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Moment of inertia of a trapped superfluid gas of atomic fermions
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The moment of inertiaQ of a trapped superfluid gas of atomic fermions (6Li) is calculated as a function of
the temperature. At zero temperature the moment of inertia takes on the irrotational-flow value. Only forT very
close toTc is rigid rotation attained. It is proposed that future measurements of the rotational energy will
unambiguously reveal whether the system is in a superfluid state or not.

PACS number~s!: 03.75.Fi, 74.20.Fg
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I. INTRODUCTION

The advent in 1995 of Bose-Einstein condensation
atomic bosons in magnetic traps certainly represents a m
stone in the study of bosonic many-body quantum syste
This is so because a systematic study of these systems,
ing with the free-particle case, as a function of increas
density, particle number, and other system parameters, se
possible and has already progressed to a large extent w
going on at a rapid pace@1,2#. The recent experimenta
achievement of trapping6Li atoms and other fermionic
alkali-metal atoms@3# gives hope that as much progress w
be made in the near future for the fermionic many-bo
problem as for the bosonic systems. Indeed, the first Fe
Dirac degeneracy of trapped40K atoms has already bee
observed~see De Marco and Jin@4#!. In this reference more
of the physics of trapped fermionic atoms is also discuss
For atoms with attractive interaction one can envisage
the trapped system undergoes a transition to the super
state. For instance,6Li atoms can be trapped in two differen
hyperfine states. In the spin-polarized case thes-wave inter-
action turns out to be very strong and attractive~scattering
length a522063a0 with a0 the Bohr radius! favoring a
phase transition to the superfluid state. This possibility
recently provoked a number of theoretical investigations~see
@5# for a more detailed discussion of a possible superfl
state!. One major question that is under debate is how
detect the superfluidity of such a fermionic system, since
contrast to a bosonic system the density of a fermionic s
tem is scarcely affected by the transition to the superfl
state@6#. Several proposals such as the study of the de
rate of the gas or of the scattering of atoms off the gas h
been advanced@5#. Although such investigations may giv
valuable indications of a possible superfluid phase, we th
that, in analogy with nuclear physics, a measurement of
moment of inertia certainly would establish an unambiguo
signature of superfluidity. To measure the spin and rotatio
energy of trapped atoms definitely is a great challenge for
future. However, in nuclear physics, whereg spectroscopy is
extremely well developed, the strong reduction of the m
ment of inertia with respect to its rigid-body value has be
considered as a firm indicator of nucleon superfluidity sin
1050-2947/2000/62~1!/013608~11!/$15.00 62 0136
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immediately after the discovery of nuclear rotational sta
almost half a century back@6#. Therefore, while awaiting
future experimental achievements for trapped fermionic
oms also, it is our intention in this work to give some the
retical estimates of the moment of inertia as a function
deformation of the traps or temperature of the gas. In t
study we can greatly profit from the experience nucle
physicists have accumulated over recent decades in des
ing such phenomena. The expectation is indeed that th
will be a great analogy between the physics of confin
atomic fermions and what one calls in nuclear physics
liquid-drop part of the nucleus. As astonishing as it m
seem, assemblies of fermions containing no more than;200
particles ~nucleons! already exhibit an underlying macro
scopic structure well known from the Bethe-Weizsa¨cker for-
mula for nuclear masses@6#. In superfluid rotating nuclei
Migdal proposed as early as 1959 a statistical description
the nuclear moment of inertia@7# that grasped the essenti
physics of a self-contained rotating superfluid fermi liqu
drop and which serves as a reference even today.

In the present work we will cast Migdal’s approach in
the more systematic language of the Thomas-Fermi the
which together with its extensions has long been applied
normal-fluid but also to superfluid nuclei@6,8,9#. It is fortu-
nate that we can profit from this experience for the desc
tion of trapped fermions, since their number, of order 15,
together with the smoothness of the potential, certainly tu
a statistical description into a very precise tool. On the ot
hand, it cannot be excluded that in the future much sma
systems of trapped atomic fermions with numbers;102 may
be studied, probably revealing many analogies with nuc
such as shell structure, etc. The investigation of the transi
from microscopic to macroscopic as the number of partic
is increased continuously may then become a very inter
ing field in the case of atomic fermions also. In detail, o
paper is organized as follows. In Secs. II and III we revie
the Thomas-Fermi approach to inhomogeneous super
Fermi systems. In Sec. IV first the so-called Inglis part of t
moment of inertia of a rotating superfluid and confined g
of atomic fermions is presented. Second, the influence of
reaction of the pair field on the moment of inertia is calc
lated. It is shown that this leads to the irrotational-flow val
©2000 The American Physical Society08-1
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in the limit of strong pairing. In Sec. V the current distrib
tions in the superfluid and normal-fluid regimes are co
trasted. In Sec. VI the numerical results are presented
detail together with discussion and conclusions.

II. THOMAS-FERMI APPROACH TO FERMIONIC ATOMS
IN DEFORMED TRAPS

The Thomas-Fermi~TF! approach to trapped gases
atomic bosons is a well-accepted practice@2#. For trapped
atomic fermions the same approximation applies in differ
conditions. It has, however, recently also been applied to
kind of situation@5#. The TF approach for fermions is als
extensively applied to other finite systems such as ato
nuclei, metallic clusters, etc. The smallness paramete
given by

h5
¹V~r !

kF~r !V~r !
, ~2.1!

whereV is the mean-field potential andkF(r ) the local Fermi
momentum,

kF~r !5A~2m/\2!@«F2V~r !#. ~2.2!

With a typical frequency of the external harmonic potent
of v057 nK and «F5600 nK, one realizes thath!1 up
close to the end of the classically allowed region. For in
grated quantities the region around the classical turning p
carries little weight and therefore the TF approximation fo
number of trapped atoms of the order of 105 is certainly very
well justified.

Furthermore, as in the boson case, the TF approach@6# to
trapped atomic gases becomes extremely simple becaus
large interparticle distance makes a pseudopotential app
mation to atomic interactions valid. Let us therefore wr
down the TF equation for a doubly-spin-polarized system
trapped (6Li) atoms in the normal-fluid state. For conve
nience we first consider the system at zero temperaturT,
discussing theTÞ0 case later on. In the TF approximatio
the distribution function for particles in each spin state
given by

f ~R,p!5u~m2Hcl!, ~2.3!

with

Hcl5
p2

2m
1Vex~R!2gr~R! ~2.4!

~in this work we consider only equal occupation of both sp
states!. Herem is the chemical potential, andVex(R) stands
for the trap potential, which is supposed to be of harmo
form. The densityr(R) is obtained from the self-consistenc
equation,

r~R!5E d3p

~2p\!3 f ~R,p!5
1

6p2 kF
3~R!, ~2.5!

with
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kF~R!5A~2m/\2!@m2Vex~R!1gr~R!# ~2.6!

the local Fermi momentum. The coupling constantg is re-
lated to the scattering length in the same way as in the c
of Bose condensed gases@1,2# via

g5
4p\2uau

m
. ~2.7!

The TF equation~2.5! leads to a cubic equation for the sel
consistent density, which can be solved straightforwardly
a function of the external potential. In this paper our ma
interest will be the study of the moment of inertia of a rota
ing condensate. Since the study is very much simplified
assuming that the self-consistent potential is again a
monic oscillator and since the effect of the attractive int
action between the atoms essentially results in a narrow
of the self-consistent potential with respect to the exter
one, we will use instead of the exact TF solution for t
density the following trial ansatz for the local Fermi mome
tum:

kF
trial~R!5A~2m/\2!@m2~m/2!~vx

2Rx
21vy

2Ry
21vz

2Rz
2!#,
~2.8!

wherevx , vy , andvz are the variational parameters. Th
chemical potential is determined from the particle numb
condition

N5E d3r r trial~r !, ~2.9!

and the kinetic energy density is given by

t~R!5E d3p

~2p\!3

p2

2m
f ~R,p!5

1

10p2 @kF
trial~R!#5.

~2.10!

We can then analytically calculate the total energy

E~vx ,vy ,vz!5E d3RS t~R!1Vex~R!r~R!2
g

2
r2~R! D

~2.11!

as a function ofvx , vy , andvz . Minimizing this expression
with respect tovx , vy , and vz for a given external de-
formed harmonic oscillator potential

Vex5
m

2
~v0x

2 Rx
21v0y

2 Ry
21v0z

2 Rz
2! ~2.12!

leads to the variational solution. For the spherical casevx
5vy5vz5v, this is shown in Fig. 1. We see that this a
proximation to the TF equation is quite reasonable. For
external harmonic potential with frequencyn5v0/2p
5144 Hz or\v0 /kB56.9 nK, corresponding to the cond
tions of the experiment of Bradley and co-workers@10#, the
variational frequency is\v/kB57.69 nK. Sincev.v0 this
implies a compression of the density. Increasingv by 6%
(\v/kB58.21 nK) from its variational value allows an a
most perfect reproduction of the full TF solution. We w
8-2
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MOMENT OF INERTIA OF A TRAPPED SUPERFLUID . . . PHYSICAL REVIEW A62 013608
adopt this latter value in all our forthcoming calculation
The experimental situation for the rotating deformed cas
such that the rotation of the trap is performed around thx
axis ~the long axis!, permitting slight triaxial deformations in
the plane perpendicular to thex axis that is in they-z plane.
In order to simulate such an experimental situation we s
ply first make a volume-conserving

~v'!2vx5v3 ~2.13!

prolate deformation around thex axis,

s5
vx

v'

, ~2.14!

v'5vs21/3, v'5vy5vz ,

vx5vs2/3. ~2.15!

In order to increase the central density there is interes
making rather strong eccentricities andvx /v'5 1

8 is a typi-
cal value which we will adopt in this paper. In a second s
we fix vx and deform around thex axis, again keeping the
volume fixed. We define the deformation parameter as

d5
vz

vy
. ~2.16!

We finally have the two-parameter deformation

vx5vs2/3,

vy5vs21/3d21/2, ~2.17!

vz5vs21/3d1/2,

FIG. 1. Density profiles, for the case of a spherical trap, of
noninteracting case~full line! and the interacting case calculate
once exactly from Eq.~2.5! ~crosses! with Vex given by Eq.~2.12!,
and once using the variationally determined harmonic-oscillator
tential ~open squares!. Squeezing the variationalv by 6% yields a
density that lies on top of the exact TF solution.
01360
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with s!d,1. From now on we will therefore use for th
nonsuperfluid Wigner function at zero temperature the
pression

f ~R,p!5uS m2
p2

2m
2V~R! D , ~2.18!

with

V~R!5
m

2
~vx

2Rx
21vy

2Ry
21vz

2Rz
2!, ~2.19!

vx ,vy ,vz from Eq. ~2.17!, andm determined from the par
ticle number condition.

III. SUPERFLUID CASE

Since, as described in the Introduction, trapped sp
polarized6Li atoms, in different hyperfine states, experien
a strong attractives-wave interaction, the system very likel
will undergo a transition to the superfluid state at some cr
cal temperatureTc as was discussed in detail in Ref.@5#. As
we have pointed out in the Introduction, the superfluid st
will unambiguously reveal itself in the value of its mome
of inertia. At present measurement of the angular mome
of trapped Bose or Fermi gases has not been achieved
represents a future challenge to the experimenters. In ord
establish how the two essential system parameters, which
the value of the gap~that is, in fact, the temperature whic
triggers the gap! and the deformation of the external tra
influence the value of the moment of inertia, we will no
proceed to its evaluation in the superfluid state.

Since we are dealing with an inhomogeneous syst
even in the nonrotating case the gap is actually a nonlo
quantityD(r ,r 8) or in Wigner spaceD(R,p). We will find
later that at zero temperature the coherence length of
Cooper pair, j5\2kF /mD, is larger than the oscillato
length l 5A\/mv0'(0.633105)a0 with a0 the Bohr radius.
We therefore have to be careful in applying the TF theory
temperaturesT much lower than the critical temperatureTc
where the gap vanishes. We will discuss this point m
thoroughly later and in the Appendix. We therefore go
and apply the TF approximation to the superfluid state. It
been shown in@9,6# that to lowest order in\ the gap equa-
tion is given by

D~R,p!5E d3k

~2p\!3 v~p,k!
D~R,k!

2E~R,k!
tanhS E~R,k!

2T D ,

~3.1!

whereE(R,p) is the quasiparticle energy,

E~R,p!5F S p22pF
2~R!

2m* ~R!
D 2

1D2~R,p!G1/2

, ~3.2!

with pF(R)5\kF(R) the local Fermi momentum~2.6!.
Since the effective massm* is so far unknown for trapped
gases of atomic fermions we will takem* 5m. Furthermore,
for the time being, as in@5#, we will eliminate the inter-
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atomic potentialv in Eq. ~3.1!, expressing it by the scatterin
length ~2.7!. We then obtain@5#

D~R,p!5gE d3k

~2p\!3 S tanh@E~R,k!/2T#

2E~R,k!

2
P

2@«k2«F~R!# DD~R,k!, ~3.3!

where P stands for principal value,«k5\2k2/2m, and «F

5\2kF
2/2m. At zero temperature, as described in@11#, Eq.

~3.3! can be solved analytically in the limi
D„R,pF(R)…/«F(R)→0. The result is given by

DF~R![D„R,kF~R!…58e22«F~R!e2@p/2kF~R!uau#.
~3.4!

A posteriorione can verify thatDF /«F!1 for all values ofR
and therefore Eq.~3.4! is an excellent approximation to Eq
~3.3!. This has also been found in@5#. For 286 5006Li atoms,
the case considered in@5#, the gap is shown for a spherica
trap as a function of the radius in Fig. 2.

For determination of the critical temperatureTc and, later
on, for the moment of inertia we will need the valueD of the
gap at the Fermi energy. Since the detailed level structur
the Fermi energy is unknown and in fact unimportant,
will consider the gapD(«F) averaged over the states at t
Fermi energy,

D~«F![D5Tr@D̂r̂~«F!#, ~3.5!

with

r̂~«!5
1

g~«! (n
un&^nud~«2«n!5

1

g~«!
d~«2H !,

~3.6!

whereun& and«n are the states and energies of the harmo
oscillator with frequencyv and

FIG. 2. The gap for a spherical trap as a function of the radiu
01360
at
e
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g~«!5(
n

d~«2«n!5Tr d~«2H ! ~3.7!

is the level density.
It has been shown in@12# that again the TF approximatio

leads to an excellent average value,

D5
1

gTF~«F!
E d3R d3p

~2p\!3 DF~R!d~«F2Hcl!. ~3.8!

In the spherical case withDF(R) from Eq. ~3.4! all integrals
but the radial one can be performed analytically, the l
being done numerically. For the case shown in Fig. 2 o
obtains

D516.4 nK. ~3.9!

Quantum-mechanically the BCS equations should be so
in the self-consistent Hartree-Fock~HF! basis and thenTc is
a global parameter which must be determined from the s
tion of the quantum-mechanical gap equation. Since we
lieve that the value in Eq.~3.9! comes rather close to th
quantum-mechanical value of the gap at the Fermi ene
we can obtainTc from the usual BCS weak-coupling relatio
@13# D51.76Tc to be

Tc'10 nK. ~3.10!

From Eq. ~3.9! we obtain the coherence lengthj
5\2kF /mD52«F /DkF . With «F5983.67 nK, which cor-
responds to our approximate ‘‘self-consistent’’ harmonic s
lution with v58.21 nK and kFuau50.56, one obtainsj
'(43105)a0 which is about a factor of 7 larger than th
oscillator length of the trap~see above! that contains 286 500
particles. This seems to invalidate the TF approximati
However, we know by experience that often the TF appro
mation remains quite reasonable beyond its limit@6#. For
example, the conditions of validity in@9,12# for superfluid
nuclei are much worse than here and still the results
accurate beyond expectation. We therefore think that the
ues of Eqs.~3.9! and ~3.10! are reasonable estimates for th
gap and the critical temperature. In order to check this
sumption we give in the Appendix a more refined semicl
sical solution of the gap equation, which demands only t
the TF approximation in the normal-fluid state is well jus
fied. We find values forD andTc that are;30% lower than
in Eqs.~3.9! and ~3.10!. In view of the crudeness of the TF
approach, this indicates a quite satisfying consistency
tween the results.

We also will have to know the detailedT dependence of
the gap,D(T), which, however, in BCS theory, givenD(0)
andTc , is determined by the universal functionD(T)/D(0)
in terms ofT/Tc . This function is determined from the so
lution of the equation@13#

2 lnS D~T!

D~0! D5AS D~T!

T D ,

with
8-4
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A~u!5E
0

`

dy
1

Ay21u2 F12tanhSAy21u2

2 D G . ~3.11!

For completeness it is shown in Fig. 3. We will later use t
T dependence of the gap for the evaluation of the momen
inertia.

IV. MOMENT OF INERTIA

The moment of inertia of a rotating nucleus has been fu
formulated in linear response theory~i.e. the random-phas
approximation! by Thouless and Valatin@14#. The corre-
sponding expression is therefore called, in the nuclear ph
ics literature@6#, the Thouless-Valatin moment of inertia.
consists of two parts, the so-called Inglis term, which d
scribes the free-gas response, and the part that accoun
the reaction of the mean field and pair potential to the ro
tion. In the superfluid case the Inglis part has been gene
ized by Belyaev@15# and the linear response of the gap p
rameter to the value of the moment of inertia was fi
evaluated, together with the Inglis term, by Migdal@7#. The
reaction of the HF field to the rotation is a minor effect a
we will neglect it in this work. We therefore will write the
moment of inertia as a sum of the Inglis-Belyaev termQ IB
and the Migdal termQM . In total

Q5Q IB1QM . ~4.1!

In order to derive an expression forQ in linear response
theory we will use the Gorkov approach described in de
in many textbooks~in what follows we will use the notation
of @16#!. Since in addition the derivation of the linear r
sponse forQ is given in the original article of Migdal@7# and
represented in a more elaborate version in@8#, we will be
very brief here and only give more details where in our op
ion the presentations in@7,8# may not be entirely explicit. Let
us start by writing down the Gorkov equations in mat
notation,

S 2
]

]t
2H1m DG512DF1,

~4.2!

S ]

]t
1H* 1m DF* 5D* G,

FIG. 3. Ratio of the energy gap to the gap atT50 K as a
function of temperature.
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H5H02VLx[H01H1 , ~4.3!

where nowH0 is the shell-model Hamiltonian~2.4!, or rather
the approximate one used in Eqs.~2.18! and ~2.19!, and

Lx5r ypz2r zpy ,

the angular momentum operator corresponding to a rota
with angular frequencyV around thex axis. In Eq.~4.2! G
and F are the normal and anomalous Matsubara Gree
functions~see Chap. 51 of@16#!

Gnn852^Ttan~t!an8
1~t8!&,

~4.4!
F1

nn852^Ttan
1~t!an8

1~t8!&.

Linearizing Eq. ~4.2! with respect toH1 , that is, G5G0

1G1 , F15F0
11F1

1 , and D5D01D1 ~as mentioned we
will neglect the influence of the rotational field onH0!, one
obtains for Eq.~4.2!

G15G1IB1G1M , ~4.5!

with

G1IB5G0H1G01F0
1H1* F0

1 ,
~4.6!

G1M52G0D1F0
12F0

1D1* G0 ,

and

F1
15D0H1* F0

11F0
1H1G02F0

1D1F0
11D0D1* G0 ,

~4.7!

where

D5
ivn2H0

vn
21H0

21D0
2 , G05

ivn1H0

vn
21H0

21D0
2 ,

F0
15

D0

vn
21H0

21D0
2 ,

andvn are the Matsubara frequencies@16#.
In Eqs. ~4.5! and ~4.7! we have split the first-orde

Green’s function in an obvious notation into the Ingli
Belyaev and Migdal contributions. For the latter one nee
the linear reaction of the pair field to the rotation. We w
see later how this can be determined from Eq.~4.7!. First,
however, let us evaluate the IB part of the moment of iner

A. The Inglis-Belyaev part of the moment of inertia

The IB part of the moment of inertia can be evaluat
without knowledge ofD1 , i.e., without the use of Eq.~4.7!.
The density response corresponding toG1IB of Eq. ~4.5! is
evaluated from the limitt8→t1 or from summing over the
Matsubara frequencies in the upper half plane~see Chap. 7
of @16#!. One obtains the well-known result@6–8,15,16#

~r1IB!nn85^nuLxun8&Fnn8 , ~4.8!
8-5
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with

F5F1~12 f 2 f 8!1F2~ f 2 f 8!, ~4.9!

where

F65F6~«n ,«n8!5
EnEn87jnjn82D~«n!D~«n8!

2EnEn8~En6En8!
,

~4.10!

f 5 f ~«n!5
1

11eEn /T , f 85 f ~«n8!, ~4.11!

and

En5Ajn
21D2~«n!, jn5«n2m, ~4.12!

are the quasiparticle energies with«n the energies of the
harmonic-oscillator potential~2.19!. The gap parametersDn
have been replaced in Eq.~4.10!, in analogy to Eq.~3.5!, to
statistical accuracy byD(«n), the ones averaged over th
energy shell. The moment of inertia is given by

Q IB5Tr~Lxr1IB!. ~4.13!

Since we are interested in temperaturesT<Tc , which are
very low with respect to the Fermi energy, we checked t
one can to very good accuracy neglect in Eq.~4.9! the ther-
mal factors~4.11!. The only important temperature depe
dence of the moment of inertia therefore exists via theT
dependence of the gap. We thus will henceforth treat
formulas as in theT50 limit keeping, however, theT de-
pendence of the gap. With this in mind we can write for t
moment of inertia

Q IB5(
nn8

E E dv dv8d~v2«n!

3d~v82«n8!z^nuLxun8& z2F1~v,v8!. ~4.14!

In this formula the important quantity to calculate to stat
tical accuracy is

Lx
2~n,n8![ z^nuLxun8& z25Tr@~Lx!~ un8&^n8uLxun&^nu!#

5E d3R d3p

~2p\!3 ~Lx!W@ un8&^n8uLxun&^nu#W ,

~4.15!

whereOW[O(R,p) means the Wigner transform of the o
eratorO @6#. To this purpose we again replace the dens
matricesun&^nu and un8&^n8u by their average on the energ
shell ~3.6!,

un&^nu→ r̂~«n!.

We therefore obtain
01360
t

ll

-

y

Q IB5E E dv dv8

3E d3R d3p

~2p\!3 $~Lx!W@Lx~v,v8!#W%F1~v,v8!,

~4.16!

with

@Lx~v,v8!#W5 bd~v82Ĥ0!L̂xd~v2Ĥ0!cW . ~4.17!

Introducing into Eq.~4.17! the Fourier representations of th
two d functions and transforming to center-of-mass and re
tive coordinates one obtains

@Lx~v,v8!#W5E E dT dt

~2p\!2 e2iETei«t
2

3Fe2 iH 0TLxS t

2De2 iH 0TG
W

, ~4.18!

with

E5
v1v8

2
, «5v2v8, ~4.19!

and

O~ t !5eiH 0tO~0!e2 iH 0t. ~4.20!

To lowest order in\ we replace the triple operator product
Eq. ~4.18! by the product of their Wigner transforms@6#,

lim
\→0

Fe2 iH 0TLxS t

2De2 iH 0TG
W

5e2 i2H0clTLx
clS t

2D ,

~4.21!

and therefore

@Lx~v,v8!#W5Lx~E,«,R,p!

5 1
2 d~E2H0cl!E dt

~2p\!
ei«t/2\Lx

clS t

2D ,

~4.22!

with

Lx
cl~ t !5Ry~ t !pz~ t !2Rz~ t !py~ t !. ~4.23!

At this point the choice of our approximate self-consiste
potential of harmonic-oscillator form@see Eq.~2.19!# turns
out to be very helpful, since the classical trajectories in E
~4.22! can be given analytically:

Ri~ t !5Ri cos~\v i t !1
pi

mv i
cos~\v i t !,

~4.24!
pi~ t !5pi cos~\v i t !1mv iRi cos~\v i t !,

with i 5x,y,z.
8-6
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In the phase-space integral of Eq.~4.15!, for reasons of
symmetry, only the diagonal terms ofLx

clLx
cl(t) survive and

therefore we obtain

E d3R d3p

~2p\!3 Lx
clLx

cl~ t !

5E d3R rTF~R!~Ry
21Rz

2!cos~\vyt !cos~\vzt !

1S Ry
2 vy

vz
1Rz

2 vz

vy
D sin~\vyt !sin~\vzt ! ~4.25!

where

rTF5
1

6p2 S 2m

\2 ~E2V! D 3/2

~4.26!

is the density in the TF approximation@see Eq.~2.5!#.
The product of cosine and sine in Eq.~4.25! can be ex-

pressed in terms of the cosine of the sum and differenc
the arguments and then thet integral in Eq.~4.23! can be
performed. This leads tod functions, which allows one to
perform the « integral also. Furthermore, as shown
Migdal @7#,

F1~E,«!'F12GS «

2D D Gd~E2m!, ~4.27!

where@see Eq.~3.5!#

D5D~«F!

and

G~x!5
arcsinh~x!

xA11x2
. ~4.28!
cl

01360
of

Finally one obtains for the IB part of the moment of inert
the following analytical expression@7,8#:

Q IB5Q rigidS 12
G1v2

2 1G2v1
2

v2
2 1v1

2 D , ~4.29!

where

v65vy6vz , G65GS \v6

2D D , ~4.30!

and

Q rigid5S m4

24\3D ~vy
21vz

2!

vz
3vxvy

3 ~4.31!

is the moment of inertia of rigid rotation. From Eq.~4.29! we
see that

lim
D→0

Q IB5Q rigid , lim
D→`

Q IB50.

The latter result is clearly unphysical and we will see ho
taking account of the reaction of the pair field to the rotati
will reestablish the physical situation.

B. The Migdal term

The density response corresponding to the Migdal term
obtained from Eq.~4.6!:

~r1M !n,n85
jnD1nn8D0n81D0nD1nn8

* jn8

2EnEn8~En1En8!
. ~4.32!

In Eq. ~4.32! we need to knowD1 which we can gain from
Eq. ~4.7! in the following way. In the limitt8→t1 we ob-
tain from F1

1 the anomalous densityk1
1 ,
~k1
1!nn852

jnH1nn8
* D0n81D0nH1nn8jn81D0nD1nn8D0n82~EnEn81jnjn8!D1nn8

*

2EnEn8~En1En8!
. ~4.33!
the
In analogy with the nonrotating case wherek05D/2E, we
also have

~k1
1!nn852D1nn8

* S 1

4En
1

1

4En8
D . ~4.34!

This relation stems from the fact that the quasiparti
energies contain the gap only in the formDD* and therefore
e

there is no further first-order correction, since in our case
external field is a time-odd operator and thus

D1* 52D1[2 iVx. ~4.35!

Equating~4.33! and ~4.34! yields
2jnH1nn8
* D0n812D0nH1nn8jn812D0nD1nn8D0n81@D0n

2 1D0n8
2

1~jn2jn8!
2#D1nn8

*

2EnEn8~En1En8!
50. ~4.36!
8-7
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At this point we again exploit the fact that expression~4.36!
is strongly peaked around the Fermi energy surface. Foll
ing @7#, in analogy with Eq.~4.27!, we have

@EnEn8~En1En8!#
21'

1

D2 GS «n2«n8
2D D dS «n1«n8

2
2m D .

~4.37!

With Eq. ~4.35! we then obtain for Eq.~4.36!

F ^nuL̇xun8&
2D

1S «n2«n8
2D D 2

xnn8GGS «n2«n8
2D D dS «n1«n8

2
2m D

50, ~4.38!

whereL̇x stands for the time derivative ofLx . Summing on
n andn8 and following exactly the same line of semiclassic
approximations as the ones used for the derivation ofQ IB ,
one arrives at the following relation@8#:

E
2`

1`

dt G~t!E d3p

~2p\!3 F L̇x
cl

2D
2

ẍ~t!

4D2 Gd~m2H0cl!50

~4.39!

whereG(t) is the Fourier transform ofG(x) @Eq. ~4.28!#.
For the potential in Eq.~2.19!, Eq. ~4.39! is solved by

x~R!5aRyRz , ~4.40!

with

a522Dmv1v2

G11G2

v1
2 G11v2

2 G2

. ~4.41!

Inserting this solution into Eq.~4.32! leads for the Migdal
part of the moment of inertia to@7,8#

QM5Q rigid

v1
2 v2

2

v1
2 1v2

2

~G11G2!2

v1
2 G11v2

2 G2

. ~4.42!

Together with Eq.~4.29! the expression for the moment o
inertia is now complete. Let us again mention that we
glected the temperature dependence except that contain
D5D(T), since all otherT dependence forT,Tc is negli-
gible. The moment of inertia can then be calculated a
function of deformation and temperature. For example, i
immediately obvious that forD→` Eq. ~4.42! yields the
irrotational-flow value,

lim
D→`

QM5Q irrot5Q rigidS vy
22vz

2

vy
21vz

2D 2

, ~4.43!

and therefore

lim
D→`

Q5 lim
D→`

~Q I2B1QM !5Q irrot , ~4.44!

which is the correct physical result.
01360
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V. CURRENT DISTRIBUTION

Other quantities that may also be interesting from the
perimental point of view are the current distributions of t
superfluid rotating gas. Indeed, after a sudden switching
of the ~rotating! trap, the atoms will expand, keepin
memory of their rotational state. So if the velocity distrib
tion of the expanding atoms can be measured, one ma
able to deduce the rotational motion the atoms had before
trap was taken away. The current distribution, as we will s
like the moment of inertia, depends strongly on the sup
fluid state of the gas. In order to calculate the current dis
bution we first write down the Wigner function of the densi
response which can easily be read off from the formu
given in Sec. IV. In obvious notation we obtain@8#

r1IB~R,p!5V@R3p#xd~m2H0cl!

2VFv1G22v2G1

2vz
Rypz

2
v1G21v2G1

2vy
RzpyGd~m2H0cl!,

~5.1!

r1M~R,p!5
\2

2m

a

D
VFv1G12v2G2

vz
Rypz

1
v1G11v2G2

vy
RzpyGd~m2H0cl!.

~5.2!

With the usual definition of the current

j ~R!5E d3p

~2p\!3

p

m
r~R,p!, ~5.3!

one obtains

j y
IB52rTF~R!RzVF12

v1G21v2G1

2vy
G , ~5.4a!

j z
IB52rTF~R!RyVF12

v1G22v2G1

2vz
G , ~5.4b!

j y
M52rTF~R!RzVFv1G2~G21G1!

v1
2 G11v2

2 G2

v1G21v2G1

vy
G ,

~5.5a!

j z
M52rTF~R!RyVFv1v2~G21G1!

v1
2 G11v2

2 G2

v1G22v2G1

vz
G ,

~5.5b!

with, of course, j x50. Again we see that in the limitD
→` the current approaches the correct irrotational-fl
limit,

j ——→
D→`

22rTFV
vy

22vz
2

vy
21vz

2 “~r yr z!, ~5.6!
8-8
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whereas in the limit ofD→0 we obtain a rigid-body current
As we have seen forQ, as a function of temperature an
deformation, we can easily go from one limit to the other

VI. RESULTS AND CONCLUSION

We show in Figs. 4~a! and 4~b! the current distribution for
the two extreme cases of irrotational and rigid-body flow
the laboratory frame. We see that the flow pattern is co
pletely different in the two cases. In Fig. 4~b! the flow pat-
tern clearly corresponds to rigid rotation of an ellipsoid w
the long axis in thez direction. Figure 4~a! represents a typi-
cal irrotational-flow pattern well known from hydrodynam
ics. As a function of temperature one can pass continuo
from one flow pattern to the other. The point we want
make is that for small deformationsd, as can be seen from
Eq. ~5.6! there is almost no irrotational current for low tem
peratures and this will be reflected in a very low rotation
energy, as we will discuss now.

In Fig. 5 we showQ as a function ofD(T) and with Fig.

FIG. 4. The current distribution for the two extreme cases
irrotational ~a! and rigid-body~b! flow in the laboratory frame. In
both cases the deformation parameters are set tos51/8,d50.8 and
the angular frequencyV around thex axis to 1 nK.
01360
-

ly

l

3 also as a function ofT. We see that for a typical eccentric
ity d5vz /vy50.8 the moment of inertia changes, as a fun
tion of temperature, by large factors. AtT'0 the gap values
found in this paper are in the range of 10–20 nK and the
fore the moment of inertia is close to its irrotational-flo
limit. This actually means that the moment of inertia is ve
small with respect to its rigid-body value, since ford→1,
i.e., for spherical symmetry around the rotational axis~x
axis!, the moment of inertia goes to zero@see Eqs.~4.43! and
~4.44!#. Consequently in this case the gas is not following t
rotation of the trap at all. However, increasing the tempe
ture, i.e., decreasing the gap value, has a dramatic influe
on the rotational motion of the gas, since in the range 0,T
,Tc the moment of inertia rises very steeply, attaining
rigid-body value forT5Tc . In this limit the gas rotates as
whole with the same angular frequency as the trap. T
abruptness of the rise is the more pronounced the smalle
eccentricityd ~see Fig. 5!. Experimentally, nondestructive o
expansion imaging can be used to watch the gas rotate
then the rotational energy

Erot5
Q

2
V2 ~6.1!

can be obtained by integrating the angular velocity over
density profile. The rotational energy therefore directly fo
lows the variation of the moment of inertia. One deduces t
measurement of the variation as a function ofT of the rota-
tional energy should be well within experimental possib
ties, once the technique of putting the trap into rotation h
been perfected.

In our discussion we have ignored the possibilities of v
tex formation. The determination of the onset of instabiliti
versus vortex formation in a finite Fermi system is not
completely easy task and we will postpone such an inve
gation to future work. However, since the rotational freque
cies V considered in this paper are much smaller than
oscillator constantv0(V/v0!1), we think that our result
will not be changed by the appearance of vortices. An in
cation can also come from the case of trapped bosons w

f

FIG. 5. The moment of inertia as a function of the gap f
different values of the deformationd5vz /vy ands51/8.
8-9
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vortices, depending somewhat on the number of atoms
not appear for valuesV/v0,0.5 ~see Ref.@2#!

From the above discussion we see that it may well
within experimental reach to reveal an eventual superfl
state of the gas once the technique of putting the trap
rotation has been perfected. A closely related phenomeno
rotation is the so-called scissors mode which was origin
discussed and found in deformed nuclei@17# and then pro-
posed@18# and also very recently found@19# for trapped
boson condensates. Suppose the trapped atomic syste
rotating very slowly and suddenly the rotation of the d
formed trap potential is stopped. Due to inertia the atom
cloud will continue rotating back and forth around the fix
trap position if the initial rotation was gentle enough. If f
the purpose of a rough argument we suppose that this o
latory motion has so small an amplitude that in a first a
proximation we can neglect shape distortions of the clo
then, if the oscillations are in the harmonic regime, the f
quency of the scissors mode is given by

vS5AC/Q, ~6.2!

whereC is the constant of the restoring force. The frequen
vS will strongly depend on whether the system is in t
superfluid state or not. In this way the above cited exp
ment has indeed unambiguously revealed that the Bose
densate is in a superfluid state@19#. It is evident that scissors
modes could also be excited in trapped Fermi systems
was already mentioned in@18#. Since in Fermi systems fo
temperaturesT;Tc one can suppose that the temperat
dependence of the force constant is weak with respect to
of the moment of inertiaQ, one will find a large difference
between the values ofvS in the superfluid and unpaired re
gimes~see Fig. 5!. A more detailed investigation of the scis
sors mode for trapped fermions may be given in future wo

In summary we proposed in this work to measure
dynamics of a rotating trapped gas of atomic fermions a
function of temperature and deformation to detect whet
the system is in a superfluid state or not. Quite detailed
quantitative calculations for the moment of inertia and vel
ity distributions have been presented. Other quantities w
studied in the case of rotating superfluid nuclei@6# such as
Yrast lines, even-odd effects, particle alignment, etc., m
also become of interest in this case.
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APPENDIX

In this Appendix we want to give a more refined sem
classical solution of the gap equation. Let us write the qu
tal version of Eq.~3.3! at T50 in the BCS approximation
@6#,
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Dn5(
n8

^nn̄uvun8n̄8&Dn8S tanh~En8/2T!

2En8
2

P

2~«n82«F! D ,

~A1!

wheren labels the states of the~spherical! harmonic oscilla-
tor with single-particle energies«n andn̄ is the time-reversed
state. As usual,En5A(«n2«F)21Dn

2 is the quasiparticle en
ergy and^nn̄uvun8n̄8& is the matrix element of the zero
range two-body force

gd~r2r 8!. ~A2!

Since what matters is the gap at the Fermi level and since
particle numbers of the order 105 the degeneracy of the os
cillator shells is very high, it seems a very reasonable
proximation to replace all quantities in Eq.~A1! by their
corresponding values averaged over the energy shell@Eqs.
~3.5! and ~3.6!#. Equation~A1! can then be written as

Dn5E
0

`

d«8g~«8!v~«,«8!D~«8!S tanh@E~e8!/2T#

2E~«8!

2
P

2~«82«F! D , ~A3!

where g(«) is the level density~3.7! and v(«,«8) is the
averaged two-body matrix element

v~«,«8!5
1

g~«!g~«8! (
n,n8

d~«2«n!d~«82«n8!

3^nn̄uvun8n̄8&. ~A4!

At this stage one could try to solve the gap equation num
cally. However, in view of the huge number of particles it
certainly a good approximation again to pass to the Thom
Fermi limit. For the level densityg(«) this is straightfor-
wardly performed. The TF limit of Eq.~A4! can be obtained
by locally summing over plane waves and we obtain

v~«,«8!5
g

gTF~«!gTF~«8! S 2m

\2 D 3 1

4p3

3E
0

inf^r « ,r «8&
dr r 2A«2V~r !A«82V~r !,

~A5!

wherer « is the classical turning point given by«5V(r «) and
V(r )5mv2r 2/2 is the harmonic-oscillator potential. W
have made a numerical check that Eq.~A5! is indeed a good
approximation to the quantal counterpart for the case of la
particle numbers@20#. We notice that Eq.~A5! needs the TF
approximation only in the nonsuperfluid state where it is w
justified ~see Sec. II!. Having an expression for average lev
density and matrix element at hand, we can proceed to s
Eq. ~A3!. We will do this again in the limitD(«F)/«F!1
and obtain~see@11#! at T50
8-10
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D~«F!58«F expS 2
15p2

64kFuau
1I ~«F! D , ~A6!

with

I ~«F!52E
0

1

dx
x5v2~x2«F ,«F!/v2~«F ,«F!21

12x2 . ~A7!

The integralI («F) is evaluated numerically and we obtain
v.

G

.

r,

et
,

01360
D~«F!58«Fe22.447e215p2/64kFuau. ~A8!

With «F5983.67 nK, which corresponds to our ‘‘sel
consistent’’ harmonic solution, andkFuau50.56 one obtains
D(«F)511.29 nK. This value is about 30% smaller than t
one extracted in Eq.~3.9!, which, however, in view of the
roughness of the TF approximation can be considered
rather satisfying consistency of the results.
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