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Phase distribution and amplitude of a micromaser field in a semiclassical approximation
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We present a semiclassical method for determining the phase distribution and the average photon number of
a steady-state micromaser field pumped by a stream of resonant two-level atoms in a superposition of their
upper and lower states. Assuming the field to have a photon number distribution with a single sharp peak, we
find an equation for the amplitude and the phase of the steady-state field, which has two solutions. The stability
analysis shows which one of the two is physically realizable. Using the very simple time evolution of particular
atomic states, valid in the semiclassical limit, we find an expression for the phase distribution of the field that
contains the mean photon number as a parameter. That can be determined from the stable solution.

PACS numbd(s): 42.50.Dv

[. INTRODUCTION apart from having other nonclassical properties, they can be
used for generating macroscopic quantum superpositions.
A micromaser is a very simple physical system that con-The authors also numerically investigated the situation when
sists of a beam of two-level atoms and a single-mode eleche state of the field consists of a tangent state and a cotan-
tromagnetic field within a microwave cavity. Despite its sim- gent state in adjacent blocks of number states. This leads to
plicity and the fact that it has been the object of vigorousthe occurrence of the interesting period-2 oscillations when
research for more than a decade, it still presents a researchtbe steady-state field returns to its initial value not after in-
with new challenges. teraction with one, but after two atoms. A simple physical
Filipowicz et al. in 1986 published some papers on theexplanation of this phenomenon was found by Hilletyal.
theory of the microscopic masgt,2]. They investigated the [13]. The effect of the atomic phase was also studied for a
steady-state cavity field and they found that as the pump rateultinode laser system; Kieet al. developed the quantum
increased, it goes through thresholds that resemble first-ordéneory of the two-mode\ laser with atoms injected in a
phase transition3]. Guzmaret al. worked out the semiclas- superposition of their stat¢44].
sical theory, and they found that the system at a threshold The case in which the atoms are in a coherent superposi-
undergoes a transition from one branch of the semiclassicaion is a more complicated problem than the case in which
solution to the nex{4]. Progress was made not only in the they are completely inverted. In the latter case, the diagonal
theoretical understanding of the system, but also, around thelements of the density matrix couple only to each other, but
same time, advances in experimental physics made it posvhen there is atomic coherence this is no longer the case.
sible to build superconducting higB-microcavities, so that The entire density matrix must be treated at once. At the
the field could maintain large average photon number, whictsame time this is also a more interesting problem since the
combined with Rydberg-state spectroscopy, made real miatomic dipoles have a phase, and because they drive the
cromaser experiments possible. Experiments conducted &eld, the field has a phase as well. The steady-state field
the Max Planck Institute for Quantum Optics in Garchingproduced by atoms in their upper states has no mean phase,
have confirmed theoretical predictions of such quantum phebecause any value of the phase is equally likely.
nomena as sub-Poissonian photon statistics, quantum Rabi Here we want to extend the semiclassical approximation
oscillations, and quantum collapses and reviy&ls8]. to the micromaser with injected atomic coherence. In par-
Most of the studies of the dynamics of the micromasetticular, our objective is to determine mean photon number
have considered only injected atoms in their upper stategnd the phase distribution, of the steady-state field. We
while the situation in which the atoms enter the cavity in apresent a short review of the micromaser system in Sec. I,
coherent superposition of their upper and lower states haand Sec. Ill includes the core of our semiclassical treatment.
received far less attention. The micromaser with injectedVe find an equation for the amplitude and the phase of the
atomic coherence has been investigated by several authosteady-state field, which can be solved and has two solutions.
Krauseet al.,assuming weak atom-field coupling, found that In order to determine which one is physically realizable, we
the phase of the atomic coherence is transferred to the mperform a stability analysis in Sec. IV. Then we turn our
cromaser field and that the excitation probability of the at-attention to the problem of finding an approximate expres-
oms leaving the microwave cavity depends on the relativesion for the phase distribution of the field in Sec. V. We
phase angle between incoming atom dipoles and the[B&ld employ techniques developed by Gea-Banacloche to treat the
Since the outgoing atoms are available for measurement, groblem[15]. These rely on the very simple time evolution
experiment could be set up to determine the coherence of thef particular atomic states. We are able to use them to find an
field. Slosseet al. studied lossless micromaser with coherentexpression for the phase distribution, which contains the
pumping and they found that the field evolves towards puranean photon number as a parameter. Our analytical results
states, which were named tangent and cotangent §telles are compared to quantum-mechanical numerical simulations
12]. These states rely on the existence of trapping states, arid Sec. VI, and we find that the agreement is very good.
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I MICROMASER =08 g = 08 iy /Ny, ™

We shall begin by describing briefly the micromaser. A ) )
micromaser consists of a beam of two-level atoms passinfiere, we have introduced the pumping paramefiy
through a high® microwave cavity containing an electro- = VNexg7. The numbemy, is the mean number of atoms
magnetic field. It is assumed that the atomic beam is of lownteracting with the cavity field during its lifetime. Equation
density, i.e., at any given time there is at most one atoMS), which is written in the interaction picture defines the
present in the cavity. We also assume that the microcavity@ynes-Cummings time evolution of the field density matrix
supports only one mode of the field, which is in resonance = Trypsyses Which can be written formally ap(7)
with the atoms at the frequen@yaﬂd that the atoms have all — Mﬁ(o), and in thenumber-state representation we have
the same velocity, so that they pass through the cavity in a
constant timer. Th_e atom-fie_ld interaction is governed_by_ Pam— Pl @1%Cn+ 1€ms 15 1 B12CnCm) + Pr— 1m- 1] @]?SnSm
the Jaynes-Cummings Hamiltonian, and when the cavity is
empty, the field decays into the environment, which is in our +pnt1me 1l B%Sns1Sme 1+ i@B* (Ct 1Smr1Pnm+1
case at zero temperature. If the probability of the atoms be- -
ing in their upper states is high when they enter the micro- ~ SnCmPn-1m) T B(CnSmPn,m-1
cavity,_ then the micromaser can maintain a nonzero steady- —~Sn11Cmt 1Pnt1m)s (8)
state field.

The atoms have statésa), with energyo (we are using
units with4=1), and|b), with energy 0. The Hamiltonian
describing the atom-field system is

wherepnm:<n|,3| m). As one can see, the interaction couples
together elements from different diagonals, which makes its
analysis complicated. In the case of noncoherent pumping,
1 |aB|=0, only the diagonal terms are coupled.

H=wafa+ Ew(03+|)+g(a‘rg—+ag+), ) The decay of the micromaser field for the cavity at zero

temperature, formally given as(t) =e-{p(0), is described

wherea, a' are the annihilation and creation Bose operatord the master equatior6]

for the field obeying the standard commutation relations

- 1 A A -
[a',a]=1[a,a]=[a’,a’]=0, 2 T Ey(aTaPera*a—ZapaT). 9)

o3 ando™ are the Pauli spin operators,” is raising atomic
operator, c*|b)=|a), o~ is lowering operator,o~|a)
=|b), andg is the atom-field interaction constant. The first o
two terms on the right-hand side of EG) describe free field pmn(t) =g~ YHm+n/2 (
and free atom, respectively, while the third is the atom-field =0
interaction. The Hamiltonian is given in the rotating-wave
approximation. If the atom is initially in the state

|Wap=ala)+B[b), 3
wherey is the loss coefficient. Its reciprocalylis equal to
wherea and g are complex numbers satisfying the normal- the mean cavity lifetime.
ization condition|a|?+|B|?=1, and the field is initially in The times the pumping atoms arrive into the microwave
the state cavity may conform to various distributions. For the case
when they obey Poissonian statistics we can derive the equa-

which has the solution in the number-state representation

(m+D! (n+1)1|2
m! n! )

(1—e™ 7
><TPm-%—I,n+I(O)a (10

B - tion of motion for the average field density matrix in the
|f>_nzo da[n), @ form of a master equatioft ]
then after a timer the state of the combined system will be dp ~
g F(M=1p+Lp, 11

fi®(alay+ Blb dn(achi1|n)—iBspin—1))|a
He(ala)+4l >)_>nZO (@CnaN) i8S, In= 1)) wherer denotes the mean rate the atoms arrive at the cavity,

and it is related td\g, by Ng,=r/7y. Equation(11) can be
employed for finding the steady-state field density matrix by
putting dp/dt=0. On the other hand, when considering a
regularly pumped micromaser, i.e., when the timieetween

+ 2 do(Beg|n)—iasy. o|n+1))[b),

®) two consecutive atoms is constant, the time evolution of the
where field density matrix is given by the map
$n=SIN(g7N) =SiN( By/N/ Ny, (6) p(ti ) =e""Mp(t)). (12)
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FIG. 1. The time scale for the regularly pumped micromaser. FIG. 2. Relevant part of the field density matrix assumed in the
The atom-field interaction time is much smaller then the time semiclassical treatment. The dashed line represents the main diag-
interval between two consecutive atomsThe field can be mea- onal, the field is strongly peaked aroupg;. In order to determine
sured just before the next atom enters the cavity, the arroua,in (&) also p,,_, and p;1,_, are needed, other elements are ne-
or after just after the interactiofb), for example. glected.

If t; are the times the atoms enter the cavily,;—t;=T. 1 + R Y

The steady state is usually defined for this cas@(@s, ;) (al)=3yTrla .alap}=—7(a), (15)

=p(t;) = pss, Which says that the field density matrix is the

same at any of the times just before an atom enters the caw-Eq. (9) is considered, while proceeding with the first term

ity, see Fig. 1a). Of course, the density matrix could be js a little bit more involved. The term

different if measured not dt’s, we would have differenpg

should we measure the cavity field at the times just after the ~

atom-field interaction, for exaymple, Fig(d. J TaM-1)p}=(a(M—-1)) (16
It is possible to study the micromasers whose pumping .

statistics lies somewhere between the regular and Poissoni&an be expressed in the form

statisticg[17,18, but such cases will not be considered here.

\/ — [ 2
Ill. SEMICLASSICAL APPROXIMATION (a(M 1»_;120 N+ Uens an(lal*CnroCnia
T_he objective in _this section is to find the eqL_Jation of +|B|20n+10n—1)+Pn,n—1|a|25n+13n
motion for the amplitude and the phase of the micromaser
field, which will later enable us to determine the steady-state +Pn+2,n+1lB|25n+25n+l
values of these quantities. We will assume that the atomic FiaB*(Cy 08 s . )
pumping statistics is Poissonian. We will also assume that n+25n+1Pn+1n+17 Sn+1%nPan

the steady-state field has a large amplitude, and that its pho-
ton number distribution is sharply peaked aroumdVe ex- 17)
press the expectation value of the field annihilation operator

(a) in terms of its amplituder and phas&

+ia* B(Cn+13npn+l,nfl_Sn+20n+1pn+2,n)}-

Equation (17) can be further approximated by taking into
account the fact that we deal with a field whose number

distribution is sharply peaked at wheren>1. Namely, we

_ restrict our attention to field density matrices, which have

and, because of our assumptions; u®. only a few nonzero elementpy; and those nearby, Fig. 2.
Using the standard formula for determining the meanThen in the sum in Eq17) only those terms will contribute

value of an operatoA, (A)=Tr{Ap}, and Eq.(11) we are that include the density matrix elements ,,, wheren; and

able to obtain the needed equation faj. Firs_t, we multiply n, are close ton. We also use the Taylor expansion with

Eqg. (11) by a and then we take the trace with respect to the

photon number states. On the left-hand side we then get '€SPect tan, keeping only terms up to the order Of\/ﬁ to
evaluates,, ; andc,,, in terms ofs, andc,, respectively.

(a)=u€’, (13

- q d Fors,,, andc,. 1 we then get
Tr{ad—ﬂ =aTr{ap}=a<a), (14) ds,
Sn+1%Sn+ﬁa (18)
since in the Shrdinger picture the operatar does not de-
pend on time. It is easy to resolve the loss term on the right-
hand side of Eq(11) employing the cyclic property of the C L ~Ct % (19
trace Nttt dn
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the derivatives of, andc, can be found with the help of IV. STABILITY ANALYSIS
Egs. (6) and (7), ds,/dn=6,;c,/2ynNg, and dc,/dn=

— Oint Sn/2yNNg,, respectively. Finally, if we put together
what we have, we get

As it was said in the previous section, EQ4) can be

solved for the steady-state values m¥u? and 6. Using
either solution of the phasé we will | get a transcendental

d(a) * ) equation for the mean photon number n(e,m) as a func-
Z 2~ |B|*)shpnn-1tiaB* tion of the pumping parametet;,.. In order to determine
B whether the solution is stable we will displace the system

6 sc from its steady state by# and su, 66<<6, and Su<u,
x( __nt n ”>pnn ia* respectively. If the system shows a tendency to move to-
\/N_ex 2yn wards its steady state in both variabl@s an abstract sense
the system is moving in theu(#) plang, the solution is

0 S, C Y tabl i
x( int n n)pn+1n 1] §<a>_ (20) stable, and vice versa.

2N, 24n

We expect the steady-state micromaser field to be close to
a coherent statgy), where p=(a) and|»|?=n, which has

A. Unstable solution

Let us first examine the case

the density matrix in the number-state representation 0= . (26)
_ ,‘n‘z(ﬂ*)nﬂm This is substituted into Eq24) which gives us the equation
Pmn=¢€ T (21) —
ymin! for n(6;,) at steady state,
Therefore, the nondiagonal density matrix elements in Eq. 5 n
(20) can be expressed as 0=(lal®*~|B|?)s+ 2|a,8|s;c;—N—ex. (27)
*
—Pn 1= Prn (22) In order to find the stable points, we change- 6+ 66 and
N u—u-+éu in Eq. (24). We then employ a Taylor expansion
to find both sides up to first order 69 and éu. We obtain
and the expression for the time derivative 6t from the real
art of the resulting equation,
n n p geq
Pn+in-1— il 5 Pon- (23 \/_
K Su= G Nlex 2— | B2 casat |aBl(s2—c3)] - 1] u,
Keeping in mind thatp,, is sharply peaked about, this (28

implies that Eq.(20) can be put into the form
while from the imaginary part we have

d(ué'?) 1
=N al?— )Sﬂa'0+ aple'?

o Ned gl 18 B e g P mtr 29
Ot SnCn —i¢ . . . .
S NT “ou —laple All terms on the right-hand side of the last equation are posi-
ex tive real numbers, so that they form a positive factor multi-

( Oint +SFCF ol 1, 24 p:ying 6g. Thﬁn 56 (Wedmay say it is trr]le “velocity’;lofﬁg)

- —5ue’. always has the same direction &8. That means the phase
2N, 2u 2 y P

of the system at the poinu@ du, 0+ §6) is moving away
We have defined a new time parameter yt, and set from_a, see Fig. 8). Therefore, all pointsuy, §), which we
obtain from Eq.(27), are not stable.
iaﬂ*=|aﬂ|ei¢. (25
. . B. Stable solution
Equation(24) can now be solved for the two real variables
and 6. The steady-state values vfand 6 are determined by
setting the time derivative equal to zero. For the phasé
the steady-state field, two solutions are possible as one can
easily verify: 6= ¢ and 6= ¢+ 7. However, as long as We han we find
are in the classical regime, we expect that only one is physi-
cal. We will resort to a stability analysis to determine which —
one is stable, i.e., physically realizable, and which one is 0=(|a|>—|B|?) s>+ 2|af|sTr——
merely formal. : Nex

If we repeat the procedure for

=¢+m, (30)

(31)
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Im ut+du, 6+30 Im ut+du, 6+96 |+>:i(e7i¢|a>+|b>) (35
5‘9/ / - \/E - !
u. 6 Su R0 U, . . ;

as the atomic basis. These states are actually the eigenstates
of the semiclassical interaction Hamiltonian, which is ob-
tained by replacing the operatoes(a’) in the interaction

u 0 u o term of Eq.(1) by the c-number field amplitude (v*), v

Re Re — |v | e—i<P’
0 0
() (b) Hinse=9(o v* +ov). (36)

FIG. 3. Solutions of Eq(24) for the complex amplitudey  The dynamics of these states was intensively studied within
=u€'? are represented via polar coordinatesy. () Shows non-  the contex of the Jaynes-Cummings model by Gea-
stable case fof= ¢, the “velocity” 56 has the same direction as Banacloche[15] who discovered a formula that describes
the displacemen§. (b) Shows stable pointai(¢) for the situation  iheir fime evolution in the limit of large photon number
when 6= ¢+ since bothéu and 66 at point u+éu, 6+356)  On a time scale that is much smaller than the revival time
point back towards 6). tr=27r\/ﬁ/g, if the micromaser field is prepared in the co-

_ — —ie
as the equation fon(d,), and, for the equations of motion N€rent statdv), wherev= e, then| £)[v) evolves as

for Su and 60, |t>|v>—>e:i(9”@2)|i)lveii(gtm%). (37)
Su= Oint\Nex VNex[(|a|2_ |,3|2)CHSF—|6¥B|(S%_ c%)]— 1} éu, The error in Eq(37) is of order 1A/n. This result provides a
u convenient way of treating the systems with large photon
(32 number, because the total state vector remains a product of
the atomic and field parts.
: Oint VN An arbitrary atomic state can be expressed as
50=—|a,8|¥50. (33 Y _ P

|¥)y=e""sink|a)+ cosk|b), (39

As one can see, the factor multiplyin® in Eq. (33) has @  which in the basis of =) states becomes
negative sign. Therefore, the system has a tendency to move

from the state with phasé+ 56 back tod. However, we still | UY=(+;0| )| +;0)+{—;0|T)|—;0), (39

have to check the behavior afu in order to determine h h licit oh q q ¢ has b
whether the pointy, ) is stable. It is hard to see by inspec- where the explicit phase dependence o states has been

. luded. Th ffici f thi i f
tion of Eq. (32) what the direction ofsu is. We need the uded. The coefficients of this expansion can be found

. : . easil
term in the curly brackets to be negative for the field to be at y

stable (1,6), see Fig. &). The sign of this factor and the 1

stable solutions can be found numerically. These results were |(+ ;§0|\1’>|2=§[1+ cogw— ¢)sin(2«)],
compared with those from numerical simulations and this

will be presented shortly. Now, however, we want to turn our 1

attention to the problem of finding the phase distribution of & ;<p|‘lf)|2=—[1—cos(w— ®)sin(2x)]. (40)
the steady-state field. 2

For any initial atomic stat¢¥), Eq. (37) can be employed
V. PHASE DISTRIBUTION for finding the total state of the system at later time. We are
concerned with the steady-state micromaser field, and its

distribution of the field can be calculated. The probability phase in particular, theArefore we shall need the evolution of
that the phase is within the intervalx +d is ()\|f>|)\>d)\, the flelg density matrixp. The initial Qen'sny matrix .of the
where|\) is the quantum-mechanical phase state systempgysieni=[v)|W)(W|(v| evolves in time according Eq.
(37) too, of course, and it provides the field density operator
after we take the trace with respect to the atomic degrees of
(34) freedom. We obtain

Knowing the field density matrix at given time the phase

1 < .
N=— 2 €e™|n).
M= G 2
[o){v]=[(+:e[W)Fe™"*v)(e™ D]
Therefore, the phase distrjbution is defined by the diagonal +{(— ;0| W) |2 e %0 e ¢y, (41)
density matrix elementé\|p|\). The core of our approach

to determining the phase distribution lies in using the specialvhere 5QD=gT/2\/ﬁ In order to find the steady-state phase
orthogonal atomic states distribution of the field, theP representation of the density
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matrix may be used. The representation is a diagonal rep- C , O™ r2n
resentation ofp in terms of coherent state$¢), as p RN=5_e"' 20 NCTL decog(¢+\)
= [d?¢P(£)|€)(€|. Using this, we can convert E¢41) into mm=0 VM
an equation folP(v) X (N—m)]e~ (2 sin 2/ d¢) sinw-g) (49
P(v)—[(¥]+; 0~ 0¢)|*P(ve'*?) The constan€ is determined from the normalization condi-
(W] 0+ 3g)|?P(ve o). (42 MM
27
It is apparent that Eq42) describes merely changes of the f R(A\)dA=1. (50)
0

field phase, the field amplitude is unaffected, so that we drop

th licit|v| d d i ~1¢). With the help of
Ec?. z((g |\j:v|e|z;i|ndepen ence il (Ju]e”). Wi ehelpo The integral with respect ta is

2
P(go)%%[l-i-COS(W—(p-f— 5¢)sin 2«1P(¢— 5¢) fo dA cos((¢+\)(N—m))=27 5, (51)

1 where d,,,, is the Kronecker symbol, so that we have finally
+ E[l—COS(W— ¢—0¢)sSin2k]P(¢+ 6¢).

2 -1
f d(pe_(z sin 2«/ 5¢) sin(w— ¢) ) (52)
0

(43 €=

The right-hand side of E(43) must be equal t&(¢) for  The results from the numerical simulations, which are pre-
the steady-state field. For a largeve havedse<1, therefore  sented in the following section, show that Eg9) is very

we expand the right-hand side of E@3) up to the second precise whem is large.

order of d¢ and then the steady-state condition gives us the

second-order differential equation f&x( ¢) V1. NUMERICAL RESULTS

2 In most of the following numerical experiments the atom-

d .
0=- @[P(‘P)COS(W_ ¢)sin2x]+5 do? P(¢)de. field interaction constarg was 4.4< 10 Hz and the relative
(44) phase of the coherent atomic statfas defined by E(38)]
was set to 0. The pumping statistics was chosen to be regu-

This can be integrated giving the periodic solutions lar, because the Poissonian case is computationally very de-
_ . manding. We shall comment on the effect this has on our
P(@)=C'e (sin2dsp)sintu=e), (45  results shortly.

] ) ) We studied how the steady-state field varies with respect
where C’ is the constant of integration. Note, that event the micromaser parametes,, 6;, and|a|. In Fig. 4
though the formal solution to E¢44) has two constants, one —
of them is eliminated by the requirement of periodicity. The . _ _ .
solutions given by Eq45) allow us to draw several conclu- function of 6 WhenNe,=30 and|g| =0.9. Thedy interval
) ) . o . : was evenly sampled by 201 points between 0 and 40. For
sions. First, without even knowin@’, one can immediately — _ i
find the position of the maximum of the phase distribution €ach value o#;,c we foundn performing the following pro-
cedure. The initial state of the cavity field was taken to be the
37 vacuum. The field then interacted with an atom according to
Pmax=W=— - (46)  Eq.(8), and then decayed according to Eg0). The mea-

surement of the field’'s mean photon numberwas per-
Second, the phase probability distributi®(\)=(\|p|\)  formed just before the next atom entered the cavity. This

we plot the mean photon numberin the steady state as a

can be calculated from sequence, corresponding to Ed2), was repeated until the
steady-state value of was found. The field was considered
R()\):f d2EP(&)|(EIN)]2 (47) sFeady when itsn changed by Iegs thqn_l@)% during a
single sequence. The reason behind this is that we had to set

an upper bound for the number of interactions in order to get

The coherent state in the number-state representation is dgs results in reasonable time: for smalker, (30 to 100 it
’ X

fined as was set to 3N, and for largerNgy it was 13Ng,. If n
e changes at a rate of 18% per sequence, then the field
|§>Ee—|§|2/22 ——|n), (48) would need to interact with P0atoms to increase its value
=0 \n! by one. This means that such small differences would not

o ) show up on the graphs, even if we considered the maximum
and then from Eq(47) we obtain final expression fdR(\) number of interactions to be 7500(£= 500).

(r= \/ﬁ) The points from the quantum-mechanical simulations are
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* % % %, % FIG. 4. Mean photon number of the steady-

* 4 +++tr %, state field vs the pumping parametéy,, ||
£ 15| e % kY i =0.9 andN,,= 30. The points from the quantum-
+ Y, %, ex
t; kX mechanical simulations with regular pumping are
*+++ My joined by the continuous line, while the crosses
10r k3 show semiclassical stable solutions where Poisso-
Y . )
. nian pumping was assumed.

N T

L 00T
o} 5 10 15 20

int

in Fig. 4 are joined by a continuous line. The crosses on theuestion four simulations were done settiag to 0.85, 0.9,
same figure show semiclassical stable solutions as given §.95, and 1.0 witiN.,=300. The results are plotted in Figs.
Eq. (31). We find a very good correspondence between th&, 6, 9, 10. As one can see, the second threshold occurs at
two when#,, is between 0 and 5. The two curves are almostsmaller 6;,; as|«| increases. Up to that point the quantum-
identical in the vicinity of the first micromaser threshold mechanical and the semiclassical curves are almost identical.
where n has its maximum. The quantum-mechanical line A careful reader has probably noticed that we were using
shows the second threshold aroufi= 10, and beyond this different pumping statistics for the semiclassical theory and
point it does not match the semiclassical pattern. The relafor the numerical simulations. He may ask whether our com-
tionship betweem and 6, was also studied foN,,=100, Parisonis reasonable and how much the results of the semi-
300, and 500; the results are shown in Figs. 5, 6, 7NAS f:lassu.:al theo_ry depend on the pumping stat|.st|cs.lln order to
increases the second threshold moves to larger valugs, of investigate this point we shall find the semiclassical stable
for example, wheN,,=500 it occurs around;, =37, while s_olutlons for_ the amplltu_de and the phas_e of the_ steady-state
the quantum-mechanical and the semiclassical solutions ¢ leld for a micromaser with regular pumping. It it is assumed
incide for larger intervals ob,,,. Therefore, we may con- _hat the measurements are pe_rformed Just befare the pump-
clude that our semiclassical theory gives correct predictiongqgl atoms enter the cavity, Fig(a, then the steady-state

— . ) condition gives
for n(6,,) provided thatN, is large.

We were also concerned with the questions of g\.,) (a(ti+q))y={(a(ty)), (53
and the relationship between the quantum-mechanical and

the semiclassical solutions depend farj. To answer this which can be expressed with the help of EtR) as

100 T T T

T
simulations

semiclassical  +

80 |

60 - FIG. 5. Mean photon number of the steady-
state field vs the pumping parametéy,, ||
=0.9 and Ng=100. The points from the
quantum-mechanical simulations with regular
pumping are joined by the continuous line, while
the crosses show semiclassical stable solutions

where Poissonian pumping was assumed.

<n>

40 |

20
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300 T T T T T

T
simulations
semiclassical  +

250 |- 1

200 —
FIG. 6. Mean photon numbaer of the steady-

state field vs the pumping parametéy,, ||

é 150 |- =0.85 and Ng=300. The points from the
quantum-mechanical simulations with regular
pumping are joined by the continuous line, while

100 1 the crosses show semiclassical stable solutions
where Poissonian pumping was assumed.
50
0 1 1
o] 5 10 15 20 25 30 35 40
eint
Tr{e' "M p(t)al=Tr{p(t;)al. (54) The same notation as in Eq4.3), (25 was used. The sta-
' ' bility analysis gives us time evolution @h and 86 in terms
of the maps

Following the procedure from Secs. Ill and IV, we find that
the phase of the steady-state field is

} r_ 2_ 2\ o— ~—
5u—>u 2u' —u+{(|a|*—|B*) sy Cn

0=+, (55)
and the amplitude of the field can be determined from +|aﬁ|(c§,—s%,)} Oin su, (59)
VNex
u—u'= (el B sl T, (59 30— 1~ Bl | 50 59
—u'= ol — -+« , —| 1= .
2u’ " u’ UVNey

We have plotted the stable points for the case Wit
where =1.0 andN,,= 300 in Fig. 10, and we see that they come

very close to those calculated with Poissonian pumping. We

further find that the points for both kinds of pumping statis-

T Ney, (57)  tics stay close for larg&le,, and they only start to differ as

u'=e

300 T T T T T

T
simulations

semiclassical  +

200 —
FIG. 7. Mean photon number of the steady-

state field vs the pumping parametéy,, ||
=0.9 and Ng=300. The points from the
quantum-mechanical simulations with regular
pumping are joined by the continuous line, while
the crosses show semiclassical stable solutions
where Poissonian pumping was assumed.

A
C 150 -
A\

100 -

50
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300

T
simulations

semiclassical  +

.
A T Y
+ ko % kY
+ T T
T
ER
ks £

250 |-

FIG. 8. Mean photon numbaer of the steady-
state field vs the pumping parametéy,, ||
=0.95 and Ng=300. The points from the
quantum-mechanical simulations with regular
pumping are joined by the continuous line, while
the crosses show semiclassical stable solutions
where Poissonian pumping was assumed.

A
C 150 -
A\

100 -

50

int

0, increases. However, even for smidll, (such as 3pthey

both provide almost the same valuesnofor 6;,; around the "
first threshold, which is also in very good correspondence 2
with the quantum-mechanical simulations, Fig. 10. Therefore = Pn
we conclude that the pumping statistics does not play a role

in the semiclassical treatment of the micromaser if the objec- ) i o ]
tive is to determine the mean photon number of the steadylhis formula is valid for the situation when the pumping
state field for values of;, of order 1. We prefer to work atoms are in the mixed staisala)(al + ppp|b){b|. The for-

with Poissonian pumping because it corresponds better to thgula was used for calculating( 6;,), Fig. 11. We sep,,
actual physical experiments. =1 in order to compare the resulting points to our simula-

The next question we would like to ask is will the pump- tions (note that we use pure atomic states thefde figure

ing statistics make a bigger difference in the quantum-shows the apparent second, third, and higher thresholds
mechanical treatment of the micromaser? The probabilitiesvhere, according to the analogy with statistical physics, the
p, of the steady-state field havingphotons for the micro- micromaser field undergoes the first-order phase transition.
maser with Poissonian pumping can be found analyticallyComparing with Figs. 10 and 11, we see that the curves
[19]

corresponding to the quantum-mechanical results for regular
and Poissonian pumping are very different, they coincide
n Paasﬁq around the first threshold only. Therefore, the pumping sta-

Pn=Po TN

> , (60) tistics does have remarkable effect in the quantum-
m=1 pppSm+ M/Ney mechanical theory.

wherep, is determined from the normalization condition

=1. (61)

350

T T
simulations

Poissonian pumping  +
regular pumping X

FIG. 9. n vs 6, for the case witha|=1.0
and Ng,=300. The continuous line joins the
steady-state points gained from the quantum-
mechanical simulation with regular pumping. The
two types of crosses now shosemiclassical
stable solutions for both Poissonian and regular

pumping. For larger values ®f,, the two almost
coincide.

int
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350 T T T T

Poissonialn pumping, QIM

Poissonian pumping, SC = +

300 |

FIG. 10. n vs 8, for the case witha|=1.0
and N,=300. The continuous line now repre-
sents analyticalguantum-mechanicakolutions
for Poissonian pumping. The crosses stand for the
semiclassical stable points. The quantum-
mechanical curve is quite different from the pre-
vious cases with regular pumping.

200

<n>

150

100

50 | i i

int

So far, it was found that the semiclassical predictions=0.9 andw=0. Figure 13 shows the phase distribution of
agree very well with the quantum-mechanical simulations inthe steady-state field fd¥.,= 30; it was chosen so tha#,,
the region around the first threshold where the mean photon q 15 since it provides large mean photon number
number reaches its maximum values. It was supposed in the . . B —'
analytical treatment that the steady-state field is coherent, for 23.6, which glve56¢—0_.0253. The yalqes 0bp andn

T ) e were used when calculating the distribution from E4P),
which n= | 72| and the root-mean-squared deviation of theyhere we set the upper limit for the indices n to 50. The
photon distributionr=| 7|, where is its amplitude. We can  yeqyiting curve matches very well the phase distribution from

examine this assumption by calculating the value&bf/ﬁ the numerical simulations. We find some differences only at

and |<a>|2/n as a functions o, and these are plotted in the tip of the peak where the analytical one is slightly taller,
Fig. 12 for the steady-state field of the micromaser withapproximately by 5%. The second comparison, Fig. 14, is for
Ne,=300 and|a|=0.9. Both curves are smooth on the re-the situation whenNg=100, 6,,=1.2, andn=80.3 for
gion between 0 and 15 approximately, which corresponds tavhich ¢ =6.70x 10 3. Also here the analytical distribution
the area around the first threshold. The valuegaf|?/n are ~ agrees very well with the numerical simulations. The peak is
close to 1, alsm/\/ﬁis almost constant on the largest por- narrower and We See some differen_ces only at its tip. Experi-
tion of the region though smaller than 1. Therefore, our as_mentmg more with the parameters it was found that &)

sumption about the strong steady-state micromaser field igrovides excellent results for large values ofn as small as
justified, indeed. 15 provide good agreement. Féj,; wheren was smaller,

At last, we want to check the validity of Eq49). We  the peak became less pronounced and the values started to
present results from two simulations; in both case$  depart from those obtained from the simulations.

500 T T T T T

T
simulations
semiclassical  +
450 g

400

350

FIG. 11. Mean photon numben of the
steady-state field vs the pumping parameigr,
|e|=0.9 and N.,=500. The points from the
guantum-mechanical simulations with regular
pumping are joined by the continuous line, while
the crosses show semiclassical stable solutions
where Poissonian pumping was assumed.

300
A
c 250 -
A\
200 |
150 [
100

50

int
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25 T T T T T T

T
ol<n>"?

|<a>|2/<n> -------

FIG. 12. The normalized root-mean-squared

deviation a/\/i of the photon number of the
steady-state field vs the pumping paramegris
plotted by the continuous line, while the dashed
line shows the ratid(a)|?/n vs 6. Within the
approximate interval0,15 the value is close to
1, which shows that the field is almost coherent.
Ng,= 300 and|«|=0.9.

0 5 10 15 20 25 30 35 40
einl
3 T T T
simulations
analytical -------
25

FIG. 13. Phase distribution of the steady-state

<§,1-5 r field. Data from the numerical simulations is
shown by the continuous line, the dashed line
L shows results from Ed49). This is the case with
Ng,=30, |@|=0.9, andf;,;=1.12.
05 |
0 1 1
0 /2 k4
5 T T
simulations
analytical -----—-
4
3 -
FIG. 14. Phase distribution of the steady-state
‘§ field. Data from the numerical simulations is
shown by the continuous line, the dashed line
ar shows results from Eq49). This is the case with
Ng,= 100, |a|=0.9, and6;,,=1.2.
1}
D 1 1
0 e T 3n/2 on
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VIl. CONCLUSIONS The semiclassical approximation for the phase distribu-

tion is in very good agreement with the quantum-mechanical

o%urasigg?rl]aeﬁlczlitahetﬂg pLO;r']?S;_rﬁqzlg;sz;la:ﬁj;rr:e\ﬁr ne. It was shown that it is sufficient to have as few as 15
9 9 d hotons in the steady field to obtain a precise result. The

ilyrrlljtl)aetio'rllie\lvshnggléhsol(iﬁi\g;ysfmlglrdthhearsn:afrgr?otrg ﬁiranaggoaexpression for the phase distribution depends on the mean
a functic.m of the interaction parame coir?cide with the psnoton number as a parameter. That can be determined using
P @ the stable semiclassical solution from Sec. IV. Therefore, the

S|mulat|onf]_|onkthe .|rr11te|rval V\{hotseosmtf] mctrheasr(]aN%gn-hll presented theory is complete allowing one to obtain results
creases while keepirge| constant. n the other hand, while using only the parameters, such B, and 6,,,, which

keepingNe, constant, the interval of validity becomes Iargerl.?gecify the micromaser.

as |‘.“| decre?‘_sehs._ The alv;ara%(la\l photto& n?m??ﬁ rechlges The present treatment, however, cannot be used to deter-
maximum, which 1 equa par Nex, al the TIrStNresnold. - ine the photon number distribution, and this remains a
Then as#,,; increases the semiclassical result continues tQ:haIIenge and motivation for further work

follow the quantum-mechanical dependence approximately
until the latter _reache§ a second threshold. A_Iso_, itwas found ACKNOWLEDGMENT

that the pumping statistics does not play a significant role in
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