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Quantum limit of optical magnetometry in the presence of ac Stark shifts
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We analyze systematic~classical! and fundamental~quantum! limitations of the sensitivity of optical mag-
netometers resulting from ac Stark shifts. We show that in contrast to absorption-based techniques, the signal
reduction associated with classical broadening can be compensated in magnetometers based on phase mea-
surements using electromagnetically induced transparency~EIT!. However due to ac Stark–associated quan-
tum noise the signal-to-noise ratio of EIT-based magnetometers attains a maximum value at a certain laser
intensity. This value is independent on the quantum statistics of the light and defines a standard quantum limit
of sensitivity. We demonstrate that an EIT-based optical magnetometer in Faraday configuration is the best
candidate to achieve the highest sensitivity of magnetic-field detection and give a detailed analysis of such a
device.

PACS number~s!: 42.50.Lc, 07.55.2w, 07.60.2j
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I. INTRODUCTION

The detection of magnetic fields by optical means is
well developed technique with applications ranging from g
ology and medicine@1# to fundamental tests of violations o
parity and time-reversal symmetry@2#.

In spite of their great variety, optical magnetometers c
be divided in two basic classes. In the first class light abso
tion at a magnetic resonance is used to detect Zeeman
shifts, while the second class makes use of the assoc
changes of the index of refraction. So-called optical pump
magnetometer~OPM! @1# as well as dark-state magnetom
ters based on absorption measurements@3# belong to the first
class. The recently developed magnetometers based
phase-coherent atomic media@4,5# and the mean-field lase
magnetometer of Ref.@6# belong to the second class.

If systematic measurement errors can be avoided, wh
in practice can be a challenging task, the smallest detect
Zeeman shift~in units of frequency! is determined by the
ratio of the noise level of the signalS to its rate of change
with respect to frequency

Dvmin5
Snoise

udS/dvu
. ~1!

A fundamental lower limit ofSnoise results from photon
counting errors due to shot noise of the probe electrom
netic wave. (dS/dv)21, which characterizes a ‘‘quality fac
tor’’ of the system, is determined by an effective width of t
magnetic resonance. The ultimate goal of magnetometer
sign is to minimize the noise level and the effective width
the same time.

The width of magnetic resonances in optical magnetom
ters is subject to two types of broadening: resonant po
broadening due to the coupling of the optical fields to
probe transition and a broadening due to ac Stark shifts
sulting from nonresonant couplings to other transitions.
shown in @4# and @5# power broadening limits the simulta
neous minimization of noise and (dS/dv)21 in absorption-
1050-2947/2000/62~1!/013808~10!/$15.00 62 0138
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based magnetometers. In such devices increasing the p
laser power reduces the shot noise but does reduce the s
at the same time. As a consequence the sensitivity satu
at a rather low power level. On the other hand, as shown
@4# and@5#, this effect can be compensated in a magnetom
ter that detectsphase shiftsof the probe electromagneti
wave propagating in an optically thick atomic medium und
conditions of electromagnetically induced transparen
~EIT! @7#. Theoretically a complete elimination is possible
a three-levelL-type system.

In any real atomic system, however, there are nonreso
couplings to additional levels which lead to ac Stark sh
and an additional broadening of the magnetic resonance
portional to the laser intensity. In the present paper we a
lyze the influence of ac Stark shifts and show that they~i!
can diminish the magnetometer signal and~ii ! lead to addi-
tional noise contributions. We show that inabsorption-based
devices ac Stark broadening leads to a further reduction
the signal. In contrast it only gives rise to a bias phase s
in an phase-sensitive EIT magnetometer. This bias ph
shift can be calibrated but is still a major source of syste
atic errors. It can be eliminated if an EIT magnetometer w
Faraday configuration is considered.

However, in both, absorptive- and dispersive-type d
vices, ac Stark shifts also give rise to fundamental no
contributions, which increase with the laser power more r
idly than shot noise. Hence the magnetometer sensitivity
creases above a certain power level. The maximum valu
sensitivity constitutes the standard quantum limit. For an E
magnetometer based on phase-shift measurements this
is determined by the dispersion-absorption ratio of the m
dium and the intensity-phase noise coupling due to the s
phase modulation associated with ac Stark shifts.

We also discuss the possibility of further increasing t
sensitivity by means of nonclassical light fields and sh
that the maximum sensitivity is essentially independent
the light statistics.

The paper is organized as follows: In Sec. II we discu
the fundamental broadening mechanisms of magnetic r
©2000 The American Physical Society08-1
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nances, power broadening, and ac Stark–associated bro
ings. It is shown in Sec. III that the classical signal reduct
due to these broadenings can be compensated in ph
sensitive EIT magnetometers in contrast to absorption-ba
techniques. In Sec. IV fundamental quantum noise sou
are discussed and the standard quantum limit of magneto
ter sensitivity derived. A detailed analysis of an EIT-Farad
magnetometer is given in Sec. V and the prospects of u
nonclassical input states are discussed.

II. BROADENING OF MAGNETIC RESONANCES

Optical magnetometers measure in essence the positio
certain resonances that are sensitive to magnetic level sh
An important quantity that determines the signal strength
such a measurement is the width of the magnetic resona
As a rule the narrower the resonance, the easier it is to de
level shifts.

Magnetic resonances with small natural width can be
tained, e.g., by coupling Zeeman or hyperfine component
ground states in atoms either with an RF field or via
optical Raman transition. In an optical magnetometer th
ground-state sublevels are then coupled by laser field
excited atomic states. The optical coupling is also used
detect energy shifts of the ground-state sublevels induce
a magnetic field. However, at the same time this coupl
leads to a broadening of the magnetic resonances via
mechanisms:~i! power broadeningand ~ii ! broadening due
to ac Stark shifts.

A. Power broadening

The first mechanism is power broadening due to thereso-
nant interaction with the probe transition. When the Ra
frequencyV of the optical probe field exceeds the value

Vcrit
(1);Agg0, ~2!

where g0 is the unbroadened width of the magnetic res
nance andg the homogeneous linewidth of the optical tra
sition, the magnetic resonance becomes power broade
~Here and below we assume thatg@g0.! The effective width
scales linearly with the Rabi frequencyV of the optical field
or the square root of the corresponding power

Geff5g01aAg0

g
uVu1•••. ~3!

a is some numerical prefactor of order unity that depends
the specific model@5,9#. This broadening effect leads to
substantial limitation of the signal in an optical pumpin
magnetometer, as shown in@5# and @9#.

B. Broadening due to ac Stark shifts

The second broadening mechanism is due tononresonant
couplings of the probe electromagnetic wave with other th
the probe transition and the associated ac Stark shifts. Th
Stark effect leads to a shift of the magnetic resonance o
01380
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Dvac-Stark5
uVu2

D0
~4!

whereD0 is some effective detuning of nonresonant tran
tions from the frequency of the probe field weighted w
relative oscillator strengths.V is again the Rabi frequency o
the probe field corresponding to theresonantprobe transi-
tion. (D0 is of course just a model-dependent coupling p
rameter. We have used this notation here for simplicity of
discussions.!

In the classical limit and for a homogeneous laser int
sity throughout the atomic vapor, there is only a const
frequency shift due to the ac Stark effect. This shift can
calibrated. However, maximum signal is usually achiev
when the atomic density is chosen such that there is a
stantial absorption of the probe field. Hence when the pr
Rabi frequency exceeds the value

Vcrit
(2);AD0g0, ~5!

the resonance frequency changes as a function of prop
tion through the medium. This leads to an effective inhom
geneous broadening of the magnetic resonance. For exam
the transmission of a cell containing atoms with a Lorentz
magnetic resonance subject to ac Stark shifts is determ
by the integrated imaginary part of the susceptibility (x9
5Im@x#)

E
0

L

dzx9~z!;E
0

L

dz
g0

g0
21~D1uV~z!u2/D0!2

. ~6!

uV(z)u2 characterizes thez-dependent power of the prob
field and D the detuning from the unshifted transition fre
quency. It is easy to see that there is a broadening of
magnetic resonance depending on the magnitude of th
Stark shifts and the details of the absorption process.
important feature is that this broadening is proportional
the squareof the Rabi frequency or the laser power. Th
above a certain power level, determined by Eq.~5! ac Stark–
associated broadening can exceed power broadening, w
leads, e.g., to further reduction of the signal in an opti
pumping magnetometer.

III. COMPENSATION OF BROADENING EFFECTS IN EIT
MAGNETOMETER

We here demonstrate that the classical broadening me
nisms discussed in the previous section do not necess
lead to a reduction of the magnetometer signal if phase m
surement techniques are used. It has been shown in det
@5# and @8# that power broadening can be completely co
pensated in a phase measurement by making use of EI
optically denseL-type systems.

The three-levelL configuration of an EIT magnetomete
as well as the associated linear susceptibility spectrum of
probe field are shown in Fig. 1. Here and in the following w
consider closed systems, i.e., we assume that there ar
effective decay mechanisms due to time-of-flight limitation
The upper level of the probe field transitionua&↔ub& is
8-2
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QUANTUM LIMIT OF OPTICAL MAGNETOMETRY IN . . . PHYSICAL REVIEW A 62 013808
coupled to a metastable lower leveluc& by a coherent and
strong driving field of Rabi frequencyVd . The probe field
Rabi frequency is denoted asVp (Vp!Vd) and the coher-
ence decay rate of the probe transition asg. D is the one-
photon detuning of the drive field andd the two-photon de-
tuning. The transverse decay rate of the two-pho
resonance~magnetic resonance! is denoted asg0. It is as-
sumed that the corresponding population exchange betw
the ground-state sublevels is small and will be neglected

As in the case of an OPM there is power broadening in
EIT magnetometer as soon asuVdu.Agg0. A unique prop-
erty of an EIT resonance is however that the dispersi
absorption ratio of theoptical transition is given by the in-
verse of the width of theground-statetransitiong0 and is
independent on the drive powerif uVdu.Agg0. Under con-
ditions of one-photon resonance (D50) one finds for small
two-photon detuning

x8[Re@x#;2
d

uVdu21gg0

, ~7!

x9[Im@x#;
g0

uVdu21gg0

. ~8!

The residual absorption at the EIT resonance decreases
increasing laser power in the same way as the dispers
Thus in a phase-shift measurement power broadening ca
compensated by increasing the density and keeping a
stant optical depth of the medium.

FIG. 1. Principle of a drive-probe EIT magnetometer. Stro
drive field in three-levelL system~top! leads to transparency o
probe field and linear dispersion around two-photon resonancd
50 ~bottom!. Lower plot showsx8 andx9 ~real and imaginary par
of probe-field susceptibility! in arbitrary units characterizing refrac
tive index and absorption. Drive-field Rabi frequency equals nat
width of probe transition.
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Similarly one finds that as long as the drive-field Ra
frequency is large compared to probe-induced ac Stark sh
which is very well satisfied, ac Stark shifts of the magne
resonance@Eq. ~4!# lead only to a bias phase shift

Dfac-Stark;E
0

L

dz
uV~z!u2

D0
, ~9!

whereL is the length of the atomic vapor cell. This pha
shift can in principle be calibrated but gives rise to syste
atic errors. As will be discussed in detail later on, there is
such bias phase shift in a resonant Faraday configuratio

We conclude this section by emphasizing that in pha
detection schemes based on EIT the detrimental~classical!
effects of power broadening and ac Stark–associated br
ening are eliminated. In the following section we will discu
the fundamental quantum-noise sources of such magneto
ter schemes.

IV. QUANTUM-NOISE LIMIT OF MAGNETIC-FIELD
DETECTION VIA OPTICAL PHASE SHIFTS IN

THE PRESENCE OF AC STARK EFFECTS

The problem of sensitive detection of phase shifts is co
mon in optics. On the quantum level, the sensitivity of su
kind of measurements is restricted by~i! vacuum fluctuations
in the system and~ii ! self-action noise due to nonlinearitie
in the system, as, for example, caused by ac Stark shifts.
simultaneous presence of both noises usually leads to an
solute limit of the sensitivity.

Let us discuss this problem for the particular case of
tical magnetometry based on phase-shift measurements
atomic medium. The ultimate limit for the smallest dete
able phase shift is set by the generalized uncertainty rela
@10# between phaseDf[f2^f& @11# and photon-number
fluctuationsDn[n2^n& of the output field

^Df2&^Dn2&>11
1

4
^$Df,Dn%&2, ~10!

where$ % denotes the anticommutator. If phase- and phot
number fluctuations are uncorrelated, the second term on
right-hand side~r.h.s.! vanishes and one recovers the famili
Heisenberg relation. In any real magnetometer sche
phase and intensity fluctuations are, however, correlated
to, e.g., ac Stark shifts~self-phase modulation!, and thus the
second term in Eq.~10! is in general nonzero. When th
intensity-phase coupling is small, it can be characterized b
linear coupling coefficientb in the formDf5Df01bDn,
whereDf0 denotes phase fluctuations not correlated to
tensity fluctuations. Thus we find

^Df2&>
1

^Dn2&
1b2^Dn2&. ~11!

The signal phase accumulated during the propaga
through an atomic vapor cell is proportional to the Zeem
splitting DvB , the length of the cellL, and the dispersion o
the real part of the susceptibility at the laser frequen

al
8-3
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M. FLEISCHHAUER, A. B. MATSKO, AND M. O. SCULLY PHYSICAL REVIEW A62 013808
dx8/dv. The cell length is restricted by the absorption at t
laser frequency, and a reasonable upper limit forL is the
~amplitude! absorption lengthLabs5(px9/l)21.

Thus the maximum phase shift is

Dfumax5
1

x9

dx8

dv
DvB . ~12!

One recognizes, that the sensitivity of phase measurem
to Zeeman shifts is determined by the dispersion-absorp
ratio (1/x9)dx8/dv.

The limit for the smallest detectable Zeeman shift
therefore given by

DvBumin5F 1

x9

dx8

dv G21

@^Dn2&211b2^Dn2&#1/2. ~13!

Under the condition that the dispersion-absorption ratio
independent on the laser power, the r.h.s. of this expres
is minimized when^Dn2&uopt5b21. Therefore there is an
absolute lower limit or ‘‘quantum limit’’ of magnetic field
detection via phase-shift measurements independent on
photon-number fluctuations

DvBumin5F 1

x9

dx8

dv G21

A2b. ~14!

The absorption-dispersion ratio of a magnetic resonanc
usually given by its natural width, which can be rather sm
if a two-photon Raman process between Zeeman or hy
fine components is used as in an EIT magnetometer.

We will show later on that different measurement stra
gies, as well as the use of nonclassical light fields, in gen
do not improve this result.

FIG. 2. L system in Faraday configuration,g r are radiative
~longitudinal! decay rates,g0 the rate of ground-state coheren
decay~transversal decay!; D denotes one-photon andd0 magnetic-
field-induced two-photon detuning;E6 describe left- and right-
circular polarized field components. Population exchange~longitu-
dinal decay! between ground-state sublevels is disregarded. A
shown are nonresonant couplings to excited statesuci& causing ac
Stark shifts.
01380
e

nts
n

s
on

the

is
ll
r-

-
al

V. EIT-BASED FARADAY MAGNETOMETER

Let us now discuss in detail an EIT magnetometer in re
nant nonlinear Faraday configuration. For this we consi
the propagation of a strong, linear polarized light fie
through an optically dense medium, consisting of reson
L-type systems~atoms, quantum wells, etc.! as shown in
Fig. 2. For simplicity we ignore optical pumping into lowe
states other than those shown in the figure and assum
closed system. For a resonantJ51→J50 transition~say!,
optical pumping into the lowermJ50 state depletes both
statesmJ561 in the same way and thus effectively dimin
ishes the optical density but does not affect the signal. S
metric repumping can be used to maintain the population
the relevant sub-system without affecting the detect
scheme. We include a dephasing of the ground-state co
ence with rateg0 and a population exchange rate betwe
the ground statesg0r .

The two circular componentsE2 and E1 of the linear
polarized light generate a coherent superposition~dark state!
of the statesub6&[uJ51,mJ561&. A magnetic field paral-
lel to the propagation axis leads to an antisymmetric le
shift of ub6& and thus by virtue of the large linear dispersio
at an EIT resonance to an opposite change in the inde
refraction for both components. As a result the polarizat
direction is rotated, which is the so-called resonant nonlin
Faraday effect@12#. The difference to the linear Faraday e
fect is the presence of the intensity-dependent dark reson
generated by the action of the strong laser field as oppose
a usual absorption resonance in the weak-field limit. T
rotation of the plane of polarization at the output can
measured by detecting the intensity difference of two lin
polarized components645o rotated with respect to the inpu
polarization.

An aspect of the system, which becomes particularly i
portant when strong fields are considered, are nonreso
couplings of the two circular components to other leve
which to lowest order give rise to ac Stark shifts of the sta
ub6&. In a Faraday configuration the ac Stark shifts ofub1&
and ub2& are exactly equal and opposite in sign due to sy
metry and thus there is no average effect on the signal an
bias phase shift or rotation. Thus the Faraday magnetom
is not subject to systematic errors associated with ac S
shifts. However, as mentioned before, ac Stark shifts cau
coupling between intensity and phase fluctuations, wh
need to be taken into account.

o

FIG. 3. Schematic drawing of Faraday measurement. Using
larizing beam splitters the output field is decomposed in two

thogonal componentsÊ1 and Ê2 , 45o rotated relative to thex-y
system.
8-4
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A. Detection scheme

We here consider the detection scheme shown in Fig. 3
strong linear polarized field initially polarized in thex direc-
tion propagates through a cell of lengthL with the magneto-
optic medium. Due to the nonlinear Faraday effect the pl
of polarization is rotated by an anglef/2.

In order to detect this angle the intensity difference of
two orthogonal output directions 1 and 2 is measured. T
operator for the number of counts is given by

n̂5CE
tm

dt@Ê2
2~ t !Ê2

1~ t !2Ê1
2~ t !Ê1

1~ t !#. ~15!

whereÊ6 denote the positive and negative frequency par
the output electric field operators,tm is the measuremen
time, andC52e0cA/\n0 , A being the beam cross sectio
and n0 the resonance frequency. Making use of the fi
commutation relations@Ê1,2

1 (L,t),Ê1,2
2 (L,t8)#5C21d(t2t8)

and @Ê1
6 ,Ê2

6#50, we can express the mean number
counts as well as the fluctuations in terms of normal-orde
correlation functions. The latter allows to apply ac-number
approach where the operatorsÊ are approximated by sto
chastic complex functionsE

^n̂&5^n2&2^n1&, ~16!

^Dn̂2&5^Dn2&1^n1&1^n2&. ~17!

wheren1,2 follows from Eq. ~15! by replacing the field op-
erators byc numbers

n1,25CE
tm

dtE1,2
2 ~L,t !E1,2

1 ~L,t !. ~18!

In the usual configuration only thex-polarized componen
of the input field is excited and we will restrict the discussi
to a vacuum input of they polarized component. The propa
gation of the field through the magneto-optical medium
most conveniently described in terms of right and left circ
lar componentsE65(1/A2)(Ex6 iEy), and we therefore
have

n52 iCE
tm

dt~E2
2E1

12E1
2E2

1!. ~19!

The propagation of the circular components can be cha
terized by two parameters, the intensity transmission coe
cient h and the phase shiftf6(L,t) of the respective com
ponent at the output

E6
1~L,t !5E6

1~0,t !Aheif6(L,t). ~20!

In the limit of small magnetic fields the absorption of bo
circular components is identical for symmetry reasons,
there is no dichroism. With this we obtain for cw input field

^n̂&5h^nx& in sinfsig'h^nx& infsig, ~21!
01380
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wherefsig5f1(L)2f2(L) is the~stationary! signal phase
shift. Similarly we can estimate the fluctuations in lowe
order of the small rotation anglef in the case of an initially
coherent field

^Dn̂2&5h^nx& in1h2^nx& in
2 ^df2&. ~22!

The first term corresponds to the vacuum noise level and
second term proportional to

^df2&5
1

tm
2 E E dtdt8^df~ t !,df~ t8!& ~23!

describes fluctuations due to an intensity-phase-noise
pling in the medium, (̂a,b&[Š@a2^a&#@b2^b&#‹)

In the following we calculate the loss factorh, the signal
phase shiftfsig and the fluctuationŝ df2& due to the
intensity-phase-noise coupling for the EIT-Faraday magne
meter.

B. Medium susceptibility and field propagation

The stationary propagation of the right and left circu
polarized electric field components through the atomic va
is described by Maxwell equations in the slowly varyin
amplitude and phase approximation

d

dz
E6

1~z!5
in0

2ce0
`6Nsb6a~z!, ~24!

N is the atomic number density,̀6 are the dipole moments
of the respective transitions, andsb6a are thec-number ana-
logs of the atomic lowering operatorsŝb6a5ub6&^au. Ana-
lytic expressions forsb6a can be obtained from the station
ary solution of thec-number Bloch equations for the atom
populations

ṡb2b252g0r~sb2b22sb1b1!1g rsaa

2 i ~V2sab22c.c.!,

ṡb1b15g0r~sb2b22sb1b1!1g rsaa2 i ~V1sab12c.c.!,

and polarizations

ṡab652Gab6sab62 iV6* ~sb6b62saa!2 iV7* sb7b6 ,

~25!

ṡb2b152Gb2b1sb2b12 iV2sab1
1 iV1* sb2a ,

~26!

where

Gab6[g1
g0r

2
1 i S D1d66

d0

2 D , ~27!

Gb2b1[g01g0r1 i ~d01d12d2!. ~28!

g r is the radiative linewidth of the transitionsua&→ub6&, and
g is the homogeneous transverse linewidth of the opt
8-5
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transitionsua&→ub6&. d0 is the Zeeman splitting andd6 are
the ac Stark shifts of levelsub6&. V6 are the complex Rab
frequencies of the two optical fields,V65`6E6

2/\. We
have disregarded Langevin noise forces in Eqs.~25!–~26!
associated with spontaneous emission and collisional de
processes, since it was shown in@5# that atomic noises hav
a negligible effect on the magnetometer sensitivity.

We calculate the stationary solutions of the Bloch eq
tions by considering only the lowest order ing0 , g0r , d0,
and d6 . Furthermore, we assumed a small one-photon
tuning D. In this limit we find

sab6
5

iV6~g0uV7u21g0ruV6u2!

uVu2@2g~2g0r1g0!1uVu2#

2S d66
d0

2 D 2V6uV7u2

uVu2@2g~2g0r1g0!1uVu2#

1
D

g

V6@g0r~ uV1u41uV2u4!12g0uV7u2uV6u2#

uVu4@2g~2g0r1g0!1uVu2#
,

~29!

where uV(z)u25uV2(z)u21uV1(z)u2. Usually the coher-
ence decay between the ground levels dominates the po
tion exchange and thusg0@g0r .

It is convenient to separately consider the spatial evo
tion of amplitudes and phases of the complex Rabi frequ
cies V6(z)5uV6(z)ueif6(z). The intensities of the two
fields are attenuated in the same way

d

dz
uV6u252k

g0g r

uVu2

uV1u2uV2u2

~2g0g1uVu2!
, ~30!

wherek5(3/4p)Nl2.
Equation~30! can be easily solved when the lengthL of

the cell is small enough, such thatuV(L)u2@2gg0. In the
Faraday setup discussed hereV6(0)5V(0)/A2, and there-
fore uV6(z)u25uV(z)u2/2. We thus arrive at

uV~z!u25uV~0!u2S 12
g0g rkz

2uV~0!u2D 5uV~0!u2~12a0z!.

~31!

It is interesting to note that under conditions of EIT the
sidual absorption is not exponential but linear. The intens
transmission coefficient is then given by

h5~12a0L !. ~32!

The approximationuV(L)u2@2gg0 sets an upper limit for
the losses, such that 1>h@2gg0 /uV(0)u2.

Similarly we find the phase equations

d

dz
f25

kg r

2g

Dg01g~d0/22d2!

2g0g1uVu2
, ~33!
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d

dz
f15

kg r

2g

Dg02g~d0/21d1!

2g0g1uVu2
. ~34!

The contributions from the one-photon detuningD cancel
when the relative phasef5f12f2 is considered

d

dz
f52

kg r

2 S d0

uVu2
1

d12d2

uVu2
D . ~35!

The first term describes the signal-phase shift due to a m
netic field and the second term the ac Stark contributi
Integration of Eq.~35! yields for the signal

fsig52
d0

g0
lnUV~0!

V~L !
U2

~36!

and the ac Stark contribution

df~ t !52
kg r

2 E
0

L

dz
d1~z,t !2d2~z,t !

uV~z!u2
. ~37!

C. ac Stark shifts and associated noise

Let us now discuss the average ac Stark shift and
corresponding noise contributions. For this we first consi
the effect of an off-resonant quantized field on the energy
a single atom in lowest nonvanishing order of perturbati
We then generalize the results for the average ac Stark
and its fluctuations to an ensemble of atoms by making
physically reasonable assumption that ac Stark shifts of
ferent atoms are uncorrelated.

We decompose the Hamiltonian of the single atom int
acting with the quantized field in a rotating frame in the for
H5H01HS , whereH0 is the unperturbed part

H05H0
field1\~Dab1

2Dab2
!ub2&^b2u1\Dab1

ua&

3^au1\(
j

D j ucj&^cj u. ~38!

Dab6
5vab6

2n0 and D j5vcjb1
2n0 are the detunings o

the ua&2ub1& and ucj&2ub1& transitions,

HS52`2ua&^b2uÊ2
12`1ua&^b1uÊ1

12(
j

~` j 1ucj&

3^b1uÊ1
11` j 2ucj&^b2uÊ2

1!1adj ~39!

describes the resonant and nonresonant couplings of
quantized fields to the atom. The nonresonant coupling
the excited statesucj& cause ac Stark shifts. We here ha
assumed that both fields are nearly monochromatic and h
set the energy of levelub1& equal to zero.̀ j 6 are the dipole
moments of the transitionsucj&→ub6&.

We proceed by formally eliminating the excited stat
ucj& by means of a canonical transformation in second-or
perturbation
8-6
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H̃5exp~S!H exp~2S!.H1@S,H#1†S,@S,H#‡, ~40!

whereS obeys the equation

@S,H0#5(
j

~` j 1ucj&^b1uÊ1
11` j 2ucj&^b2uÊ2

11adj!.

~41!

Under conditions of exact two-photon resonance for
fields we obtain the transformation operator

S5(
j

S ` j 1

D j
ucj&^b1uÊ1

11
` j 2

D j
ucj&^b2uÊ2

12adj D .

~42!

Assuming that the population of all excited levels
small, we eventually find for the transformed Hamiltonian

H̃.H02`1ua&^b1uÊ1
12`2ua&^b2uÊ2

1

2(
j

S ` j 1
2

\D j
ub1&^b1uÊ1

2Ê1
11

` j 2
2

\D j
ub2&^b2uÊ2

2Ê2
1D

2(
j

` j 1` j 2

\D j
~ ub1&^b2uÊ1

2Ê2
11ub2&^b1uÊ2

2Ê1
1!.

~43!

Let us assume now thatD j is much larger than the natura
width of the excited states, and therefore the populat
transfer due to the nonresonant coupling is negligible.
identify ( j` j 6

2 /D j→`2/D0, whereD0 is some effective de-
tuning. The dipole moments̀ j 1 and ` j 2 have usually al-
ternating signs for different excited statesuc&. We therefore
set ( j` j 1` j 2

/D j50. Then the ac Stark shift of the sing
atom can be represented by the operator expression

d̂ 6
l ~ t !5

`2

\2D0
Ê6

2~zl ,t !Ê6
1~zl ,t !, ~44!

where l specifies the atom andzl its location. Thus we find
for the average ac Stark shift

^d̂6
l ~ t !&5

`2

\2D0
^Ê6

2~zl ,t !Ê6
1~zl ,t !&5

uV~zl ,t !u2

2D0
,

~45!

where`2u^Ê6(zl ,t)&u2/\25`2u^E(zl ,t)&u2/2\25uV(zl ,t)u2/
2. Similarly we obtain for the second-order moments of
ac Stark shiftŝ x̂,ŷ&[Š( x̂2^ x̂&)( ŷ2^ ŷ&)‹

^d̂ 6
l ~ t !d̂ 6

l ~ t8!&

5
`4

\4D0
2^Ê6

2~zl ,t !Ê6
1~zl ,t !Ê6

2~zl ,t8!Ê6
1~zl ,t8!&,

~46!
01380
e

n
e

e

^d̂1
l ~ t !d̂2

l ~ t8!&

5
`4

\4D0
2^Ê1

2~zl ,t !Ê1
1~zl ,t !Ê2

2~zl ,t8!Ê2
1~zl ,t8!&,

~47!

or after normal ordering

^d̂ 6
l ~ t !d̂ 6

l ~ t8!&

5
`4

\4D0
2 F ^E6

2~zl ,t !E6
1~zl ,t !E6

2~zl ,t8!E6
1~zl ,t8!&

1
d~ t2t8!

C
^E6

2~zl ,t !E6
1~zl ,t !&G , ~48!

^d̂ 1
l ~ t !d̂ 2

l ~ t8!&

5
`4

\4D0
2 @^E1

2~zl ,t !E1
1~zl ,t !E2

2~zl ,t8!E2
1~zl ,t8!&#.

~49!

The first terms in Eqs.~48! and ~49! correspond to classica
fluctuations, while the second term in~48! is vacuum or shot-
noise. If the applied fields are in a coherent state only
shot-noise term survives. In any practical realizations th
are however large excess noise contributions and the
terms are usually the dominant ones. We will show that
excess noise contributions are canceled in a Faraday ma
tometer and only the vacuum contribution survives.

We generalize the above single-atom results to an
semble of atoms assuming independent fluctuations of th
Stark shifts of different atoms, i.e.,

^d̂ m
j d̂ n

k&;d jk , ~50!

where$m,n%P$1,2%. We introduce the continuous variab

d̂6~z,t !5L(
j

d~z2zj !d̂ 6
j ~ t !. ~51!

In a continuum approximation,( j→(1/L)*Ldz, and we have

^d̂6~z,t !&5
`2

\2D0
^Ê6

2~z,t !Ê6
1~z,t !&5

uV~z,t !u2

2D0
. ~52!

Similarly

^d̂6~z,t !,d̂6~z8,t8!&5
L`4

\4D0
2d~z2z8!

3F ^E6
2~z,t !E6

1~z,t !,E6
2~z,t8!E6

1~z,t8!&

1
d~ t2t8!

C
^E6

2~z,t !E6
1~z,t !&G , ~53!

and
8-7
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^d̂1~z,t !,d̂2~z8,t8!&5
L`4

\4D0
2d~z2z8!

3@^E6
2~z,t !E6

1~z,t !,E6
2~z,t8!E6

1~z,t8!&#.

~54!

We here have used that in continuum approximation for
smooth functionf (z) holds

L(
l

d~z2zl !d~z82zl ! f ~zl !5d~z2z8! f ~z!. ~55!

It is now straightforward to evaluate the quadratic dev
tion of the relative ac Stark shift

K S d̂1~z,t !2 d̂2~z,t !

2uV~z!u2
D ,S d̂1~z8,t8!2 d̂2~z8,t8!

2uV~z8!u2
D L

5d~z2z8!d~ t2t8!
`2L

2\2CD0
2uV~z!u2

. ~56!

We note that the classical excess noise contributions exa
cancel and only the vacuum contribution is leftover. Due
the intrinsic balancing in the EIT-Faraday magnetometer
cess noise contributions are automatically canceled. Th
an important advantage of the Faraday configuration as c
pared to the asymmetric EIT magnetometer discussed in@4#
and @5#.

Using Eqs.~23!, ~37!, and~56! we eventually find for the
phase fluctuations due to ac Stark shifts

^df2&5
1

tm

k2g r
2

4D0
2

`2L

\2C
E

0

L 1

uV~z!u2
dz. ~57!

D. Signal-to-noise ratio and minimum detectable Zeeman shift

The minimum detectable Zeeman shift is obtained by s
ting the mean number of counts

^n̂&5h^nx& infsig52h^nx& in

d0

g0
ln@h21# ~58!

equal to the quantum-mechanical uncertainty

^Dn̂2&1/25@h^nx& in1h2^nx& in
2 ^df2&#1/2

5Ah^nx& inF11
uV~0!u4

D0
2g0

2
h~12h!ln~h21!G 1/2

~59!

This yields the signal-to-noise ratio@R(SNR)#

R~SNR!5F d0
2

g0
2 ^nx& inh ln2~h21!

11
uV~0!u4

D0
2g0

2
h~12h!ln~h21!

G 1/2

, ~60!
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which is maximized for an optimal power of the field corr
sponding to

uV~0!uopt
2 5A D0

2g0
2

h~12h!ln~h21!
;D0g0 . ~61!

Substituting the optimum Rabi-frequency~61! into ~60!
yields a maximum SNR forh'0.06. Thus we find the quan
tum limit for the detection of Zeeman level shifts

d0
SQL5g0f S g r

D0

3

8p

l2

A

1

g0tm
D 1/2

, ~62!

where

f [S 12h

h ln3~h21!
D 1/4

~63!

is a numerical factor which varies between 1 and 2 forh
50.01–0.8.~Note thath is the transmission coefficient un
der conditions of EIT. Without EIT the medium would b
totally opaque.! In Fig. 4 we have shown the minimum de
tectable Zeeman splitting~proportional to the magnetic field!
as function of the laser input power for different transmiss
coefficients.

One clearly sees that for small laser powers shot nois
dominant, while for larger laser powers ac Stark–associa
fluctuations take over. Also shown is the saturation behav
of an OPM@5#. Due to power broadening the sensitivity o
an OPM saturates as soon as the Rabi frequency reache
valueAgg0. In the EIT-Faraday magnetometer, on the oth
hand, the optimum Rabi frequency corresponding to
quantum limit is of the order ofAD0g0. SinceD0@g, much
higher sensitivities can be achieved here.

E. Compensation of ac Stark–associated noise by use of
nonclassical input fields

It is well known that the effect of self-phase modulatio
due to refractive nonlinearities can be compensated, at l

FIG. 4. Logarithm of minimum detectable Zeeman shift in ar
trary units as function of logarithm of laser power in units ofP0

5\n08pA/l2g0. Transmission coefficients areh512a0L50.8,
0.1, and 0.01.D0 /g5103. Also shown typical behavior of an opti
cal pumping magnetometer~OPM!.
8-8
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in part, by means of an optimum detection procedure~for
example, by measuring not the phase, but an appropria
chosen quadrature amplitude of the probe electromagn
wave! and/or by using nonclassical light@13,14#. The prop-
erties of the input quantum state in the methods utiliz
nonclassical light are thereby chosen such that after the
teraction the probe wave is in the coherent or phase-sque
state.

In the case of an optical magnetometer, ac Stark sh
appear due to nonresonant nonlinearities and it would s
that these shifts can in principle be compensated by
adapted measurement strategy and the use of nonclas
light. An essential condition for such methods is howev
that the system is nearly lossless in order to preserve
nonclassical state of light. On the other hand, as discus
above, the maximum signal in an optical magnetomete
achieved under conditions of substantial absorption.@We
note that the SNR is proportional to ln(h)2.# We will show
in the following with simple estimates that this feature mak
it impossible to increase the sensitivity by using nonclass
light.

Let us consider the simplest example of compensation
ac Stark–associated noise by nonclassical light. We ass
that the slowly varying field operators in the Heisenberg p
ture are represented in the formÊ65^Ê&1ê6 , whereê6 is
the fluctuation part. To discuss the compensation of ac S
effects let us disregard the resonant coupling with the m
dium and the associated absorption. Then we find that
field fluctuations at the end of the vapor cell can be writ
as

ê2~ t,L !5ê2~ t,0!1 i
kg rL

2D0
@ ê2~ t,0!1ê2

1~ t,0!#, ~64!

ê1~ t,L !5ê1~ t,0!2 i
kg rL

2D0
@ ê1~ t,0!1ê1

1~ t,0!#. ~65!

The second terms in these equations are due to ac S
shifts. One can see that the uncertainty of the phase di
ence increases as a result of ac Stark shifts, which lead
the sensitivity restriction, discussed above.

Let us assume now that the incident field issqueezedin
such a way that the operators of the field fluctuations at
input obey the relations

ê2~ t,0!5ẽ22 i
kg rL

2D0
~ ẽ21ẽ2

1!, ~66!

ê1~ t,0!5ẽ11 i
kg rL

2D0
~ ẽ11ẽ1

1!. ~67!

Here ẽ6 are free-field operators~the corresponding state i
the field vacuum!, which obey the commutation relation

@ ẽ6
1(t),ẽ6

2(t8)#5C21d(t2t8) and @ ẽ6
6(t),ẽ6

6(t8)#50.
Then, in the absence of losses, the effects of ac Stark s
are completely compensated in the output and the ou
fields are coherent,
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ê2~ t,L !5ẽ2 , ~68!

ê1~ t,L !5ẽ1 . ~69!

The sensitivity of the phase measurement would thus be
termined by shot noise only,Df51/A^n&.

In the absence of losses, the sensitivity of the detec
can even be better than the shot-noise limit, if the initial st
of the field is appropriately chosen@14#. Making use of a
SU~2! Lie-group description, Yurke showed that the sen
tivity of a phase-shift measurement in a Mach-Zehnder in
ferometer can approach the so-called Heisenberg limitDf
.1/̂ n&, where^n& is the total number of registered quan
@15,16#.

However, in the presence of losses resulting from
resonant coupling the noise compensation by means of n
classical light is only partially due to unwanted noises add
by the medium. Taking into account linear losses and ass
ing, that the entrance field is squeezed in the way discus
above, we can rewrite the equation for the residual noise
the phase as follows:

df~ t !52
kg r

2 E
0

L

dz
d1~z,t !2d2~z,t !

uV~z!u2
A12h~z!.

~70!

h(z)512a0z is the z-dependent transmission coefficien
The expression indicates that for small losses in the medi
the noise can be almost completely suppressed. A maxim
signal is achieved however whenh!1 and thus the use o
nonclassical light only leads to a marginal reduction of the
Stark–associated noise. This is in contrast to the meas
ment schemes discussed in@13,14#, which utilize squeezing
to improve sensitivity. The change of the expression for
ac Stark–associated noise leads to a change of the sensi
factor f according to

f→ f̃ 5S ~12h!@ ln~h21!1h21#

h ln4~h21!
D 1/4

. ~71!

It is easy to see thatf̃ . f for all relevant values ofh, which
means that squeezing does not improve the sensitivity of
detection.

The same conclusion can be drawn for any kind of op
mal strategy of measurement to compensate ac Stark sh
The main reason for this is that both the magnitude of
signal and absorption losses increase with the density-le
product of the atomic vapor cell.

VI. SUMMARY

We have discussed the influence of ac Stark shifts on
sensitivity of optical magnetometers. We have shown t
these shifts cause a broadening of the relevant resona
and give rise to additional noise contributions. In absorptio
type magnetometers, such as OPMs, the ac Stark–assoc
broadening as well as power broadening lead to a reduc
of the signal. We have shown that the classical part of th
8-9
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effects can be completely compensated in an EIT magn
meter in Faraday configuration where polarization rotat
or, equivalently, the relative phase shift of two circular co
ponents is measured.

In a magnetometer based on phase measurements ac
shifts lead also to a coupling between intensity and ph
fluctuations. As a result there are additional ac Stark ass
ated fluctuations that dominate over shot noise beyon
critical laser power. For a certain optimum intensity the fu
damental signal-to-noise ratio attains a maximum val
which represents the standard quantum limit of optical m
netometer based on phase-shift measurements. This qua
limit is determined by the dispersion-absorption ratio of t
atomic medium and the strength of the intensity-phase-n
coupling. The unique property of EIT is to provide
dispersion-absorption ratio, which is independent of pow
broadening and is given by the lifetime of a ground-st
coherence. The minimum magnetic level shift correspond
to the quantum limit of EIT magnetometers can thus be
ders of magnitude smaller than that of optical pumping
vices.

We have shown that the best candidate to reach the s
dard quantum limit is a magnetometer in Faraday configu
. B

r,

,

,
v.

p

se
tri
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tion, which has been analyzed in detail. In an EIT-Farad
magnetometer the signal reduction due to power and ac S
broadenings is compensated by large densities of the ato
vapor. The influence of classical excess noise is comple
eliminated due to symmetry and there are much less sou
for systematic errors. We have also shown that the use
nonclassical light and different detection techniques o
marginally improves the attainable sensitivity since a ma
mum signal is associated with substantial losses in
atomic medium.
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