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Temperature variation of ultraslow light in a cold gas
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A model is developed to explain the temperature dependence of the group velocity as observed in the
experiments of Hauet al. [Nature (London 397, 594 (1999]. The group velocity is quite sensitive to the
change in the spatial density. The inhomogeneity in the density and its temperature dependence are primarily
responsible for the observed behavior.
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[. INTRODUCTION The paper is organized as follows: In Sec. Il the model is
introduced. In Sec. Il we derive the group velocity of a
The phenomenon of Bose-Einstein condensation irpulse propagating in an ideal gas confined inside a box, ex-
atomic gase$1,2] lends itself to the study of many funda- tend the calculation to the case of an ideal gas in a harmonic-
mental effects. Among them, one aspect presently being iroscillator potential, and present and discuss the results in
vestigated both theoretically and experimentally is the interrelation to the experiment of Haet al.In Sec. IV we present
action of light with atoms in the quantum degeneracy regimeestimates for the group velocity in the interacting case and in
[2,3]. In this context, the propagation of light inside a cold the limit of zero temperature.
gas is still an open problem. Because of the optical density, it

is well known that the transmission of resonant light through Il. MODEL
a condensate is almost zef8]. However, electromagneti- ) ) )
cally induced transparend§IT) [4] was found to allow the In this section we introduce the model used throughout

propagation of ||ght by means of quantum coherence bethis artiCle. Here We.Write the MaXWG”-BlO(:.:h -equati(-)ns that
tween different internal atomic leve[$,6]. In this context, ~describe the dynamics of the system consisting of light field
Hau et al. discovered a remarkable property of pulse propa2nd atoms. We derive the linear response of the medium to a
gation in a Bose condensate. These authors demonstrated {{gak probe field, taking into account the quantum statistics
slowing down of the group velocity of the pulse to 17 m/secOf the atoms. The group velocity is then defined in the stan-
[7]. Furthermore, they have shown a definite dependence éfard mannef12].

the group velocity on the temperature of the ultracold )

sample. One would like to understand the observed tempera- 1. Maxwell-Bloch equations

ture dependence from first principles. For this purpose, itis We consider a gas dfl noninteracting bosons. The rel-
necessary to extend the standard theory of EIT to a cold gasvant internal structure corresponds to a three-level atom,
at finite temperature. However, a theoretical description ofyith internal levels|g) (stable statg |r) (metastable state
this problem is rather complex. Complexities arise when ongynd le) excited state, whose energies arg, o, and o,
attempts a systematic treatment of interactions, finite temrespectively(see Fig. 1 The radiative decay rate of the ex-
perature effects, and dynamics. Most studies treat these agited state isy=y,+ y,, with v4(7:) the rate of decay on
pects as disjoint: interactions are included in the zerothe transitiode>ﬂfg>(|e>ﬁ|r>)_ Laser light with frequency
temperature case to study the kinematical aspiitsand ;. and wave vectork, drives the transition|g)—|e),
some dynamical aspects are studied using only the excitaghereas the transitiofr)—|e) is driven by a field of fre-
tions within the electronic ground staft®,9], whereas finite  quencyw, and wave vectok, . The dynamics of the whole

temperature effects are usually studied for noninteractingystem is given by the Maxwell equation for the electric field
bosons[2,10,1]. A complete theory should study all these \gctorg

aspects together. However, a complete theory of the interac-

tion of light and interacting particles is still unavailable, and le>

a full numerical treatment is a rather hard task. Here, we A —| A
present approximate but plausible arguments to explain the gl ZIzIIwD Tx
experimental observations ifi7]. The simplicity of our

model allows for an analytical expression for the group ve- Q
locity in the following cases: atoms confined in a box and by g

a harmonic potential. We obtain results that reproduce the

ones in[7] for T>T,. In particular, the treatment brings out | >
the factors playing key roles in the phenomenon. Here we

show that the variation of spatial density of atoms with tem- lg>

perature is the major factor responsible for the temperature

dependence of the group velocity. FIG. 1. Level scheme.
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1 g2 4 2 equations of thé&-atom gas. For noninteracting atoms it suf-
V2E— — —E=— —P, (1) fices to consider the equations for the one-atom density ma-
c” at ¢ ot trix p, projected on the bas{$j,e)} with j=r, g, e, and|e€)

the eigenvector of the mechanical motion of one atom at the
and by the optical Bloch equations for the density-matrixenergye. They have the form

d . . g ~ ~ !
SiPosl € €)= —i(e= pggle,e)+im S [C Tagler, €)= podee)(CL ) T+ ygpldee), ()
€1
d ' R ’ ’ Q r = ’ - r * r ’
&Prr(fve )=—1(e—€")p (€€ )'HEE [CE,Elper(Elrf )_Pre(evel)(cef,fl) 1+ viped €,€), (3
€1

d ’ . r_ ’ -9 g * ’ - g
apee(elf ):_I(E_E _|’)’)Pee(fuf )+|§ Ezl [(Cel,e) pge(flaf )_peg(fafl)csl,e']

Q r *~ ' - r
+i5 2 [(C 0" pre(€1,€’) e €.e1)Cy ], (4
€1
de g , I
&pge(fvf )=—li(e—€ _Ag_|rge)pge(fyf )'HE 2 [Ce,slpee(elaf )_pgg(fafl)celﬁff]_li E pgr(fafl)cél'yy
€1 €1
)
d- ’ H ’ 0_; -~ ’ Q r ’ r 9 - ¢]
apre(eae )=—li(e—€ —A;r—il'\¢)pre(€,€ )'H? 2 [Ce,elpee(elae )_Prr(evel)celyer]_lz 2 Prg(e’el)cel,éla
€ €1
(6)

d~ . N 9 ~ 0 -
giPor(e€)=—ile= € —(Ag—AD) —iTgJpg (e, ) +i5 2 CL peler€) =I5 X pgee.e)(C )%, (D)
€1 €1

where  pji(e,€')=(i,€lplj,€e’) (i,j=r,e,0), CL’E, effects of other mechanisms of decoherence. In the ideal case
= (elexp(k;-1)|€'), ’b‘ej:peje—iw”t, ;rg:prge—i(qg—w”)t, I'ye=T"1e=17y/2, wheread’,=0.

andp;;=(p;i)* for i#]. Here,c is the speed of lightP is
the polarization of the mediurm?=we— w;j—wj;j (J=g,r) ) ] ) ) o
is the detuning. Rabi couplings are given §y:|dy-E|/% ~ In an isotropic medium, the linear susceptibiligyis de-
and Q=|de,- E|/%, whered,; is the dipole moment of the fined by the expressiofi3]

transition|e)—|j). Finally, pL(€,€") describes the density

2. Susceptibility and group velocity

. . ! . t

matrix after a spontaneous emission event on the transition p(t):f dt y(t—t)E(t). 9

|e>_>|J>’ — 00

Assuming that two light fields are propagating through the
3 e _ oo . o
phdee)=g— > > | dOgldie- (k)] medium along the direction, we can write the electric field

1=12 €16 E(r,t) and the atomic polarizationP(r,t) as E(r,t)
X (€|€X " €1) ped €1,€2) (x| i | €', =3_q/[Eb(r,t)exp(tikiz—iwjt)+c.c]/2  and  P(r,t)

=3,_q.[Pb(r.t)exp(+ikiz—iw;t)+c.c]/2  where Ef,P}
are, respectively, the slowly varying envelopes of the electric
field and atomic polarization at frequenay; . The Fourier
where (k) and a2(k) form a set of polarization vectors transform of Eq.(9) gives Po(w)=Ey(w)x(w). From the
orthogonal tok, and dio=dj./|d;e|. In deriving the above relation P(t)=Tr{p"(t)d} for the polarization withd the
equations, we made the rotating-wave approximation an@tomic dipole moment operator, we find that the macroscopic
transformed to a reference frame rotating at the optical frePolarization of the medium at the positions

quency of the laser. Furthermore, in E¢8)—(7) we have N i

introduced the loss ratek;;, which take into account the PE(r, @i)/2=(r|pegdgee "or), (10

®
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wherepN is theN-atom density matrix that has the following lll. EVALUATION OF THE GROUP VELOCITY

form in the energy representation: In this section we derive an analytical expression for the

group velocity of a laser pulse propagating through an ideal
Pog= > pog€.€)]e)(e'|. (11)  gas of ultracold atoms. We investigate two cases: atoms in a
€€ box and atoms confined by a harmonic-oscillator potential.
Finally, we do the numerical calculations for the case of a
gas of sodium atoms and discuss the results in relation with
the experimental data ¢7].

The N-atom optical coherence density matrix has to be ob-
tained from the solution of Eq$2)—(7) subject to the initial
condition

A. Group velocity in a gas of free noninteracting bosons
(12 We consider a gas dfl bosons in a box of volum¥. In

this case the atomic wave-vector eigenstékesare also en-
ergy eigenstates with eigenvalues #2k?/2m, wherem is

whereN(e) is the number of atoms in the ground state Withthe atomic mass. So, we project E@—(7) on the motional
energye. Equationg2)—(7) are to be solved to first order in basis |k h ) h, P ﬁ! . i g in th

the fieldEJ and to all orders in the fiel&g. In this work we asis {|k)}. Then the coefficient<C,,, appearjmg |nJ the
are interested in the steady state of the atoms with the fielfl€nsity-matrix equations have the forn€,., =Cy .
which is assumed to be reached on a time scale much shortgrdk, k+k;- We substitute these values into EG8I~(7) and
than the thermalization time scale of the gas. On the basis ¢folve the equations in the steady-state limit. To first order in
this hypothesis, we assume that the initial conditib® and ~ 9/{ andg/I", and assuming that &t 0 the gas is in thermal
Egs. (2—(7) determine the steady-state solution. Note thatquilibrium, the steady-state optical coherepgg is found
the coefficientsC, ., determine the one-atom energy statesto be
involved in the transition induced by the laser field. For free

bosons these coefficients have a simple form, as it can be Peg(k—Kg.K)
seen in Sec. Il A. For harmonic-oscillator potentials the co- 20Ty ti(Ag—Ap)]
efficientsC, .. are given in terms of Laguerre polynomials, =0 . -
where the number of vibrational states that are coupled de- W+ A4(TgetiAg)[Tg+i(Ag—Ar)]
pends on the ratio between the recoil frequency over the trap 1
frequency. In Sec. Il B we use an approximate treatment for 9 ,
this case. ZF eldg O°/4 ’
Once the susceptibility is known, the dispersion relation Tge | Todlgti(Ag—Ap)]
of light in the medium is givefil3] and we can evaluate the 14
group velocity, defined asgz(aw/akg)|w:weg. In the limit (14)
Nx<1 the group velocity has the form whereA; is the detuning defined as
fk;-k
c _7%0 i
1+27x |y, T 2701 —— 0 o
'9 Jw w=uyg with AJ Aj+ wg, andog is the recoil frequency defined as
WR= hk2/2m Using Eq.(14) in Eq. (10), we find the expres-
wherey’ =Re(y). sion for the susceptibility
|
2 1
Xge(wlg =X N V Ag o 92/4 (16)
——i—i -
Iye Py Fgrti(Ag—Ap)]
|
The sum in Eq(16) is over all the motional states weighted |dge|2 3)\3
by their statistical occupatioN(k), 0= = , 18
X 7Ty~ 3243 (19
N(K)= 1 (17) where \ is the optical wavelength of the transitiagni—e,
f~Lexp Bh2K32m)—1" N=2mClwge, andI'ge= /2. In the following, we assume

that|k,—k,|<kg ,k; ,I'y, . Therefore, the dependence lom
wheref is the fugacity,8=1/kgT, T is the temperature, and the denominator of Eq16) is mainly due to the first term
k=|k|. Here,x" is the one-atom susceptibility, defined as A4, and we may rewrite Eq16) as
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0
X )
Yoo =7 3 NGt 49

wherek,=k-z and{ is a complex number independentlof

A 0?4
+1 .
Pge  TdTg+i(Ag—AD)]

(20

After evaluating the susceptibility as given by Ed9), the
group velocity can be found using E@.3). In the following,

we investigate the behavior of the cloud close to the critical T
point, dividing our investigation into two regimes: above and

below the critical temperatur€; .

1. Above the critical temperature

Above the critical temperature and in the limit of large

volumes, one can replace the sum in Ei§) with an integral

in three dimensiongl4]. The expression to evaluate is now

XO © ©
Xge(wlg)+: Wf_wdkxf_wdky

= 1
X dk
J,w Z[flexp(,BthZ/Zm)—ll
1
fik ’

g
k_
L

X (21)
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and where the functiow is defined as

w(x)=exp —x?)[erf(ix)+1]. (26)

Given the critical temperature for an ideal Bose gas
zth n 2/3
¢ mKg (93/2(1)
wheren(=N/V) is the density of atoms, we can rewrite Eq.
(24) as

(27)

-, f!
Xael@ig)+ =Inx¢- 93/2(1) 2 Tw (ﬁ %) (28)
with
k A n 1/3
2__(gslz<1>) ~VrAlrr, @9
and
A —\ﬁ (30)
Ac\/;_ T

2. Below the critical temperature

For T<T., we use the expression for the ground-state
population in the thermodynamic limjii.4], to obtain

( ) ( ) | XO (T)SIZ
w = w 1= —nl1l-|=
Xge Ig Xge lg/+1f=1 é/ Tc

., (31

where for convenience we have chosen to integrate in the

Cartesian coordinates. We writ(k) as

o

N(k)=|§1 f' exp( — 1 A 2k2/2m), (22)

and we use it in Eq(21) to obtain

Xge( g)+ 27 )32 J

exp( —1 Bh2K2/2m)

g kz_ g
ge

mI’

X f dk, exp( — | BA2Kk2/2m)

X f dk, exp(— 1 B#%k5/2m). (23

This can be written in terms of the standard functions

omkgT\ 22 £
mkg ) Z‘ll_w(ﬁé)' (29)

XO

8A7T

Xge(wlg)+ 52

[2KeT K,
A= m [,

L
ge

where

(25

where the second term on the right-hand <ithes) describes
the contribution of the condensed phase.

3. Regime of parameters and approximations

For currently studied optical transitions the argument of
the w function in Eq.(28) is y=/1¢/A>1 for any value of
I=1. Therefore, the asymptotic expansion of téunction
can be applied16],

(32

i i
RN =)

We substitute this expansion into E@8), and obtain for
T>T,

A2

N2

o7 A

Xge(wlg)Jr nX T, \/_A 93/2(1)

PEES

T 3/2 A2
a0 =
=—ny (Tc) 93/2(1)§{93/2(f)+95/2(f) Zzl
B XO ( )3/2g Z(f) A2
- ¢ o Te/ 9ap(1) §2 33

where we have used the relatiog,(f)/gs(1)=T./T for
T>T.. ForT<T, the susceptibility will now have the form
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XO

Xge(wlg)fz _n?

1
f~lexd B(p%2m+V(r)]—-1

(34 N(r,p)=

(39

T\ %2g5(1) A?
1+(_) 932(1) ? '

Te

Using Egs.(33) and (34) in the formula(13) we find the  When considering the condensate contribution to the optical
group velocity. Note that the dependence on the temperatuigisceptibility, one should evaluagg(e,e’) and sum over
comes in at higher order in the expansi@n/. Clearly a the final states with energy. However, in the regime
significant temperature dependence for a free gas can come/v>1 we may apply the semiclassical approximation to
only for narrow optical transitions. the final states. The final semiclassical energy is the recoll
energy, and we can write the optical coherence for the con-

B. Group velocity in a gas of trapped noninteracting bosons densate contribution as

Let us now consider a cloud of atoms trapped in a three- g 1
dimensional harmonic potential with cylindrical symmetry, Peg™ 5T ~ %0 5 (40
so that the one-atom Hamiltonian describing the mechanical ge ﬁ—i—i 04
motion has the form Tge Fged Do ti(Ag—AD)]

2

b The ground-state occupation is given in the thermodynamic
H=om TV, B35 Jimit by [2,17]
3
whereV(r) is the harmonic-oscillator potential in cylindrical NO=Nl1- l) (41)
coordinates T |
1 2o 9, where T, is the critical temperature of the trapped gas,
V(r)=sm(vro+v;z%), (36)  kgT =r(v,r?)YIN/gs(1)]*°.

Contrary to the case of free bosons, the group velocity is

with », , v, trap frequencies in the radial and axial directions,n°t directly given by the formulél3), because of the spatial
respectively. In order to evaluate the susceptibility in theVaration of the atomic density and therefore of the suscep-
steady state, we solve Eq®)—(7) in the semiclassical limit t|b|I|Fy. Here, we evaluat.e the group velo_C|ty using a.method
for the atomic motion, and we sum over the states using th§duivalent to the experimental one [of], i.e., we estimate
semiclassical statistical distributi§8,15]. This limit is valid ~ the SizeD of the cloud and calculate the delay of a pulse
when treating the noncondensed fraction of atoms for temPropagating across a selected region of a cold gas with re-
peraturesT fulfilling the conditionKgT>7% v, and under the SPECt 10 @ pulse propagating in the vacuum. The group ve-

conditionT’,|A|> ». The hypothesis is justified in the range Ioec>:(ity is then given by the ratio of the size over the delay

of parameters of7] and simplifies considerably the treat- Vg P=D/At. Assuming that the light is propagating along the
ment, allowing for an analytical solution of the group veloc- z axis and cuts a cylinder inside of the volume with secton
ity. Then the coeffient€, ., simplify to their semiclassical and centered on the axis of the cloud, we write the delay
values(C, o)~ 8y o + 10 1 » Wherep,r are now the classi- (At) as the average over the sect®of all the delaysit(r)

cal canonical coordinates of a harmonic oscillator with en-of pulses propagating at distancéom the axis of the cloud
ergy E=p?/2m+V(r). In this limit, the optical coherence

peg appearing in Eq(10) has the form (At)= ifRdr 2t AL(r) “2
1 mR?Jo ’
Peq(r.P)= 2lge Ay 0%/4 ' whereR is the radius of the illuminated circular sectiSrof
F_ge_l_lrge[rgr+i(Ag_Ar)] the cloud andAt(r) is defined as
(37) " .
with A; defined in Eq(15), and the susceptibility is given by At(r)= f_L(r)dz[vg(r,z)] ' “3

the expression
wherev ¢ is defined in Eq(13), andL(r) is half the length of
3 the path along the cloud. Note thR&twill, in principle, de-
3N(f,p) pend on the size of the incoming Gaussian beam. However,
(2mh) in the experiment of 7], R is the radius of a pinhole set
before the measuring apparatus. The delay time is experi-

Xge(rawlg):)(of

% L . . (39 mentally obtained by measuring the difference between the
ﬁ—i—i 0°/4 delay time of the pulse propagating across the cloud and the
[ge P Fgrti(Ag—Ap)] one of a pulse propagating in the vacuum. Assuming that
L(r)=L is the distance between a slit before the cloud and
where the semiclassical statistical distribution is the photomultiplier, the final delay will bAt=(At)—L/c.
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In the following, we evaluate the group velocity as a function w dl X° (KgT)® 2 & 1 A2 1
of the temperature above and below the critical temperature.(At) , = — 27— — — — 35T
C A 2 33p,0? 7R? =1 13 2|
1. Above the critical temperature 3
) ) w d¢ X T 2
The integral over the momenta in E@8) can be evalu- = —2773 E?N T.) =
C a

ated along the lines of the procedure outlined in £E8%)—
(24). One finds

0a(f) | A gu()
(1) 2 9o(D)

o, o (2mKeT)¥2 1 O f! ( g)
Xge(r,w|g)+—l77 X _(27Tﬁ)3 A Z \/_A ., w L XON +3( T)SAZ ga(f)
e~ !BV(). (44) - ¢ oA 2 wR? Te) 22 gs(L) |’

(48)
Again, the considerations on thefunction made in the free
case are applicable, and using its asymptotic expari&qgn
(32)], one gets

where we have used the definition of critical temperature and
the relationg(1)/g5(f)=(T/T.)® for T>T,. From Eq.(48)
one sees that the dependence of the delay time on the tem-
32 perature of the sample appears principally in the spatial-
mkgT faBV(T) average term R?, which is proportional to 7. Thus, the
ﬁ 9o fe ) main dependence of the group velocity on the temperature
comes in through the volume of the cloud, sinog

2 =D,(T)/{At),*D,(T)R?xT*? and the variation of the

+95/2(fe—5vm)_2 . (45) group velocity with temperature is mainly due to the change
¢ of volume of the cloud.

XO

Xge(r-wlg)+: - ?

For L>D,(T), whereD,(T) is the axial thermal size of the 2. Below the critical temperature
cloud, we can replack by < in the integral(43). Therefore,
the delay of a beam propagating along #hexis, and enter-
ing the cloud at a distanaefrom the cloud axis is

For the ground state of the harmonic potential, we use the
expression for the ground-state population in the thermody-
namic limit[2] and the optical coherence as given in Etf))
to obtain
w L X m(kgT)?

- - 1 T 3
C aA §2 277%3 Xge(rvwlg):Xge(rvwlg)+|f—1_)(ozN|¢(r)|2[1_(T_c) }’
(49

At(r),=—

XE

=112

A1
(1+3?T) e b, (a9

where N is the total number of particles, andi(r) is the
harmonic-oscillator ground-state wave function. The delay

Above the critical temperature the total delégt), is  (At)- is given by

thus

(Aty_=(At) i1 +(At)c, (50
w ¢ X° (KgT)® 2 & f! A2 1 where(At)c is the contribution to the total delay given by
(At) = 2773 N E PENg R Z, IE 1+3? T the pulses which cross the condensate
z%r
- I X T\®
w1 e |BmyR2 _ _ o5 o
[1-e ] (47 (At)c T aA iz N{l Tc) Fc. (50

Here, we take the size of the cloud to be the variance of th¢iere F . is the average of the ground-state wave function,
thermal distribution along thez axis, and thus D,  which, according to Eq¥38),(42),(43) is
= \/2kBT/vaZ. The group velocity above the critical tem-

perature is thenD,/(At),. Note that, in the limitR B e ' ’aOr 2122
<D,(T), whereD,(T)=/2kgT/m»? is the radial thermal o2 M a2 ao dz & " e Rz'
size of the cloud, the exponential appearing in E) can ordoz 52

be expanded to yieldAt),~1/T. Since D,(T)= T, the

group velocity depends on the temperature;@sTm. The  whereag;=vAi/mvy; is the size of the ground state of the
same behavior can be found when considering the other limharmonic oscillator in the direction (j=r,z). In order to
iting case, i.e.R~D,(T)/+2, corresponding to averaging evaluate the size of the cloud, we consider thafffetT,, a
over the whole cloud. Then, the delay time has the form  fraction (T/T.)® of the atoms is outside of the condensate,
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250 1000
500
200
Vg 100
150 v, 9
& 10
wo s 3
50
1
1 2 3 4 5 T/ T,
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FIG. 3. Onset: Plot of the group velocity in m/sec in logarithmic
scale as a function of the effective temperaté+eT/ T, for a gas of
sodium atoms as ifi7]. The upper curve corresponds @b=1.2y,
whereas the lower curve corresponds @b=0.56y. Here, T,

~0.56y, Ay=A,=0, [y=27x 1000 Hz. For the free casd@, 32 MK, N=8.3x 1P, I'y;=2wx1000 Hz, »,=2mX70 Hz,

=154 nK, n=3.8x 10" cm2. For the harmonic potential case: v,=2mX20 ':)Z*h and Afg:hArzo- Inse(}.: Plot of .thlle low- I
vi= 25X 70 Hz, v,= 27X 20 Hz, To=432 nK, N=8.3x 1P, temperature behavior of the corresponding curves in linear scale.

The radius of the sectio8is R=15 um.

FIG. 2. Plot of the group velocity in m/sec as a function of the
effective temperatur@=T/T for a gas of sodium atomsa) free
bosons(dashed ling and (b) trapped bosong&otted ling. Here ()

3

whereas a fraction 4 (T/T.)? is in the condensate. Apply-
part, we have that ent of the group velocityersusthe temperature than in our
case. On the other hand, as the temperature decreases, the
_ o _ effects, a lower density of the atoms than in the noninteract-
which leads us to defining the size of the cloud to be ing case. Hence, one would expect a group velocity value
22 vz (54) the evaluated curve reproduces the experimental one above
0z - the critical temperature with some agreement, showing that
Dividing D, by (At) _ we find the group velocity below the phenomenon.
critical temperature. Below the critical temperature the discrepancy between
C. Numerical results dramgtic. This is not surprising since the size of_the cor]den-
sate is strongly affected by the effect of the interactions.
atoms in a box(dashed ling and in a harmonic oscillator  sjze is much larger in the interacting system compared to the
(dotted ling as a function of temperatufie scaled according  sjze of the harmonic-oscillator ground-state wave function
number of atoms, and trap frequencies have been taken frogialler values of the group velocity than the experimental
the data of 7]. The experimental results f7] are seen to be records. In order to illustrate this point, in the following sec-
inhomogeneous spatial density of the atoms and its variatiofhe ideal case with the Thomas-Fermi case.
with temperature is the key to the understanding of the ex- Finally, we discuss the measure of the group velocity in
oms shows that the temperature dependence entering into EG.p (T) and with radiusR~D,(T). This is illustrated in
(28) as a higher-order correction has a negligible effect on-jg 4, where the same dependence of the group velocity on
of the behavior observed {7]. . . pairs of curves corresponding to the same set of parameters
In Fig. 3 we compare the group velocity for two different 5re comparable, showing that the behavior observeijin
behavior forT>T, is similar to the corresponding one mea- density of the gas with temperature.
sured in[7]. The curves we obtain are, however, steeper, and
made in our treatment. In our calculations we have assumed BOSE GAS
the same number of atoms at every temperature. However, in
of evaporative cooling. This implies that the points of the=0 in the two limits: the ideal one, where we consider the
experimental curve at higher temperatures correspond tparticles as noninteracting, and the interacting case, which

ing the semiclassical approximation to the noncondensatgal density(for ideal gases This leads to a smoother gradi-
(Z2)=(TITYXZ)ncH[1—(TITY)3Z?) e,  (53)  effect of the interactions gets stronger causing, among other
larger than the evaluated one. Albeit these considerations,
ol
T * Te
the ideal gas model provides a qualitative description of the
the experimental data and our theoretical predictions is rather
In Fig. 2 we plot the group velocity of a gas of sodium ajready Ketterle and co-workers have reported that the cloud
to the critical temperature of each case. Density of atoms,18]. Therefore, our evaluation can be expected to lead to
broadly in agreement with the harmonic-oscillator case. Thejon we estimate the group velocity &t=0 by comparing
perimental data. The curve representing the case of free ahe two limiting cases for a sectio® with radius R
the considered scale, and cannot be interpreted as the Caufg temperature is evident. The orders of magnitude of the
values of the Rabi frequenc@ coupling[r) to [e). The  qriginates mainly from a change in the “average” spatial
this can be explained by considering the approximations |, crRouP VELOCITY FOR AN INTERACTING
the experiments lower temperatures are achieved by means In this section we compare the group velocity valud at
larger numbers of atoms, and correspondingly to larger spawe treat in the Thomas-Fermi approximation. We estimate
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1(5)80 and u is the chemical potential, defined as
2/5
100 = fLVho 15Nas (57)
Vg 30 2 ano ’
10 : ; 2 1/3 :
5 with ag scattering lengthy,=(v;v,)™~ geometrical aver-
, age of the oscillator frequencies, aag,= yA/mv,, corre-

sponding oscillator size. Takings=2.75 nm, for the set of
T/T, parameters of the experiment the Thomas-Fermi dimensions
of the cloud areRg,~47.4 um andRg,~13.6 um. Con-

FIG. 4. Calculations with two different radii for the secti@  sidering the density of atoms as homogeneous, we obtain
R=15 xm (solid lineg andR= \kgT/m»? (dotted liney. The two ~ ~3x 10" atoms per crh From Eq.(55) we find for the
bottom (top) curves correspond 1 =0.56y (Q=1.2y). All other  group velocityv ;"~9 m/sec, which is comparable with the
parameters are reported in the caption of Fig. 3. value measured 7] for temperatures below the critical

temperature. Therefore, for 4@toms we find a difference of
the group velocity using the set of parameters of the experitwo orders of magnitude in the value of the group velocity

ment and the formul&l) of [7]: between the ideal case and the interacting case. Such differ-
5 ence increases or decreases depending on the total number of
hc Q] atoms in the trap. This estimate substantiates the inference

(59 that interactions are responsible for a lower density, and

therefore, for a higher average group velocity of the light.

wheren is the density. Therefore, we need to evaluate the
group velocity afT=0 by substituting into Eq(55) an esti- V. CONCLUSIONS
mate of the spatial density, which we calculate here as the
ratio of the total number of atoms over the volume of the We have derived an approximate analytical expression for
cloud. This evaluation, which corresponds to considering théhe group velocity of a pulse propagating through an ultra-
density as homogeneous, is justified on the basis of the resold gas which is confined in a box and by a harmonic po-
sults of Fig. 4, where it is shown that the phenomenon obiential. We have shown that the results reproduce qualita-
served in[7] is mainly dependent on the change in the den-tively the experimental ones presented [if]. From our
sity. analysis it emerges that the definite variation of the group

For an ideal gas in a harmonic-oscillator potentialTat velocity with the temperature of the gas is an effect related to
=0, all the atoms are in the ground state, and a rough estthe variation of the spatial density of the gas. We see that the
mate of the density gives~N/(4may,a3,/3). Taking N  ideal gas model provides a qualitative description of the re-
=10° sodium atoms and,=20X 27 Hz, v,= 70X 27 Hz, sults for T>T.. However, the behavior at<T. can be

0 =0.56y, the ground-state dimensions aag,~4.7w and  described in a satisfactory way only by including the inter-
ao,~2.4u, and we obtain a density~8x 10" atoms per actions and the fact that the cloud is cooled by means of

cm®. Thus, according to Eq(55), the group velocity is evaporative cooling. The last one has the effect of making
viéjealwo_o‘?, misec. the total number of atoms temperature dependent. Such ef-

For an interacting gas in the Thomas-Fermi limit, thefects will be the subject of future investigations.
cloud is an ellipsoid of axesRg, in the radial direction and

Vg — ——,
9 87w n|deg|2

2Rrg, in the axial direction, wher&Rrg; is the Thomas- ACKNOWLEDGMENTS
Fermi radius .
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