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Temperature variation of ultraslow light in a cold gas
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A model is developed to explain the temperature dependence of the group velocity as observed in the
experiments of Hauet al. @Nature ~London! 397, 594 ~1999!#. The group velocity is quite sensitive to the
change in the spatial density. The inhomogeneity in the density and its temperature dependence are primarily
responsible for the observed behavior.
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I. INTRODUCTION

The phenomenon of Bose-Einstein condensation
atomic gases@1,2# lends itself to the study of many funda
mental effects. Among them, one aspect presently being
vestigated both theoretically and experimentally is the in
action of light with atoms in the quantum degeneracy regi
@2,3#. In this context, the propagation of light inside a co
gas is still an open problem. Because of the optical densit
is well known that the transmission of resonant light throu
a condensate is almost zero@3#. However, electromagneti
cally induced transparency~EIT! @4# was found to allow the
propagation of light by means of quantum coherence
tween different internal atomic levels@5,6#. In this context,
Hau et al. discovered a remarkable property of pulse pro
gation in a Bose condensate. These authors demonstrate
slowing down of the group velocity of the pulse to 17 m/s
@7#. Furthermore, they have shown a definite dependenc
the group velocity on the temperature of the ultraco
sample. One would like to understand the observed temp
ture dependence from first principles. For this purpose, i
necessary to extend the standard theory of EIT to a cold
at finite temperature. However, a theoretical description
this problem is rather complex. Complexities arise when o
attempts a systematic treatment of interactions, finite te
perature effects, and dynamics. Most studies treat these
pects as disjoint: interactions are included in the ze
temperature case to study the kinematical aspects@2#, and
some dynamical aspects are studied using only the ex
tions within the electronic ground state@8,9#, whereas finite
temperature effects are usually studied for noninterac
bosons@2,10,11#. A complete theory should study all thes
aspects together. However, a complete theory of the inte
tion of light and interacting particles is still unavailable, a
a full numerical treatment is a rather hard task. Here,
present approximate but plausible arguments to explain
experimental observations in@7#. The simplicity of our
model allows for an analytical expression for the group
locity in the following cases: atoms confined in a box and
a harmonic potential. We obtain results that reproduce
ones in@7# for T.Tc . In particular, the treatment brings ou
the factors playing key roles in the phenomenon. Here
show that the variation of spatial density of atoms with te
perature is the major factor responsible for the tempera
dependence of the group velocity.
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The paper is organized as follows: In Sec. II the mode
introduced. In Sec. III we derive the group velocity of
pulse propagating in an ideal gas confined inside a box,
tend the calculation to the case of an ideal gas in a harmo
oscillator potential, and present and discuss the result
relation to the experiment of Hauet al. In Sec. IV we present
estimates for the group velocity in the interacting case an
the limit of zero temperature.

II. MODEL

In this section we introduce the model used through
this article. Here we write the Maxwell-Bloch equations th
describe the dynamics of the system consisting of light fi
and atoms. We derive the linear response of the medium
weak probe field, taking into account the quantum statis
of the atoms. The group velocity is then defined in the st
dard manner@12#.

1. Maxwell-Bloch equations

We consider a gas ofN noninteracting bosons. The re
evant internal structure corresponds to a three-level at
with internal levelsug& ~stable state!, ur & ~metastable state!,
and ue& excited state, whose energies arevg , v r , andve ,
respectively~see Fig. 1!. The radiative decay rate of the ex
cited state isg5gg1g r , with gg(g r) the rate of decay on
the transitionue&→ug&(ue&→ur &). Laser light with frequency
v lg and wave vectorkg drives the transitionug&→ue&,
whereas the transitionur &→ue& is driven by a field of fre-
quencyv lr and wave vectorkr . The dynamics of the whole
system is given by the Maxwell equation for the electric fie
vectorE

FIG. 1. Level scheme.
©2000 The American Physical Society01-1
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equations of theN-atom gas. For noninteracting atoms it su
fices to consider the equations for the one-atom density
trix r, projected on the basis$u j ,e&% with j 5r , g, e, andue&
the eigenvector of the mechanical motion of one atom at
energye. They have the form
d

dt
rgg~e,e8!52 i ~e2e8!rgg~e,e8!1 i

g

2 (
e1

@Ce,e1

g r̃eg~e1 ,e8!2 r̃ge~e,e1!~Ce8,e1

g
!* #1ggree

g ~e,e8!, ~2!

d

dt
r rr ~e,e8!52 i ~e2e8!r rr ~e,e8!1 i

V

2 (
e1

@Ce,e1

r r̃er~e1 ,e8!2 r̃ re~e,e1!~Ce8,e1

r
!* #1g rree

r ~e,e8!, ~3!

d

dt
ree~e,e8!52 i ~e2e82 ig!ree~e,e8!1 i

g

2 (
e1

@~Ce1 ,e
g !* r̃ge~e1 ,e8!2 r̃eg~e,e1!Ce1 ,e8

g
#

1 i
V

2 (
e1

@~Ce1 ,e
r !* r̃ re~e1 ,e8!2 r̃er~e,e1!Ce1 ,e8

r
#, ~4!

d

dt
r̃ge~e,e8!52 i ~e2e82Dg

02 iGge!r̃ge~e,e8!1 i
g

2 (
e1

@Ce,e1

g ree~e1 ,e8!2rgg~e,e1!Ce1 ,e8
g

#2 i
V

2 (
e1

r̃gr~e,e1!Ce1 ,e8
r ,

~5!

d

dt
r̃ re~e,e8!52 i ~e2e82D r

02 iG re!r̃ re~e,e8!1 i
V

2 (
e1

@Ce,e1

r ree~e1 ,e8!2r rr ~e,e1!Ce1 ,e8
r

#2 i
g

2 (
e1

r̃ rg~e,e1!Ce1 ,e8
g ,

~6!

d

dt
r̃gr~e,e8!52 i @e2e82~Dg

02D r
0!2 iGgr#r̃gr~e,e8!1 i

g

2 (
e1

Ce,e1

g r̃er~e1 ,e8!2 i
V

2 (
e1

r̃ge~e,e1!~Ce8,e1

r
!* , ~7!
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where r i j (e,e8)5^ i ,euru j ,e8& ( i , j 5r ,e,g), Ce,e8
j

5^euexp(ik j•r )ue8&, r̃e j5re je
2 iv l j t, r̃ rg5r rge2 i (v lg2v lr )t,

and r̃ i j 5( r̃ j i )* for iÞ j . Here,c is the speed of light,P is
the polarization of the medium,D j

05ve2v j2v l j ( j 5g,r )
is the detuning. Rabi couplings are given byg5udeg•Eu/\
and V5uder•Eu/\, wherede j is the dipole moment of the
transition ue&→u j &. Finally, ree

j (e,e8) describes the densit
matrix after a spontaneous emission event on the trans
ue&→u j &,

ree
j ~e,e8!5

3

8p (
l 51,2

(
e1 ,e2

E dV k̂ud̂je•a l~ k̂!u2

3^eueik j •rue1&ree~e1 ,e2!^e2ue2 ik j •rue8&,

~8!

wherea1( k̂) and a2( k̂) form a set of polarization vector
orthogonal tok̂, and d̂je5dje /udjeu. In deriving the above
equations, we made the rotating-wave approximation
transformed to a reference frame rotating at the optical
quency of the laser. Furthermore, in Eqs.~2!–~7! we have
introduced the loss ratesG i j , which take into account the
n

d
-

effects of other mechanisms of decoherence. In the ideal
Gge5G re5g/2, whereasGgr50.

2. Susceptibility and group velocity

In an isotropic medium, the linear susceptibilityx is de-
fined by the expression@13#

P~ t !5E
2`

t

d t8x~ t2t8!E~ t8!. ~9!

Assuming that two light fields are propagating through t
medium along theẑ direction, we can write the electric field
E(r ,t) and the atomic polarizationP(r ,t) as E(r ,t)
5( j 5g,r@E0

j (r ,t)exp(1ikjz2ivlj t)1c.c.#/2 and P(r ,t)
5( j 5g,r@P0

j (r ,t)exp(1ikjz2ivlj t)1c.c.#/2 where E0
j ,P0

j

are, respectively, the slowly varying envelopes of the elec
field and atomic polarization at frequencyv l j . The Fourier
transform of Eq.~9! gives P0(v)5E0(v)x(v). From the
relation P(t)5Tr$rN(t)d% for the polarization withd the
atomic dipole moment operator, we find that the macrosco
polarization of the medium at the positionr is

P0
g~r ,v lg!/25^r ureg

N dgee
2 ikgzur &, ~10!
1-2
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whererN is theN-atom density matrix that has the followin
form in the energy representation:

reg
N 5(

e,e8
reg

N ~e,e8!ue&^e8u. ~11!

The N-atom optical coherence density matrix has to be
tained from the solution of Eqs.~2!–~7! subject to the initial
condition

rN~0!5(
e

N~e!ug,e&^g,eu, ~12!

whereN(e) is the number of atoms in the ground state w
energye. Equations~2!–~7! are to be solved to first order i
the fieldE0

g and to all orders in the fieldE0
r . In this work we

are interested in the steady state of the atoms with the fi
which is assumed to be reached on a time scale much sh
than the thermalization time scale of the gas. On the bas
this hypothesis, we assume that the initial condition~12! and
Eqs. ~2!–~7! determine the steady-state solution. Note t
the coefficientsCe,e8 determine the one-atom energy sta
involved in the transition induced by the laser field. For fr
bosons these coefficients have a simple form, as it can
seen in Sec. III A. For harmonic-oscillator potentials the c
efficientsCe,e8 are given in terms of Laguerre polynomial
where the number of vibrational states that are coupled
pends on the ratio between the recoil frequency over the
frequency. In Sec. III B we use an approximate treatment
this case.

Once the susceptibility is known, the dispersion relat
of light in the medium is given@13# and we can evaluate th
group velocity, defined asvg5(]v/]kg)uv5veg

. In the limit

Nx!1 the group velocity has the form

vg5
c

112px8uv5v lg
12pv lg

]x8

]v U
v5v lg

, ~13!

wherex85Re(x).
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III. EVALUATION OF THE GROUP VELOCITY

In this section we derive an analytical expression for
group velocity of a laser pulse propagating through an id
gas of ultracold atoms. We investigate two cases: atoms
box and atoms confined by a harmonic-oscillator potent
Finally, we do the numerical calculations for the case o
gas of sodium atoms and discuss the results in relation w
the experimental data of@7#.

A. Group velocity in a gas of free noninteracting bosons

We consider a gas ofN bosons in a box of volumeV. In
this case the atomic wave-vector eigenstatesuk& are also en-
ergy eigenstates with eigenvaluese5\2k2/2m, wherem is
the atomic mass. So, we project Eqs.~2!–~7! on the motional
basis $uk&%. Then the coefficientsCee8

j appearing in the
density-matrix equations have the formCee8

j [Ck,k8
j

5dk,k1k j
. We substitute these values into Eqs.~2!–~7! and

solve the equations in the steady-state limit. To first orde
g/V andg/G, and assuming that att50 the gas is in therma
equilibrium, the steady-state optical coherencereg is found
to be

reg~k2kg ,k!

5g
2i @Ggr1 i ~Dg2D r !#

V214~Gge1 iDg!@Ggr1 i ~Dg2D r !#

5
g

2Gge

1

Dg

Gge
2 i 2 i

V2/4

Gge@Ggr1 i ~Dg2D r !#

,

~14!

whereD j is the detuning defined as

D j5D̃ j
01

\k j•k

m
, ~15!

with D̃ j
05D j

01vR , andvR is the recoil frequency defined a
vR5\k2/2m. Using Eq.~14! in Eq. ~10!, we find the expres-
sion for the susceptibility
xge~v lg!5x0(
k

N~k!
1

V

1

Dg

Gge
2 i 2 i

V2/4

Gge@Ggr1 i ~Dg2D r !#

. ~16!
The sum in Eq.~16! is over all the motional states weighte
by their statistical occupationN(k),

N~k!5
1

f 21 exp~b\2k2/2m!21
, ~17!

wheref is the fugacity,b51/kBT, T is the temperature, an
k5uku. Here,x0 is the one-atom susceptibility, defined as
x05
udgeu2

Gge\
[

3l3

32p3
, ~18!

where l is the optical wavelength of the transitiong→e,
l52pc/vge , and Gge5g/2. In the following, we assume
that ukg2kr u!kg ,kr ,Ggr . Therefore, the dependence onk in
the denominator of Eq.~16! is mainly due to the first term
Dg , and we may rewrite Eq.~16! as
1-3
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xge~v lg!5
x0

V (
k

N~k!
1

~\kg /mGge!kz2z
, ~19!

wherekz5k• ẑ andz is a complex number independent ofk,

z52
D̃g

0

Gge
1 i 1 i

V2/4

Gge@Ggr1 i ~Dg
02D r

0!#
. ~20!

After evaluating the susceptibility as given by Eq.~19!, the
group velocity can be found using Eq.~13!. In the following,
we investigate the behavior of the cloud close to the criti
point, dividing our investigation into two regimes: above a
below the critical temperatureTc .

1. Above the critical temperature

Above the critical temperature and in the limit of larg
volumes, one can replace the sum in Eq.~19! with an integral
in three dimensions@14#. The expression to evaluate is no

xge~v lg!15
x0

~2p!3E2`

`

dkxE
2`

`

dky

3E
2`

`

dkzF 1

f 21 exp~b\2k2/2m!21
G

3F 1

\kg

mGge
kz2zG , ~21!

where for convenience we have chosen to integrate in
Cartesian coordinates. We writeN(k) as

N~k!5(
l 51

`

f l exp~2 lb\2k2/2m!, ~22!

and we use it in Eq.~21! to obtain

xge~v lg!15
x0

~2p!3 (
l 51

`

zlE
2`

`

dkz

exp~2 lb\2kz
2/2m!

\kg

mGge
kz2z

3E
2`

`

dkx exp~2 lb\2kx
2/2m!

3E
2`

`

dky exp~2 lb\2ky
2/2m!. ~23!

This can be written in terms of the standard functions

xge~v lg!15 i
x0

8Ap S 2mkBT

\2 D 3/2

(
l 51

`
f l

l
wSAl

z

AD , ~24!

where

A5A2kBT

m

kg

Gge
, ~25!
01380
l

e

and where the functionw is defined as

w~x!5exp~2x2!@erf~ ix !11#. ~26!

Given the critical temperature for an ideal Bose gas

Tc5
2p\2

mKB
S n

g3/2~1! D
2/3

, ~27!

wheren(5N/V) is the density of atoms, we can rewrite E
~24! as

xge~v lg!15 inx0
T

Tc

1

g3/2~1!Ac
(
l 51

`
f l

l
wSAl

z

AD , ~28!

with

Ac52
kg

Gge

\

m S n

g3/2~1! D
1/3

5ApAuT5Tc
~29!

and

A

AcAp
5A T

Tc
. ~30!

2. Below the critical temperature

For T,Tc , we use the expression for the ground-sta
population in the thermodynamic limit@14#, to obtain

xge~v lg!25xge~v lg!1u f 512
x0

z
nF12S T

Tc
D 3/2G , ~31!

where the second term on the right-hand side~rhs! describes
the contribution of the condensed phase.

3. Regime of parameters and approximations

For currently studied optical transitions the argument
the w function in Eq.~28! is y5Al z/A@1 for any value of
l>1. Therefore, the asymptotic expansion of thew function
can be applied@16#,

w~y!5
i

Apy
1

i

2Apy3
. ~32!

We substitute this expansion into Eq.~28!, and obtain for
T.Tc

xge~v lg!152nx0
T

Tc

A

ApAc

1

g3/2~1!z (
l 51

`
f l

l F 1

Al
1

A2

Al 3z2G
52nx0S T

Tc
D 3/2 1

g3/2~1!z Fg3/2~ f !1g5/2~ f !
A2

z2 G
52n

x0

z F11S T

Tc
D 3/2 g5/2~ f !

g3/2~1!

A2

z2 G , ~33!

where we have used the relationg3/2( f )/g3/2(1)5Tc /T for
T.Tc . For T,Tc the susceptibility will now have the form
1-4
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xge~v lg!252n
x0

z F11S T

Tc
D 3/2g5/2~1!

g3/2~1!

A2

z2 G . ~34!

Using Eqs.~33! and ~34! in the formula ~13! we find the
group velocity. Note that the dependence on the tempera
comes in at higher order in the expansionA/z. Clearly a
significant temperature dependence for a free gas can c
only for narrow optical transitions.

B. Group velocity in a gas of trapped noninteracting bosons

Let us now consider a cloud of atoms trapped in a thr
dimensional harmonic potential with cylindrical symmetr
so that the one-atom Hamiltonian describing the mechan
motion has the form

H5
p2

2m
1V~r !, ~35!

whereV(r ) is the harmonic-oscillator potential in cylindrica
coordinates

V~r !5
1

2
m~n r

2r 21nz
2z2!, ~36!

with n r ,nz trap frequencies in the radial and axial direction
respectively. In order to evaluate the susceptibility in t
steady state, we solve Eqs.~2!–~7! in the semiclassical limit
for the atomic motion, and we sum over the states using
semiclassical statistical distribution@2,15#. This limit is valid
when treating the noncondensed fraction of atoms for te
peraturesT fulfilling the conditionKBT@\n, and under the
conditionG,uDu@n. The hypothesis is justified in the rang
of parameters of@7# and simplifies considerably the trea
ment, allowing for an analytical solution of the group velo
ity. Then the coeffientsCe,e8 simplify to their semiclassica
values^Ce,e8&'dp,p81\kd r ,r8 , wherep,r are now the classi-
cal canonical coordinates of a harmonic oscillator with e
ergy E5p2/2m1V(r ). In this limit, the optical coherence
reg appearing in Eq.~10! has the form

reg~r ,p!5
g

2Gge

1

Dg

Gge
2 i 2 i

V2/4

Gge@Ggr1 i ~Dg2D r !#

,

~37!

with D j defined in Eq.~15!, and the susceptibility is given b
the expression

xge~r ,v lg!5x0E d3p

~2p\!3
N~r ,p!

3
1

Dg

Gge
2 i 2 i

V2/4

Gge@Ggr1 i ~Dg2D r !#

, ~38!

where the semiclassical statistical distribution is
01380
re

me

-

al

,
e

e
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-

N~r ,p!5
1

f 21 exp@b~p2/2m1V~r !#21
. ~39!

When considering the condensate contribution to the opt
susceptibility, one should evaluatereg(e,e8) and sum over
the final states with energye. However, in the regime
vR /n@1 we may apply the semiclassical approximation
the final states. The final semiclassical energy is the re
energy, and we can write the optical coherence for the c
densate contribution as

reg5
g

2Gge

1

D̃g
0

Gge
2 i 2 i

V2/4

Gge@Ggr1 i ~Dg
02D r

0!#

. ~40!

The ground-state occupation is given in the thermodyna
limit by @2,17#

N(0)5NF12S T

Tc
D 3G , ~41!

where Tc is the critical temperature of the trapped ga
kBTc5\(nzn r

2)1/3@N/g3(1)#1/3.
Contrary to the case of free bosons, the group velocity

not directly given by the formula~13!, because of the spatia
variation of the atomic density and therefore of the susc
tibility. Here, we evaluate the group velocity using a meth
equivalent to the experimental one of@7#, i.e., we estimate
the sizeD of the cloud and calculate the delayDt of a pulse
propagating across a selected region of a cold gas with
spect to a pulse propagating in the vacuum. The group
locity is then given by the ratio of the size over the del
vg

exp5D/Dt. Assuming that the light is propagating along th

ẑ axis and cuts a cylinder inside of the volume with sectionS

and centered on theẑ axis of the cloud, we write the dela
^Dt& as the average over the sectionSof all the delaysDt(r )
of pulses propagating at distancer from the axis of the cloud

^Dt&5
1

pR2E0

R

dr 2prDt~r !, ~42!

whereR is the radius of the illuminated circular sectionS of
the cloud andDt(r ) is defined as

Dt~r !5E
2L(r )

L(r )

dz@vg~r ,z!#21, ~43!

wherevg is defined in Eq.~13!, andL(r ) is half the length of
the path along the cloud. Note thatR will, in principle, de-
pend on the size of the incoming Gaussian beam. Howe
in the experiment of@7#, R is the radius of a pinhole se
before the measuring apparatus. The delay time is exp
mentally obtained by measuring the difference between
delay time of the pulse propagating across the cloud and
one of a pulse propagating in the vacuum. Assuming t
L(r )5L is the distance between a slit before the cloud a
the photomultiplier, the final delay will beDt5^Dt&2L/c.
1-5
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In the following, we evaluate the group velocity as a functi
of the temperature above and below the critical temperat

1. Above the critical temperature

The integral over the momenta in Eq.~38! can be evalu-
ated along the lines of the procedure outlined in Eqs.~21!–
~24!. One finds

xge~r ,v lg!15 ip2x0
~2mKBT!3/2

~2p\!3

1

A (
l 51

`
f l

l
wSAl

z

AD
3e2 lbV(r ). ~44!

Again, the considerations on thew function made in the free
case are applicable, and using its asymptotic expansion@Eq.
~32!#, one gets

xge~r ,v lg!152
x0

z S mkBT

2p\2D 3/2S g3/2~ f e2bV(r )!

1g5/2~ f e2bV(r )!
A2

z2 D . ~45!

For L@Dz(T), whereDz(T) is the axial thermal size of the
cloud, we can replaceL by ` in the integral~43!. Therefore,
the delay of a beam propagating along thez axis, and enter-
ing the cloud at a distancer from the cloud axis is

Dt~r !1522p
v

c

]z

]D

x0

z2

m~kBT!2

2p\3nz

3(
l 51

`
f l

l 2 S 113
A2

z2

1

l D e2 lbmnr
2r 2/2. ~46!

Above the critical temperature the total delay^Dt&1 is
thus

^Dt&1522p
v

c

]z

]D

x0

z2

~KBT!3

\3nzn r
2

2

pR2 (
l 51

`
f l

l 3 S 113
A2

z2

1

l D
3@12e2 lbmnr

2R2/2#. ~47!

Here, we take the size of the cloud to be the variance of
thermal distribution along theẑ axis, and thus Dz

5A2kBT/mnz
2. The group velocity above the critical tem

perature is thenDz /^Dt&1 . Note that, in the limit R
!Dr(T), whereDr(T)5A2kBT/mn r

2 is the radial thermal
size of the cloud, the exponential appearing in Eq.~47! can
be expanded to yield̂Dt&1'1/T. Since Dz(T)}AT, the
group velocity depends on the temperature asvg}T3/2. The
same behavior can be found when considering the other
iting case, i.e.,R'Dr(T)/A2, corresponding to averagin
over the whole cloud. Then, the delay time has the form
01380
e.

e

-

^Dt&1522p
v

c

]z

]D

x0

z2

~KBT!3

\3nzn r
2

2

pR2 (
l 51

`
f l

l 3 S 113
A2

z2

1

l D
522p

v

c

]z

]D

x0

z2
NS T

Tc
D 3 2

pR2

3F g3~ f !

g3~1!
13

A2

z2

g4~ f !

g3~1!G
522p

v

c

]z

]D

x0

z2
N

2

pR2 F113S T

Tc
D 3A2

z2

g4~ f !

g3~1!G ,

~48!

where we have used the definition of critical temperature
the relationg3(1)/g3( f )5(T/Tc)

3 for T.Tc . From Eq.~48!
one sees that the dependence of the delay time on the
perature of the sample appears principally in the spat
average term 1/R2, which is proportional to 1/T. Thus, the
main dependence of the group velocity on the tempera
comes in through the volume of the cloud, sincevg
5Dz(T)/^Dt&1}Dz(T)R2}T3/2, and the variation of the
group velocity with temperature is mainly due to the chan
of volume of the cloud.

2. Below the critical temperature

For the ground state of the harmonic potential, we use
expression for the ground-state population in the thermo
namic limit @2# and the optical coherence as given in Eq.~40!
to obtain

xge~r ,v lg!25xge~r ,v lg!1u f 512x0
1

z
Nuf~r !u2F12S T

Tc
D 3G ,
~49!

where N is the total number of particles, andf(r ) is the
harmonic-oscillator ground-state wave function. The de
^Dt&2 is given by

^Dt&25^Dt&1u f 511^Dt&C , ~50!

where^Dt&C is the contribution to the total delay given b
the pulses which cross the condensate

^Dt&C522p
v

c

]z

]D

x0

z2
NF12S T

Tc
D 3GFC . ~51!

Here FC is the average of the ground-state wave functio
which, according to Eqs.~38!,~42!,~43! is

FC5
2

R2E0

R

r dr
e2r 2/a0r

2

p3/2a0r
2 a0z

E
2L

L

dz e2z2/a0z
2

'
2

pR2
,

~52!

where a0 j5A\/mn j is the size of the ground state of th
harmonic oscillator in thej direction (j 5r ,z). In order to
evaluate the size of the cloud, we consider that forT,Tc , a
fraction (T/Tc)

3 of the atoms is outside of the condensa
1-6
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whereas a fraction 12(T/Tc)
3 is in the condensate. Apply

ing the semiclassical approximation to the nonconden
part, we have that

^z2&5~T/Tc!
3^z2&NC1@12~T/Tc!

3#^z2&C , ~53!

which leads us to defining the size of the cloud to be

Dz5A2H S T

Tc
D 3

R1
2 1F12S T

Tc
D 3Ga0z

2 J 1/2

. ~54!

Dividing Dz by ^Dt&2 we find the group velocity below the
critical temperature.

C. Numerical results

In Fig. 2 we plot the group velocity of a gas of sodiu
atoms in a box~dashed line! and in a harmonic oscillato
~dotted line! as a function of temperatureT, scaled according
to the critical temperature of each case. Density of ato
number of atoms, and trap frequencies have been taken
the data of@7#. The experimental results of@7# are seen to be
broadly in agreement with the harmonic-oscillator case. T
inhomogeneous spatial density of the atoms and its varia
with temperature is the key to the understanding of the
perimental data. The curve representing the case of free
oms shows that the temperature dependence entering int
~28! as a higher-order correction has a negligible effect
the considered scale, and cannot be interpreted as the c
of the behavior observed in@7#.

In Fig. 3 we compare the group velocity for two differe
values of the Rabi frequencyV coupling ur & to ue&. The
behavior forT.Tc is similar to the corresponding one me
sured in@7#. The curves we obtain are, however, steeper,
this can be explained by considering the approximati
made in our treatment. In our calculations we have assu
the same number of atoms at every temperature. Howeve
the experiments lower temperatures are achieved by m
of evaporative cooling. This implies that the points of t
experimental curve at higher temperatures correspond
larger numbers of atoms, and correspondingly to larger s

FIG. 2. Plot of the group velocity in m/sec as a function of t
effective temperatureu5T/Tc for a gas of sodium atoms:~a! free
bosons~dashed line! and ~b! trapped bosons~dotted line!. HereV
50.56g, Dg5D r50, Ggr52p31000 Hz. For the free case:Tc

5154 nK, n53.831012 cm23. For the harmonic potential case
n r52p370 Hz, nz52p320 Hz, Tc5432 nK, N58.33106.
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tial density~for ideal gases!. This leads to a smoother grad
ent of the group velocityversusthe temperature than in ou
case. On the other hand, as the temperature decrease
effect of the interactions gets stronger causing, among o
effects, a lower density of the atoms than in the nonintera
ing case. Hence, one would expect a group velocity va
larger than the evaluated one. Albeit these considerati
the evaluated curve reproduces the experimental one a
the critical temperature with some agreement, showing
the ideal gas model provides a qualitative description of
phenomenon.

Below the critical temperature the discrepancy betwe
the experimental data and our theoretical predictions is ra
dramatic. This is not surprising since the size of the cond
sate is strongly affected by the effect of the interactio
Already Ketterle and co-workers have reported that the clo
size is much larger in the interacting system compared to
size of the harmonic-oscillator ground-state wave funct
@18#. Therefore, our evaluation can be expected to lead
smaller values of the group velocity than the experimen
records. In order to illustrate this point, in the following se
tion we estimate the group velocity atT50 by comparing
the ideal case with the Thomas-Fermi case.

Finally, we discuss the measure of the group velocity
the two limiting cases for a sectionS with radius R
!Dr(T) and with radiusR'Dr(T). This is illustrated in
Fig. 4, where the same dependence of the group velocity
the temperature is evident. The orders of magnitude of
pairs of curves corresponding to the same set of parame
are comparable, showing that the behavior observed in@7#
originates mainly from a change in the ‘‘average’’ spat
density of the gas with temperature.

IV. GROUP VELOCITY FOR AN INTERACTING
BOSE GAS

In this section we compare the group velocity value aT
50 in the two limits: the ideal one, where we consider t
particles as noninteracting, and the interacting case, wh
we treat in the Thomas-Fermi approximation. We estim

FIG. 3. Onset: Plot of the group velocity in m/sec in logarithm
scale as a function of the effective temperatureu5T/Tc for a gas of
sodium atoms as in@7#. The upper curve corresponds toV51.2g,
whereas the lower curve corresponds toV50.56g. Here, Tc

5432 nK, N58.33106, Ggr52p31000 Hz, n r52p370 Hz,
nz52p320 Hz, and Dg5D r50. Inset: Plot of the low-
temperature behavior of the corresponding curves in linear sc
The radius of the sectionS is R515 mm.
1-7
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the group velocity using the set of parameters of the exp
ment and the formula~1! of @7#:

vg'
\c

8pv

uVu2

nudegu2
, ~55!

wheren is the density. Therefore, we need to evaluate
group velocity atT50 by substituting into Eq.~55! an esti-
mate of the spatial density, which we calculate here as
ratio of the total number of atoms over the volume of t
cloud. This evaluation, which corresponds to considering
density as homogeneous, is justified on the basis of the
sults of Fig. 4, where it is shown that the phenomenon
served in@7# is mainly dependent on the change in the de
sity.

For an ideal gas in a harmonic-oscillator potential atT
50, all the atoms are in the ground state, and a rough e
mate of the density givesn'N/(4pa0za0r

2 /3). Taking N
5106 sodium atoms andnz52032p Hz, n r57032p Hz,
V50.56g, the ground-state dimensions area0z'4.7m and
a0r'2.4m, and we obtain a densityn'831015 atoms per
cm3. Thus, according to Eq.~55!, the group velocity is
vg

ideal'0.03 m/sec.
For an interacting gas in the Thomas-Fermi limit, t

cloud is an ellipsoid of axes 2RTFr in the radial direction and
2RTFz in the axial direction, whereRTF j is the Thomas-
Fermi radius

RTF j5A 2m

mn j
2

with j 5r ,z, ~56!

FIG. 4. Calculations with two different radii for the sectionS:
R515 mm ~solid lines! andR5AkBT/mn r

2 ~dotted lines!. The two
bottom~top! curves correspond toV50.56g (V51.2g). All other
parameters are reported in the caption of Fig. 3.
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andm is the chemical potential, defined as

m5
\nho

2 S 15NaS

aho
D 2/5

, ~57!

with aS scattering length,nho5(n r
2nz)

1/3 geometrical aver-
age of the oscillator frequencies, andaho5A\/mnho corre-
sponding oscillator size. TakingaS52.75 nm, for the set of
parameters of the experiment the Thomas-Fermi dimens
of the cloud areRTFz'47.4mm andRTFr'13.6mm. Con-
sidering the density of atoms as homogeneous, we obtan
'331013 atoms per cm3. From Eq. ~55! we find for the
group velocityvg

TF'9 m/sec, which is comparable with th
value measured in@7# for temperatures below the critica
temperature. Therefore, for 106 atoms we find a difference o
two orders of magnitude in the value of the group veloc
between the ideal case and the interacting case. Such d
ence increases or decreases depending on the total numb
atoms in the trap. This estimate substantiates the infere
that interactions are responsible for a lower density, a
therefore, for a higher average group velocity of the light

V. CONCLUSIONS

We have derived an approximate analytical expression
the group velocity of a pulse propagating through an ult
cold gas which is confined in a box and by a harmonic p
tential. We have shown that the results reproduce qua
tively the experimental ones presented in@7#. From our
analysis it emerges that the definite variation of the gro
velocity with the temperature of the gas is an effect related
the variation of the spatial density of the gas. We see that
ideal gas model provides a qualitative description of the
sults for T.Tc . However, the behavior atT,Tc can be
described in a satisfactory way only by including the inte
actions and the fact that the cloud is cooled by means
evaporative cooling. The last one has the effect of mak
the total number of atoms temperature dependent. Such
fects will be the subject of future investigations.
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