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Perturbative expansion for the master equation and its applications
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We construct generally applicable small-loss rate expansions for the density operator of an open system.
Successive terms of those expansions yield characteristic loss rates for dissipation processes. Three applica-
tions are presented in order to give further insight into the context of those expansions. The first application, of
a two-level atom coupling to a bosonic environment, shows the procedure and the advantage of the expansion,
whereas the second application that consists of a single mode field in a cavity with linewddid to partial
transmission through one mirror illustrates a practical use of those expansions in quantum measurements, and
the third one, for an atom coupled to modes of a lossy cavity shows another use of the perturbative expansion.

PACS numbdss): 42.50.Dv, 03.65-w, 05.30.Fk

The study of open quantum systems has recently attractethis form is quite general, since any system operator can be
the attention of physicists from various fields: cosmologydecomposed into eigenoperatorstdf. As shown in Refs.
[1], condensed matter2], quantum opticg3-7], particle [3,4], we can write the master equation in the following form
physics [8], quantum measuremeri®,10, and quantum (in the Schrdinger picture:
computation[11,12. The problem can be described gener-
ally as interest in the effective dynamics of one subsystem of . ) 1 Lot uson
several interacting subsystems. A formal framework to de- p(t)=—i[Ho,p]+ 2 % Km(2XmpXm = XmXmp
scribe the effective dynamics of such a subsystem is set up in

Ref.[13], and ashort-time perturbative expansidar coher- oo 1 ol o

ence loss has also been construdtet]. To some extentfor —PXmXm) 5 Zn: Gm(2Xmp X=X Xmp
example, if we are interested in a behavior for finite time

however, time is not as good as the loss rate as a perturbative —pX X)), (4)

parameter. Motivated by this and recent experimental devel-
opmentg15-2Q as well as the analysis of models related towhere
them[21-24], we construct generallgmall-loss rate expan-
sionsfor dissipation. The results suggest that these are useful © +

in many areas such as highcavity QED[15—20, quantum Km=2 R{ fo d7e'“m" Trend Am( T)Am(o)Penv}},
computation[11,12,21-2% quantum measuremef27,28,
quantum optic$3—-7], etc.

We consider an open quantum system, the total Hamil- G.=2R deTeimeTr {AT(T)A (0) pemd
tonian describing such a system is expressed as " 0 e e

H=Ho+Hent+Hy, D p(t)=p(t,K,,G,,) stands for the density operator of the
system ang.,, denotes the density operator of the environ-
ment. Notice from Eq(4) that G,, should vanish at zero
temperatureT =0, while K, should not if A,, are indeed
bestruction operators of some kind. In case the congant
And K. are smaller than any one of the internal coupling
rbarameters of the system, the density operator may be ex-
panded in powers o, andG,, [29],

whereH, andH ., indicate the free Hamiltonian of the sys-
tem and of the environment, respectivelly, is the interac-
tion Hamiltonian between the system and the environment. |
is well known that the form of the master equation depend
on the precise kind of the system-environment interaction. |
order to derive a master equation for a quite geniial let

us suppose that, in the Scdinger pictureH, can be written

a.S[3,4] P(t,Kmme)

Hi=%Y, (XS An+X ALY, 2
m

B ap ap
=p(L0.0)+ 2 S K+ X Z=—Gry

where theX, are eigenoperators of the system satisfying

1 p 1 p
+ + + = —_— + — _—
[Ho, Xm]=*honX,,. (3) 2 % aKmaKnKmK” 2 % 8Gm&GnGmG”
A B 5)
*Mailing address. E-mail address: yixx@itp.ac.cn mn IGmIK, ~ ™" '
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Substituting this expression into the master equation, we fingowers of the loss rate. At the end of this section, we will

the following set of equations: present some discussion about this point in details.
) To illustrate the advantage of the expansi®), we
p(1,0,00=—i[Hg,p(t,0,0)], (6) present here a simplest model, which describes a two-level

atom coupling to a bose-mode environment. The master
ap N ap equation of such a system is given [8]
—— _I s
G, 0 9G,

—p(£,0,00 X, Xpn),

+Z (2x p(1,0,00X- — X=X p(1,0,0)

.1 1 o
p=—5iQloy,pl+ 5120 po"—poToT—0 0 p},
9

ap pl 1 - ;
Fi [Ho, T 3 @b (L0.0X e~ X X (10,0 with
—p(t,0,00XX), (7) y=2m RE[ fo €' Trend Dm( T)D1(0) penit |,
9% ) ap Whereb,Tn (b,,) stands for the creatiotannihilatior) opera-
IK K, =1 Ho, IK K, tor of themth mode of the environmenf) is the Rabi fre-

quency, andr,(o*,07) denote the Pauli matrices. To ob-

1 _ v ot 9P p tain the form of the master equation given in Ef), the
2 me K, X memaK K, K XmXm environment was assumed to be in its vacuum state. Accord-
ing to Eq.(5), (o,(t)) reads
1 J J
+5 2x; P < S Kp e x;x;), 2
/ B Ko <az<t>>=Tf[p<t,o,0)oz]+yTr(&—yoz)
o _ [, o . 2
9G0G. |7 56 G, +SPTE PRLA RSN (10
1 L9 _,. 9p ap
) 2X =~ 3G, Xm mem&G G, The first term in Eq(10) is (o,(0)). In order to calculate
Tr[(9pldy)a,], we first evaluate T(dp/dy) o], it is given
1 ap ap that
+ - —y+
Z(ZX“ G 3G, X X G, 5
ap Tr(—poz) = —(0,(0)). (1)
— P xex, Iy
G, ) . .
Using the same procedure as mentioned, we arrive at
9% ] -
—p:‘i{Ho’—p Tr 7o =2(0,(0))t (12)
K G,y K G,y e o, | =2(o,(0))t.
1 ap Jd Jd
2(ZXm 3G, X*—X;Xm&Gp ag Xo X, ) Equations(11) and (12) together give
2
Y
Lt - (o) =(5(0)) = Yt{05(0)) + Z71%(0;(0)) +
_ + +__ . + z z z 2| z
+35 2xn K P XX X“aK K xnxn).
(13
)

Using the algebra of Pauli matrices, we obtain straightfor-

Generally speaking, given an initial conditign(0,0,0), we  Wardly from the master equation that

can solve Eq(6) exactly, which gives the zeroth order solu- (o,(0))=(0,(0))e " (14)

tion for the density operatqr(t,0,0). Substituting the zeroth z z '

order solution into Eq(7), dp/ K, or dp/dG,, can be cal- A comparison between Eq$14) and (13) shows that for
culated. Following this procedure, successive terms of themall y, the expansions are a quite good approach for the
expansion5) could be worked out, though the calculation is two level dissipative system, and this result is quite general.
complicated. Some words of caution are now in order. From Noticing that Eq.(13) is expanded in the product of loss
the mathematical point of view, the expansi holds if  rate and time, we present here the other example to show that
and only if the series converges. This may be satisfied easilthese expansions are generally in powers of the loss rate, but
in physics for a large number of open systems. For examplaot in the product of time and the loss rate. Consider the
in a highQ cavity, the loss rate of the atom-cavity system ismaster equation given in E@9). As mentioned above, we
small enough to permit us to expand the density operator igalculate(o,(t)) in order to illustrate the advantage of the
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expansions. The results @f,(t)) show no difference be- ]
tween the short-time expansions and the small loss-rate ex- 7
pansions. To show the difference between the two expan- ]
sions, we calculatéo,(t)). For simplicity, we only present 0.8

the results up to first order af. It follows from Eq.(5) that
0.6 1

+.... (15

<o (>

J
<Ux(t)>:Tr[P(t1OvO)Ux]+'}’Tr<a_:/0-x 0.4

It is easy to show thdtsettingZi=1,{0,(0))=1)] 0.2_-

Tr p(t,0,0)0,]=coq Qt).

0.0 4

In order to compute T{dp/dy)oy], we have to calculate — 13— 1T T 1
Tr[(dpldy)o,]. Based on the expansions, we arrive at time t(in units of Q)

ab ] ap 1 B N FIG. 1. oy(t) vs timet; the parameter chosen 8=2. The
Tr &_,yo'x =Tr| —i HOaa_,yO'x + 5(20' p(t,0,0)0" oy scattering line represents the exact numerical results, whereas the
solid line and the dotted line show the results from the expansion.
—p(t,0'0)0'+0'_0'x—U+0'_p(t,o,0)gx) in the solid line and the dotted line is different; dotted ling:

=0.01; solid line:y=0.05.
=a+b.
We need to point out that, for most open systems, average
values of meaningful quantities cannot be obtained exactly in
) any way. Therefore the expansions of the density operator

Simple calculation gives

1% . . -
a=—-0 Tr(_pgy provide a practical approach to the exact solution. For ex-
dy ample, consider a single-mode field in a lossy cavity. The

. density operator for that mode obeys the following master
As stated above, in order to compuatewe have to calculate equation in the Schdinger picturel3.4]:

Tr[(ﬁb/&y)oy]. Using the same procedure as above, we
show that _ P
t ; p=—i[wsa'a,p]+ E(ZapaT— a'ap—pa'a), (16)
a= —sz dt’ Tr(a—pax) —(cogQt’)—1)
0 Y where is the linewidth of the cavity mode with frequency
s . In most textbooks, the solution of the master equation is
given in terms of diagonal matrix elemers|p|n) in a sta-
b= —cog Qt). tionary state. Given an initial condition for the density op-
erator, the evolution op, however, is more useful than the
The results fora andb together give stationary solution. In what follows, we present a solution of
the master equation in a number stéfeck statg basis.
a%y(t) For a highQ cavity, the linewidth« due to partial trans-
ot2 mission through one mirror is so small that we can expand
in powers ofk:

and

+02y(t)=2Q sin(Qt),

with y(t)=Tr[(dpl/dy)oy] and initial conditionsy(t=0)
=O,y(t)|t:0= —1. This is a two order differential equation
and can be solved easily; ongét) is known,{o,(t)) up to
first order ofy is given. It is obvious that results given above
are indeed different from the short time expansions, since thg, a number state bas{$n),n=0,1,23 ...}, the expansion
results given by short time expansions are in powers of tim& ., pe written as

t.

ap 1%
_ 0 Z2F 2, .
p(t)=p°(t)+ (9KK+ 5 (7K2K + . (17

The results up to first order of(15) and an exact numeri- =1
cal results are illustrated in Fig. 1. The parameters chosen are — 0 — 7 Pmn k
(=2, and time is in units of}. In Fig. 1 the scattering line p(t) %1 pmn(t)|m><n|+2 2 kb gk (e
represents the exact numerical results, whereas the dot line (18
and the solid line show the results from the expansion. The
dot line and the solid line are for different, andy for dot ~ Here the subscripts on the density operaigy, indicate ma-
line is smaller than one in solid line, those curves show thatrix elements ofp in the number basis ang is the solution
the expansion$l5) are indeed a good approximation to the of Eq. (16) with k=0. With this notation, it follows from
exact solution. Egs.(6), (7), and(8) that
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P(r)nn(t)ZP%n(O)e_i(m_n)wft’ Moreover, the. stu_dy of many pther effects ?n cavity .QED
such as atomic dipole squeezifg0], population trapping

P [31], and atomic collapse-and-revival phenomef@2] may
pT“:Ck(t)e—iwf(n—m)t_ (19 be reduced to calculate and analyze the average value of the
JK atom operator. In the remainder of this paper, based on the

o ) . ) . _expansion scheme, we compute the average value of an atom
This iterative equation gives the density operator expansiongperator given byA=\ g +\ (g +1@¢,. For this
of the system under consideration. Hepg,(0) stands for  end, we first of all list the expansions of the density operator
the initial condition ofp, and pi(t) in the interaction picture

t ) , 2
c(t) = fOFk(t')e'wf(n—m)t dt’, ap(t) o ap(t) +E Fpi(t) ,

p(D)=pl()+

dk dy L JKc? K
Ry Iy 1 10%p(t) 1 %p(t)
= + + 0 - = 0 p|( 2 P
Fi(t) (n+1)(m 1)pm+1,n+1(t) 2mpmn(t) +§ (9—)/2 Y +§ EWEp YKE - (22
1
- Enpomn(t), (200  Here,
"0
t)=0,
‘9k_1P +1n+1 o
Feh=V(n+1)(m+1) ———"— 1
&Kk71 ﬁpl( ) ) + + — 0 0 + -
WZE(ZU prtyo" —o o pi(t)—p/(t)o" o),
m+n & 1pmn
- —F, k=234.... .
k—1 19y F] t 1
2 ox ) apf(val-atapt) - pP(va'a),
The master equation in the forth6) is widely used in field- _
quadrature measuremdi27,28. As shown in Refs[27,28, 3%py (1) 1 _dpy ., _dp dpy .
different approximations to Eq16) correspond to different —07 > 2|9 0_7‘7 -0 (9_7_ ﬁff o |
measurement schemes, therefore the expang@nr$8) for Y
the density operator provide a different method to develop 2o 1 3 g 3
quantum measurement theory. In contrast to the short time ) _ —(Zaﬂ t_gtaPl 2Pt )
perturbative expansiorig4], the expansion&)—(8) hold for ok? 2 K dk  dk
finite time as long as the linewidthis small. In other words, )
whether the expansions hold does not depend on time 3%py (1) 1 _dpr . . _dp dpy
In addition to quantum measurement, these expansions dydK ) ol ok ok ¢

have use in high cavity QED. There are many interesting

features in cavity QED. One of them is spontaneous emis-
sion. Spontaneous emission is so fundamental that it is usu-
ally regarded as an inherent property of matter. The master
equation for a single atom coupling to a mode of a lossylt is easy to show that for any atom operafor

cavity is given in the interaction picture under rotating-wave . .
and dipole approximations HyL.5] r J Pl(t)A —Tr I"pi(V) Al=0 (23)
dKk" AkMgy"m
- Y _ _ _
p=5(20 po’—aT o p=poTar) for n=m=#0, while
K (?p| 1
+ E(ZamaT—aTap,—p,a*a), (21) Tf(ﬁA) :§Tr[p°(t)B],
wherep, stands for the reduced density operator of the sys- Mp, 1_[d" 1p
tem that consists of an atom and a cavity moglaenotes Tr Py Al=5Tr PV B, (24

the linewidth of the atom, and describes the loss rate of the
cavity. This is different from Eq(9) in which the loss of the \whereB= —4\(Pgt—aN(g. Equations(23) and (24)
single-mode field is neglected. It is well known that the syggest that the average value for any atom operator can be
emission spectrum may be expressed in terms of averag@iculated analytically as an expansion in powers ahdy,
values of the atom operater. In this sense, we may calcu- provided p°(t) (the zeroth order density operator in the
late the average value of the atom operator to replace con8chralinger pictur¢ is known. Generally speaking, given a
puting the emission spectrum without any loss of generalityinitial condition for p, the p°(t) that obeys the von Neumann
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equation can be given readily. For the model presented o 1 - L - L
above, the von Neumann equation is given by [4°(1)) =5 sinbn 1 (e +F_ e E-( DY g n+1)
p°=—i[Ho.p"l, (29

+ Sinzﬁe_iEJr(rH'l)t
whereH, denotes the free Hamiltonian for the cavity-atom 2
system(Jaynes-Cummings model

0 .
. choszr'THe"E*(”“)t le,n), (28
Ho=wsa'a+ E‘Uao'z+ g(a'oc+oTa). (26)
_ e JEF 2N+ 1)
If the cavity-atom system is initially in a stafe,n)=|e) E.(nt1)=—Z(2n+1)=Vo"+g (n+1),
®|n), i.e., the atom is in its excited state, while the single-
mode cavity is in the number stalie), thenp®(t) reads 2gyJn+1
0 0 0 0n+1=arctanT, S=wi—w,. (29
p°(1) =4 (D) (PO(1)], (27)
where It follows from Egs.(6)—(8) that

2

1 6 ) 0 )
Tr[PO(t)A]=ZTr[Po(t)B]H\(Z)E [ sinz—r;le*'E+(”+1)t+co§—nz+le*'E*(”“)t
n

—sir? 6, 1 Sir’[ NEa gi(n+ 1)t]] ,
T BpO(t)]=2, ( — 2\ sing, (e E+Mt— e‘E—(")t)( sinz—‘gnz+1 glE+(n+1)ty cos?—anz+1 e‘E—(“”)t)
n

_ 2)\()( Sinz%e—ia(nu)q co§%eiE(””)t) sin g, (e'E+Mt— eiE(n)t)] ) (30

Then successive perturbative terms of average value up tsible for microspheref33]. Generally, in the optical domain
second order ofy for an atom operator are given by g/ y~10?, great enough for the perturbative expansion in
powers ofy to hold.
y [t In the end of this paper, we turn our attention to study the
(AY()=Tr[ po(t)A]+ Ef Trp°(t’)B]dt’ decoherence ilN two-level atoms. This problem is usually
0 related to the register in quantum computer. A few papers
)2 [t o [11,12,34 have been published on this subject, but a key
— _f dt'f T p°(t")Bldt"+--- . (31) additional feature of the present paper is to study the deco-
2 Jo 0 herence from a new aspect. If the system consists tfo-
level atoms, the decoherence is due to the inevitable cou-
Based on the short-time expansi@i)(t)=Tr[Ap(t)]=A, Pling of theN atoms to the external environment. Generally,

+At+ALt2+ - in powers oft, where A,=Tr[Ap(0)], the environmer_lt may be treated_as t_hat consigtg of an infinite
A,=Tr[A(dplat)(0)] and A,=Tr[A(6%p/dt?)(0)]. This number of oscillators. The Hamiltonian describing such de-
is quite different from the results given by E@1). coherence process takes the form
Although we are currently investigating the perturbative
expansion for an open system, we opt here for a few quali- H=Hgt+Hgt+H;,
tative comments. Mathematically, the perturbative expansion
is a good approach to the exact solution of the master equa- N
tion so long as the loss ratesand « are smaller than all H :2 0,02
other internal coupling constants of the system. This condi- R
tion holds for highQ cavities from the physical point of (32)

view. In fact, an optical cavity of~20 um diameter has
0/27m~125 MHz and «/27~100 kHz for reasonableQ H :Z w.blb
~10°. Thus the ratiay/x~10®. Eveng/x~10* seems fea- eV ey Tk

oo

013819-5



X. X.YIl, C. LI, AND J. C. SU

N o0
Hl:igl kzl (gkibEUf+H.c.),

whered{ are the spiny Pauli operatorsi(denotes the qubit
indeX and bk,bl are the bosonic operatorslg, Hg,, are

the free Hamiltonian of the system and the environment, re-
spectively. AndH, stands for theN qubits-environment in-
teraction. This model is closely related to the Dicke maser
model[35,36. The Hamiltonian(32) is complicated so it is
hard to find its exact solution though the Hilbert space asso-
ciated with this model can split into invariant eigenspaces
[34]. Fortunately, with the perturbative approach created in
the previous section, the complex system can be easily
treated. To start with, we give the master equation of the
system

: . 1 ~ ~ ~
P:—l[H,P]‘FE EI Ki(20 poi" —poi of —oi 0, P)}

L
2

2 Gi<20rpai—aiorp—paior>}

with

PHYSICAL REVIEW A62 013819

i=t[2+ 2(2m—N)],
1-‘Kl

1
—=—t2+2(2m—N)],
Lo

1
F—Glzt[2—2(2m— N)T,

i——t2 2—2(2m—N)
FGZ_ [ ( ]1

1
—=t[2(2m—N)-2].
Iek

=—i[H,p]+ Lp. (33

Here

In the case of so-called Dicke lim[t35,36, A,, does not

Km=2 Ref dre' *m” Trend Am(T)AL(0) pend»

G, =2 Ref A7/ Trod AL(7)A(0) pend-

Am(r)=;l figmbje ™.

Here, we suppose that all qubits are alike,(3g=( and
Kn=K andG,=G. G and K=G+1 depend on environ-
ment temperaturd through G=1/[exp¢Q/kT)—1], which
indicate that the probability decrease with the temperature
increasing. In fact, the fidelity in the field of quantum infor-
mation is nothing but an overlap between the initial and final
state of the qubitgtwo-level systemh Equation(35) suggests
that the fidelity depends om, i.e., the number of the atoms
in upper state initially. And to get the maximum of the fidel-
ity, the variablem should be taken as small as possible.

To sum up, in this paper, we construct the small-loss rate
perturbative expansion for the density operator of an open

depend on the atom inder. This holds, for example, when gystem. The expansions provide a quite good approach to the
the typical environment wavelengths are much greater thagyact solution in case the master equation of the system can-
the distances between the atoms.

In order to study the decoherence of the atoms, we assypansion, we used it to calculate some average values such
sume that the initial state of the system is

N

|‘/’m>:SrT1|0>Xj H+1 0),

=m

not be solved exactly. As an interesting application of this

aso, anday in the dissipative two-level system, the expan-
sions of the density operator for a single-mode field in a
lossy cavity are also presented, and the dynamical property
in N two-level atom system.

In addition, the other meaningful quantities of the open

where S, =11"5"0|0), and [0)=]0);©0),® ... ®[0)n  system such as energy, occupation probability, etc., can be
stands for the lower state of the atoms. Equati®® indi-  expanded in the same spirit of the density operator, so long

cates that there ara atoms in the upper stal#), and the rest 35 the master equation of the system is known.

of the N atoms are in their lower state. With those initial
conditions, the probability of the atoms remaining in the ini-
tial state is given byF (1)
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