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Inequalities for electron-field correlation functions

Tomáš Tyc*
Department of Theoretical Physics, Masaryk University, 611 37 Brno, Czech Republic

~Received 21 January 2000; published 8 June 2000!

We show that there exists a class of inequalities between correlation functions of different orders of a chaotic
electron field. These inequalities lead to the antibunching effect and are a consequence of the fact that electrons
are fermions: indistinguishable particles with antisymmetric states. The derivation of the inequalities is based
on the known form of the correlation functions for the chaotic state and on the properties of matrices and
determinants.

PACS number~s!: 42.50.Lc, 05.30.Fk, 25.75.Gz
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I. INTRODUCTION

In 1956 Hanbury Brown and Twiss observed a correlat
of photocurrents from two detectors aimed on the same
@1#. They explained this phenomenon using the class
electromagnetic theory of light. A more proper treatment
the problem shows that there must be a correlation betw
the photons coming from the star. Namely, photons are m
likely to to arrive in groups~‘‘bunches’’! rather than alone
which results in an enhanced shot noise with respect to
domly arriving ~Poisson! particles. This phenomenon i
called bunching and it is a typical behavior of photons em
ted from thermal sources. It is caused by the fact that p
tons are not distinguishable in principle and their quant
state is symmetrical with respect to a permutation of t
photons. In terms of the probability theory, bunching is e
pressed by the fact that the probability of detecting two p
tons at the two detectors shortly after one another is la
than the product of probabilities of the two individual dete
tions.

For the case of electrons, a similar correlation has b
predicted also in 1956@2#. As an electron state is antisym
metrical with respect to a permutation of two particles, el
trons avoid coming in pairs, which results in a reduced s
noise. This phenomenon, called antibunching, has been
served experimentally only recently@3#. In analogy to the
case of photons, antibunching is equivalent to the fact
the probability of detecting two electrons at two detect
shortly after one another is less than the product of proba
ties of the two individual detections.

In this way, the typical behaviors of photons and electro
can be expressed in terms of certain inequalities between
detection probabilities. There is a question whether ther
maybe a whole class of inequalities between some phys
quantities that would describe the bosonic or fermionic
havior of photons and electrons, respectively. We will sh
that such inequalities exist, at least for electron chao
states. To do this, we first introduce correlation functions
the electron field.

II. CORRELATION FUNCTIONS

Suppose we have an electron field with the density op
tor r̂ and an electron detector with the quantum efficiencyh
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and the cross sectionS localized at the pointr, which is able
to detect single electrons. The probability of detecting
electron at the detector during a short time interval^t,t
1Dt& can be then expressed as

P~r,t,Dt !5G(1)~r,t !hSDt, ~1!

where G(1)(r,t) is the so-called one-electron correlatio
function defined by the relation

G(1)~r,t !5Tr$r̂f̂†~r,t !f̂~r,t !%, ~2!

f̂(r,t) and f̂†(r,t) being the flux annihilation and creatio
operators of the electron at the space-time point (r,t) ~see
@4#!.

Now, suppose we havek detectors at different points
r1 ,r2 , . . . ,rk and inquire what is the probability that we de
tect an electron at the first detector during the time inter
^t1 ,t11Dt&, another electron at the second detector dur
the time interval̂ t2 ,t21Dt&, etc., and thekth electron at the
last detector during the time interval^tk ,tk1Dt&. This prob-
ability is now equal to

P~r1 , . . . ,rk ,t1 , . . . ,tk ,Dt !5G(k)~r1 , . . . ,rk ,t1 , . . . ,tk!

3~hSDt !k ~3!

with the k-electron correlation function

G1,2, . . . ,k
(k) [G(k)~r1 , . . . ,rk ,t1 , . . . ,tk!

5Tr$r̂f̂†~r1 ,t1!•••f̂†~rk ,tk!f̂~rk ,tk!•••f̂~r1 ,t1!%.

~4!

In principle, it is possible to evaluate the correlation fun
tions for any electron field, according to Eq.~4!. However,
the calculation sometimes can be very difficult and corre
tion functions are nowadays known for relatively few ele
tron states@5–8#. We will concentrate on an electron chaot
state in the following that is quite explored and the expli
form of correlation functions is known for it.

The chaotic state is a generalization of a thermal state
it is believed to be produced by the most coherent elect
source nowadays available, the field-emission gun@8,9#. It is
defined to have a maximum entropy if certain paramet
~the mean number of particles and the energy spectrum! are
©2000 The American Physical Society03-1
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fixed at given values. In other words, for these fixed para
eters the chaotic electron field is as random as possible.
of the interesting properties of this state is that if there
some correlation in the chaotic field, it must have its orig
in the indistinguishableness of particles, i.e., in the Pa
principle. Indeed, distinguishable chaotic particles wo
come to a detector completely uncorrelated, which me
that any joint detection probability would factorize into
product of the individual detection probabilities, i.e.,
would imply G1,2, . . . ,k

(k) 5G1
(1)G2

(1)
•••Gk

(1) . In this way, any
aberration from this equation has its origin in the fermion
nature of electrons.

According to @5,8#, the correlation function of a spin
polarized chaotic state has the form of the determinant

G1,2, . . . ,k
(k) 5UG11 G12 ••• G1k

G21 G22 ••• G2k

A A A

Gk1 Gk2 ••• Gkk

U , ~5!

where G i j 5Tr$r̂f̂†(r i ,t i)f̂(r j ,t j )% is the cross-correlation
function of the electron field at the space-time points (r i ,t i)
and (r j ,t j ).

It is useful to introduce the complex degree of cohere
by the relation

g i j 5
G i j

AG i i G j j

~6!

~we suppose thatG i i Þ0 for all i; the opposite case is no
very interesting since some of the detectors are then no
luminated by electrons at all!. An analogous physical quan
tity has been known in optics for a long time that expres
the mutual coherence of the electromagnetic field at
space-time points.1 Similarly, g i j expresses the mutual co
herence of the electron field at the space-time points (r i ,t i)
and (r j ,t j ) and contains information about both the tempo
and spatial coherence of the field. As we will see later,
matrix G (k) composed of the cross-correlation functionsG i j
is either positive-definite or positive-semidefinite, fro
which it follows thatG i j G j i <G i i G j j and ug i j u<1 for all i , j .
The caseug i j u51 corresponds to the complete mutual coh
ence of the electron field at the points (r i ,t i),(r j ,t j ), while
ug i j u50 corresponds to the complete incoherence. Thus
ug i j u.0, some properties of the electron field at the poinr j
at the timet j can be determined from the knowledge of t
electron field at the pointr i at the timet i . On the other hand
if ug i j u50, even if the properties of the field at the pointr i at
the time t i are known completely, we cannot say anythi
about the field at the pointr j at the timet j .

1One usually speaks about coherence of light but not about mu
coherence. The coherence expresses the ability of light to inter
In a similar way, if there is a mutual coherence of the electrom
netic field at two points, there would occur interference if w
brought the light from these two points together.
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Using the properties of determinants and the fact t
G i i 5Gi

(1) , it is possible to rewrite Eq.~5! in terms of the
g ’s:

G1,2, . . . ,k
(k) 5G1

(1)G2
(1)
•••Gk

(1)U 1 g12 ••• g1k

g21 1 ••• g2k

A A A

gk1 gk2 ••• 1
U .

~7!

III. INEQUALITY BETWEEN ONE- AND TWO-
ELECTRON CORRELATION FUNCTIONS

We will first investigate the two-electron correlation fun
tion. According to Eq.~7!, it follows that

G1,2
(2)5G1

(1)G2
(1)~12g12g21!5G1

(1)G2
(1)~12ug12u2!. ~8!

Here we used the fact thatg125g21* that will be proved later.
Equation~8! shows that

G1,2
(2)<G1

(1)G2
(1) , ~9!

so the joint detection probability is less than or equal to
product of the individual detection probabilities. It mea
that one is not likely to detect two electrons at the space-t
points where the electron field is mutually coherent. In us
electron fields, this happens if the spatial separation of
two points (r1 ,t1) and (r2 ,t2) is not larger than the coher
ence lengthl c of the electrons and if the time differencet2
2t1 is not larger than the coherence timeTc .2 From this it
follows that a detection of two electrons at the same dete
with a time separation less thanTc is not likely because the
term 12ug12u2 is then small. On the other hand, the detecti
probability of two electrons with a time separation mu
more thanTc ~wheng12 is already equal to zero! is simply
equal to the product of the individual detection probabiliti
and there is therefore no correlation. So it seems that at
typical time scale ofTc , the electrons avoid coming in pair
~or groups! to a detector and prefer coming alone. This effe
is called antibunching~see Fig. 1!. Thus, we can say tha
antibunching is a consequence of the fact that the probab
of detecting two electrons at two detectors shortly after o
another is less than the product of the probabilities of the
individual detections, or more generally, that it is a con
quence of inequality~9!.

In the extreme case whenug12u51, the two-electron cor-
relation function turns into zero. Then, no two electrons c
be found at the space-time points (r1 ,t1) and (r2 ,t2) simul-
taneously. This reminds one of the Pauli principle: the lat
prohibits two electrons to be in the same quantum st
while Eq. ~8! prohibits two electrons to be at the space-tim
points (r1 ,t1) and (r2 ,t2) where the electron field is mutu
ally completely coherent.
al
re.
-

2Strictly speaking, in quasimonochromatic fieldsg12Þ0 holds if
r22r1'v(t22t1), wherev is the group velocity of the electrons.
3-2
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INEQUALITIES FOR ELECTRON-FIELD CORRELATION . . . PHYSICAL REVIEW A62 013803
Inequality ~9! holds between the one- and two-electr
correlation functions of a chaotic electron field. Now, t
question is whether it would be possible to find a simi
inequality also between correlation functions of higher
ders. The answer is yes. A possible generalization of Eq.~9!
that comes to mind isG1,2, . . . ,k

(k) <G1
(1)G2

(1)
•••Gk

(1) . If this
should hold, then the determinant in Eq.~7! would have to be
less than or equal to unity. In the following, we will sho
that it is indeed so by using the well-known properties
matrices and determinants. Moreover, we will prove an e
more general inequality between the correlation functions
different orders.

IV. GENERAL INEQUALITY BETWEEN CORRELATION
FUNCTIONS

First, we note that the matrix composed of the cro
correlation functions

G (k)5S G11 G12 ••• G1k

G21 G22 ••• G2k

A A A

Gk1 Gk2 ••• Gkk

D ~10!

is Hermitian and either positive-definite or positiv
semidefinite. The Hermiticity ofG (k) follows simply from
the Hermiticity of the density operatorr̂ and from the invari-
ance of the trace under a commutation of operators:

G i j 5Tr$r̂f̂ i
†f̂ j%5@Tr$f̂ j

†f̂ i r̂
†%#* 5@Tr$r̂f̂ j

†f̂ i%#* 5G j i* .
~11!

FIG. 1. The normalized two-electron correlation functio
G1,2

(2)/@G1
(1)G2

(1)#512ug12u2 for r15r2 as a function of the time
differencet5t22t1 for spin-polarized quasimonochromatic ele
trons with the Gaussian energy spectrum. The width of the pea
approximately equal to the coherence time of the electrons.
probability that two electrons come after one another within
coherence time is less than the probability that they come lon
after one another, which is called antibunching.
01380
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Of course, from Eq.~11! it follows also thatg i j 5g j i* , i.e.,
the matrixg (k) composed of the complex degrees of coh
ence is also Hermitian.

The second property can be proved in a similar way as
analogous statement in the quantum optics~see@10#, p. 585!.
Let Ô be the operator defined as

Ô5(
i 51

k

l if̂ i , ~12!

wherel1 , . . . ,lk are arbitrary complex numbers. It holds

Tr$r̂,Ô†Ô%5 (
i , j 51

k

l i* l j Tr$r̂f̂ i
†f̂ j%5 (

i , j 51

k

l i* l jG i j .

~13!

At the same time, Tr$r̂Ô†Ô% is a non-negative number. A
the right-hand side of Eq.~13! is a quadratic form in thel ’s
with the coefficientsG i j , the matrix G (k) must be either
positive-definite or positive-semidefinite. A similar stateme
can be proved also for the matrixg (k) using Ô

5( i 51
k l i(G i i G j j )

21/2f̂ i .
As we will see in the following, from the Hermiticity and

definiteness of the matricesG (k) and g (k), the desired in-
equality follows directly. However, first it will be necessa
to prove the following lemma.

Lemma: The determinant of any positive-definite o
positive-semidefinite Hermitian matrixA5(Ai j ) with non-
zero diagonal elements cannot exceed the product of the
agonal elements ofA, i.e., det(A)<A11A22•••Akk , and the
equality takes place if and only ifA is diagonal.

Proof: As all the diagonal elementsAii of the matrixA are
positive, we can define the matrixa5(ai j ) with elements
ai j 5Ai j /AAii Aj j ~in analogy with defining the matrixg (k)

with the help ofG (k)). Thanks to the Hermiticity of the ma
trix a, it is possible to transform it into the diagonal form
with a unitary transformation, i.e., there exists a unitary m
trix U for which the matrixb5UaU† is diagonal. This trans-
formation changes neither the determinant nor the trace
the matrix because it is a unitary transformation. If we d
note the diagonal elements of the matrixb as bi , then
Tr(a)5Tr(b)5( i 51

k bi and det(a)5det(b)5) i 51
k bi evi-

dently hold. At the same time, Tr(a)5k holds due to the fact
thataii 51 for all i. To find out what is the maximal possibl
value of det(a), we will use now the inequality between th
arithmetical and geometrical averages. The arithmetical
erage of the numbersbi is a5( i 51

k bi /k51 and their geo-
metrical average isb5Ak ) i 51

k bi . As the numbersbi are
non-negative, the inequalityb<a holds, from which it then
follows that det(a)5) i 51

k bi<1. As is known, the equality
b5a takes place if and only ifb15b25•••5bk . In this
case, the matrixb is the unit matrix, from which it follows
that a is also the unit matrix andai j 5d( i , j ). Thus, det(a)
<1 holds and the equality takes place only when all
nondiagonal elements of the matrixa vanish. Expressing the
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TOMÁŠ TYC PHYSICAL REVIEW A 62 013803
determinant of the original matrixA with the help of det(a)
as det(A)5A11A22•••Akk det(a), we get from the inequality
det(a)<1 that

det~A!<A11A22•••Akk . ~14!

Moreover,A is diagonal if and only ifa is diagonal. There-
fore, the equality in Eq.~14! takes place if and only if the
matrix A is diagonal.

If we identify the matrixa with g (k), then from Eq.~7!
and the proof above it follows immediately that

G1,2, . . . ,k
(k) <G1

(1)G2
(1)
•••Gk

(1) . ~15!

This is a generalization of the inequality~8! for a correlation
function of arbitrary order. An even stronger generalizat
would be evidently

G1,2, . . . ,k
(k) <G1,2, . . . ,l

( l ) Gl 11,l 12, . . . ,k
(k2 l ) . ~16!

As we will see now, this inequality indeed holds.

V. PROOF OF THE INEQUALITY „16…

First we will define a matrixG8 of the typek/k in the
following block form:

G85S G ( l ) 0

0 G (m)D . ~17!

Here 0 stands for the zero matrices of the typel /m or m/ l
~we have denotedm5k2 l ) andG ( l ),G (m) are the matrices o
the typel / l andm/m, respectively, corresponding to the co
relation functionsG1, . . . ,l

( l ) andGl 11, . . . ,k
(m) :

G ( l )5S G1,1 ••• G1,l

A A

G l ,1 ••• G l ,l
D ,

~18!

G (m)5S G l 11,l 11 ••• G l 11,k

A A

Gk,l 11 ••• Gk,k
D .

Due to Eq.~5! and the block form ofG, it holds

G1, . . . ,k
(k) 5det~G!,

~19!
G1, . . . ,l

( l ) Gl 11, . . . ,k
(m) 5det~G ( l )!det~G (m)!5det~G8!.

Now, we know that the matrixG[G (k) is either positive-
definite or positive-semidefinite. In the latter case, the
equality~16! is satisfied trivially because then det(G)50 and
det(G ( l )),det(G (m)) are both non-negative due to their de
niteness. Therefore, in the following we will discuss the ca
whenG is positive-definite.

As the matricesG ( l ) andG (m) are Hermitian, it is possible
to transform each of them into the diagonal form with
unitary transformation. LetU ( l ) and U (m) denote the corre-
01380
n

-

e

sponding unitary transformational matrices, so that the m
tricesD ( l )5U ( l )G ( l )U ( l )† andD (m)5U (m)G (m)U (m)† are both
diagonal. Then evidently the unitary matrix

U5S U ( l ) 0

0 U (m)D ~20!

transforms the matrixG8 into the diagonal form, so thatD8
5UG8U† is diagonal. LetD denote the matrix obtained from
G by the same unitary transformation, i.e.,D5UGU†.
Thanks to the block form of the matrixU, the matrixD has
the form

D5S D ( l ) D ( lm)

D (ml) D (m) D , ~21!

where D ( lm) and D (ml) are some mutually Hermitian
conjugate matrices of the typel /m and m/ l , respectively.
Applying now the Lemma to the matrixD ~we can do that
becauseD is positive-definite and Hermitian; the latter fo
lows from the unitarity of the matrixU), we see that
det(D)<det(D8) because the diagonal elements of the m
tricesD andD8 are identical andD8 is diagonal. Combining
this with the equations that hold due to the unitarity of t
matrix U,

det~D !5det~G!, det~D8!5det~G8!5det~G ( l )!det~G (m)!,

~22!

and with Eq.~19!, we finally obtain the inequality~16!. Now,
the inequality det(D)<det(D8) changes into equality if and
only if the matrixD is diagonal, i.e., ifD ( lm) andD (ml) are
the zero matrices. Then, again due to the block form of
transformation matrixU, also the matrices

G ( lm)5S G1,l 11 ••• G1,k

A A

G l ,l 11 ••• G l ,k
D ,

~23!

G (ml)5S G l 11,1 ••• G l 11,l

A A

Gk,1 ••• Gk,l
D

are the zero matrices. Thus, we can conclude that the
equality~16! holds and it changes into equality if and only
all the cross-correlation functionsG i , j vanish for i
51, . . . ,l and j 5 l 11, . . . ,k.

VI. FERMIONIC NATURE OF ELECTRON
CORRELATIONS

Let us see what the inequality~16! that we just proved
really means. We denote the detection ofl electrons at the
space-time points (r1 ,t1), . . . ,(r l ,t l) as eventA and the de-
tection of k2 l electrons at the points
(r l 11 ,t l 11), . . . ,(rk ,tk) as eventB. Then the inequality~16!
3-4
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INEQUALITIES FOR ELECTRON-FIELD CORRELATION . . . PHYSICAL REVIEW A62 013803
says that the probability that both eventsA andB happen is
less than or equal to the product of probabilities of eventA
andB ~see Fig. 2!. In this way, the inequality~16! general-
izes the inequality~9! also to multiple electron detection pro
cesses.

We have seen that the inequality~9! leads to the anti-
bunching effect as a consequence of the indistinguisha
ness of electrons. Similarly, the inequality~16! reflects the
same principle for more complicated detection processes
leads to more general correlations in electron fields. It i
fundamental statement that expresses the fermionic beha
of electrons in a very compact way.

As follows from Sec. V, the case of equality in Eq.~16!
corresponds to the situation whenG i j 50 ~and henceg i j
50) for all i 51, . . . ,l and j 5 l 11, . . . ,k. Then the elec-
tron field at any point of the first set of pointsSl
5$(r i ,t i)u i 51, . . . ,l % is incoherent with the field at an
point of the second setSm5$(r j ,t j )u j 5 l 11, . . . ,k%. The
equality in Eq.~16! is then very reasonable; if the fields
the points corresponding to the both setsSl ,Sm are mutually
completely incoherent, the detections at the points of the
sets are mutually independent and therefore total detec
probability factorizes into the product of the detection pro
abilities corresponding to the individual sets.

Of course, the inequality~16! can be applied repeatedl
and the points (r1 ,t1), . . . ,(rk ,tk) can be interchanged arb
trarily to obtain a whole class of inequalities. We will writ
just an example for illustration:

FIG. 2. An example of inequality~16! for k59, l 55. The cor-
relation function corresponding to all the points is less than or eq
to the product of correlation functions corresponding to
‘‘white’’ and ‘‘black’’ points. The equality takes place if and only i
g i j 50 for each pair containing one white and one black point.
an

01380
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G1,2,3,4,5,6,7
(7) <G1,2

(2)G3,5,7
(3) G4

(1)G6
(1) . ~24!

VII. CONCLUSION

We have proved a relatively simple inequality betwe
correlation functions of different orders for chaotic electron
As any correlation in a chaotic electron field originates fro
the fermionic character of the electrons, the inequality~16! is
a direct consequence of the Pauli principle. It demonstra
the aversion of the electrons to staying and coming to a
tector in groups. The inequality~16! determines a set of con
ditions that must be fulfilled on the hierarchy of the chao
correlation functions. We must point out that the inequalit
in Eq. ~16! do not hold for all electron fields. There ar
electron states that show even bunching instead of a
bunching@11,12#. However, these states are quite rare a
the chaotic state remains the most important and widesp
state in electron beams.

From the experimental point of view, the observation
correlations is limited especially by an extremely short c
herence time of available electron beams@13,14#. The coher-
ence time is related to the energy bandwidth of the beam
the relationTc'h/DE, which yieldsTc'2310214 s for a
typical field-emission beam for whichDE'0.2 eV. The
measurement of correlations with such a characteristic t
requires very fast detectors and coincidence electronics
even under optimum conditions the experimental resolut
time exceeds the coherence time by three orders of ma
tude. The signal-to-noise ratio is therefore very small an
is not surprising that a two-electron correlation was obser
in the last year only. Observation of higher-order correlatio
would require a more complicated experimental setup an
believe that it will not be possible until electron sources w
a much longer resolution time become available. On
other hand, if the resolution and coherence time beca
comparable, the highest order of observable correlati
would be limited by the fidelity of the coincidence electro
ics. Thus we must conclude that the inequality~9! is the only
candidate for an experimental verification from the who
class of inequalities~16! at the present time.
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