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Phase distribution and amplitude of a micromaser field in a semiclassical approximation

Jozef Skvarcek and Mark Hillery
Department of Physics and Astronomy, Hunter College of CUNY, 695 Park Avenue, New York, New York 10021

~Received 8 November 1999; published 13 June 2000!

We present a semiclassical method for determining the phase distribution and the average photon number of
a steady-state micromaser field pumped by a stream of resonant two-level atoms in a superposition of their
upper and lower states. Assuming the field to have a photon number distribution with a single sharp peak, we
find an equation for the amplitude and the phase of the steady-state field, which has two solutions. The stability
analysis shows which one of the two is physically realizable. Using the very simple time evolution of particular
atomic states, valid in the semiclassical limit, we find an expression for the phase distribution of the field that
contains the mean photon number as a parameter. That can be determined from the stable solution.

PACS number~s!: 42.50.Dv
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I. INTRODUCTION

A micromaser is a very simple physical system that c
sists of a beam of two-level atoms and a single-mode e
tromagnetic field within a microwave cavity. Despite its sim
plicity and the fact that it has been the object of vigoro
research for more than a decade, it still presents a resea
with new challenges.

Filipowicz et al. in 1986 published some papers on t
theory of the microscopic maser@1,2#. They investigated the
steady-state cavity field and they found that as the pump
increased, it goes through thresholds that resemble first-o
phase transitions@3#. Guzmanet al.worked out the semiclas
sical theory, and they found that the system at a thresh
undergoes a transition from one branch of the semiclass
solution to the next@4#. Progress was made not only in th
theoretical understanding of the system, but also, around
same time, advances in experimental physics made it
sible to build superconducting high-Q microcavities, so that
the field could maintain large average photon number, wh
combined with Rydberg-state spectroscopy, made real
cromaser experiments possible. Experiments conducte
the Max Planck Institute for Quantum Optics in Garchi
have confirmed theoretical predictions of such quantum p
nomena as sub-Poissonian photon statistics, quantum
oscillations, and quantum collapses and revivals@5–8#.

Most of the studies of the dynamics of the microma
have considered only injected atoms in their upper sta
while the situation in which the atoms enter the cavity in
coherent superposition of their upper and lower states
received far less attention. The micromaser with injec
atomic coherence has been investigated by several aut
Krauseet al.,assuming weak atom-field coupling, found th
the phase of the atomic coherence is transferred to the
cromaser field and that the excitation probability of the
oms leaving the microwave cavity depends on the rela
phase angle between incoming atom dipoles and the field@9#.
Since the outgoing atoms are available for measuremen
experiment could be set up to determine the coherence o
field. Slosseret al.studied lossless micromaser with cohere
pumping and they found that the field evolves towards p
states, which were named tangent and cotangent states@10–
12#. These states rely on the existence of trapping states,
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apart from having other nonclassical properties, they can
used for generating macroscopic quantum superpositi
The authors also numerically investigated the situation w
the state of the field consists of a tangent state and a co
gent state in adjacent blocks of number states. This lead
the occurrence of the interesting period-2 oscillations wh
the steady-state field returns to its initial value not after
teraction with one, but after two atoms. A simple physic
explanation of this phenomenon was found by Hilleryet al.
@13#. The effect of the atomic phase was also studied fo
multinode laser system; Kienet al. developed the quantum
theory of the two-modeL laser with atoms injected in a
superposition of their states@14#.

The case in which the atoms are in a coherent superp
tion is a more complicated problem than the case in wh
they are completely inverted. In the latter case, the diago
elements of the density matrix couple only to each other,
when there is atomic coherence this is no longer the c
The entire density matrix must be treated at once. At
same time this is also a more interesting problem since
atomic dipoles have a phase, and because they drive
field, the field has a phase as well. The steady-state fi
produced by atoms in their upper states has no mean ph
because any value of the phase is equally likely.

Here we want to extend the semiclassical approximat
to the micromaser with injected atomic coherence. In p
ticular, our objective is to determine mean photon num
and the phase distribution, of the steady-state field.
present a short review of the micromaser system in Sec
and Sec. III includes the core of our semiclassical treatm
We find an equation for the amplitude and the phase of
steady-state field, which can be solved and has two soluti
In order to determine which one is physically realizable,
perform a stability analysis in Sec. IV. Then we turn o
attention to the problem of finding an approximate expr
sion for the phase distribution of the field in Sec. V. W
employ techniques developed by Gea-Banacloche to trea
problem@15#. These rely on the very simple time evolutio
of particular atomic states. We are able to use them to find
expression for the phase distribution, which contains
mean photon number as a parameter. Our analytical res
are compared to quantum-mechanical numerical simulat
in Sec. VI, and we find that the agreement is very good.
©2000 The American Physical Society07-1
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II. MICROMASER

We shall begin by describing briefly the micromaser.
micromaser consists of a beam of two-level atoms pas
through a high-Q microwave cavity containing an electro
magnetic field. It is assumed that the atomic beam is of
density, i.e., at any given time there is at most one at
present in the cavity. We also assume that the microca
supports only one mode of the field, which is in resonan
with the atoms at the frequencyv and that the atoms have a
the same velocity, so that they pass through the cavity
constant timet. The atom-field interaction is governed b
the Jaynes-Cummings Hamiltonian, and when the cavit
empty, the field decays into the environment, which is in o
case at zero temperature. If the probability of the atoms
ing in their upper states is high when they enter the mic
cavity, then the micromaser can maintain a nonzero stea
state field.

The atoms have statesua&, with energyv ~we are using
units with \51), andub&, with energy 0. The Hamiltonian
describing the atom-field system is

H5va†a1
1

2
v~s31I !1g~a†s21as1!, ~1!

wherea, a† are the annihilation and creation Bose operat
for the field obeying the standard commutation relations

@a†,a#51,@a,a#5@a†,a†#50, ~2!

s3 ands6 are the Pauli spin operators,s1 is raising atomic
operator, s1ub&5ua&, s2 is lowering operator,s2ua&
5ub&, andg is the atom-field interaction constant. The fir
two terms on the right-hand side of Eq.~1! describe free field
and free atom, respectively, while the third is the atom-fi
interaction. The Hamiltonian is given in the rotating-wa
approximation. If the atom is initially in the state

uCat&5aua&1bub&, ~3!

wherea andb are complex numbers satisfying the norm
ization conditionuau21ubu251, and the field is initially in
the state

u f &5 (
n50

`

dnun&, ~4!

then after a timet the state of the combined system will b

u f & ^ ~aua&1bub&)→ (
n50

`

dn~acn11un&2 ibsnun21&)ua&

1 (
n50

`

dn~bcnun&2 iasn11un11&)ub&,

~5!

where

sn5sin~gtAn!5sin~u intAn/Nex!, ~6!
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cn5cos~gtAn!5cos~u intAn/Nex!. ~7!

Here, we have introduced the pumping parameteru int

5ANexgt. The numberNex is the mean number of atom
interacting with the cavity field during its lifetime. Equatio
~5!, which is written in the interaction picture defines th
Jaynes-Cummings time evolution of the field density mat
r̂5Trat r̂system, which can be written formally asr̂(t)
5M r̂(0), and in thenumber-state representation we have

rnm→rnm~ uau2cn11cm111ubu2cncm!1rn21,m21uau2snsm

1rn11,m11ubu2sn11sm111 iab* ~cn11sm11rn,m11

2sncmrn21,m!1 ia* b~cnsmrn,m21

2sn11cm11rn11,m!, ~8!

wherernm5^nur̂um&. As one can see, the interaction coupl
together elements from different diagonals, which makes
analysis complicated. In the case of noncoherent pump
uabu50, only the diagonal terms are coupled.

The decay of the micromaser field for the cavity at ze
temperature, formally given asr̂(t)5eLtr̂(0), is described
by the master equation@16#

dr̂

dt
5L r̂52

1

2
g~a†ar̂1 r̂a†a22ar̂a†!, ~9!

which has the solution in the number-state representatio

rmn~ t !5e2gt(m1n)/2(
l 50

` S ~m1 l !!

m!

~n1 l !!

n! D 1/2

3
~12e2gt! l

l !
rm1 l ,n1 l~0!, ~10!

whereg is the loss coefficient. Its reciprocal 1/g is equal to
the mean cavity lifetime.

The times the pumping atoms arrive into the microwa
cavity may conform to various distributions. For the ca
when they obey Poissonian statistics we can derive the e
tion of motion for the average field density matrix in th
form of a master equation@1#

dr̂

dt
5r ~M21!r̂1L r̂, ~11!

wherer denotes the mean rate the atoms arrive at the cav
and it is related toNex by Nex5r /g. Equation~11! can be
employed for finding the steady-state field density matrix
putting dr̂/dt50. On the other hand, when considering
regularly pumped micromaser, i.e., when the timeT between
two consecutive atoms is constant, the time evolution of
field density matrix is given by the map

r̂~ t i 11!5eLTM r̂~ t i !. ~12!
7-2
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If t i are the times the atoms enter the cavity,t i 112t i5T.
The steady state is usually defined for this case asr̂(t i 11)
5 r̂(t i)5rss, which says that the field density matrix is th
same at any of the times just before an atom enters the
ity, see Fig. 1~a!. Of course, the density matrix could b
different if measured not att i ’s, we would have differentrss
should we measure the cavity field at the times just after
atom-field interaction, for example, Fig. 1~b!.

It is possible to study the micromasers whose pump
statistics lies somewhere between the regular and Poisso
statistics@17,18#, but such cases will not be considered he

III. SEMICLASSICAL APPROXIMATION

The objective in this section is to find the equation
motion for the amplitude and the phase of the microma
field, which will later enable us to determine the steady-st
values of these quantities. We will assume that the ato
pumping statistics is Poissonian. We will also assume
the steady-state field has a large amplitude, and that its
ton number distribution is sharply peaked aroundn̄. We ex-
press the expectation value of the field annihilation opera
^a& in terms of its amplitudeu and phaseu

^a&5ueiu, ~13!

and, because of our assumptions,n̄5u2.
Using the standard formula for determining the me

value of an operatorA, ^A&5Tr$Ar̂%, and Eq.~11! we are
able to obtain the needed equation for^a&. First, we multiply
Eq. ~11! by a and then we take the trace with respect to
photon number states. On the left-hand side we then ge

TrH a
dr̂

dt J 5
d

dt
Tr$ar̂%5

d

dt
^a&, ~14!

since in the Shro¨dinger picture the operatora does not de-
pend on time. It is easy to resolve the loss term on the rig
hand side of Eq.~11! employing the cyclic property of the
trace

FIG. 1. The time scale for the regularly pumped micromas
The atom-field interaction timet is much smaller then the time
interval between two consecutive atomst. The field can be mea
sured just before the next atom enters the cavity, the arrows in~a!,
or after just after the interaction~b!, for example.
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^aL&5
1

2
g Tr$@a†,a#ar̂%52

g

2
^a&, ~15!

if Eq. ~9! is considered, while proceeding with the first ter
is a little bit more involved. The term

Tr$a~M21!r̂%5^a~M21!& ~16!

can be expressed in the form

^a~M̂21!&5 (
n50

`

An11$rn11,n~ uau2cn12cn11

1ubu2cn11cn21!1rn,n21uau2sn11sn

1rn12,n11ubu2sn12sn11

1 iab* ~cn12sn11rn11,n112sn11cnrnn!

1 ia* b~cn11snrn11,n212sn12cn11rn12,n!%.

~17!

Equation ~17! can be further approximated by taking in
account the fact that we deal with a field whose num
distribution is sharply peaked atn̄, wheren̄@1. Namely, we
restrict our attention to field density matrices, which ha
only a few nonzero elements:r n̄n̄ and those nearby, Fig. 2
Then in the sum in Eq.~17! only those terms will contribute
that include the density matrix elementsrn1n2

, wheren1 and

n2 are close ton̄. We also use the Taylor expansion wi

respect ton, keeping only terms up to the order of 1/An̄, to
evaluatesn11 andcn11 in terms ofsn andcn , respectively.
For sn11 andcn11 we then get

sn11'sn1
dsn

dn
, ~18!

cn11'cn1
dcn

dn
, ~19!

r. FIG. 2. Relevant part of the field density matrix assumed in
semiclassical treatment. The dashed line represents the main
onal, the field is strongly peaked aroundr n̄n̄ . In order to determine
^a& also r n̄,n̄21 and r n̄11,n̄21 are needed, other elements are n
glected.
7-3
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the derivatives ofsn and cn can be found with the help o
Eqs. ~6! and ~7!, dsn /dn5u int cn/2AnNex and dcn /dn5
2u int sn/2AnNex, respectively. Finally, if we put togethe
what we have, we get

d^a&
dt

5r (
n50

` H 1

2An
~ uau22ubu2!sn

2rn,n211 iab*

3S 2
u int

2ANex

2
sncn

2An
D rnn2 ia* b

3S u int

2ANex

2
sncn

2An
D rn11,n21J 2

g

2
^a&. ~20!

We expect the steady-state micromaser field to be clos
a coherent stateuh&, whereh5^a& and uhu25n̄, which has
the density matrix in the number-state representation

rmn5e2uhu2 ~h* !nhm

Am!n!
. ~21!

Therefore, the nondiagonal density matrix elements in
~20! can be expressed as

h*

An
rn,n215rnn ~22!

and

rn11,n215
h

An11

An

h*
rnn . ~23!

Keeping in mind thatrnn is sharply peaked aboutn̄, this
implies that Eq.~20! can be put into the form

d~ueiu!

dt8
5NexH 1

2u
~ uau22ubu2!sn̄

2
eiu1uabueif

3S 2
u int

2ANex

2
sn̄cn̄

2u D 2uabue2 if

3S 2
u int

2ANex

1
sn̄cn̄

2u D e2iuJ 2
1

2
ueiu. ~24!

We have defined a new time parametert85gt, and set

iab* 5uabueif. ~25!

Equation~24! can now be solved for the two real variablesu
andu. The steady-state values ofu andu are determined by
setting the time derivative equal to zero. For the phaseu of
the steady-state field, two solutions are possible as one
easily verify:u5f andu5f1p. However, as long as we
are in the classical regime, we expect that only one is ph
cal. We will resort to a stability analysis to determine whi
one is stable, i.e., physically realizable, and which one
merely formal.
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IV. STABILITY ANALYSIS

As it was said in the previous section, Eq.~24! can be
solved for the steady-state values ofn̄5u2 and u. Using
either solution of the phaseu we will get a transcendenta
equation for the mean photon numbern̄5n̄(u int) as a func-
tion of the pumping parameteru int . In order to determine
whether the solution is stable we will displace the syst
from its steady state bydu and du, du!u, and du!u,
respectively. If the system shows a tendency to move
wards its steady state in both variables@in an abstract sens
the system is moving in the (u,u) plane#, the solution is
stable, and vice versa.

A. Unstable solution

Let us first examine the case

u5f. ~26!

This is substituted into Eq.~24! which gives us the equation
for n̄(u int) at steady state,

05~ uau22ubu2!sn̄
2
22uabusn̄cn̄2

n̄

Nex
. ~27!

In order to find the stable points, we changeu→u1du and
u→u1du in Eq. ~24!. We then employ a Taylor expansio
to find both sides up to first order indu anddu. We obtain
the expression for the time derivative ofdu from the real
part of the resulting equation,

du̇5H u intANex

u
@~ uau22ubu2!cn̄sn̄1uabu~sn̄

2
2cn̄

2
!#21J du,

~28!

while from the imaginary part we have

du̇5uabu
u intANex

u
du. ~29!

All terms on the right-hand side of the last equation are po
tive real numbers, so that they form a positive factor mu
plying du. Thenḋu ~we may say it is the ‘‘velocity’’ ofdu)
always has the same direction asdu. That means the phas
of the system at the point (u1du,u1du) is moving away
from u, see Fig. 3~a!. Therefore, all points (u,u), which we
obtain from Eq.~27!, are not stable.

B. Stable solution

If we repeat the procedure for

u5f1p, ~30!

then we find

05~ uau22ubu2!sn̄
2
12uabusn̄cn̄2

n̄

Nex
~31!
7-4
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as the equation forn̄(u int), and, for the equations of motio
for du anddu,

du̇5H u intANex

u
@~ uau22ubu2!cn̄sn̄2uabu~sn̄

2
2cn̄

2
!#21J du,

~32!

du̇52uabu
u intANex

u
du. ~33!

As one can see, the factor multiplyingdu in Eq. ~33! has a
negative sign. Therefore, the system has a tendency to m
from the state with phaseu1du back tou. However, we still
have to check the behavior ofḋu in order to determine
whether the point (u,u) is stable. It is hard to see by inspe
tion of Eq. ~32! what the direction ofḋu is. We need the
term in the curly brackets to be negative for the field to be
stable (u,u), see Fig. 3~b!. The sign of this factor and the
stable solutions can be found numerically. These results w
compared with those from numerical simulations and t
will be presented shortly. Now, however, we want to turn o
attention to the problem of finding the phase distribution
the steady-state field.

V. PHASE DISTRIBUTION

Knowing the field density matrix at given time the pha
distribution of the field can be calculated. The probabil
that the phase is within the intervall,l1dl is ^lur̂ul&dl,
whereul& is the quantum-mechanical phase state

ul&[
1

A2p
(
n50

`

einlun&. ~34!

Therefore, the phase distribution is defined by the diago
density matrix elementŝlur̂ul&. The core of our approach
to determining the phase distribution lies in using the spe
orthogonal atomic states

FIG. 3. Solutions of Eq.~24! for the complex amplitudeh
5ueiu are represented via polar coordinatesu, u. ~a! Shows non-

stable case foru5f, the ‘‘velocity’’ ḋu has the same direction a
the displacementdu. ~b! Shows stable points (u,u) for the situation

when u5f1p since bothḋu and ḋu at point (u1du, u1du)
point back towards (u,u).
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u6&[
1

A2
~e2 iwua&6ub&), ~35!

as the atomic basis. These states are actually the eigens
of the semiclassical interaction Hamiltonian, which is o
tained by replacing the operatorsa (a†) in the interaction
term of Eq.~1! by the c-number field amplitudev (v* ), v
5uvue2 iw,

H int,sc5g~s2v* 1s1v !. ~36!

The dynamics of these states was intensively studied wi
the contex of the Jaynes-Cummings model by G
Banacloche@15# who discovered a formula that describ
their time evolution in the limit of large photon numbern̄.
On a time scale that is much smaller than the revival ti

t r52pAn̄/g, if the micromaser field is prepared in the c

herent stateuv&, wherev5An̄e2 iw, thenu6&uv& evolves as

u6&uv&→e7 i ~gtAn̄/2!u6&uve7 i ~gt/2An̄!&. ~37!

The error in Eq.~37! is of order 1/An̄. This result provides a
convenient way of treating the systems with large pho
number, because the total state vector remains a produ
the atomic and field parts.

An arbitrary atomic state can be expressed as

uC&5e2 iw sinkua&1coskub&, ~38!

which in the basis ofu6& states becomes

uC&5^1;wuC&u1;w&1^2;wuC&u2;w&, ~39!

where the explicit phase dependence of statesu6& has been
included. The coefficients of this expansion can be fou
easily

u^1;wuC&u25
1

2
@11cos~w2w!sin~2k!#,

u^2;wuC&u25
1

2
@12cos~w2w!sin~2k!#. ~40!

For any initial atomic stateuC&, Eq. ~37! can be employed
for finding the total state of the system at later time. We
concerned with the steady-state micromaser field, and
phase in particular, therefore we shall need the evolution
the field density matrixr̂. The initial density matrix of the
systemr̂system5uv&uC&^Cu^vu evolves in time according Eq
~37! too, of course, and it provides the field density opera
after we take the trace with respect to the atomic degree
freedom. We obtain

uv&^vu→u^1;wuC&u2ue2 idwv&^e2 idwvu

1u^2;wuC&u2ueidwv&^eidwvu, ~41!

wheredw5gt/2An̄. In order to find the steady-state pha
distribution of the field, theP representation of the densit
7-5
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matrix may be used. TheP representation is a diagonal re
resentation ofr̂ in terms of coherent states,uj&, as r̂
5*d2jP(j)uj&^ju. Using this, we can convert Eq.~41! into
an equation forP(v)

P~v !→u^Cu1;w2dw&u2P~veidw!

1u^Cu2;w1dw&u2P~ve2 idw!. ~42!

It is apparent that Eq.~42! describes merely changes of th
field phase, the field amplitude is unaffected, so that we d
the explicit uvu dependence inP(uvue2 iw). With the help of
Eq. ~40! we find

P~w!→ 1

2
@11cos~w2w1dw!sin 2k#P~w2dw!

1
1

2
@12cos~w2w2dw!sin 2k#P~w1dw!.

~43!

The right-hand side of Eq.~43! must be equal toP(w) for
the steady-state field. For a largen̄ we havedw!1, therefore
we expand the right-hand side of Eq.~43! up to the second
order ofdw and then the steady-state condition gives us
second-order differential equation forP(w)

052
d

dw
@P~w!cos~w2w!sin 2k#1

1

2

d2

dw2
P~w!dw.

~44!

This can be integrated giving the periodic solutions

P~w!5C8e2(2 sin 2k/dw)sin(w2w), ~45!

where C8 is the constant of integration. Note, that ev
though the formal solution to Eq.~44! has two constants, on
of them is eliminated by the requirement of periodicity. T
solutions given by Eq.~45! allow us to draw several conclu
sions. First, without even knowingC8, one can immediately
find the position of the maximum of the phase distributio

wmax5w2
3p

2
. ~46!

Second, the phase probability distributionR(l)[^lur̂ul&
can be calculated from

R~l!5E d2jP~j!u^jul&u2. ~47!

The coherent state in the number-state representation is
fined as

uj&[e2uju2/2(
n50

`
jn

An!
un&, ~48!

and then from Eq.~47! we obtain final expression forR(l)

(r 5An̄)
01380
p

e

e-

R~l!5
C

2p
e2r 2

(
n,m50

`
r m1n

Am!n!
E

0

2p

dw cos@~w1l!

3~n2m!#e2(2 sin 2k/dw) sin(w2w). ~49!

The constantC is determined from the normalization cond
tion

E
0

2p

R~l!dl51. ~50!

The integral with respect tol is

E
0

2p

dl cos„~w1l!~n2m!…52pdnm , ~51!

wherednm is the Kronecker symbol, so that we have fina

C5F E
0

2p

dwe2(2 sin 2k/dw) sin(w2w)G21

. ~52!

The results from the numerical simulations, which are p
sented in the following section, show that Eq.~49! is very
precise whenn̄ is large.

VI. NUMERICAL RESULTS

In most of the following numerical experiments the atom
field interaction constantg was 4.43104 Hz and the relative
phase of the coherent atomic stateu @as defined by Eq.~38!#
was set to 0. The pumping statistics was chosen to be re
lar, because the Poissonian case is computationally very
manding. We shall comment on the effect this has on
results shortly.

We studied how the steady-state field varies with resp
to the micromaser parametersNex, u int , and uau. In Fig. 4
we plot the mean photon numbern̄ in the steady state as
function ofu int whenNex530 anduau50.9. Theu int interval
was evenly sampled by 201 points between 0 and 40.
each value ofu int we foundn̄ performing the following pro-
cedure. The initial state of the cavity field was taken to be
vacuum. The field then interacted with an atom according
Eq. ~8!, and then decayed according to Eq.~10!. The mea-
surement of the field’s mean photon numbern̄ was per-
formed just before the next atom entered the cavity. T
sequence, corresponding to Eq.~12!, was repeated until the
steady-state value ofn̄ was found. The field was considere
steady when itsn̄ changed by less than 1023% during a
single sequence. The reason behind this is that we had t
an upper bound for the number of interactions in order to
the results in reasonable time; for smallerNex ~30 to 100! it
was set to 30Nex and for largerNex it was 15Nex. If n̄
changes at a rate of 1023% per sequence, then the fie
would need to interact with 105 atoms to increase its valu
by one. This means that such small differences would
show up on the graphs, even if we considered the maxim
number of interactions to be 7500 (Nex5500).

The points from the quantum-mechanical simulations
7-6
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FIG. 4. Mean photon numbern̄ of the steady-
state field vs the pumping parameteru int , uau
50.9 andNex530. The points from the quantum
mechanical simulations with regular pumping a
joined by the continuous line, while the cross
show semiclassical stable solutions where Pois
nian pumping was assumed.
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in Fig. 4 are joined by a continuous line. The crosses on
same figure show semiclassical stable solutions as give
Eq. ~31!. We find a very good correspondence between
two whenu int is between 0 and 5. The two curves are alm
identical in the vicinity of the first micromaser thresho
where n̄ has its maximum. The quantum-mechanical li
shows the second threshold aroundu int510, and beyond this
point it does not match the semiclassical pattern. The r
tionship betweenn̄ and u int was also studied forNex5100,
300, and 500; the results are shown in Figs. 5, 6, 7. AsNex
increases the second threshold moves to larger values ofu int ,
for example, whenNex5500 it occurs aroundu int537, while
the quantum-mechanical and the semiclassical solutions
incide for larger intervals ofu int . Therefore, we may con
clude that our semiclassical theory gives correct predicti
for n̄(u int) provided thatNex is large.

We were also concerned with the questions of hown̄(u int)
and the relationship between the quantum-mechanical
the semiclassical solutions depend onuau. To answer this
01380
e
by
e
t

a-

o-

s

nd

question four simulations were done settinguau to 0.85, 0.9,
0.95, and 1.0 withNex5300. The results are plotted in Fig
8, 6, 9, 10. As one can see, the second threshold occu
smalleru int as uau increases. Up to that point the quantum
mechanical and the semiclassical curves are almost ident

A careful reader has probably noticed that we were us
different pumping statistics for the semiclassical theory a
for the numerical simulations. He may ask whether our co
parison is reasonable and how much the results of the s
classical theory depend on the pumping statistics. In orde
investigate this point we shall find the semiclassical sta
solutions for the amplitude and the phase of the steady-s
field for a micromaser with regular pumping. If it is assum
that the measurements are performed just before the pu
ing atoms enter the cavity, Fig. 1~a!, then the steady-stat
condition gives

^a~ t i 11!&5^a~ t i !&, ~53!

which can be expressed with the help of Eq.~12! as
ar
le
ons
FIG. 5. Mean photon numbern̄ of the steady-
state field vs the pumping parameteru int , uau
50.9 and Nex5100. The points from the
quantum-mechanical simulations with regul
pumping are joined by the continuous line, whi
the crosses show semiclassical stable soluti
where Poissonian pumping was assumed.
7-7
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FIG. 6. Mean photon numbern̄ of the steady-
state field vs the pumping parameteru int , uau
50.85 and Nex5300. The points from the
quantum-mechanical simulations with regul
pumping are joined by the continuous line, whi
the crosses show semiclassical stable soluti
where Poissonian pumping was assumed.
at

-

e
We
is-
Tr$eLTM r̂~ t i !a%5Tr$r̂~ t i !a%. ~54!

Following the procedure from Secs. III and IV, we find th
the phaseu of the steady-state field is

u5f1p, ~55!

and the amplitude of the field can be determined from

u2u85
1

2u8
~ uau22ub2u!sn̄8

2
1uabu

sn̄8cn̄8

u8
, ~56!

where

u85e21/2Nexu. ~57!
01380
The same notation as in Eqs.~13!, ~25! was used. The sta
bility analysis gives us time evolution ofdn anddu in terms
of the maps

du→ 1

u F2u82u1$~ uau22ubu2!sn̄8cn̄8

1uabu~cn̄8
2

2sn̄8
2

!%
u int

ANex
Gdu, ~58!

du→F12uabu
u int

uANex
Gdu. ~59!

We have plotted the stable points for the case withuau
51.0 andNex5300 in Fig. 10, and we see that they com
very close to those calculated with Poissonian pumping.
further find that the points for both kinds of pumping stat
tics stay close for largeNex, and they only start to differ as
ar
le
ons
FIG. 7. Mean photon numbern̄ of the steady-
state field vs the pumping parameteru int , uau
50.9 and Nex5300. The points from the
quantum-mechanical simulations with regul
pumping are joined by the continuous line, whi
the crosses show semiclassical stable soluti
where Poissonian pumping was assumed.
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FIG. 8. Mean photon numbern̄ of the steady-
state field vs the pumping parameteru int , uau
50.95 and Nex5300. The points from the
quantum-mechanical simulations with regul
pumping are joined by the continuous line, whi
the crosses show semiclassical stable soluti
where Poissonian pumping was assumed.
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u int increases. However, even for smallNex ~such as 30! they
both provide almost the same values ofn̄ for u int around the
first threshold, which is also in very good corresponden
with the quantum-mechanical simulations, Fig. 10. Theref
we conclude that the pumping statistics does not play a
in the semiclassical treatment of the micromaser if the ob
tive is to determine the mean photon number of the stea
state field for values ofu int of order 1. We prefer to work
with Poissonian pumping because it corresponds better to
actual physical experiments.

The next question we would like to ask is will the pum
ing statistics make a bigger difference in the quantu
mechanical treatment of the micromaser? The probabili
pn of the steady-state field havingn photons for the micro-
maser with Poissonian pumping can be found analytic
@19#

pn5p0 )
m51

n
raasm

2

rbbsm
2 1m/Nex

, ~60!
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wherep0 is determined from the normalization condition

(
n50

`

pn51. ~61!

This formula is valid for the situation when the pumpin
atoms are in the mixed state:raaua&^au1rbbub&^bu. The for-
mula was used for calculatingn̄(u int), Fig. 11. We setraa
51 in order to compare the resulting points to our simu
tions ~note that we use pure atomic states there!. The figure
shows the apparent second, third, and higher thresh
where, according to the analogy with statistical physics,
micromaser field undergoes the first-order phase transit
Comparing with Figs. 10 and 11, we see that the cur
corresponding to the quantum-mechanical results for reg
and Poissonian pumping are very different, they coinc
around the first threshold only. Therefore, the pumping s
tistics does have remarkable effect in the quantu
mechanical theory.
m-
e

lar
FIG. 9. n̄ vs u int for the case withuau51.0
and Nex5300. The continuous line joins the
steady-state points gained from the quantu
mechanical simulation with regular pumping. Th
two types of crosses now showsemiclassical
stable solutions for both Poissonian and regu
pumping. For larger values ofNex the two almost
coincide.
7-9
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FIG. 10. n̄ vs u int for the case withuau51.0
and Nex5300. The continuous line now repre
sents analyticalquantum-mechanicalsolutions
for Poissonian pumping. The crosses stand for
semiclassical stable points. The quantum
mechanical curve is quite different from the pr
vious cases with regular pumping.
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So far, it was found that the semiclassical predictio
agree very well with the quantum-mechanical simulations
the region around the first threshold where the mean pho
number reaches its maximum values. It was supposed in
analytical treatment that the steady-state field is coherent
which n̄5uhu2 and the root-mean-squared deviation of t
photon distributions5uhu, whereh is its amplitude. We can

examine this assumption by calculating the values ofs/An̄

and u^a&u2/n̄ as a functions ofu int , and these are plotted i
Fig. 12 for the steady-state field of the micromaser w
Nex5300 anduau50.9. Both curves are smooth on the r
gion between 0 and 15 approximately, which correspond
the area around the first threshold. The values ofu^a&u2/n̄ are

close to 1, alsos/An̄ is almost constant on the largest po
tion of the region though smaller than 1. Therefore, our
sumption about the strong steady-state micromaser fiel
justified, indeed.

At last, we want to check the validity of Eq.~49!. We
present results from two simulations; in both casesuau
01380
s
n
n

he
or

to

-
is

50.9 andw50. Figure 13 shows the phase distribution
the steady-state field forNex530; it was chosen so thatu int

51.12 since it provides large mean photon number,n̄

523.6, which givesdw50.0253. The values ofdw and n̄
were used when calculating the distribution from Eq.~49!,
where we set the upper limit for the indicesm, n to 50. The
resulting curve matches very well the phase distribution fr
the numerical simulations. We find some differences only
the tip of the peak where the analytical one is slightly tall
approximately by 5%. The second comparison, Fig. 14, is
the situation whenNex5100, u int51.2, and n̄580.3 for
which dw56.7031023. Also here the analytical distribution
agrees very well with the numerical simulations. The peak
narrower and we see some differences only at its tip. Exp
menting more with the parameters it was found that Eq.~49!

provides excellent results for largen̄; values ofn̄ as small as
15 provide good agreement. Foru int where n̄ was smaller,
the peak became less pronounced and the values start
depart from those obtained from the simulations.
ar
le
ons
FIG. 11. Mean photon numbern̄ of the
steady-state field vs the pumping parameteru int ,
uau50.9 and Nex5500. The points from the
quantum-mechanical simulations with regul
pumping are joined by the continuous line, whi
the crosses show semiclassical stable soluti
where Poissonian pumping was assumed.
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PHASE DISTRIBUTION AND AMPLITUDE OF A . . . PHYSICAL REVIEW A62 013807
FIG. 12. The normalized root-mean-squar

deviation s/An̄ of the photon number of the
steady-state field vs the pumping parameteru int is
plotted by the continuous line, while the dashe

line shows the ratiou^a&u2/n̄ vs u int . Within the
approximate interval~0,15! the value is close to
1, which shows that the field is almost cohere
Nex5300 anduau50.9.

FIG. 13. Phase distribution of the steady-sta
field. Data from the numerical simulations i
shown by the continuous line, the dashed li
shows results from Eq.~49!. This is the case with
Nex530, uau50.9, andu int51.12.

FIG. 14. Phase distribution of the steady-sta
field. Data from the numerical simulations i
shown by the continuous line, the dashed li
shows results from Eq.~49!. This is the case with
Nex5100, uau50.9, andu int51.2.
013807-11
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VII. CONCLUSIONS

Our semiclassical theory provides results that are in v
good agreement with the quantum-mechanical numer
simulations when the cavity field has a large mean pho
number. The stable solutions for the mean photon numbe
a function of the interaction parameteru int coincide with the
simulations on the interval whose size increases asNex in-
creases while keepinguau constant. On the other hand, whi
keepingNex constant, the interval of validity becomes larg
as uau decreases. The average photon number reache
maximum, which is equal touau2Nex, at the first threshold
Then asu int increases the semiclassical result continues
follow the quantum-mechanical dependence approxima
until the latter reaches a second threshold. Also, it was fo
that the pumping statistics does not play a significant role
the semiclassical treatment if the objective is to determ
only the mean photon number. Of course, the same canno
said about the quantum case.
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The semiclassical approximation for the phase distri
tion is in very good agreement with the quantum-mechan
one. It was shown that it is sufficient to have as few as
photons in the steady field to obtain a precise result. T
expression for the phase distribution depends on the m
photon number as a parameter. That can be determined u
the stable semiclassical solution from Sec. IV. Therefore,
presented theory is complete allowing one to obtain res
using only the parameters, such asNex and u int , which
specify the micromaser.

The present treatment, however, cannot be used to d
mine the photon number distribution, and this remains
challenge and motivation for further work.
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