51

`

~gkibk
†s i

21H.c.!,

wheres i
a are the spin-12 Pauli operators (i denotes the qubi

index! and bk ,bk
† are the bosonic operators,Hs , Henv are

the free Hamiltonian of the system and the environment,
spectively. AndHI stands for theN qubits-environment in-
teraction. This model is closely related to the Dicke ma
model @35,36#. The Hamiltonian~32! is complicated so it is
hard to find its exact solution though the Hilbert space as
ciated with this model can split into invariant eigenspac
@34#. Fortunately, with the perturbative approach created
the previous section, the complex system can be ea
treated. To start with, we give the master equation of
system

ṙ52 i @H,r#1
1

2 H(
i

Ki~2s i
2rs i

12rs i
1s i

22s i
1s i

2r!J
1

1

2 H(
i

Gi~2s i
1rs i

22s i
2s i

1r2rs i
2s i

1!J
52 i @H,r#1Lr. ~33!

Here

Km52 ReE dteiVmt Trenv$Am~t!Am
† ~0!renv%,

Gm52 ReE dteiVmt Trenv$Am
† ~t!Am~0!renv%,

Am~t!5(
j 51

`

\gm jbje
2 iv jt.

In the case of so-called Dicke limit@35,36#, Am does not
depend on the atom indexm. This holds, for example, when
the typical environment wavelengths are much greater t
the distances between the atoms.

In order to study the decoherence of the atoms, we
sume that the initial state of the system is

ucm&5Sm
1u0&3 )

j 5m11

N

u0&, ~34!

where Sm
15) j 51

m<Ns j
1u0&, and u0&5u0&1^ u0&2^ . . . ^ u0&N

stands for the lower state of the atoms. Equation~34! indi-
cates that there arematoms in the upper stateu1&, and the rest
of the N atoms are in their lower state. With those initi
conditions, the probability of the atoms remaining in the i
tial state is given byFm(t)

Fm~ t !512
K

GK1
2

K2

GK2
2

G

GG1
2

G2

GG2
2

GK

GGK

1O~G3!1O~K3!, ~35!
01381
-

r

o-
s
n
ily
e

n

s-

-

with

1

GK1
5t@212~2m2N!#,

1

GK2
52t2@212~2m2N!#,

1

GG1
5t@222~2m2N!#,

1

GG2
52t2@222~2m2N!#,

1

GGK
5t2@2~2m2N!22#.

Here, we suppose that all qubits are alike, soVm5V and
Km5K and Gm5G. G and K5G11 depend on environ-
ment temperatureT through G51/@exp(\V/kT)21#, which
indicate that the probability decrease with the temperat
increasing. In fact, the fidelity in the field of quantum info
mation is nothing but an overlap between the initial and fi
state of the qubits~two-level system!. Equation~35! suggests
that the fidelity depends onm, i.e., the number of the atom
in upper state initially. And to get the maximum of the fide
ity, the variablem should be taken as small as possible.

To sum up, in this paper, we construct the small-loss r
perturbative expansion for the density operator of an o
system. The expansions provide a quite good approach to
exact solution in case the master equation of the system
not be solved exactly. As an interesting application of t
expansion, we used it to calculate some average values
assz andsx in the dissipative two-level system, the expa
sions of the density operator for a single-mode field in
lossy cavity are also presented, and the dynamical prop
in N two-level atom system.

In addition, the other meaningful quantities of the op
system such as energy, occupation probability, etc., can
expanded in the same spirit of the density operator, so l
as the master equation of the system is known.
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