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Three-photon Hong-Ou-Mandel interference at a multiport mixer
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We consider a six-port triangular arrangement of beam splitters designed to couple three electromagnetic
fields through W3) unitary transformations. We present conditions for Hong-Ou-Mandel destructive interfer-
ence of output triple coincidences when single photons are presented, one at each of the three input ports.
Unlike the corresponding four-port effect, three-photon Hong-Ou-Mandel interference is sensitive to mixer
phases and input-output port reversal.

PACS numbegps): 42.50.Ar, 42.25.Hz, 03.65.Fd

I. INTRODUCTION Il. THREE-PHOTON HOM EFFECT

A. Unitary considerations

Over a decade ago, realizations of double-quantum inter- \ye begin with a collection oK quantum harmonic oscil-
ference effects using correlated photon pairs from parametrigitors whose creation operatdis-{a,} for n=1,...N obey
down-conversion unequivocally confirmed the fundamental,. poson commutator relationd, ,a" 1= 8,4. It is well

- . ns»~m nm* -
nature of boson stafistics. In a notable 1987 experifERt  oqiaplished that théN-dimensional harmonic oscillator is

Hong, Ou, and MandgHOM) demonstrated a cancellation governed by UK) unitary symmetrji8]. This means that the

of interbeam coincidences behind a 50:50 optical mixefyamiltonian form is preserved under the unitary transforma-
when the photons entered one into each of the two inpufigns

ports of the device with adjustable simultaneity. Said differ-

ently, the photons exit the symmetric mixer in a superposi- N

tion state containing an equal potentiality for the registration bn= U(V)énUT(V):le Unm(¥)@m,

of the photon pair at either of the two output ports. The - 1)
HOM experiment therefore confirms the enhanced tendency N

of photons to cluster together due to boson stati$gi¢sThe bl=0(y)al0f(y)= > u* (y)al.

physical basis for this two-photon effect is quantum- m=1

mechanical destructive interference between probability am1—_

plitudes for double transmission and double reflection at the he unitary operator is often written in the product form,

optical mixer, when experimental conditions favor their in- N2
distinguishability. 0(,},):1_[ explis Ry), )
As larger equal numbers of photons are brought into each k=1

input port of the 50:50 two-beam mixer, theoretical calcula- )
tions show that the boson clustering effect generalizes intéﬁ"herey:{sk} areﬂthe free parameters of the transformation,
an arcsine distribution of photon pairs, with strictly zeroand the operator®, are selected from among te Her-
probability for the registration of odd photon numb¢gj.  mitian operatord-={F,} obeying the UN) commutator re-
Recent experiments confirm these higher-order multiphototations
effects at a single optical mix¢#].

The striking beaut)_/ and simplicity of this phenomen.on [l‘:n,l‘:m]:iz I 3)
presumes wider application toward more complex optical k
systems, particularly to those mixing arrangements that con-
tain two-beam HOM modules. The purpose of this paper iVith group structure constangsm. ,
to determine the necessary conditions for a three-photon For a general_pure state that is created with the boson
HOM effect[5] in the next-order generalization of a simple operators according to
optical mixer, called a trittef6]. This is a six-port device — st

, . |¥)=f(a")|o), 4

that can be assembled from a triangle of two-beam mixers
[7]. Below we derive the criteria for three-photon HOM in- we reexpress the creation operators through the inverse uni-
terference, starting from general unitary considerations fotary transformations
the tritter. In this fashion we explore how the effect depends
on tritter optical parameters, as well as identify a simpler
mixing configuration to illustrate the essential nature of
three-photon HOM interference.

N
8,=0"(b0(») = 2 uni(7)br, ®
and collect the terms in the expansion to generate the joint
probability distribution at theN output ports of the UY)

*Electronic address: ravarcampos@compuserve.com optical mixer. In the reverse process, the output ports of the
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FIG. 1. Three-photon interference effects are considered for a
triangular arrangement of optical mixers, called a tritter. The mixers 1 0 0
are labeled by their transmittancestogether with the input and
output electromagnetic field modasandb, respectively. For clar- B;= 0 \/7—36' “3 \/56'33
ity, mixer phase shifts are not labeled but are discussed in the text. 0o — \/Ee‘i'BS T3e_i“3
mixer are loaded according )= f(b")|0), and Eq.(1)
generates the joint probability distribution at the input ports. ) )
respectively, provided 7,:=co(6,/2) and (@m,Bm)

B. The tritter

=3 (Ym=™ bm), Where ¢, and ¢, are Euler angles in the

An optical realization of (8) unitary transformations is unitary representations of E¢f). The Hermitian operators
shown in Fig. 1[7]. This triangular arrangement of two- are Jordan-Schwinger mafk3] of Gell-Mann SU3) matri-

beam mixers couples three harmonic-oscillator modeges[14],
a, (n=1,2,3) that represent equipolarized, single-mode op-
tical fields[9]. If the first and third optical mixers have 50:50
partition ratios ¢, = 73=13) while the remaining mixer has a
67:33 partition ratio ¢,=3%), then for certain choices of
phases an input photon distributes with equal probability into
all output ports. This has been calledsymmetric multiport
device[10]. Our analysis below preserves the general for- E..
malism, as it leads to results that are not available for the
symmetric multiport arrangement.

In analogy with the HOM experiment, we look for a so-
lution that provides three-photon coincidence cancellation at
all three output ports of the tritter when one photon fills each
of the input ports. We begin with the most general (3U
unitary transformation of a two-beam mixg3,11],

Jrexp(ia) Vp exp(i B)
—Jpexp—iB) rexp—ia)/’

wherer=1-p is the transmittance, while and 8 are asso-
ciated phase factors for the device. For example, the comyre constantsy;,s=
mon choicea=0 andB= /2 yields a phase factarat both
reflection armg12]. The matrix representation of Fig. 1 is tation
constructed by sequential cascading of two-beam mixer rep-
resentations. The unitary generators for these matrices are

©)

These operators satisfy E@) with the antisymmetric struc-

9456= 9478= 1, 9158~ 9176= U257— U268
=0356=03g7= 3. We also utilize the mirror matrix represen-

Byi=exp( —i ¢ Fa)exp(—i0:F ) exp iy, Fy), too . o 00
) o ) Mm={ 0 1 O] +(e4=1){ O & O |,
By:=exd —i¢,(F4+ 3 F3)]exp(—i6,Fg) 0 0 1 0 0 b

xexp —iyy(Fat3Fa)l, (7)
By=exd —i¢a(Fs— 3 Fa)lexp(—ifdsFg)

xexp —iys(Fs—3 Fa)l,

(10

where ¢ is the mirror reflection phase factor. By stacking
these unitary matrices in the ord&t;B;M,B,B;M;, we

arrive at the general transformation matt.,(v) linking

such that by the unitary shifting propertibg=B,a,8/
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the output operatorb to the input operatora [Eq. (1)],
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Ty gl({+ag+ay) pszei(Bl‘*'az) \/gei(ﬁz)
p1738(2§ Bitaz) _ /Tlpzpsei(§+01—ﬁz+53) 71739“5‘“1*"3)— /plpzpsei(ﬁl—ﬁz‘*'ﬁs) szsei(ﬁs—az)
P1P3 el (3¢~ B1- ﬁs)_WlTlpszei(zg‘*'al—ﬁz—aQ —11p3 gl(2¢—a;=B3) _ /P1P27'3€ ({+B1—Br—a3) Tszei(g’—az—a3)

(11)

For a U3) HOM experiment, single photons are presented abf Eq. (14), a standard choice of mirror reflectidi= 7 pro-
each input port of the tritter, according to the state creatiorvides the additional requiremerk=0. A simple way to
function f(&) = a1a2a3 described in Eq(4). There are six meet this is to balance the pathlength difference between the
paths to coincidence at the output ports. For example, tharms of the tritter, and to verify that all three mixers satisfy
amplitude for the ordered transfer of single photons fromthe Stokes relationsa(,,= B,=0) [12].

input ports(1,2,3 to output portg1,2,3 is obtained from the For Stokes mixers, the probability of triple coincidence at
product of the right diagonal matrix elements of the trans-the output ports of the tritter generally obtains,

posed matrix [Eq. (5], namely, 7y 773exp(3?)

+ 7o\ Ty T3p1p2p3 €XH1(2{+ D) ], where we define Poul1,1,1) =[2V7173p1p2p3(37,—2) + (71— p1) (72— p2)
Pi=a;—azt B~ Bot Ba= i1~ 3t 3 (ha— ). X(73=pa)]’ (15
(12)

This contrasts sharply with the equivalent expression derived

For sixfold path indistinguishability, the sum of the six pos- from classical probability for distinguishable particles,

ible ampli m null leadin h ndition
sible amplitudes must be nulled, leading to the conditio Pgﬁ‘tss'caﬂl,l,l)=[(7-17-3p1p2p3)(47-§+2p§+2)+(T§+p§)

(1= p1) (72— p2) (73— p3) + 2V T173p1p2P3 X(15+ p3)(15+p3)]. (16)
X[(1—37,)€e® O+e (®-0]=0. (139

These expressions are compared in Fig. 2rfer ;=3 as a
function of the transmittance,. In the quantum theory, the
probability of triple coincidence vanishes gt=$ and there-
after remains near a value of 0.01, which is approximately 25
times lower than the classical prediction. In the limiting case
7,—0, the second mixer transforms into a mirror, and the
éntter becomes a balanced Mach-Zehnder interferometer for
ports 1 and 2. For this configuration, the tritter translates the
input state at the upper input ports to the two upper output

A notable feature of this key result is the sensitivity to mirror
and mixer phase shift§ and ®, respectively. Since the re-

versal of input and output ports leads to the complex conjus
gate of Eq.(13a), uncanceled output triple coincidences will
also inherit this feature and will therefore generally not be
symmetric to input-output port reversal. This is not the cas
for HOM interference at a single, uncoupled mixer. The!
equivalent amplitude in the latter case is obtained from Eq.

(6), T1=13=1/2
1.0 T T
—p)=0. 13h
(7=p) (13D QUANTUM
This is completely phase insensitive, and requires only a —- i
mixer with 50:50 partition ratio. < s o
Another interesting feature of E¢139 is the manifesta- = ' CLASSICAL €
tion of one, rather than three, mirror boundsse Fig. 1 5 oal e
Careful tracking of terms reveals that the mirror reflection a°
between the first and third mixers is the only contributing 02 ———"
phase factor. This may lend flexibility to the experimental
design. 00 ‘ ‘
The factorized form of Eq(13a facilitates a solution by 00 02 04 06 08 10
simple inspection. Note that the first term in the expression TRANSMITTANCE T»

vanishes if we select 50:50 partition ratios for any of the

mixers. Choosingr, = 5 for convenience, it follows that the  FIG. 2. The probability of triple photon coincidence at the out-
vanishing of the term (£3m)exdi(®—{)]+exd—i(P®  put ports of the trittefFig. 1) as a function of the second mixer’s

—{)] leads to the additional solutions transmittance is compared to the equivalent expression obtained
, from classical considerations for distinguishable particles. Nonclas-
T2=3, sical cancellation of triple coincidence obtains for the transmittance
(14 valuesr; = 1/2 andr,=2/3, with no further requirement far;. For
=7+, the purposes of this figure, we chosg=1/2. In the limiting case

7,—0 the top portion of the optical circuit forms a Mach-Zehnder
without a specific requirement far;. We will explore this  interferometer, which translates the input state to the output ports,
degree of freedom further below. From the phase conditiomenceP,(1,1,1)=1.
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012 3 0123 FIG. 5. Three-photon HOM interference for the setup of Fig. 4
NUMBER OF PHOTONS results from the cancellation of four probability amplitudes, in a

manner analogous to two-photon HOM interference.

FIG. 3. The additional specificationg=1/4 or 73=3/4 supple-
ment three-photon HOM interference by even-odd photon sorting at P, (0,1,2) =2[ \/7,71p3p1(1—373—373p5) — (73— 2p3)
the output ports of the tritter. The resulting marginal photon-number
probability distributions forr,=1/4 differ from classical predic- X (11~ p1)NT37202]%,
tions. The selectior;=3/4 exchanges the photon-number distribu-

tions observed at output ports 2 and 3. Pou(1,0,2=2[ /Tlp2p1(3rg'rz+p3— 73)

ports, hencé®,(1,1,1)=1. This does not occur for classical — (71— p2) (11— p1)VT3p3]%
particles as they independently partition into binomial statis-
tics [2].

Pou(0,2,1) =2[\737,71p1(3p3p2+ 3p3— 1) +(273— p3)

C. Even-odd photon sorting X (11— p1) \/72p3p2]2,

The degree of freedomr§) available for three-photon
HOM interference has the additional consequence of allow- p_ (1.2 0)=2[ \/71p,p1(3p37o+ 73— p3)
ing even-odd photon sorting at the output ports of the tritter.

This follows from the remaining probabilities for exit photon + (71— p2) (11— p1)NT3p3]?
arrangements,
Poul(0,0,39=6[ V737,71 p1(p3— T3p2) Pou(2,0,1)=2[ V72p3p2( 71— p1)
_ 2
+75(ma= PV Tapsp I T 2pa TP

Poul0,3,00=6[\ 7271p3p1( 73— p3p2) (17) Pou2,1,00=2[V1271p3p1( 72— 2p5)
—pa(T1— p1)NT372p2]%, — (11— p)NT372p2]%,

— 2
Pou3,0,0=67271p2p1, when ;=% or 2, in addition to the specifications =% and

m,=5. Marginal photon-number distributions at the output
ports of the tritter(Fig. 3) highlight the separation of even
R n and odd photons at the first two output ports, fg&= 3. The
b, b3 figure also contains the classical prediction for distinguish-
I { able particles. Careful inspection of E(.7) pinpoints the

and also

root cause of this effect to thedditional cancellation of exit
probabilities for both single- and three-photon clusterts
. T T, A output port 2 3=3%) or 3 (73=3). In U(2) HOM interfer-
a; > —_— b1 ence, the two photons always exit the optical mixer in pairs
for a 50:50 mixer. Becausg;# 71, the cancellation of triple
I l‘ clusters is an exclusive feature of taeymmetricmultiport

device[10].
t25) a3 D. Special case

FIG. 4. Elimination of the third optical mixer reduces the tritter ~ The essential character of three-photon HOM interference
to this optical circuit. emerges by removal of the third optical mixer;E1). The
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IlI. CONCLUSION

Three-photon HOM interference at a tritter exhibits a
wider range of phenomena as a consequence of the larger
dimensionality of its unitary representation. Unlike the cor-
responding double-beam effect, destructive interference can-
not occur if all three mixers share identical partition ratios.
To achieve cancellation of output triple coincidences, only
two mixer transmittances require specification. The third
) ) ~mixer’s transmittance represents an additional degree of free-
U(3) HOM interference now results when both optical mix- dom that permits even-odd photon sorting in the marginal
ers have 50:50 partition ratios. This special case brings out ghoton-number distributions at the output ports of the tritter.
close resemblance to the corresponding@)ffect. Figure 5 The development of triply correlated photon sources would
outlines the four interfering probability amplitudes that can-enable verification of these predictiof5].
cel exit triple coincidences. They represent all possible per-

output probability of triple coincidence for the resulting op-
tical arrangementFig. 4) is readily obtained from Eq.15),

lim Py(1,1,2)=( Tl_Pl)z( 7'2_F32)2-

73—1

(18)

mutations of probability amplitudes for double transmission
and double reflection of photon pairs at both mixers.
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