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Inequalities for electron-field correlation functions
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We show that there exists a class of inequalities between correlation functions of different orders of a chaotic
electron field. These inequalities lead to the antibunching effect and are a consequence of the fact that electrons
are fermions: indistinguishable particles with antisymmetric states. The derivation of the inequalities is based
on the known form of the correlation functions for the chaotic state and on the properties of matrices and
determinants.

PACS numbdps): 42.50.Lc, 05.30.Fk, 25.75.Gz

[. INTRODUCTION and the cross sectiddlocalized at the point, which is able
to detect single electrons. The probability of detecting an
In 1956 Hanbury Brown and Twiss observed a correlatiorelectron at the detector during a short time interygk
of photocurrents from two detectors aimed on the same star At) can be then expressed as
[1]. They explained this phenomenon using the classical
electromagnetic theory of light. A more proper treatment of P(r,t,At)=GY)(r 1) SAt, )
the problem shows that there must be a correlation between
the photons coming from the star. Namely, photons are morehere G)(r,t) is the so-called one-electron correlation
likely to to arrive in groupg‘“bunches”) rather than alone, function defined by the relation
which results in an enhanced shot noise with respect to ran-
domly arriving (Poisson particles. This phenomenon is GO(r,t)=Tr{pd (r,t)p(r,1)}, 2
called bunching and it is a typical behavior of photons emit-
ted from thermal sources. It is caused by the fact that phog(r,t) and #'(r,t) being the flux annihilation and creation
tons are not dlStIﬂgUIShab|e N prInCIple and thell’ quanturrbperators Of the electron at the Space_time porm) ((See
state is symmetrical with respect to a permutation of twar4)).
photons. In terms of the probability theory, bunching is ex- Now, suppose we havk detectors at different points
pressed by the fact that the probability of detecting two pho; o, ... r, and inquire what is the probability that we de-
:ﬁgﬁ ?;etherotc‘i"l’J%td;te?g‘g;;ﬁgg%fgg tevr:)eir?dni\?itgjglltsj;?ég- ect an electron at the first detector during the time interval
P P (t1,t;+At), another electron at the second detector during

tions. H"Ie time intervalt,,t,+ At), etc., and théth electron at the
a

For the case of electrons, a similar correlation has bee . . . ;
predicted also in 19562]. As an electron state is antisym- st detector during the time intervl ,t+ At). This prob-

metrical with respect to a permutation of two particles, elec-2bility is now equal to
trons avoid coming in pairs, which results in a reduced shot _ K

noise. This phenomenon, called antibunching, has been obP (ML lots, G AD =G, o ity )
served experimentally only recent[]. In analogy to the X (7SAL)K 3)
case of photons, antibunching is equivalent to the fact that

the probability of detecting two electrons at two detectorsyjith the k-electron correlation function

shortly after one another is less than the product of probabili-

ties of the two individual detections. cik kEG(k)(rl! oot )
In this way, the typical behaviors of photons and electrons ="
can be expressed in terms of certain inequalities between the =Trpd (ri,ty)- - (e, t) d(r,t) - - - (ry,ty)}.
detection probabilities. There is a question whether there is
maybe a whole class of inequalities between some physical 4

guantities that would describe the bosonic or fermionic be-

havior of photons and electrons, respectively. We will show In principle, it is poss_ible to evall_Jate the correlation func-
that such inequalities exist, at least for electron chaotid!ons for any eIectron.ﬁeId, according to .E@)- However,
; fthe calculation sometimes can be very difficult and correla-

tion functions are nowadays known for relatively few elec-
tron stateg5—8|. We will concentrate on an electron chaotic
Il. CORRELATION FUNCTIONS state in the following that is quite explored and the explicit
form of correlation functions is known for it.
Suppose we have an electron field with the density opera- The chaotic state is a generalization of a thermal state and
tor p and an electron detector with the quantum efficiency it is believed to be produced by the most coherent electron
source nowadays available, the field-emission [@)€. It is
defined to have a maximum entropy if certain parameters
*Electronic address: tomtyc@physics.muni.cz (the mean number of particles and the energy spegtarm

the electron field.
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fixed at given values. In other words, for these fixed param- Using the properties of determinants and the fact that
eters the chaotic electron field is as random as possible. Org; :Gi(l), it is possible to rewrite Eq(5) in terms of the
of the interesting properties of this state is that if there isy's:
some correlation in the chaotic field, it must have its origin
in the indistinguishableness of particles, i.e., in the Pauli 1 oy o v
principle. Indeed, distinguishable chaotic particles would y 1 Yok
come to a detector completely uncorrelated, which means G —cWe®...g® )
that any joint detection probability would factorize into a 12, k=L k
product of the individual detection probabilities, i.e., it R O R !
would imply G, =G{MGEM. .G In this way, any
aberration from this equation has its origin in the fermionic @)
nature of electrons.

According to[5,8], the correlation function of a spin- 1. INEQUALITY BETWEEN ONE- AND TWO-
polarized chaotic state has the form of the determinant ELECTRON CORRELATION FUNCTIONS

r r T We will first investigate the two-electron correlation func-
Fll I‘12 Flk tion. According to Eq(7), it follows that
21 22 0 2k
G | i ®  GR=GPGM(1- 1y =GPeP(1- [ nd?). ®

g T - Dk Here we used the fact that,= y5, that will be proved later.
Equation(8) shows that

where T, =Tr{p®'(r; ,t)) &(r; ,t;)} is the cross-correlation cR<=gMeW )
function of the electron field at the space-time poimtst() temmr e
and (.t;). so the joint detection probability is less than or equal to the
It is useful to introduce the complex degree of coherenceyroduct of the individual detection probabilities. It means
by the relation that one is not likely to detect two electrons at the space-time
points where the electron field is mutually coherent. In usual
o L'; electron fields, this happens if the spatial separation of the
Yi— \/TF” two points {,,t;) and (»,t,) is not larger than the coher-
ence length of the electrons and if the time differentg
(we suppose thak;;#0 for all i; the opposite case is not —t; is not larger than the coherence tirffig.? From this it
very interesting since some of the detectors are then not iffollows that a detection of two electrons at the same detector
luminated by electrons at allAn analogous physical quan- with a time separation less than is not likely because the
tity has been known in optics for a long time that expresseserm 1—|y,,|? is then small. On the other hand, the detection
the mutual coherence of the electromagnetic field at twgrobability of two electrons with a time separation much
space-time pointS.Similarly, yij expresses the mutual co- more thanT. (when y,, is already equal to zejds simply
herence of the electron field at the space-time pointd;] equal to the product of the individual detection probabilities
and ;,t;) and contains information about both the temporaland there is therefore no correlation. So it seems that at the
and spatial coherence of the field. As we will see later, thaypical time scale off ¢, the electrons avoid coming in pairs
matrix I'® composed of the cross-correlation functidng  (or groups to a detector and prefer coming alone. This effect
is either positive-definite or positive-semidefinite, fromis called antibunchingsee Fig. 1 Thus, we can say that
which it follows thatI';I';; <I';T'j; and|y;|<1 for alli,j.  antibunching is a consequence of the fact that the probability
The casey;j|=1 corresponds to the complete mutual coher-of detecting two electrons at two detectors shortly after one
ence of the electron field at the points ¢;),(r;,t;), while  another is less than the product of the probabilities of the two
|'yij|=0 corresponds to the complete incoherence. Thus foindividual detections, or more generally, that it is a conse-
|71j|>0, some properties of the electron field at the pojnt quence of inequality9).
at the timet; can be determined from the knowledge of the In the extreme case whery,| =1, the two-electron cor-
electron field at the point at the timet; . On the other hand, relation function turns into zero. Then, no two electrons can
if |4;|=0, even if the properties of the field at the paipat ~ be found at the space-time points {t;) and (,t,) simul-
the timet; are known completely, we cannot say anythingtaneously. This reminds one of the Pauli principle: the latter
about the field at the point at the timet; . prohibits two electrons to be in the same quantum state,
while Eq. (8) prohibits two electrons to be at the space-time
points (4,t1) and (,,t;) where the electron field is mutu-
lly completely coherent.

(6)

'One usually speaks about coherence of light but not about mutué’:}
coherence. The coherence expresses the ability of light to interfere._
In a similar way, if there is a mutual coherence of the electromag-
netic field at two points, there would occur interference if we 2Strictly speaking, in quasimonochromatic fielgig,#0 holds if
brought the light from these two points together. r,—ry~v(t,—t1), wherev is the group velocity of the electrons.
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Of course, from Eq(11) it follows also thaty;; = 'yj*i , e,
the matrixy¥ composed of the complex degrees of coher-
ence is also Hermitian.

The second property can be proved in a similar way as an
analogous statement in the quantum optsee|10], p. 585.

Let O be the operator defined as

k
0=2> Ndy, (12)

Normalized correlation function

9% 25 0 P 20 where\ 1, ... A\ are arbitrary complex numbers. It holds

Time difference 1 [fs]

k k
FIG. 1. The normalized two-electron correlation function Trip OOV = 2 AN TH b b 1= 2 AN
GRAINGHGM]=1—|y,)? for r;=r, as a function of the time tp ' if= {pdidi} =, Y
difference r=t,—t; for spin-polarized quasimonochromatic elec- (13
trons with the Gaussian energy spectrum. The width of the peak is

approximately equal to the coherence time of the electrons. The i N oAy .
probability that two electrons come after one another within the 't the same time, TpO'O} is a non-negative number. As

coherence time is less than the probability that they come longeil® right-hand side of Eq13) is a qL_‘adr?tiC form in tha’s

positive-definite or positive-semidefinite. A similar statement

Inequality (9) holds between the one- and two-electron¢@n be proved also for the matrixy¥ using O
correlation functions of a chaotic electron field. Now, thezE!‘:l)\i(F“F”)*l’%i.
qguestion is whether it would be possible to find a similar As we will see in the following, from the Hermiticity and
inequality also between correlation functions of higher or-definiteness of the matricé8® and y, the desired in-
ders. The answer is yes. A possible generalization of®q. equality follows directly. However, first it will be necessary
that comes to mind i | <GMG.. GV, If this  to prove the following lemma.
should hold, then the determinant in Ed) would have to be Lemma The determinant of any positive-definite or
less than or equal to unity. In the following, we will show positive-semidefinite Hermitian matrik=(A;;) with non-
that it is indeed so by using the well-known properties ofzero diagonal elements cannot exceed the product of the di-
matrices and determinants. Moreover, we will prove an everagonal elements oA, i.e., det@)<A;1A,, - - Ay, and the
more general inequality between the correlation functions oequality takes place if and only & is diagonal.
different orders. Proof: As all the diagonal elemen#s; of the matrixA are
positive, we can define the matrx=(a;;) with elements
a;;=Aj; /VA;A;j (in analogy with defining the matrix®)
IV. GENERAL INEQUALITY BETWEEN CORRELATION with the help ofT ). Thanks to the Hermiticity of the ma-
FUNCTIONS trix a, it is possible to transform it into the diagonal form
with a unitary transformation, i.e., there exists a unitary ma-
trix U for which the matrixo=UaU" is diagonal. This trans-
formation changes neither the determinant nor the trace of
the matrix because it is a unitary transformation. If we de-

First, we note that the matrix composed of the cross
correlation functions

g Ty oo Tyg note the diagonal elements of the mattixas b;, then
Ty Ty - Ty Tr(a)=Tr(b)=3{_,b; and detq)=det()=11f_,b; evi-
reo=| . ) ) (10) dently hold. At the same time, Taj =k holds due to the fact
; ; ; thata;;=1 for alli. To find out what is the maximal possible
Mg T - T value of detf), we will use now the inequality between the

arithmetical and geometrical averages. The arithmetical av-
erage of the numbels; is a=2ik:lbi /k=1 and their geo-
is Hermitian and either positive-definite or positive- metrical average ig3="Y/TIl_;b;. As the numbers; are
semidefinite. The Hermiticity ol’® follows simply from  non-negative, the inequalitg< « holds, from which it then
the Hermiticity of the density operatgrand from the invari-  follows that deté) =i b;=<1. As is known, the equality

ance of the trace under a commutation of operators: B=a takes place if and only ib;=b,=---=by. In this
case, the matrid is the unit matrix, from which it follows

R o L thata is also the unit matrix and;; = 6(i,j). Thus, det@)
Ti=Tr{pd ¢t =[Tr{ ¢ dip ™ * =[Tr{pep] i} 1* =T . <1 holds and the equality takes place only when all the
(11 nondiagonal elements of the mataxwanish. Expressing the
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determinant of the original matri& with the help of detg)
as detf) =A;,A5- - - A det@), we get from the inequality
det@)<1 that

detfA)<A;Ax - - Ak (149
Moreover,A is diagonal if and only ifa is diagonal. There-
fore, the equality in Eq(14) takes place if and only if the
matrix A is diagonal.

If we identify the matrixa with ¥, then from Eq.(7)
and the proof above it follows immediately that

=GHGM. ..M. (15

This is a generalization of the inequalit§) for a correlation

function of arbitrary order. An even stronger generalization

would be evidently

K | k-1
G(1% LS G(l)z JGI(+ 1,|)+2 K-

(16)

As we will see now, this inequality indeed holds.

V. PROOF OF THE INEQUALITY (16)

First we will define a matrixI’’ of the typek/k in the
following block form:
r®
( 0 ) .

Here 0 stands for the zero matrices of the typma or m/I
(we have denoteth=k—1) andI"),T"(™ are the matrices of
the typel/l andm/m, respectively, corresponding to the cor-
 andGT)

0
rm

r= (17

.....

1_‘l,l Fl,I
ro=| Sl
I‘I,l l_‘I,I
(18)
lﬂl+l,|+1 I‘IJrl,k
rm= :
i1 Ik
Due to Eq.(5) and the block form of’, it holds
G, =detl),
19

..... G, =de(T")de(T'™)=de(T").

Now, we know that the matrif =T'¥ is either positive-

definite or positive-semidefinite. In the latter case, the in-

equality(16) is satisfied trivially because then dE)(=0 and
det@"),det™) are both non-negative due to their defi-
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sponding unitary transformational matrices, so that the ma-
tricesDO=uOrOYOT gandd M =yMTMy™* gre photh
diagonal. Then evidently the unitary matrix

u® o
(o U(m>>

transforms the matriX’’ into the diagonal form, so th&’
=UT'U"is diagonal. LeD denote the matrix obtained from
I' by the same unitary transformation, i.eD=UT'U".
Thanks to the block form of the matri¥, the matrixD has

the form
D B ( ) ,

where D!™ and D™ are some mutually Hermitian-
conjugate matrices of the typém and m/l, respectively.
Applying now the Lemma to the matri® (we can do that
becauseD is positive-definite and Hermitian; the latter fol-
lows from the unitarity of the matrixU), we see that
det(D)=<det(D') because the diagonal elements of the ma-
tricesD andD' are identical and’ is diagonal. Combining
this with the equations that hold due to the unitarity of the
matrix U,

u

(20

D(Im
DM

DO

p(mh (22

de(D)=de(T'), de({D’)=de(I"’)=de(I'")de(T™),
(22

and with Eq.(19), we finally obtain the inequality16). Now,

the inequality detD)<det(D') changes into equality if and
only if the matrixD is diagonal, i.e., iiD!™ andDM) are

the zero matrices. Then, again due to the block form of the
transformation matrib, also the matrices

1_‘l,l+l 1_‘l,k
r(m) = S
I‘I,I+1 I‘I,k
(23
1_‘I+1,l F|+1|
r(m— : :
L1 Y

are the zero matrices. Thus, we can conclude that the in-
equality(16) holds and it changes into equality if and only if
all the cross-correlation functiond™; ; vanish for i
=1,...Jandj=1+1,... k.

VI. FERMIONIC NATURE OF ELECTRON
CORRELATIONS

niteness. Therefore, in the following we will discuss the case Let us see what the inequalityl6) that we just proved

whenT is positive-definite.
As the matriced™() andI"(™ are Hermitian, it is possible

to transform each of them into the diagonal form with atection

unitary transformation. Let/!') and U(™ denote the corre-

really means. We denote the detectionl @lectrons at the

space-time pointsr,t4), . ..,(r,t;) as eventA and the de-
of k-l electrons at the points
(r+1,te1)s - - -, (rg,te) as evenB. Then the inequality16)
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7 2~(3) ~(1)~(1
G(1,2),3,4,5,6,7€G(l,Z)Gg,S)JGEl c{h. (24

VIl. CONCLUSION

We have proved a relatively simple inequality between
correlation functions of different orders for chaotic electrons.
As any correlation in a chaotic electron field originates from
the fermionic character of the electrons, the inequaliy is
a direct consequence of the Pauli principle. It demonstrates
the aversion of the electrons to staying and coming to a de-
] ) tector in groups. The inequalifyL6) determines a set of con-

FIG. 2. An example of inequalityl6) for k=9, 1=5. The cor-  djtions that must be fulfilled on the hierarchy of the chaotic
relation function corresponding to all the points is less than or equal relation functions. We must point out that the inequalities
to the product of correlation functions corresponding to thein Eq. (16) do not hold for all electron fields. There are
“white” and “black” points. The equality takes place if and only if electron states that show even bunching instead of anti-
¥i;=0 for each pair containing one white and one black point. bunching[11,12. However, these states are quite rare and
the chaotic state remains the most important and widespread
state in electron beams.

From the experimental point of view, the observation of
) ) : . . correlations is limited especially by an extremely short co-
izes the inequality9) also to multiple electron detection pro- herence time of available electron beais,14. The coher-

ce.:,:/es.h hat the i lit9) lead h . ence time is related to the energy bandwidth of the beam by
e have seen that the inequalifg) leads to the anti- o relationT,~h/AE, which yieldsT,~2x10"%*s for a

bunching effect as a consequence of the indistinguishable,g/pical field-emission beam for WhicAE~0.2 eV. The
ness of _ele_ctlrops. Similarly, tlhe ;nquuzil(u{:_i) reflects the easurement of correlations with such a characteristic time
Same principie for more complicated detection processes a quires very fast detectors and coincidence electronics and
leads to more general correlations in electron _f|eIQS. Itis ‘even under optimum conditions the experimental resolution
fundamental statement that expresses the fermionic behavigr o ayceeds the coherence time by three orders of magni-
of ile‘]itrl?ns |r} a veéy CO\Tpt?ft way. ¢ lity i 6 tude. The signal-to-noise ratio is therefore very small and it
s 10 OANS rorr;‘ ec. v, the cr?se goequaé yhm HQ46) is not surprising that a two-electron correlation was observed
corresponds to the situation wheh; =0 (and henceyi; i, the |ast year only. Observation of higher-order correlations

says that the probability that both eveitsand B happen is
less than or equal to the product of probabilities of evénts
andB (see Fig. 2 In this way, the inequality16) general-

=0) ‘;erj‘" i=1...1 ?‘”djlegl’%' - k. Ther; the elec- 44id require a more complicated experimental setup and |
tron field at any point of the first set of point§  pgjieve that it will not be possible until electron sources with
={(ri,t)li=1,... |} is incoherent with the field at any 5 mch jonger resolution time become available. On the

point of the second seBn={(r;,t))[j=I+1,... kK}. The  qiher hand, if the resolution and coherence time became
equality in Eq.(16) is then very reasonable; if the fields at ;omparaple, the highest order of observable correlations
the points corresponding to the both s&sS;, are mutually \yqyid be limited by the fidelity of the coincidence electron-
completely incoherent, the detections at the points of the tWg.¢ Thus we must conclude that the inequalfiyis the only
sets are mutually independent and therefore total detectiog,qigate for an experimental verification from the whole
probability factorizes into the product of the detection prob-qj55s of inequalitie$16) at the present time.
abilities corresponding to the individual sets.

Of course, the inequalityl6) can be applied repeatedly
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