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Quantum limit of optical magnetometry in the presence of ac Stark shifts
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We analyze systematiclassical and fundamentalquantum limitations of the sensitivity of optical mag-
netometers resulting from ac Stark shifts. We show that in contrast to absorption-based techniques, the signal
reduction associated with classical broadening can be compensated in magnetometers based on phase mea-
surements using electromagnetically induced transparéfidy. However due to ac Stark—associated quan-
tum noise the signal-to-noise ratio of EIT-based magnetometers attains a maximum value at a certain laser
intensity. This value is independent on the quantum statistics of the light and defines a standard quantum limit
of sensitivity. We demonstrate that an EIT-based optical magnetometer in Faraday configuration is the best
candidate to achieve the highest sensitivity of magnetic-field detection and give a detailed analysis of such a
device.

PACS numbd(s): 42.50.Lc, 07.55-w, 07.60—j

I. INTRODUCTION based magnetometers. In such devices increasing the probe
laser power reduces the shot noise but does reduce the signal
The detection of magnetic fields by optical means is aat the same time. As a consequence the sensitivity saturates
well developed technique with applications ranging from ge-at a rather low power level. On the other hand, as shown in
ology and medicin¢1] to fundamental tests of violations of [4] and[5], this effect can be compensated in a magnetome-
parity and time-reversal symmetfg]. ter that detectpphase shiftsof the probe electromagnetic
In spite of their great variety, optical magnetometers carwave propagating in an optically thick atomic medium under
be divided in two basic classes. In the first class light absorpeonditions of electromagnetically induced transparency
tion at a magnetic resonance is used to detect Zeeman lev@t|T) [7]. Theoretically a complete elimination is possible in
shifts, while the second class makes use of the associatedthree-levelA-type system.
changes of the index of refraction. So-called optical pumping |n any real atomic system, however, there are nonresonant
magnetometefOPM) [1] as well as dark-state magnetome- couplings to additional levels which lead to ac Stark shifts
ters based on absorption measuremgBitbelong to the first  and an additional broadening of the magnetic resonance pro-
class. The recently developed magnetometers based @Qrtional to the laser intensity. In the present paper we ana-
phase-coherent atomic medi,5] and the mean-field laser |yze the influence of ac Stark shifts and show that ttigy
magnetometer of Ref6] belong to the second class. can diminish the magnetometer signal giid lead to addi-
If systematic measurement errors can be avoided, whicfional noise contributions. We show thatabsorptionbased
in practice can be a challenging task, the smallest detectabievices ac Stark broadening leads to a further reduction of
Zeeman shift(in units of frequency is determined by the the signal. In contrast it only gives rise to a bias phase shift
ratio of the noise level of the sign&to its rate of change in an phase-sensitive EIT magnetometer. This bias phase

with respect to frequency shift can be calibrated but is still a major source of system-
atic errors. It can be eliminated if an EIT magnetometer with

A= Shoise (1) Faraday configuration is considered.
M dSde| However, in both, absorptive- and dispersive-type de-

vices, ac Stark shifts also give rise to fundamental noise
A fundamental lower limit ofS,qse results from photon contributions, which increase with the laser power more rap-
counting errors due to shot noise of the probe electromagdly than shot noise. Hence the magnetometer sensitivity de-
netic wave.  Ydw) ~1, which characterizes a “quality fac- creases above a certain power level. The maximum value of
tor” of the system, is determined by an effective width of the sensitivity constitutes the standard quantum limit. For an EIT
magnetic resonance. The ultimate goal of magnetometer deaagnetometer based on phase-shift measurements this limit
sign is to minimize the noise level and the effective width atis determined by the dispersion-absorption ratio of the me-
the same time. dium and the intensity-phase noise coupling due to the self-

The width of magnetic resonances in optical magnetomephase modulation associated with ac Stark shifts.

ters is subject to two types of broadening: resonant power We also discuss the possibility of further increasing the
broadening due to the coupling of the optical fields to thesensitivity by means of nonclassical light fields and show
probe transition and a broadening due to ac Stark shifts rehat the maximum sensitivity is essentially independent of
sulting from nonresonant couplings to other transitions. Aghe light statistics.
shown in[4] and[5] power broadening limits the simulta- The paper is organized as follows: In Sec. Il we discuss
neous minimization of noise andi§dw) ! in absorption  the fundamental broadening mechanisms of magnetic reso-
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nances, power broadening, and ac Stark—associated broaden- |2
ings. It is shown in Sec. lll that the classical signal reduction Awac—Stark:A_ (4)
due to these broadenings can be compensated in phase- 0

sensitive EIT magnetometers in contrast to absorption-basgghere A, is some effective detuning of nonresonant transi-
techniques. In Sec. IV fundamental quantum noise sourcegons from the frequency of the probe field weighted with
are discussed and the standard quantum limit of magnetomegative oscillator strength$) is again the Rabi frequency of
ter sensitivity derived. A detailed analysis of an EIT-Faradayhe probe field corresponding to tmesonantprobe transi-
magnetometer is given in Sec. V and the prospects of usingon. (A, is of course just a model-dependent coupling pa-

nonclassical input states are discussed. rameter. We have used this notation here for simplicity of the
discussions.
Il. BROADENING OF MAGNETIC RESONANCES In the classical limit and for a homogeneous laser inten-

] ] ~sity throughout the atomic vapor, there is only a constant
Optical magnetometers measure in essence the position gbquency shift due to the ac Stark effect. This shift can be
certain resonances that are sensitive to magnetic level shiftgg|iprated. However, maximum signal is usually achieved
An important quantity that determines the signal strength ofyhen the atomic density is chosen such that there is a sub-

such a measurement is the width of the magnetic resonancguantial absorption of the probe field. Hence when the probe
As a rule the narrower the resonance, the easier it is to detefapj frequency exceeds the value

level shifts.

_Magnetic resonances with small natural_ width can be ob- Qgi%N VAsYo, (5)
tained, e.g., by coupling Zeeman or hyperfine components of
ground states in atoms either with an RF field or via anthe resonance frequency changes as a function of propaga-
optical Raman transition. In an optical magnetometer theséon through the medium. This leads to an effective inhomo-
ground-state sublevels are then coupled by laser fields tgeneous broadening of the magnetic resonance. For example,
excited atomic states. The optical coupling is also used tthe transmission of a cell containing atoms with a Lorentzian
detect energy shifts of the ground-state sublevels induced hyagnetic resonance subject to ac Stark shifts is determined
a magnetic field. However, at the same time this couplindoy the integrated imaginary part of the susceptibility” (
leads to a broadening of the magnetic resonances via twe Im[ x])
mechanisms(i) power broadeningand (i) broadening due

to ac Stark shifts Yo

L L
dzyv" ~ d ' °
fo 7('(2) fo sy

|Q(2)|? characterizes the-dependent power of the probe
field and A the detuning from the unshifted transition fre-
quency. It is easy to see that there is a broadening of the
magnetic resonance depending on the magnitude of the ac
Q(C}I%~\/7_% 2) Stark shifts and the details_ of the ab_sorption process. An
important feature is that this broadening is proportional to
_the squareof the Rabi frequency or the laser power. Thus

A. Power broadening

The first mechanism is power broadening due tortem-
nant interaction with the probe transition. When the Rabi
frequency( of the optical probe field exceeds the value

where vy, is the unbroadened width of the magnetic reso X level ) K
nance andy the homogeneous linewidth of the optical tran- 220V€ & certain power level, determined by &y.ac Stark—
sition, the magnetic resonance becomes power broadenelfSociated broadening can exceed power broadening, which
(Here and below we assume that y,.) The effective width Ieads,. e.g., to further reduction of the signal in an optical
scales linearly with the Rabi frequen€y of the optical field pumping magnetometer.

or the square root of the corresponding power
I1l. COMPENSATION OF BROADENING EFFECTS IN EIT

\/,70 MAGNETOMETER
er=rota 7|Q| o ©® We here demonstrate that the classical broadening mecha-

nisms discussed in the previous section do not necessarily

a is some numerical prefactor of order unity that depends off@d to a reduction of the magnetometer signal if phase mea-
the specific mode[5,9]. This broadening effect leads to a Surement techniques are used. It has been shown in detail in
substantial limitation of the signal in an optical pumping [2] and[8] that power broadening can be completely com-

magnetometer, as shown [i] and[9]. pensated in a phase measurement by making use of EIT in

optically denseA -type systems.
The three-levelA configuration of an EIT magnetometer
as well as the associated linear susceptibility spectrum of the
The second broadening mechanism is duedoresonant probe field are shown in Fig. 1. Here and in the following we
couplings of the probe electromagnetic wave with other tharconsider closed systems, i.e., we assume that there are no
the probe transition and the associated ac Stark shifts. The &ffective decay mechanisms due to time-of-flight limitations.
Stark effect leads to a shift of the magnetic resonance of The upper level of the probe field transitida)« |b) is

B. Broadening due to ac Stark shifts
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Similarly one finds that as long as the drive-field Rabi
frequency is large compared to probe-induced ac Stark shifts,
which is very well satisfied, ac Stark shifts of the magnetic
resonancé¢Eg. (4)] lead only to a bias phase shift

L 0@
[c? Ad’ac-Starl?‘f dz A ) (9)
0 0

wherelL is the length of the atomic vapor cell. This phase
shift can in principle be calibrated but gives rise to system-

1 . . . . N .
08 atic errors. As will be discussed in detail later on, there is no
) such bias phase shift in a resonant Faraday configuration.
0.6 . . .. .
We conclude this section by emphasizing that in phase-
04 detection schemes based on EIT the detrimefuialssical
02 effects of power broadening and ac Stark—associated broad-
0 ening are eliminated. In the following section we will discuss
02 x! / \\ / the fundamental quantum-noise sources of such magnetome-
R N S ter schemes.
3 2 1 0 1 2 3
8/ IV. QUANTUM-NOISE LIMIT OF MAGNETIC-FIELD
DETECTION VIA OPTICAL PHASE SHIFTS IN
FIG. 1. Principle of a drive-probe EIT magnetometer. Strong THE PRESENCE OF AC STARK EFFECTS

drive field in three-levelA system(top) leads to transparency of

probe field and linear dispersion around two-photon reson@nhce . - o
mon in optics. On the quantum level, the sensitivity of such

=0 (bottom). Lower plot showsy’ andy” (real and imaginary part . . . . .
of probe-field susceptibilityin arbitrary units characterizing refrac- k'nd of measuremgnts IS resFrlcted_byvacuum quct.uatlo_n.s
jn the system andii) self-action noise due to nonlinearities

tive index and absorption. Drive-field Rabi frequency equals natural -
width of probe transition. in the system, as, for example, caused by ac Stark shifts. The

simultaneous presence of both noises usually leads to an ab-

coupled to a metastable lower levie) by a coherent and Solute limit of the sensitivity. _
strong driving field of Rabi frequenc§)y. The probe field Let us discuss this problem for the parucular case of op-
Rabi frequency is denoted &, (,<() and the coher- tical magnetometry base'd on phage-shn‘t measurements in an
ence decay rate of the probe transitionjasA is the one- atomic med|ur_n. _The ultimate limit fqr the smalle_st detecf[-
photon detuning of the drive field an#ithe two-photon de- able phase shift is set by the generalized uncertainty relation
tuning. The transverse decay rate of the two-photori10] between phasé¢=d¢—(¢) [11] and photon-number
resonancemagnetic resonangés denoted asy,. It is as-  fluctuationsAn=n—(n) of the output field
sumed that the corresponding population exchange between 1
the grpund-state sublevels is smal_l and will be negl_ecte_d. (APPAND =1+~ ({Ad,AN})2, (10)

As in the case of an OPM there is power broadening in an 4
EIT magnetometer as soon H34|>/yy,. A unique prop-
erty of an EIT resonance is however that the dispersion
absorption ratio of theptical transition is given by the in-
verse of the width of theground-statetransition y, and is
independent on the drive pow’ér|Qd|>\/m. Under con-
ditions of one-photon resonancA £ 0) one finds for small
two-photon detuning

The problem of sensitive detection of phase shifts is com-

where{ } denotes the anticommutator. If phase- and photon-
number fluctuations are uncorrelated, the second term on the
right-hand siddr.h.s) vanishes and one recovers the familiar
Heisenberg relation. In any real magnetometer schemes
phase and intensity fluctuations are, however, correlated due
to, e.g., ac Stark shifteself-phase modulationand thus the
second term in Eq(10) is in general nonzero. When the
intensity-phase coupling is small, it can be characterized by a

X' =Rd x]~ - L (7)  linear coupling coefficieng in the form A ¢=A ¢o+ SAN,
|Qd|2+ Y7Yo where A ¢, denotes phase fluctuations not correlated to in-
tensity fluctuations. Thus we find
o Yo
X'=Imx]~ ————. (8)
Q4|+ ¥¥0 (Ag?)= + B%(An?). (11)

An?
The residual absorption at the EIT resonance decreases with S
increasing laser power in the same way as the dispersion. The signal phase accumulated during the propagation
Thus in a phase-shift measurement power broadening can erough an atomic vapor cell is proportional to the Zeeman
compensated by increasing the density and keeping a cosplitting Awg, the length of the cell, and the dispersion of
stant optical depth of the medium. the real part of the susceptibility at the laser frequency
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Aj

M

FIG. 3. Schematic drawing of Faraday measurement. Using po-
larizing beam splitters the output field is decomposed in two or-
thogonal componentk, and E,, 4% rotated relative to the-y
system.

FIG. 2. A system in Faraday configuratior, are radiative
(longitudina) decay rates;y, the rate of ground-state coherence
decay(transversal decayA denotes one-photon ang§ magnetic-
field-induced two-photon detuningz. describe left- and right- | et us now discuss in detail an EIT magnetometer in reso-
circular polarized field components. Population exchaftgegitu-  nant nonlinear Faraday configuration. For this we consider
dinal decay between ground—s.tate subleyels is disregar.ded. Also[he propagation of a strong, linear polarized light field
shown are nonresonant couplings to excited statgscausing ac . . L
Stark shifts. through an optically dense medium, consisting of resonant

A-type systemgatoms, quantum wells, ejcas shown in

, . . : Fig. 2. For simplicity we ignore optical pumping into lower
dy'/dw. The cell length is restricted by the a_bs_orpt_|0n at thestates other than those shown in the figure and assume a
laser frequency, and a reasonable upper limitlfois the

(amplitudg absorption length = (7y"/\) L. cIo;ed system. Fpr a resonaht 1—J=0 transition(say),
Thus the maximum phase shift is optical pumping into the lowem;=0 state depletes l;)ot_h
statesm;= *£1 in the same way and thus effectively dimin-
ishes the optical density but does not affect the signal. Sym-
metric repumping can be used to maintain the population in
the relevant sub-system without affecting the detection
scheme. We include a dephasing of the ground-state coher-

ence with rateyy and a population exchange rate between
One recognizes, that the sensitivity of phase measuremengge ground stateyy, .

to Zeeman shifts is determined by the dispersion-absorption The two circular component&_ and E.. of the linear

V. EIT-BASED FARADAY MAGNETOMETER

!

1 dy

A(¢’|max:; EA‘UB- (12

ratio (1x")dx'/dw. polarized light generate a coherent superposititark state
The limit for the smallest detectable Zeeman shift isof the statesh. )=|J=1,m,;==1). A magnetic field paral-
therefore given by lel to the propagation axis leads to an antisymmetric level
shift of |b..) and thus by virtue of the large linear dispersion
dy’ -1 at an EIT resonance to an opposite change in the index of
Awg|mn=| — =——| [(An? "1+ ﬂz(An2>]1’2. (13 refraction for both components. As a result the polarization
X" do direction is rotated, which is the so-called resonant nonlinear

Faraday effecf12]. The difference to the linear Faraday ef-

Under the condition that the dispersion-absorption ratio ideCt S the presence of the intensity-dependent dark resonance

independent on the laser power, the r.h.s. of this expressio%enerated by thg action of the strong laser f'e"?' as O,pposed to

is minimized when(An?)|,,=8"1. Therefore there is an a usual absorption resonance in the weak-field limit. The
op .

absolute lower limit or “quantum limit” of magnetic field otation of the plane of polarization at the output can be
easured by detecting the intensity difference of two linear

detection via phase-shift measurements independent on thgcas . .
photon-number fluctuations polar!zed_ components 45° rotated with respect to the input
polarization.
An aspect of the system, which becomes particularly im-
portant when strong fields are considered, are nonresonant
\/ﬁ- (14 couplings of the two circular components to other levels,
which to lowest order give rise to ac Stark shifts of the states
|b.). In a Faraday configuration the ac Stark shiftd kof )
The absorption-dispersion ratio of a magnetic resonance iand|b_) are exactly equal and opposite in sign due to sym-
usually given by its natural width, which can be rather smallmetry and thus there is no average effect on the signal and no
if a two-photon Raman process between Zeeman or hypebias phase shift or rotation. Thus the Faraday magnetometer
fine components is used as in an EIT magnetometer. is not subject to systematic errors associated with ac Stark
We will show later on that different measurement strate-shifts. However, as mentioned before, ac Stark shifts cause a
gies, as well as the use of nonclassical light fields, in generaloupling between intensity and phase fluctuations, which
do not improve this result. need to be taken into account.

1 dy’ o

A ==
@/ min X' do
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A. Detection scheme where ¢giq= ¢, (L) — ¢_(L) is the(stationary signal phase

We here consider the detection scheme shown in Fig. 3. ghift. Similarly we can estimate the fluctuations in lowest
strong linear polarized field initially polarized in tixedirec- ~ Order of the small rotation angi¢ in the case of an initially
tion propagates through a cell of lendttwith the magneto- coherent field
optic medium. Due to the nonlinear Faraday effect the plane non 2 N2 .2
of polarization is rotated by an angi&/2. (An%) = n(Nint 79N in( 56, (22)

In order to detect this angle the intensity difference of the.l_
two orthogonal output directions 1 and 2 is measured. Th
operator for the number of counts is given by

he first term corresponds to the vacuum noise level and the
8econd term proportional to

1
ﬁcht di[E, (HES (1) —E; (DES ()] (15) <5¢2>=affdtdt’<5¢(t>,5¢(t’)> (23

to]describes fluctuations due to an intensity-phase-noise cou-
¢ pling in the medium, (a,b)=([a—(a)][b—(b)]))
In the following we calculate the loss factgy the signal
dphase shift ¢5y and the fluctuations 5¢?) due to the
intensity-phase-noise coupling for the EIT-Faraday magneto-
meter.

whereE* denote the positive and negative frequency par
the output electric field operators,, is the measuremen
time, andC=2¢,cA/fvy, A being the beam cross section
and vy the resonance frequency. Making use of the fiel
commutation relationsE; AL,t),E; AL,t")]=C 15(t—t’)
and [E; ,E5]1=0, we can express the mean number of

counts as well as the fluctuations in terms of normal-ordered B. Medium susceptibility and field propagation
correlation functions. The latter allows to applycaumber
approach where the operatdisare approximated by sto-
chastic complex functiong

The stationary propagation of the right and left circular
polarized electric field components through the atomic vapor
is described by Maxwell equations in the slowly varying
amplitude and phase approximation

(ny=(ny)—(ny), (16)
e LI 24
<An2)=(An2>+<n1)+<n2>. (17) d_Z i(z)_mt@i Ubta(z)a ( )
wheren, , follows from Eq.(15) by replacing the field op- N is the atomic number density,.. are the dipole moments
erators byc numbers of the respective transitions, ang.. , are thec-number ana-
logs of the atomic lowering operatots,- ,=|b. )(a|. Ana-
_ - + lytic expressions fowr,. , can be obtained from the station-
N1z Cﬁmthl’Z(L’t)El'Z(L’t)' (18) ary solution of thec-number Bloch equations for the atomic
populations

In the usual configuration only thepolarized component .
of the input field is excited and we will restrict the discussion Op—b-=""Yod Ob—b——Opbips)t V0aa
to a vacuum input of thg polarized component. The propa-
gation of the field through the magneto-optical medium is
most conveniently described in terms of right and left circu- . )
lar componentsE . = (1/1/2)(E,+iE,), and we therefore = Tb+b+= Yol Ob—b-—Opsb+) T ¥10aa—1(Q0gp —C.C),
have

—i(Q_o,,_—c.C),

and polarizations

n=—in dt(ECEI—ELED). (19 Taps =T aps Taps =1 Q%5 (Tpepe = Tan) — 105 Tprpe
t
m (25

The propagation of the circular components can be charac-

. _comp ne C Gy b =Ty pi0p pr—iQ 0a +iQ% 0y 4,
terized by two parameters, the intensity transmission coeffi- b=b* p=b+Tb=bt ab, +%b-a

cient » and the phase shitp. (L,t) of the respective com- (26)
ponent at the output where
EXZ(L,t)=EI(0t)\ne'¢=*D. 20 )
HLH=EL(007 (20 Pape=y+ 21 A+51t70), 27)

In the limit of small magnetic fields the absorption of both
circular components is identical for symmetry reasons, i.e., Chobs= Yo+ Yor+i(Sg+ s —5_). (28)
there is no dichroism. With this we obtain for cw input fields
. v, is the radiative linewidth of the transitioha)—|b..), and
(n)=7{Ny)in SiN dgig™= 7(Ny)inPsig> (22) v is the homogeneous transverse linewidth of the optical
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transitions|a)—|b.). &, is the Zeeman splitting anél. are d Ky, Ayo— (8524 5.)
the ac Stark shifts of levelb.. ). Q. are the complex Rabi a2+ :2—r 5 (34
frequencies of the two optical field€).=p E./h. We z Y 2yoy+|Q|

have disregarded Langevin noise forces in HG$)—(26) o .
associated with spontaneous emission and collisional decay€¢ contributions from the one-photon detunifgcancel

processes, since it was shown[§] that atomic noises have When the relative phas¢=¢. — ¢ _ is considered
a negligible effect on the magnetometer sensitivity.

We calculate the stationary solutions of the Bloch equa- i¢= S L B (35
tions by considering only the lowest order 3y, Yor, o, dz 2 1102 Q)2
and 6. . Furthermore, we assumed a small one-photon de-
tuning A. In this limit we find The first term describes the signal-phase shift due to a mag-
netic field and the second term the ac Stark contribution.
Qo (v Q=%+ 0l Q]2 Integration of Eq.(35) yields for the signal
Tab,. =\ 42 2
|Q1*[29(2y0r+ v0) +1Q[7] o ——ﬁln (0|2 .
(5 +50) 20,102 9y QL)
- 21012y Yo+ vo) + Q2] and the ac Stark contribution
AQ. Q4+ M+ 250 Q£ ]? Q|2
+= _[70r(| 2’| | | ) 70| -;' | _| ], 5¢(t)_ KYy Ld 5+(Z,t)—5,(2,t) (37)
Y Q1 [2¥7(2 0+ 70) +]Q[%] T2 )" 10(2)|2
(29)
where |Q(Z)|2: |Q,(z)|2+ |Q+(Z)|2. Usually the coher- C. ac Stark shifts and associated noise
ence decay between the ground levels dominates the popula- Let us now discuss the average ac Stark shift and the
tion exchange and thugy> v, . corresponding noise contributions. For this we first consider

It is convenient to separately consider the spatial evoluthe effect of an off-resonant quantized field on the energy of
tion of amplitudes and phases of the complex Rabi frequena single atom in lowest nonvanishing order of perturbation.
cies 0.(2)=|0.(2)|e?+?. The intensities of the two We then generalize the results for the average ac Stark shift

fields are attenuated in the same way and its fluctuations to an ensemble of atoms by making the
physically reasonable assumption that ac Stark shifts of dif-
Yoy 10420 |2 ferent atoms are uncorrelate_d. _ _ _
—|Q.|?=—« 5 >0 (30 We decompose the Hamiltonian of the single atom inter-
dz Q% (2yoy+]Q[?) acting with the quantized field in a rotating frame in the form

) H=Hy+Hg, whereH, is the unperturbed part
where k= (3/4m)N\~.

Equation(30) can be easily solved when the lengthof Ho=HE™ % (Aqp, —Agp )b )(b_|+5A, |a)
the cell is small enough, such thE(L)|?>>2yy,. In the
Faraday setup discussed héle (0)=Q(0)/2, and there- ><(a|+ﬁ; Aj|cj>(cj|. (39)

fore | Q. (2)|>=|Q(2)|%/2. We thus arrive at

, Agp, =w@ap, ~vo and Aj=w¢, —vo are the detunings of
=|Q(0)[*(1 - a02). the |a)—|b.) and|c;)—|b. ) transitions,
31

YoYiKZ

2_ 2[1_ i
002)| |n<o>|(1 TYOE

He=—p |aXb_|[Ef—p.|a)b,|Ef— oi.lc
It is interesting to note that under conditions of EIT the re- S [e-| [a)(b.[E: EJ: ( J+| y

sidual absorption is not exponential but linear. The intensity - . ]
transmission coefficient is then given by X(b,|EL+p;j |c;}(b_|ED)+ad (39)

7=(1—agl). (32)  describes the resonant and nonresonant couplings of the
quantized fields to the atom. The nonresonant couplings to

The approximatiorf Q(L)|?>2y7y, sets an upper limit for the excited statefc;) cause ac Stark shifts. We here have

the losses, such thaty> 2y, /| (0)|2. assumed that both fields are nearly monochromatic and have
Similarly we find the phase equations set the energy of leveb ) equal to zerop ;. are the dipole
moments of the transitior|s;)—[b..).
_ We proceed by formally eliminating the excited states
a4 K Avot ¥(5/2=5-) , (33  Icj) by means of a canonical transformation in second-order
dz 2y 2y0y+|QJ? perturbation
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H=exp(S)H exp(—S)=H+[S,H]+[S,[S,H]], (40 (8.()8 (1))
i 4
whereS obeys the equation Z%ﬂél(zl ,t)Ei(th)E:(A ,t’)Ef(z|,t’)),
0
[SHol=2 (pyle)(b, [E} +9;-|e)Xb-|E +ad). @7

(41 or after normal ordering

Under conditions of exact two-photon resonance for the <3'¢(t)3|i(t'))

fields we obtain the transformation operator 4

<E;(Z| 1t)E;(ZI lt)E;(Zl !t,)EZ(ZI !tl)>

§71+ + " _ﬁ4AS
S= 2 |C]><b+|E + |CJ><b |E —adj|. 5('{ t)
(42) + (E<(z ,HEL(z 1)), (48)
Assuming that the population of all excited levels is | .
small, we eventually find for the transformed Hamiltonian (64 (Ho (1))
4
- . . 1% _ _ ,
H=Ho—p.|a)(b.|Ef—p_|a)y(b_|EZ ~razl(E(2 DEL(z HEZ(z ) EL(z,t))].
2
W Pi— A~
=3 [T T BLEL I (o BB 49
! The first terms in Eqs48) and (49) correspond to classical
Pj9j- Ala, Ay fluctuations, while the second term( ) is vacuum or shot-
-2 ﬁ—AJ(|b+)<b,|E+E,+|b,>(b+|E,E+). noise. If the applied fields are in a coherent state only the

. shot-noise term survives. In any practical realizations there

(43 are however large excess noise contributions and the first
terms are usually the dominant ones. We will show that all
Let us assume now that; is much larger than the natural excess noise contributions are canceled in a Faraday magne-
width of the excited states, and therefore the populationometer and only the vacuum contribution survives.
transfer due to the nonresonant coupling is negligible. We We generalize the above single-atom results to an en-
identify EJpjzt/Ajepzle, whereA is some effective de- semble of atoms assuming independent fluctuations of the ac
tuning. The dipole momentg;, andp;_ have usually al- Stark shifts of different atoms, i.e.,
ternating signs for different excited staﬂ«a§>. We therefore .
setXjp;.p; /A;=0. Then the ac Stark shift of the single (8

atom can be represented by the operator expression

where{u,v} e{+,—}. We introduce the continuous variable
2

S _ P e ~+
0 +(0= 775 E-(2,DE(2.0), (44) 3.(z)=LY a(z—2)5L(1). (51)
J

wherel specifies the atom arg its location. Thus we find

for the average ac Stark shift In a continuum approximatiort;;— (1/L) [ dz, and we have

2 2
5. (t) o E-(z DE (2t _le@ vl (8-(z1)= th —(EX(zDED (zt)>——|Q(ZAt)| . (52
(0.(1)= ﬁ2A< ~(z,HEL(z 1)) 28, 0
(45 Similarly
where p?|(E.. (z,t))|412=p?|(E(z,,1))|42k2=Q(z, ,t)|% - o Lp* ,
2. Similarly we Iobtain for the seclond—order momelnts of the (0:(z,),0-(2'.t )>:ﬁ4_A§5(Z_Z )
ac Stark shiftgx,y)=((x—(x))(y—(y)))
<'5| (t)3| (t/)> X <E;(Z,t)E;(Z,t),E;(Z,t/)E;(Z,tI)>
7 gg; ~ " 5(t_ )
= w9z ——(EZ(z VEL(z ,)EL(z t)EL(z 1)), + (EX(ZDEL(z,1))|, (53

(46) and
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4

o N Ly
(64(z,1),6_(Z' t'))=-7>06(z—2")
h*AG c
I
X[(EZ(z,t)EL(z1),EZ(z,t")EL(zt"))]. c]
<
(54 =
g
We here have used that in continuum approximation for any  —
smooth functionf(z) holds
2 shot noise ac-Stark
LY, 8(z—z)8(z' —z)f(z)=8(z—2")f(z). (55 o023 456
|

log1oP

It is now straightforward to evaluate the quadratic devia-

tion of the relative ac Stark shift FIG. 4. Logarithm of minimum detectable Zeeman shift in arbi-

trary units as function of logarithm of laser power in unitsRyf
% 7 % I ) =% v,87AIN?y,. Transmission coefficients arg=1— aL=0.8,
04z =6 (z1)) [0.(Z,1') =4 (Z\1) 0.1, and 0.01A,/y=1C. Also shown typical behavior of an opti-
2|Q(z)|? 2|Q(z")|? cal pumping magnetometé®PM).

2
Syt ot P°L which is maximized for an optimal power of the field corre-
=8(z=2)(t—t )ZhZCA07|Q(z)|2' (56) sponding to

We note that the classical excess noise contributions exactly AZy2
cancel and only the vacuum contribution is leftover. Due to o}
the intrinsic balancing in the EIT-Faraday magnetometer ex- n(1=n)n(y"")

cess noise contributions are automatically canceled. This i N . . .
an important advantage of the Faraday configuration as corTEUbSt'tu“ng the optimum Rabi-frequend$l) into (60)

10(0)[2,= Aoyo. (6D

pared to the asymmetric EIT magnetometer discuss¢d]in

and[5].

Using Egs.(23), (37), and(56) we eventually find for the

phase fluctuations due to ac Stark shifts

1 K2’yr2502LJ'L 1

S¢?) = dz
(647 tm 4A32 22CJo |Q(2)|?

(57)

D. Signal-to-noise ratio and minimum detectable Zeeman shift

The minimum detectable Zeeman shift is obtained by set-

ting the mean number of counts

%

<ﬁ> = 77<nx>in¢sig: — 7 nx>in% In 77_1] (59

equal to the quantum-mechanical uncertainty

<A 62>1/2: [ 7]<nx>in+ 7]2<nx>51< 5¢2>] vz

= ot 1+ SOL

2.2
A5

1/2
n(1=n)n(y~ Y

(59
This yields the signal-to-noise ratjdR(SNR)]

2 1/2

S5
‘y_g<nx>in7lln2(77_l)
0
TN o) |
1 1-n)n(n?t
+ AZy2 n(1—=mn)In(n™")

(60)

yields a maximum SNR fo#~0.06. Thus we find the quan-
tum limit for the detection of Zeeman level shifts

3 )\2 1 1/2
Q¢ >N 4
53 yof(Ao 8m A 70tm) ’ 62
where
1/4
1-9
fE( 7% n-l)) ©3

is a numerical factor which varies between 1 and 2 #or
=0.01-0.8.(Note thaty is the transmission coefficient un-
der conditions of EIT. Without EIT the medium would be
totally opaque. In Fig. 4 we have shown the minimum de-
tectable Zeeman splittingproportional to the magnetic field
as function of the laser input power for different transmission
coefficients.

One clearly sees that for small laser powers shot noise is
dominant, while for larger laser powers ac Stark—associated
fluctuations take over. Also shown is the saturation behavior
of an OPM[5]. Due to power broadening the sensitivity of
an OPM saturates as soon as the Rabi frequency reaches the
value \/y7,. In the EIT-Faraday magnetometer, on the other
hand, the optimum Rabi frequency corresponding to the
quantum limit is of the order of/Ay7y,. SinceAy> vy, much
higher sensitivities can be achieved here.

E. Compensation of ac Stark-associated noise by use of
nonclassical input fields

It is well known that the effect of self-phase modulation
due to refractive nonlinearities can be compensated, at least

013808-8



QUANTUM LIMIT OF OPTICAL MAGNETOMETRY IN . .. PHYSICAL REVIEW A 62 013808

in part, by means of an optimum detection proced(ioe e (t,L)=e_, (68)
example, by measuring not the phase, but an appropriately
chosen quadrature amplitude of the probe electromagnetic
wave and/or by using nonclassical light3,14]. The prop-

erties of_the _input quantum state in the methods Uti"Zin_gThe sensitivity of the phase measurement would thus be de-
nonclassical light are thereby chosen such that after the Narmined by shot noise oanS:l/\/W

teraction the probe wave is in the coherent or phase-squeezeJm the absence of losses. the sensi.tivity of the detection
state. '

e,(t,L)=e, . (69

. . o @U(Z) Lie-group description, Yurke showed that the sensi-
that these shifts can in principle be compensated by a.lﬂvity of a phase-shift measurement in a Mach-Zehnder inter-

e_ldapted measurement strategy e Of. nonclassqg}ometer can approach the so-called Heisenberg it
light. An essential condition for such methods is however_ 1/n), where(n) is the total number of registered quanta

that the system is nearly lossless in order to preserve t 5,16

nonclassical state of light. On the other hand, as discuss However, in the presence of losses resulting from the

above, the maximum signal in an optical magnetometer iSresonant coupling the noise compensation by means of non-
achieved under conditions of substantial absorptioiie ping P y

note that the SNR is proportional to Ipf2.] We will show classical light is only partially due to unwanted noises added

by the medium. Taking into account linear losses and assum-

in the following with simple estimates that this feature makesmg' that the entrance field is squeezed in the way discussed

it impossible to increase the sensitivity by using nonclassica}ibove we can rewrite the equation for the residual noises in

light. .
Let us consider the simplest example of compensation 0?18 phase as follows:

ac Stark—associated noise by nonclassical light. We assume L sz —6.(zt)

that the slowly varying field operators in the Heisenberg pic- Sp(t)=— K”VJ dz—= 1= 5(2).

ture are represented in the foltn =(E)+e. , wheree, is 2 Jo 1Q(2)[?

the fluctuation part. To discuss the compensation of ac Stark (70)
effects let us disregard the resonant coupling with the me- ,_ . o -
dium and the associated absorption. Then we find that thg(z)_l_“OZ is the zdependent transmission coefficient.

field fluctuations at the end of the vapor cell can be written he expression indicates that for small losses in the me(_j|um,
as the noise can be almost completely suppressed. A maximum

signal is achieved however whep<1 and thus the use of
Kyl . . nonclassical light only leads to a marginal reduction of the ac
oA Le- (L0 +el(t0)], (64  sStark-associated noise. This is in contrast to the measure-
0 ment schemes discussed[itB,14], which utilize squeezing
L to improve sensitivity. The change of the expression for the
- _- K A ~+ ac Stark—associated noise leads to a change of the sensitivity
e (tL)=e. (0~ 2A, [e(tO)+e (L] (69 factor f according to

e_(t,L)y=e_(t,0)+i

The second terms in these equations are due to ac Stark ~ [(@=p[In(p Y+ n—1] v
shifts. One can see that the uncertainty of the phase differ- f—f= In*( 1 . (71)
ence increases as a result of ac Stark shifts, which leads to 7N ()
the sensitivity restriction, discussed above.

Let us assume now that the incident fieldsgueezedn
such a way that the operators of the field fluctuations at th
input obey the relations

It is easy to see thdt=f for all relevant values of;, which
eans that squeezing does not improve the sensitivity of the
detection.

The same conclusion can be drawn for any kind of opti-
mal strategy of measurement to compensate ac Stark shifts.

e_(t,0)=e_—i Ky (e_+eh), (66)  The main reason for this is that both the magnitude of the
2A signal and absorption losses increase with the density-length
product of the atomic vapor cell.
5. (10=5, +I @, 3 (67)
A T2A, T T VI. SUMMARY

~ We have discussed the influence of ac Stark shifts on the
Heree. are free-field operatorthe corresponding state is sensitivity of optical magnetometers. We have shown that
the field vacuum which obey the commutation relations these shifts cause a broadening of the relevant resonances
[ei(t),es(t")]=C 15(t—t’) and [ei(t),es(t')]=0. and give rise to additional noise contributions. In absorption-
Then, in the absence of losses, the effects of ac Stark shiftgpe magnetometers, such as OPMs, the ac Stark—associated
are completely compensated in the output and the outpuiroadening as well as power broadening lead to a reduction
fields are coherent, of the signal. We have shown that the classical part of these
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effects can be completely compensated in an EIT magnetdion, which has been analyzed in detail. In an EIT-Faraday
meter in Faraday configuration where polarization rotationmagnetometer the signal reduction due to power and ac Stark
or, equivalently, the relative phase shift of two circular com-broadenings is compensated by large densities of the atomic
ponents is measured. vapor. The influence of classical excess noise is completely
In a magnetometer based on phase measurements ac Stafininated due to symmetry and there are much less sources
shifts lead also to a coupling between intensity and phasgy systematic errors. We have also shown that the use of
fluctuations. As a result there are additional ac Stark assockgnclassical light and different detection techniques only
ated fluctuations that dominate over shot noise beyond garginally improves the attainable sensitivity since a maxi-

critical laser power. For a certain optimum intensity the fun-mym signal is associated with substantial losses in the
damental signal-to-noise ratio attains a maximum valuegtomic medium.

which represents the standard quantum limit of optical mag-
netometer based on phase-shift measurements. This quantum
limit is determined by the dispersion-absorption ratio of the
atomic medium and the strength of the intensity-phase-noise
coupling. The unique property of EIT is to provide a  The authors would like to thank M. Lukin for stimulating
dispersion-absorption ratio, which is independent of powediscussions on the role of ac Stark shifts. A.M. and M.O.S.
broadening and is given by the lifetime of a ground-stategratefully acknowledge further useful discussions with Y.
coherence. The minimum magnetic level shift correspondindrostovtsev and the support from the Office of Naval Re-
to the quantum limit of EIT magnetometers can thus be orsearch, the National Science Foundation, the Welch Founda-
ders of magnitude smaller than that of optical pumping detion, the Texas Advanced Research and Technology Program
vices. and the Air Force Research Laboratories. M.F. gratefully ac-

We have shown that the best candidate to reach the staknowledges the financial support of the Alexander von Hum-
dard quantum limit is a magnetometer in Faraday configuraboldt foundation through the Feodor-Lynen program.
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