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General optical state truncation and its teleportation
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A setup is proposed in which the number-state expansion of a one-mode traveling-wave optical field is
truncated so as to leave its vacuum, one-, and two-photon components. The process is a realization of quantum
teleportation on a three-state basis. The possibility of generalization to the firstn components is also
considered.

PACS number~s!: 42.50.Dv, 03.65.Bz
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I. INTRODUCTION

Quantum teleportation, invented by Bennettet al. @1#, is
one of the essential primitives of quantum communication
relies on quantum entanglement, one of the most pecu
fundamental features of quantum mechanics, especiall
the nonlocal case. Not surprisingly several realizations
quantum teleportation have been proposed@2–6# and some
of them have been realized experimentally@7–11#.

Quantum teleportation exploits the von Neumann proj
tion principle, which has also been applied in quantum s
design: measurements can bring a physical system to a
sired quantum state. In schemes of this kind, several
comes of the measurements are possible; some of them
nify that the desired state is prepared, while the proced
has to be repeated if the other outcomes are obtained. Th
similar to discrete variable quantum teleportation: an e
ciency of the method can be defined, which describes
probability of obtaining the proper state. Recently Dak
et al.have proposed a scheme in which an arbitrary quan
state of a traveling electromagnetic field can be generate
a method relying on quantum measurement@12#. Their ap-
paratus, consisting of an array of many detectors and b
splitters, has an efficiency depending on the state its
Though this arrangement is capable of generating arbit
states, the efficiency can be quite low in some cases, so
set of states that can actually be produced with high e
ciency is restricted.

In a paper of Pegg, Phillips, and Barnett@13# it is shown
that a one-mode traveling-wave optical state can be trunc
so as to leave only its vacuum and one-photon compone
This is an approach to quantum state design similar to tha
Dakna et al. The proposed arrangement, called ‘‘quantu
scissors,’’ consists of two beam splitters and two phot
counting detectors. It exploits quantum measurement
nonlocality. As shown by Villas-Boˆas, de Almeida, and
Moussa@4#, it is a realization of quantum teleportation of
two-state system, the basis states being the vacuum an
one-photon Fock state. The above authors analyze the op
tion of the arrangement in a noisy environment. In a ve
recent paper@14# it is shown that quantum scissors ha
good fidelity in the presence of imperfections. The quant
scissors device is interesting from at least two points
view: quantum state design and teleportation of states
1050-2947/2000/62~1!/013802~8!/$15.00 62 0138
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traveling-wave electromagnetic field.
Quantum scissors are capable of converting a class

state to a highly nonclassical one. For example, if the inpu
a low-intensity coherent state, the truncation yields a coh
ent superposition of vacuum and one-photon states. T
state is known to possess squeezing properties@15#, and can
be used as a reference state of projection synthesis@16,17#.
The quantum scissors work for other~even mixed! input
states too; thus they are capable of generating several k
of superpositions and mixtures of vacuum and one-pho
states. The question arises naturally, as to whether the c
of preparable states can be enlarged. One possibility is
of Daknaet al. @12#, which applies more beam splitters an
detectors. We follow a different method: we do not raise
number of components of the arrangement, but we exam
the facilities introduced by the freedom of using beam sp
ters with appropriate parameters. It turns out that a trunca
so as to leave vacuum, one-, and two-photon superposit
needs no significant extension of current experimental ex
tise. This generalized quantum scissors device can gener
larger class of nonclassical states. For example, by cuttin
squeezed vacuum state, a coherent superposition of vac
and two-photon states can be obtained, which may also
used as a reference state in projection synthesis, and
squeezing properties have been analyzed in Ref.@15#. The
truncation of coherent states also makes an interesting c
of nonclassical states feasible. The arrangement works
any pure and mixed input state.

The other aspect of the operation of the quantum scis
device is quantum teleportation. The suggested realizat
of this phenomenon can be divided into two groups: telep
tation of discrete and continuous quantum variables. Our
gument is concerned with the discrete case, which usu
means teleportation of the state of a two-state system~a
qbit!, though several authors address the question of ge
alization to discrete systems with more than two basis sta
The latter question is discussed by Stenholm and Bard
@18# in a general form. Our approach is different. The ge
eralized quantum scissors creates a superposition of vacu
one-, and two-photon Fock states of a one-mode travel
wave field, and teleports it at the same time. If the input st
of the generalized scissors is already a superposition of
kind, it is simply teleported. This is a teleportation on t
three-dimensional Hilbert space spanned by$u0&,u1&,u2&%.
©2000 The American Physical Society02-1
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We analyze this particular situation in detail. The discuss
yields suggestive insight into the process of transport
quantum information in this case. We have also investiga
the possibility of further generalization: truncating up to t
nth Fock component.

The manipulation of entangled states of the electrom
netic field is carried out with passive linear multiports
most cases. Although the description of such systems
received extensive coverage in the literature, not all the p
sibilities involved in such devices have been exploited up
date. For generalized quantum scissors the optimizatio
beam splitter parameters with respect to all of the SU
parameters is required. On the other hand, several co
quences can follow from the symmetry properties of a m
tiport. For example, even in the lossless and noiseless c
quantum teleportation arrangements have a nontrivial lim
tion: the no-go theorem for Bell-state detection@19#. In the
setup discussed here, such limitations emerge in a par
larly clear form as a consequence of the linearity and pho
number conservation and thus mainly of the SU(2) symm
try of the beam splitters.

This paper is organized as follows. In Sec. II the gene
ized quantum scissors device is introduced. In Sec. III
possibility of truncation up to then photon components is
considered. In Sec. IV the teleportation aspect is analyz
Section V summarizes the results.

II. STATE TRUNCATION UP TO TWO-PHOTON STATES

The quantum scissors device is depicted in Fig. 1. T
notation used is also shown in the figure. We label the mo
with their annihilation operators. We are given an arbitra
state in the input modeâ3. For simplicity consider a pure
state

uC in&5 (
k50

`

gkuk& ~1!

FIG. 1. The ‘‘quantum scissors’’ device, the subject of o
analysis. It consists of the BS1 and BS2 beam splitters andD2 and
D3 photon counters. The numbering of detectors is consistent
the indexing of spatial modes.uC in& is the incoming state,uCout& is

the output state. The modesâ1 and â2 are in theuC12& ancillary
state necessary for the operation of the device. The annotation
in this paper for the annihilation operators of the spatial mode
shown.
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as input, but the generalization to mixed states is straight
ward. Our aim is to obtain a truncated state

uCout&5AN~g0u0&1g1u1&1g2u2&) ~2!

as output in modeĉ1 , N51/(k50
2 ugku2 being a renormaliza-

tion constant. The operation of the device consists of unit
evolution and a measurement process. The unitary evolu
can be divided into two steps: action of the BS1 and BS2

beam splitters. Operatorsâ, b̂, andĉ belong to the stages o
unitary evolution, and their indices refer to the spatial mod
At the beginning, modesâ1 andâ2 are in a given stateuC12&.
This is the ‘‘reference state’’ of the projection synthesis. T
state of the whole system of three modes isuC&5uC12&
^ uC in& initially.

We describe the unitary evolution in the Heisenberg p
ture. In the first step the effect of BS1 can be described by
the unitary transformation

S b̂1
†

b̂2
†D 5S e2 if t cost1 e2 ifr sint1

2eifr sint1 eif t cost1
D S â1

†

â2
†D , ~3!

while the input mode is not modified:â3
†5b̂3

† . In Eq. ~3!, f t

and f r are the phase shifts imparted to the transmitted
reflected beams, and (cost1)

2 and (sint1)
2 are the transmit-

tance and reflectance of the beam splitter, respectively.
next step is the action of BS2 on modesb̂2 and b̂3 yielding
ĉ2 and ĉ3,

S ĉ2
†

ĉ3
†D 5S e2 ih t cost2 e2 ihr sint2

2eihr sint2 eih t cost2
D S b̂2

†

b̂3
†D , ~4!

while ĉ15b̂1. This is followed by a measurement, i.e.,
projection to a photon-number eigenstate in modesĉ2 and
ĉ3. The detectors are assumed to be ideal photon coun
Given a reference stateuC12& we will find suitable param-
eters for BS1 and BS2 to carry out the state truncation de
scribed above.

The ancillary stateuC12& has to be experimentally avail
able in order to make the idea of quantum scissors realis
The desired output state of Eq.~2! contains a maximum of
two photons. These two photons originate fromuC12&, since
evidently no light reaches the output from the input. Th
uC12& has to contain at least two photons. We choose
stateuC12&5u11&, consisting of a pair of temporally corre
lated photons, because it can be generated in the way
scribed at the end of this section.

Suppose that fromuC12&5u11& the BS1 general beam
splitter produces the intermediate state

uC128 &5b0u20&1b1u11&1b2u02&, ~5!

so the state of all three modes after the first step of unit
evolution is the product of this and the state in Eq.~1!:

th

ed
is
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uC8&5uC128 & ^ uC in&5 (
n50

`

gn~b0u20n&1b1u11n&1b2u20n&)5 (
n50

`
gn

An!
S b0

A2
b̂1

†2b̂3
†n1b1b̂1

†b̂2
†b̂3

†n1
b2

A2
b̂2

†2b̂3
†nD u000&.

~6!

As the result of the action of BS2 , uC8& turns into

uC9&5 (
n50

`
gn

n! (
k50

n S n
kD ~sint2!k~cost2!n2kei (khr2(n2k)h t)S b0

A2
ĉ1

†2ĉ2
†kĉ3

†n2k1b1 cost2eih tĉ1
†ĉ2

†k11ĉ3
†n2k

2b1 sint2e2 ihr ĉ1
†ĉ2

†kĉ3
†n2k111

b2

A2
~cost2!2e2ih tĉ2

†k12ĉ3
†n2k1

b2

A2
~sint2!2e22ihr ĉ2

†kĉ3
†n2k12

22
b2

A2
cost2 sint2ei (h t2hr )ĉ2

†k11ĉ3
†n2k11D u000&. ~7!
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The output state in the case of a given detection event
now be determined by projectinguC9& to the number state
corresponding to the result of the measurement carried
on modes ĉ2 and ĉ3. Due to considerations of photon
number conservation it suffices to examine the detec
events in which the total number of detected photons is
Let us examine the case in which one photon on theD2 and
one onD3 detectors are detected in coincidence. It will tu
out that the other two possible detection events~two photons
on one of the detectors and no photons on the other! are
inadequate choices.

After the coincident detection of one photon onD2 and
one onD3 the state of the system becomes the projection
uC9& of Eq. ~7! to u11& in modes 2 and 3. The state of th
output mode obtained this way reads up to a normaliza
constant:

2A2 cost2 sint2eihb2g0u0&1cos~2t2!b1g1u1&

1A2 cost2 sint2e2 ihb0g2u2&, ~8!

whereh5h t2h r . Comparing to the desired state in Eq.~2!,
we see that to achieve the truncation

2A2 cost2 sint2eihb25A2 cost2 sint2e2 ihb0

5cos~2t2!b15K ~9!

must hold. This is the condition for theb coefficients of Eq.
~5!. The efficiency of the truncation isK2/N, whereN is the
renormalization constant of Eq.~2!. It is maximal if K is
maximal ~this depends on the device!, and N51 ~this de-
pends on the input state!. When the beam-splitter paramete
are chosen optimally,K has to be maximal.
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Now, given the stateuC12&5u11& incident on BS1 a set of
parameters for BS1 and BS2 have to be found to make BS1
capable of generating the state in Eq.~5! with the b coeffi-
cients fulfilling Eq.~9!. The intermediate stateuC128 & in Eq.
~5!, leaving the beam splitter, is a point of the vector spa
spanned by the vectors$u20&,u11&,u02&%. On varying the pa-
rametersf t , f r , and t1 of BS1, this point perambulates
around a set of points in this vector space.@This is called the
SU(2) orbit of the pointu11&.# The coordinates of the param
etrized set of points read

cos~2t1!u11&1
A2

2
sin~2t1!eifu20&2

A2

2
sin~2t1!e2 ifu02&,

~10!

wheref5f t2f r . Equation~9! also defines a parametrize
set of points in this vector space with coordinatesb1 , b2,
andb3, the parameters beingh andt2. Each point in this set
represents the appropriate state that is required for state
cation if the parameters of BS2 are chosen to beh and t2.
The required beam-splitter parameters are the coordinate
the intersection of the two point sets in Eqs.~9! and ~10!.

The solution is the following: for the phase shiftsf t
2f r5h t2h r must hold. Otherwise the relative phase of t
Fock components is modified. We may choosef t5f r5h t
5h r50, which is convenient, because in this case the m
trices in Eqs.~3! and ~4! are real. Thet parameters have to
satisfy

tan~2t1!tan~2t2!52. ~11!

The factorK in Eq. ~9!, and thus the maximum probability o
detection of the coincidence under discussion, depends
the t values.K itself also has a maximum at the optim
choice oft parameters,
2-3
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t15t25 1
2 arctan~6A2!. ~12!

Thus in the optimal case the two beam splitters have to
identical, with transmittance either 0.21 or 0.79. The op
mum value of the renormalization factor isK51/3, which
means that the coincident detection of one photon on e
detector occurs at most in 1/9 of the cases. In these case
state truncation is successful. The probability is exactly 1/
the incoming state is already a superposition of vacuu
one-, and two-photon states. This is the case of teleporta
and the teleportation efficiency is 1/9. Otherwise the pr
ability is proportional to(n50

2 ugnu2. The device can be use
with success ifN has a low value, i.e., the incoming sta
contains the vacuum, one-, and two-photon states with la
enough weights.

As mentioned in the Introduction, there are several int
esting nonclassical states that could be prepared with
method. For example, Fig. 2 shows the Wigner functions
a weak coherent state truncated with the Pegg-Phill
Barnett quantum scissors, and with our generalized quan
scissors. Both states are highly nonclassical. Truncation
squeezed vacuum states would yield superpositions of
vacuum and two-photon number states.

Let us return to the case of detecting two photons on
of the detectors and none on the other. These are intere
counterexamples, since the above discussed intersectio

FIG. 2. Highly nonclassical states obtained by state truncat
The starting state is the coherent stateua52&. ~a! Shows the
Wigner function of the state obtained using the quantum scis
device of Pegg, Phillips, and Barnett@13#. ~b! Shows the Wigner
function of the result of generalized state truncation up to the t
photon states. The realization and teleportation of the latter is
subject of this paper.
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the point sets is empty in these cases; thus the state tru
tion cannot be carried out using any kind of beam splitte

In the rest of this section we briefly outline some of t
problems that would arise, in addition to detector imperfe
tions and noise, if one had to put the quantum sciss
scheme into practice. In order to obtain interference, one
to ensure the simultaneous arrival of the states at the pr
beam splitters. In the case of interferometric Bell-state m
surements with polarization states@6,20#, the coincidence
event indicating the result of measurement can occur onl
case of proper timing. In our case the number of photo
arriving at BS2 in the input state is not limited, and therefo
coincidence at the detectorsD2 andD3 itself does not guar-
antee the simultaneous arrival of the states that have to
terfere; we have to possess additional information on
timing of the states. The two-mode stateu11& can be gener-
ated using nondegenerate parametric downconversion, w
is a prevalent technique even in applied physics@21,22#.
However, direct application of the photon pair that emerg
in the nonlinear process is not easily applicable to o
scheme, because in this case there is no indication of
presence of the photon couple. In the scheme of Pegg, P
lips, and Barnett, one of the photons belonging to a dow
converted pair~the idler! is applicable for signifying the ex-
istence of the other one~the signal!. In our case two
downconversions are required~this may be achieved by re
flecting the pump back to the crystal as in Refs.@7,10#!, and
the coincident detection of the idlers from both proces
would ensure that the signals are in stateu11& at the time of
the coincidence. This would also be necessary for the sch
of Villas-Bôaset al. @4#, who suggest the application of tw
quantum scissors one after one other. On the other hand
has to ensure the simultaneous arrival of the state to be t

cated in modeb̂3 and the state in modeb̂2 ~the reference
state! at the beam splitter BS2. The input state for the scis
sors may be a weak coherent state obtained by attenuatio
the pump beam that generated the reference beam.
makes the relative timing of the reference and input sta
possible, by changing the path length of the latter, simila
to Bouwmeesteret al. @7#. The interference between wea
coherent states and downconverted photons has been
served@23–25#. The proper arrival of the input state may b
verified by splitting the coherent state with an addition
beam splitter, and placing a detector at one of the branc
Alternatively, one may carry out a coincidence test by app
ing an additional detector on the output of the scissors
vice. The latter is applicable because once the timing of
reference state is guaranteed via the coincidence of
downconversion idlers, the only case when anything e
than vacuum is truncated occurs if the input state arrive
BS2 in time. Moreover, in an experiment the direct verific
tion of the success of truncation ensures that the input s
and the corresponding branch of the entangled state h
interfered. The verification of the truncation process m
even be carried out via a single homodyne measuremen
cause of the very characteristic shape of the Wigner func
of the output state.
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III. FURTHER GENERALIZATION OF QUANTUM
SCISSORS

In this section we present a theoretical investigation of
possibility of further generalization of the scheme discuss
Our aim is now to truncate the number-state expansion o
arbitrary incoming state up to then-photon component. In
this section we take a more general point of view: we o
the beam splitter BS1, and suppose that an intermediate st

uC128 &5 (
k50

n

bkun2k,k& ~13!

is already prepared by some method. Although it may
generated by BS1 using some reference stateuC12&, unlike
the case discussed in Sec. II, we are now not concerned
the question of preparing this state at the present state o
art. Our aim is the theoretical analysis of the possibilities t
would emerge if this state could be prepared. Furtherm
suppose thatD2 andD3 are ideal photon counters and the
are countingd2 andd3 photons, respectively. The method
the same as in the case of the truncation up to two-pho
components: the state of the system after the action of2
has to be calculated, and the result has to be projected to
appropriate state determined by the measurement result.
difference is that since BS1 is omitted, the result will be a se
of b parameters of Eq.~13! and parameters of BS2.

In general, the state obtained reads

uCout&5
AN

K (
j 50

`

(
k50

n

bkg jD jkuk&5AN(
k50

n

gkuk&, ~14!

TABLE I. The optimal transmittance (cos2 t2) of the beam split-
ter BS2 and the maximal efficiency (K2) of the generalized quan
tum scissors device cutting up to then-photon Fock components
Photon countersD2 andD3 countd2 andd3 photons, respectively
Many of the entries belong to hypothetical arrangements, which
not experimentally feasible at the present state of the art.

n d25n, d350 d25n21, d351
cos2 t2 K2 cos2 t2 K2

1 0.5 0.25 0.5 0.25
2 0.5 0.10 0.21 or 0.79 0.11
3 0.5 0.047 0.5 0.047
4 0.5 0.023 0.38 or 0.62 0.028
5 0.5 0.012 0.5 0.019
6 0.5 0.0062 0.42 or 0.58 0.012
7 0.5 0.0032 0.5 0.0093
8 0.5 0.0016 0.44 or 0.56 0.0056
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where N51/(k50
n ugku2 and K are normalization constant

andD jk describes both BS2 and the measurement carried ou
It is easy to show that Eq.~14! can be solved for theb
coefficients if and only ifd21d35n. That is, we detect a
total photon number ofn. ~We consider bothĉ2 and ĉ3 as
being in a photon-number eigenstate.!

Just as in the case of truncation up to the two-pho
component, the desired measurement occurs with a prob
ity of K2/N. K2 describes the efficiency of the truncation
a function of the parametert2 of BS2. An optimal quantum
scissors device can be obtained by choosingt2 so thatK2 is
maximal.

We discuss two detection events, as examples. IfD2 de-
tectsn photons andD3 none, Eq.~14! has the solution

bk5
Ke2 i [kh t1(n2k)hr ]

AS n
kD ~cost2!k~sint2!n2k

, ~15!

and

K25S (
k50

n
1

S n
kD ~cost2!2k~sint2!2n22kD 21

. ~16!

From Eq.~16! it can be seen that the optimal value of th
(cost2)

2 transmittance is 1/2; BS2 has to be a 50-50 beam
splitter. Forn51 it is the Pegg-Phillips-Barnett device. Fo
n52, the efficiency of the process would be approximat
the same as that for the case discussed in Sec. II, but un
in Sec. II, there are no beam-splitter parameters for BS1 so
that it could generate the requireduC12& reference state o
Eq. ~15! from the stateu11&.

The other example is whenD2 detectsn21 photons and
D3 one photon at the same time. In this case, Eq.~14! gives

bk5
Ke2 i [(k21)h t1(n2k21)hr ]

A1

n
S n
kD ~cost2!k21~sint2!n2k21@n~cost2!22k#

,

~17!

and

re
K25S (
k50

n
1

1

n S n
kD ~cost2!2k22~sint2!2n22k22@n~cost2!22k#2D 21

. ~18!
2-5
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For n52 this is the case discussed in Sec. II.
Table I contains the optimal transmittance (cos2t2) of BS2

and the maximal efficiency values for the two examp
above. Note the significant decrease in efficiency for la
photon numbers.

IV. QUANTUM SCISSORS AS A TELEPORTATION
SCHEME

Let us direct our attention to the teleportation proce
involved in the operation of the device described abo
Both the scheme suggested in Refs.@26,20# and realized in
Bouwmeesteret al. @7#, and the teleportation scheme su
gested by Villas-Boˆaset al. @4#, based on the quantum sci
sors of Pegg, Phillips, and Barnett are optical realizations
quantum teleportation with two-state systems. The entan
state in the latter scheme is generated by beam splitter1
from the uC12& reference state, and the analysis in Ref.@4#
shows that a Bell-state analysis is implemented by the B2
beam splitter andD2 ,D3 detectors.

The generalized quantum scissors described in Sec. I
this operation on three-state systems, namely, the basis s
are$u0&,u1&,u2&%. If the input of the quantum scissors is th
superposition of these states, it is simply teleported. If
state is an arbitrary state, only its vacuum, one-, and t
photon components are teleported, and thereby the state
comes truncated. The role of the entangled state and B
state analysis is not as comprehensible as in the above
We would like to provide insight into the process. This c
be achieved by considering the properties of the beam s
ter transformation.

The description of a lossless beam splitter with Schwin
angular momenta is well known@27#. The input and output
operators can be transformed to angular momentum op
tors, which are more suitable for examining the action o
beam splitter. Using the notation used for BS2 in Fig. 1,
consider the Schwinger operators

l̂ 5 1
2 ~ b̂1

†b̂11b̂2
†b̂2!,

~19!

m̂5 1
2 ~ b̂1

†b̂12b̂2
†b̂2!.

Here l̂ measures one-half of the total number of photo
proportional to the energy of the incoming state.m̂ is the
photon-number difference. The two-mode Fock states
common eigenstates of these operators. Denoting the ei
values byl andm, the standard inequality2 l<m< l holds:
eigenstates with givenl ~given energy! can correspond to
2l 11 different values ofm, forming an SU(2) multiplet.
These multiplets are labeled by the eigenvaluel, e.g., for l
51, the states in the multiplet areu20&, u11&, andu02&, cor-
responding tom521,0,1. Similar operators and multiple
structure can be defined for the output states.

Since the beam splitter is passive and linear@essentially
an SU(2) device#, the multiplets span invariant subspaces
the beam-splitter action. This is a consequence of pho
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number conservation. The beam splitter does not mix
states corresponding to differentl values.

A measurement outcome, detection of given numbers
photons onD2 and D3 in coincidence, is a projection to
two-mode Fock state in modesĉ2 , ĉ3. Therefore measure
ment outcomes can also be grouped into multiplets. We s
see that this multiplet structure explains the teleportat
process and its limitations.

Consider now

uC in&5g0u0&1g1u1&1g2u2& ~20!

as input state in modeâ3. The output state in modeĉ1 is
determined by the outcome of the measurement, and the
of the whole system before the measurement,uCm&. The
operatorÂ† creatinguCm& from the vacuum is a polynomia
of the creation operatorsĉ1

† , ĉ2
† , and ĉ3

† . An outcome of a
measurement means detection ofn photons onD2 and m
photons onD3. The state after measurement of such an o
come is created from the vacuum by an operator which
sum of all the summands ofÂ† containingĉ2

†nĉ3
†m , renor-

malized. We shall call the operatorsĉ2
†nĉ3

†m ‘‘outcome op-
erators,’’ since they correspond to a given measurement
come. In order to determine the possible output states,
has to examine the structure ofÂ†.

As mentioned before, since the operatorsĉ2
† and ĉ3

† are
obtained from the transformation of Eq.~4!, it is worth
grouping the outcome operators into multiplets indexed w
the eigenvaluesl of l̂ . The outcomes in which the total num
ber of detected photons is 2l correspond to the same multip
let. Let us introduce the notation

2l M̂m5 ĉ2
†l 1mĉ3

†l 2m, m52 l , . . . ,l , ~21!

for the outcome operators. Furthermore, given a set of a
trary coefficients2lAm , m52 l , . . . ,l , let there be

2lM̂A5 (
m52 l

l

2lAm
2l M̂m , ~22!

a linear combination of outcome operators in thel th multip-
let, with coefficients2lA depending on the beam splitter p
rameters. Different script letters in the index will mean
different set of parameters in this notation.

Notice that since thegn coefficients in theÂ† polynomial
originate from Eq.~20! and there are always two photon
initially incident in modesâ1 and â2, the summands inÂ†

that contain a givengn have to create a three-mode Fo
state with total number of photonsn12. This is a conse-
quence of the linearity of the system. On the other handĉ1

†

can appear at maximum as a second power inÂ† because no
photons from modeâ3 get into modeĉ1 and in modesâ1 and
â2 only two photons are incident. Consequently,Â† has the
following structure:
2-6
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Â†5g0~2M̂A11M̂Bĉ1
†10M̂Cĉ1

†2!1g1~3M̂D12M̂Eĉ1
†

11M̂Fĉ1
†2!1

g2

A2
~4M̂G13M̂Hĉ1

†12M̂Iĉ1
†2!. ~23!

It can be seen that the multiplet structure suggested by
nature of the beam-splitter transformation is reflected in
structure of the operator creating the output state. Only
outcomes in the2M̂A , 2M̂E , and 2M̂I multiplets appear
with all three g coefficients. Only the outcomes in thes
multiplets can provide teleportation, since the state obtai
after the measurement on modeĉ1 depends on all threeg
coefficients. In the case of a measurement outcome co
sponding to another multiplet some of the information is lo
The whole information is transferred if the total number
detected photons is 2.

The 2lA, 2lE, and 2lI coefficients depend on the beam
splitter parameters. With the parameters determined in
II, 2A052E052I051/3. In the case of a measurement o
come described by2M̂0, i.e., detection of one photon onD2

and one onD3 in coincidence, the output in modeĉ1 be-
comes the same as the input state in Eq.~20!. This is a case
of successful teleportation, which happens in 1/9 of
cases, regardless of the input state in Eq.~20!.

In the case of detecting two photons on eitherD2 or D3,
described by2M̂ 21 and 2M̂1, the teleportation is successfu
in the sense that information involved inuC in& is transferred,
but the Fock coefficients of the state obtained are multip
by different constants. This is the case analogous with
detection of other than the singlet Bell state in the origi
scheme of Bennettet al.: the output has to undergo a give
unitary transformation in order to obtain the teleported sta
Since the coefficients of these summands are not equal,
s,

.

,

,

-
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cannot be factored out. The probability of these outcom
and thus the efficiency of this ‘‘distorted teleportation,’’ d
pend on the stateuC in& also.

Finally, the outcomes corresponding to the other mult
lets yield unsuccessful teleportation because some of the
formation ~some of the coefficients describing the inp
state! is irrecoverably lost. This information cannot be r
gained using passive elements, so the ‘‘no-go theorem’’ p
vails.

V. CONCLUSION

We have shown how an arbitrary one-mode travelin
wave field can be truncated to its first three Fock com
nents. The method, a generalization of a result of Pegg, P
lips, and Barnett@13#, employs the projection principle. W
have also examined the possibility of further generalizati
This quantum scissors device can be a useful tool
traveling-wave quantum state engineering. The states
can be prepared with the application of the quantum scis
device are highly nonclassical.

The operation of the discussed device involves quan
nonlocality, namely, it is quantum teleportation on a fin
basis set of the first three Fock states. Thus our scheme
vides a possible realization of a discrete basis quantum t
portation with three basis states. We have analyzed the p
erties of this teleportation process in the ideal case. It se
to us that the argument presented leads closer to an un
standing of the operation and limitations of quantum telep
tation.
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