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Lasing modes in equilateral-triangular laser cavities
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We report the study of lasing modes in broad-area, equilateral-triangular laser cavities. An alternative
approach is proposed to study optical modes in equilateral triangular cavities in an analytical form. The modes
were obtained by examining the simplest optical paths inside the cavity, which yields the final solution with the
boundary conditions. The cavities can be fabricated from semiconductor heterostructures grown on~111!-
oriented substrates, which can be easily cleaved into equilateral triangular shapes. Such a design takes advan-
tage of total internal reflection at the cleaved facets of the cavity for circulating modes. Experimental results
are obtained from cavities fabricated from a superlattice structure of In0.13Ga0.87As/GaAs grown on a~111!
GaAs substrate.

PACS number~s!: 42.55.Px, 42.60.Da, 42.60.Jf
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I. INTRODUCTION

Cleaved cavity semiconductor lasers are the simplest k
of laser structure because they are easy to fabricate an
cleaved facets have the highest degree of perfection. T
they are widely used in commercial applications. Becaus
diverse performance needs, laser cavities of various sh
and dimensions have been intensely studied, including
face emitting lasers@1#, microdisk lasers@2#, micro-arc-ring
lasers@3#, triangular,L- and U-shaped ridge lasers@4–6#,
bow-tie lasers@7#, and so on.

The purpose of this study is to investigate a cavity
triangular shape, taking advantage of the crystalline sym
tries of the samples, namely those grown on~111! substrates,
including GaAs- and GaN-based structures@8,9#. From a ma-
terial point of view, samples grown on~111!-oriented sub-
strates have shown excellent characteristics in the stan
stripe laser geometry, which yield thresholds as low as
A/cm2 @10#.

Cavities of triangular shapes have been fabricated to
plore possible advantages of such laser structures. Howe
the mode structure inside a triangular cavity has not b
theoretically analyzed and used in actual laser designs.
focus of this paper is the optical modes in an equilate
triangular cavity. An analysis of the modes is needed
understanding the properties of lasing characteristics in
configuration. Although there have been studies on cavi
in this configuration, the results were qualitatively inte
preted @11,12#. The lack of calculated results also led
less-than-optimum designs in the past. In Ref.@11#, for in-
stance, waveguides are created as a part of the cavity
extracting the light beam from the cavity. Such waveguid
however, are created at the corners of the cavity where
light intensity is the lowest, as indicated by our calculatio
of normal modes. It should be pointed out that the cavit
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studied here are different from the ring lasers having
etched ridge along the side of the triangle@4#.

Specifically, the configuration addressed here involves
equilateral triangular laser cavity in which the active mediu
covers the whole area of the triangle, cleaved from samp
grown on ~111! substrates. There are three cleavage pla
perpendicular to~111!, namely, (101̄), (11̄0), and (011̄),
which form equilateral triangles. The cavities reported h
have each side of the triangles equal to or greater than
mm. Thus the optical modes can be calculated with the c
sical treatment of light waves for our purpose.

II. CAVITY NORMAL MODES

We will first examine the optical modes in an equilate
triangular cavity, whose electrical~and magnetic! component
obeys the Maxwell equations in the well-known form

~¹21m«k2!c50, ~1!

after the time variable is separated out@13#, wherec can be
either the electric or magnetic field. The problem of th
second-order partial differential equation in an equilateral
angle was treated a long time ago and refined subseque
@14#. In previous treatments, two wave vectors of the tw
dimensional problem,k1 andk2 , are parallel to two sides o
the triangle~thus not orthogonal to each other! and periodic
boundary conditions were used. Because the two wave
tors are not linearly independent, the results have terms
volving k1•k2 . Such terms obscure the physical picture
normal modes inside the resonant cavity. In order to anal
lasing action in such triangular cavities, it is critical to fin
normal modes having linearly independent wave vectors
order to find solutions with two wave vectors perpendicu
to each other, the coordinate system shown in Fig. 1 w
used to calculate the two-dimensional problem~the x-y
plane!. The z direction, which is taken as the growth dire
tion, is identical to other edge-emitting semiconductor lase
©2000 The American Physical Society16-1
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and can be treated independently by separatingz components
of the differential equation from those involvingx andy.

The magnitude of the electric fieldEz(x,y), which deter-
mines the intensity of the light traveling in thex-y plane, is
expressed as a product of two parts having wave vec
orthogonal to each other, suitable to describe the norm
modes. This choice, however, makes it impossible to so
the problem by variable separation because of the boun
conditions imposed by the threefold symmetry of the cav
This is likely the reason why such a choice has never b
used. As a result, a trial function has to be found, i
guessed, in order to solve the problem.

The purpose here is to examine if an equilateral triangu
cavity has normal modes compatible with lasing action. F
simplicity, we will show the result of a cavity with all facet
having 100% reflectivity~i.e., the function vanishes at a
three boundaries!, as often used in such a situation, and c
responding to the TM mode. In this case, the problem
also be viewed as a particle in an infinite quantum well h
ing the shape of an equilateral triangle. It is well known th
normal modes in all systems with some degree of symm
have the simplest and most symmetric form, which can of
be rigorously identified even without unduly tedious calcu
tions. This will be our guide to establishing the trial functio
for this problem. The simplest pattern in an equilateral
angle is the circulating path shown in Fig. 2~a!, which in-
cludes the one that is reflected at the middle of all three s
as a special case. It can be seen that the segments of the
are always parallel to one of the sides. If one is to repres
such a path in terms of plane waves, the wave function
the part of the path going in the positivex direction~parallel
to the base of the triangle! can be simply expressed aseik1x.
Rotating this wave by 120° and 240° will result in the re
parts of the wave, respectively given by

e2 ik1@~x1a!/22)y/2#, e2 ik1@~x2a!/21)y/2#, ~2!

wherea is the side length of the triangle. These three pla
waves can be used to represent the circulating wave show
Fig. 2~a!, with a wave vectork1 . Since the triangular cav
ity is a two-dimensional system, another wave vector ha
be identified. As explained earlier, it is preferable to havek1

FIG. 1. The coordinate system used for the calculation of n
mal modes inside the triangular cavity.
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and k2 perpendicular to each other for all segments of
wave. Following the same reasoning that normal mo
should be simple, one finds that there is another group
paths, as shown in Fig. 2~b!. This group of paths is in the
form of standing waves, with normal incidence at two of t
three sides and a 60° incident angle at the third side. As
be seen, each segment in this case is perpendicular to o
the three sides. For the part perpendicular to the base o
triangle, the wave can be written as sin(k2y), where the sine
function represents thestandingaspect of the wave. This par
is in fact perpendicular toeik1x, which meets our requiremen
for the modes. By rotating this sine wave by 120° and 24
one obtains the rest parts of the standing waves show
Fig. 2~b! in the form of

sinFk2S)2 x1
1

2
y2

a

2)
D G , sinFk2S)2 x2

1

2
y1

a

2)
D G ,

~3!

respectively. Although it is less obvious than the two perp
dicular waves just mentioned~one in thex direction and one
in they direction!, the two standing waves in Eq.~3! are also
respectively perpendicular to the two functions in Eq.~2!.
The next step is to multiply pairs of waves perpendicular
each other,eik1x sin(k2y), for example, resulting in a total o
three terms. A linear superposition of the three terms w
coefficients to be decided with the boundary conditions w
give the trial function for this problem and has the followin
form:

r-

FIG. 2. Schematic diagrams of wave propagation inside the c
ity: ~a! clockwise traveling mode with wave vectork1 , ~b! the
mode having wave vectork2 with each portion shown perpendicu
lar to one part of the beam in~a!, and~c! the equivalent picture of
~a! and ~b!.
6-2
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Ez~x,y!5AH eik1x sink2S y1
a

2)
D 1Be2 ik1@~x1a!/22)y/2#

3sinFk2S)2 x1
1

2
y2

a

2)
D G

1Ce2 ik1@~x2a!/21)y/2#

3sinFk2S)2 x2
1

2
y1

a

2)
D G J . ~4!

The boundary conditions in this case can be written as

Ez~x,y!50

when y52
a

2)
, y52)x1

a

)
, y5)x1

a

)
.

~5!

In other words,Ez(x,y)50 at all three sides of the triangle
By applying the boundary conditions to Eq.~4!, we obtain

Be2 ik1~3a/4! sinFk2S)2 x2
)

4
aD G

1Ceik1~3a/4! sinFk2S)2 x1
)

4
aD G50, ~6!

sinFk2S 2)x1
)

2
aD G1C sin@k2~)x!#50, ~7!

sinFk2S)x1
)

2
aD G1B sin@k2~)x!#50. ~8!

It is clear that Eqs.~6!–~8! are not simply algebraic equa
tions involving the coefficients, as is usually the case fo
problem of differential equations. Rather,x still remains in
the equations after boundary conditions are applied. T
originates from the fact that the problem cannot be solved
variable separation. By inspecting the equations, howe
one realizes that the problem can be easily handled. If
sum of two sine functions is equal to 0, which is the case
Eqs.~6!–~8!, the two functions have to be either ‘‘in phase
or ‘‘out of phase,’’ depending on the signs of the coef
cients,B andC. From Eq.~6! this leads to

k2S)2 x2
)

4
aD5k2S)2 x1

)

4
aD1np, n51,2,3 . . . ,

~9!

which can be further simplified as

k25
2np

)a
, n51,2,3 . . . . ~10!

This is in fact the solution fork2 . It is also easy to verify
that this result is also valid for Eqs.~7! and ~8!. Substitut-
ing Eq. ~10! back into Eqs.~6!–~8!, we obtain
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Be2 ik1~3a/4!1Ceik1~3a/4!~21!n50, ~11!

12C~21!n50, ~12!

11B~21!n50. ~13!

Subtraction of Eq.~12! from Eq. ~13! gives

B~21!n1C~21!n50. ~14!

From Eq.~11! and Eq.~14!, we have

Ue2 ik1~3a/4! eik1~3a/4!~21!n

~21!n ~21!n U50, ~15!

for a nonvanishing solution. It yields

k156
2mp

3a
, m51,2,3 . . . ,

~16!
B5~21!n11, C5~21!n,

wherem andn are both even or odd, andnÞm. The eigen-
values and eigenfunctions appear to be quite differen
form from those given in Ref.@14# because of the differen
choices of wave vectors. But the two sets of results a
however, equivalent. This is similar to the case of a char
particle in a magnetic field having different but equivale
solutions.

The two wave vectors calculated in our approach,k1 and
k2 , can be compared to the normal modes in a rectang
cavity. The wave vectork1 is always parallel to one of the
three sides and represents clockwise and counterclock
traveling waves, corresponding to the plus and the mi
signs, respectively. This mode is shown in Fig. 2~a!, and it is
equivalent to the case shown in Fig. 2~c!, in which the tri-
angle is turned by 180° about the side where the beam
reflected. The only difference not shown in Fig. 2~c! is the
fact that this wave travels periodically in the triangular ca
ity, which corresponds to an infinite length. The wave vec
k2 corresponds to waves always perpendicular to one of
three sides of the triangle, illustrated in Fig. 2~b!. The modes
represented byk1 andk2 are similar to the longitudinal and
lateral modes, respectively, in common rectangular cavit
except the longitudinal wave is a traveling wave rather th
a standing wave in the rectangular cavity case. The rou
trip lengths areL153a andL25)a for the longitudinal and
the lateral modes, respectively.

It is important to point out that the mode related tok1 ,
which corresponds to the propagating wave, experiences
tal internal reflection at all facets as long as the refract
index of the semiconductor is greater than 2.0, which is
case for all common semiconductors. Thus the@110# cleav-
age planes produce high quality mirrors not only because
their smoothness, but also the high reflectivity. This sugge
that equilateral triangular cavities indeed constitute a v
natural configuration to support lasing action. Furthermo
numerical calculations using the solution shown in Eq.~4!
indicate that the light intensity drops much faster as
reaches the corners of the triangular cavities than whe
6-3
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reaches the sides. The light should therefore be extra
from a side rather than from the corners as was done in
@11#, which can also been seen qualitatively in Fig. 2.

A question arises concerning the dominant mode in suc
cavity. Two factors are of particular importance, namely,
reflectivity of the mirrors and the effective cavity length
connection to specific modes. It is easily seen that the lo
tudinal modes have higher reflectivity because they exp
ence total internal reflection. The lateral modes have nor
incidence at the mirrors and are expected to have subs
tially lower reflectivity if the mirrors are not coated. Th
results from the calculation show that the round-trip len
for the longitudinal modes is longer than that for the late
modes, indicating that the effective cavity length for the lo
gitudinal modes is more favorable for lasing action. Thus
longitudinal mode is expected to be the dominant mode
the stimulated emission from such a cavity, as in rectang
cavities. In other words, the laser beam comes from the
culating modes associated withk1 , consistent with our ex-
perimental results.

The intensity can be qualitatively viewed withuEz(x,y)u2,
with the calculated values fork1 , k2 , B, andC. To illustrate
the intensity distributions, two plots are shown in Fig. 3, w
uEz(x,y)u2 proportional to the brightness, and black rep
sentinguEz(x,y)u250. Figure 3~a! shows the lowest latera
mode, i.e., n51, and the 99th longitudinal mod
(m599)—a combination comparable to the experimen
situations presented later, considering the emission wa
length and cavity size. The pattern shown in Fig. 3~b! has
n52 and m5100. The choice ofm is to satisfy the re-
quirement thatn andm have to be both even or odd.

It should be pointed out that the solution given here is
the TM mode. The result is also valid for electronic sta
confined in a two-dimensional equilateral triangular quant
well with infinite barriers. This is because such a system w
also be described by a second-order partial-differential eq
tion and the boundary conditions arec(x,y)50—c(x,y) is
the wave function and corresponds toEz(x,y) in our prob-
lem here—at all sides of the triangle.

III. EXPERIMENTAL RESULTS

The field intensity distribution of the beam along th
growth direction is not directly affected by the triangul
shape of the cavity. As for all other semiconductor lasers,
field distribution in this direction is determined by the lig
confinement in separate confinement structures and ca
treated by conventional techniques. The samples used
this study are simple superlattice structures without the li
confinement component. The waveguiding is realized w
the difference of the average refractive index of the super
tice region and that of the buffer and cladding layers of
structure, which can be significantly improved with separ
confinement laser structures.

To examine the feasibility of this configuration, equila
eral triangular cavities were cleaved using GaAs-based st
tures. Because of the lack of ideal samples at the time of
study, we will present the results obtained using a sim
In0.13Ga0.87As/GaAs superlattice~SL! sample to demonstrat
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lasing action, which does not have separate confinem
needed for better device performance. The sample
grown by molecular beam epitaxy on a GaAs (111)B sub-
strate.A40 periods of 60 In0.13Ga0.87As/40 GaAs SL was
grown between the GaAs buffer and cladding layers. T
sample was cleaved along the~110! planes, which eliminates
the complex processing steps used in lithography, while
suring the high quality of the cavities. The side length of t
equilateral triangular cavities fabricated for this study rang
from 75 to 350mm.

Because the longitudinal mode propagating inside
cavity experiences total internal reflection at all facets, one
the facets has to be covered with a transparent material.
refractive index of this material should be greater than hal
the value in the semiconductor, so that the wave can parti
pass through. A transparent adhesive was used to cover
of the facets, such that the laser beam could exit the trian
lar cavity.

For lasing experiments, the samples were placed in a
ostat and optically pumped at low temperatures. Opti
pumping was carried out by a pulsed nitrogen laser~pulse
width ;3 ns, repetition rate 20 Hz! with an attached tunable
dye module. The laser line used was at 555 nm, and
excitation beam entered the cavity from the top surface of

FIG. 3. Value ofuEz(x,y)u2 inside the triangular cavity:~a! m
599,n51, ~b! m5100,n52. The intensity is proportional to the
brightness and black representsuEz(x,y)u250.
6-4
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sample with near normal incidence. Edge emission thro
the transparent adhesive was scattered and the scattere
nal was collected with a spectrometer.

The threshold behavior is shown in Fig. 4, in which t
integrated emission intensity is plotted as a function
pumping power density at 10 K under pulsed operation
threshold power density of 3.4 MW/cm2 is estimated from
this data. A multimode spectrum similar to those of stri
laser diodes is given in Fig. 5, showing the longitudin
modes. The separation between adjacent modes isDl
50.3 nm for this particular sample.

From the mode spacing of the multimode emission sp
tra, we can estimate the round-trip lengthL of the stimulated
emission inside the cavities and compare it to the dimens
of the cavities. This allows us to determine the mode of
lasing action as illustrated in Fig. 2. The lengthL is calcu-
lated with the following equation@15#:

L5
l2

@n2l~dn/dl!#Dl
5

l2

n̄Dl
, ~17!

where we have usedl5880 nm for the center lasing wave
length, andn̄5n2l(dn/dl)53.6 for the effective refrac-
tive index of GaAs at 880 nm@16#. The results are given in
Table I. From Table I, the round-trip lengths calculated us
Eq. ~17! match the round-trip lengths of longitudinal mod

FIG. 4. Emission intensity from the triangular cavity laser a
function of pumping power density under pulsed excitation aT
510 K. The solid line is a guide to the eye.
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~the mode numbers for sample 1 in Table I, for example,
m5613 andn51) within the error of measurement. Th
confirms the earlier assumption that the dominant mode
side the triangular cavity is the longitudinal mode, corr
sponding tok1 in Eq. ~4!. This result contradicts the previou
report, Ref.@12#, in which the lateral mode was believed
be the dominant mode. Since there was no transparent l
deposited on the side of the cavity in Ref.@12# the circulating
mode underwent totally internal reflection, and was mos
trapped inside the cavity. This could explain the discrepan
The experimental results indicate single direction lasing
der most of the conditions used. However, a clear und
standing of mode competition requires a detailed analysi
a function of pumping conditions.

It should be pointed out that optical pumping was us
and the threshold is very high at this stage, which can
expected from the superlattice structure, rather than a typ
laser diode structure with separate confinement. Further s
ies will be performed with more suitable samples, so that
features of this configuration can be fully explored. Som
nonlinear properties of broad-area lasers depend on sa
geometry, such as filamentation. For the same far-field
tern due to filamentation, the carrier distribution inside t
triangular cavity discussed here has to differ dramatica
from that in a rectangular cavity. In other words, all nonli
ear properties involving spatial charge distribution can

FIG. 5. The spectrum of multimode emission with an appro
mate mode spacing of 0.3 nm.
d
ensions
TABLE I. A comparison of the round-trip lengths~discussed in the text! obtained from the measure
cavity sizes and the lengths calculated from the mode spacings. The error for the measured cavity dim
~using an optical microscope! is 5%.

Sample
Lateral round-trip
length)a (mm)

Longitudinal round-
trip length 3a (mm)

Calculated round-trip
lengthL (mm)

1 312 540 546
2 440 765 738
3 285 495 514
6-5
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expected to be different between triangular cavity lasers
the conventional edge-emitting lasers, which presents an
teresting situation from the point of view of both fundame
tal studies and laser designs.

It is important to point out that the circulating~or longi-
tudinal! modes in the laser cavity discussed here resem
those in microdisk lasers. However, the modes shown in
2 are well-defined rather than having a chaotic nature. Un
microdisk lasers, light output couplings here are not mu
different from conventional stripe laser diodes.

IV. CONCLUSIONS

In summary, we have established a method for anal
cally calculating the TM modes inside equilateral triangu
laser cavities. Recently, this method has been success
applied to TE modes and to modes in hexagonal cavit
c
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again all in analytical form, and will be presented elsewhe
The cavities can be easily fabricated by cleaving samp
grown on~111! substrates. The technique is very similar
that for conventional edge emitting, cleaved cavities
broad-area laser structures, both in simplicity of the pro
dure and in the high quality of the cleaved facets. The des
can be used for all commonly studied semiconductor ma
rial systems grown on~111! substrates.
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