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Moment of inertia of a trapped superfluid gas of atomic fermions

M. Farine! P. Schuck and X. Viras
1Ecole Navale, Lanmaz-Poulmic, 29240 Brest-Naval, France
2Institut des Sciences NUelees, UniversiteJoseph Fourier, CNRS-IN2P3, 53, Avenue des Martyrs,
F-38026 Grenoble Cedex, France
3Departament d’Estructura i Constituents de la MéeFacultat de Fsica, Universitat de Barcelona Diagonal 647,
E-08028 Barcelona, Spain
(Received 22 December 1998; revised manuscript received 14 June 1999; published 16 June 2000

The moment of inerti@® of a trapped superfluid gas of atomic fermiofikij is calculated as a function of
the temperature. At zero temperature the moment of inertia takes on the irrotational-flow value. Gnheffpr
close toT, is rigid rotation attained. It is proposed that future measurements of the rotational energy will
unambiguously reveal whether the system is in a superfluid state or not.

PACS numbds): 03.75.Fi, 74.20.Fg

[. INTRODUCTION immediately after the discovery of nuclear rotational states
almost half a century backg]. Therefore, while awaiting
The advent in 1995 of Bose-Einstein condensation ofuture experimental achievements for trapped fermionic at-
atomic bosons in magnetic traps certainly represents a milems also, it is our intention in this work to give some theo-
stone in the study of bosonic many-body quantum systemsetical estimates of the moment of inertia as a function of
This is so because a systematic study of these systems, stadeformation of the traps or temperature of the gas. In this
ing with the free-particle case, as a function of increasingstudy we can greatly profit from the experience nuclear
density, particle number, and other system parameters, seemplysicists have accumulated over recent decades in describ-
possible and has already progressed to a large extent whiieg such phenomena. The expectation is indeed that there
going on at a rapid pacgl,2]. The recent experimental will be a great analogy between the physics of confined
achievement of trappindLi atoms and other fermionic atomic fermions and what one calls in nuclear physics the
alkali-metal atom¢3] gives hope that as much progress will liquid-drop part of the nucleus. As astonishing as it may
be made in the near future for the fermionic many-bodyseem, assemblies of fermions containing no more tha@0
problem as for the bosonic systems. Indeed, the first Fermparticles (nucleon$ already exhibit an underlying macro-
Dirac degeneracy of trappetfK atoms has already been scopic structure well known from the Bethe-Wéidser for-
observedsee De Marco and Ji#t]). In this reference more mula for nuclear massg$]. In superfluid rotating nuclei
of the physics of trapped fermionic atoms is also discussedMigdal proposed as early as 1959 a statistical description of
For atoms with attractive interaction one can envisage thathe nuclear moment of inertigZ] that grasped the essential
the trapped system undergoes a transition to the superflujghysics of a self-contained rotating superfluid fermi liquid
state. For instancél.i atoms can be trapped in two different drop and which serves as a reference even today.
hyperfine states. In the spin-polarized casesheave inter- In the present work we will cast Migdal's approach into
action turns out to be very strong and attract{geattering the more systematic language of the Thomas-Fermi theory
length a= —2063, with a, the Bohr radius favoring a  which together with its extensions has long been applied to
phase transition to the superfluid state. This possibility hasiormal-fluid but also to superfluid nuclgs,8,9. It is fortu-
recently provoked a number of theoretical investigati@e® nate that we can profit from this experience for the descrip-
[5] for a more detailed discussion of a possible superfluidion of trapped fermions, since their number, of orde?,10
statg. One major question that is under debate is how tdogether with the smoothness of the potential, certainly turns
detect the superfluidity of such a fermionic system, since ira statistical description into a very precise tool. On the other
contrast to a bosonic system the density of a fermionic syshand, it cannot be excluded that in the future much smaller
tem is scarcely affected by the transition to the superfluidsystems of trapped atomic fermions with numbers?® may
state[6]. Several proposals such as the study of the decape studied, probably revealing many analogies with nuclei,
rate of the gas or of the scattering of atoms off the gas havesuch as shell structure, etc. The investigation of the transition
been advance{b]. Although such investigations may give from microscopic to macroscopic as the number of particles
valuable indications of a possible superfluid phase, we thinks increased continuously may then become a very interest-
that, in analogy with nuclear physics, a measurement of thing field in the case of atomic fermions also. In detail, our
moment of inertia certainly would establish an unambiguougpaper is organized as follows. In Secs. Il and Ill we review
signature of superfluidity. To measure the spin and rotationahe Thomas-Fermi approach to inhomogeneous superfluid
energy of trapped atoms definitely is a great challenge for th€ermi systems. In Sec. IV first the so-called Inglis part of the
future. However, in nuclear physics, wheyespectroscopy is moment of inertia of a rotating superfluid and confined gas
extremely well developed, the strong reduction of the mo-of atomic fermions is presented. Second, the influence of the
ment of inertia with respect to its rigid-body value has beerreaction of the pair field on the moment of inertia is calcu-
considered as a firm indicator of nucleon superfluidity sincdated. It is shown that this leads to the irrotational-flow value
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in the limit of strong pairing. In Sec. V the current distribu- ke(R)=(2m/A2)[w— Ve R) +gp(R)] (2.6)
tions in the superfluid and normal-fluid regimes are con-

trasted. In Sec. VI the numerical results are presented ithe local Fermi momentum. The coupling constgris re-
detail together with discussion and conclusions. lated to the scattering length in the same way as in the case
of Bose condensed gaskls2] via

Il. THOMAS-FERMI APPROACH TO FERMIONIC ATOMS 47h?|a|
a

IN DEFORMED TRAPS 9= _ 2.7
m
The Thomas-Ferm{TF) approach to trapped gases of

atomic bosons is a well-accepted practj@d. For trapped The TF equatior{2.5) leads to a cubic equation for the self-
atomic fermions the same approximation applies in differentonsistent density, which can be solved straightforwardly as
conditions. It has, however, recently also been applied to thia function of the external potential. In this paper our main
kind of situation[5]. The TF approach for fermions is also interest will be the study of the moment of inertia of a rotat-
extensively applied to other finite systems such as atomiing condensate. Since the study is very much simplified by
nuclei, metallic clusters, etc. The smallness parameter iassuming that the self-consistent potential is again a har-
given by monic oscillator and since the effect of the attractive inter-
action between the atoms essentially results in a narrowing
V() ,q Of the self-consistent potential with respect to the external
T ke(MV(r) @D one, we will use instead of the exact TF solution for the
density the following trial ansatz for the local Fermi momen-
whereV is the mean-field potential arigt(r) the local Fermi  tum:
momentum,

KE®(R) = \(2m/A2)[ u— (M/2) (0 R+ 0y R+ w3RS) ],
ke(r)=V(2m/A?) e —V(r)]. (2.2 2.8

With a typical frequency of the external harmonic potentialWhere oy, oy, and», are the variational parameters. The
of wo=7nK andeg=600 nK, one realizes thay<1 up chemical potential is determined from the particle number
close to the end of the classically allowed region. For inte<condition

grated quantities the region around the classical turning point

carries little weight and therefore the TF approximation for a N= j d3r ptial(r), (2.9
number of trapped atoms of the order of 19 certainly very

well justified.

Furthermore, as in the boson case, the TF apprp@icto
trapped atomic gases becomes extremely simple because the _
large interparticle distance makes a pseudopotential approxi-  7(R)= j T h)a 2m f(R,p)= [kmal(R)]s-
mation to atomic interactions valid. Let us therefore write (2.10
down the TF equation for a doubly-spin-polarized system of '
trapped PLi) atoms in the normal-fluid state. For conve- We can then analytically calculate the total energy
nience we first consider the system at zero temperafure
discussing thel #0 case later on. In the TF approximation g
the distribution function for particles in each spin state is E(wx’wy"”z):f d3R( T(R)+V6X(R)p(R)_§p2(R)

and the kinetic energy density is given by

107 2

given by (2.11
f(R,p)=6(n—Hyg), (2.3  asafunction ofv,, wy, andw,. Minimizing this expression
with respect tow,, wy, and w, for a given external de-
with formed harmonic oscillator potential
p m
Ho=5—~+VedR)=0p(R) (2.4 Vex= (w5,RE+ w Ri+ 0g,RY) (212

(in this work we consider only equal occupation of both spinleads to the variational solution. For the spherical cage
state$. Here u is the chemical potential, and.(R) stands = wy=w,= o, this is shown in Fig. 1. We see that this ap-
for the trap potential, which is supposed to be of harmonigroximation to the TF equation is quite reasonable. For an
form. The density(R) is obtained from the self-consistency external harmonic potential with frequency= wq/2m
equation, =144 Hz orhwy/kg=6.9 nK, corresponding to the condi-
tions of the experiment of Bradley and co-work§t§)], the
variational frequency i¢ w/kg=7.69 nK. Sincew> wq this
p(R):f (277ﬁ)’°’f(R’p): szﬁ(R), 25 implies a con?press)i/on of the density. Increasmg)g/ 6%
(hw/kg=8.21 nK) from its variational value allows an al-
with most perfect reproduction of the full TF solution. We will
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. with o< 8<1. From now on we will therefore use for the
variational . . .
nonsuperfluid Wigner function at zero temperature the ex-

X exact .
/{_ adjusted pression

3 ,
1.54 T f(R’p):e(M_Zp__V(R)>, (218)
12 .3, 1 Non-interacting m
p(R) (10°° cm™)
with
14
m 22 22 202
V(R)zf(wax‘*’ wyRj+ w3R7), (2.19

0.54

wy,0y,0, from Eq.(2.17), and u determined from the par-
ticle number condition.

0 0001 D002 0.003 0004 0.005 0005

Ill. SUPERFLUID CASE

R (cm) Since, as described in the Introduction, trapped spin-
polarized®Li atoms, in different hyperfine states, experience
of the . . : .

a strong attractive-wave interaction, the system very likely
will undergo a transition to the superfluid state at some criti-
cal temperaturd; as was discussed in detail in RE5]. As
we have pointed out in the Introduction, the superfluid state
will unambiguously reveal itself in the value of its moment
of inertia. At present measurement of the angular momenta

adopt this latter value in all our forthcoming calculations. ©f trapped Bose or Fermi gases has not been achieved and

The experimental situation for the rotating deformed case i§ePresents a future challenge to the experimenters. In order to
such that the rotation of the trap is performed aroundxthe €stablish how the two essential system parameters, which are

axis (the long axi, permitting slight triaxial deformations in the value of the gaythat is, in fact, the temperature which
the plane perpendicular to tixeaxis that is in they-z plane.  triggers the gapand the deformation of the external trap
In order to simulate such an experimental situation we siminfluence the value of the moment of inertia, we will now

FIG. 1. Density profiles, for the case of a spherical trap,
noninteracting caséfull line) and the interacting case calculated
once exactly from Eq(2.5 (crosseswith V¢, given by Eq.(2.12),
and once using the variationally determined harmonic-oscillator po
tential (open squargs Squeezing the variational by 6% yields a
density that lies on top of the exact TF solution.

ply first make a volume-conserving proceed to its evaluation in the superfluid state.
Since we are dealing with an inhomogeneous system,
(0,) 0= (2.13 even in the nonrotating case the gap is actually a nonlocal
quantity A(r,r") or in Wigner space\(R,p). We will find
prolate deformation around theaxis, later that at zero temperature the coherence length of the
Cooper pair, é=#%ke/mA, is larger than the oscillator
—— 2.14  lengthl=\A/mwy~(0.63< 10°)a, with a, the Bohr radius.
w We therefore have to be careful in applying the TF theory for
s temperature§ much lower than the critical temperatufe
O N T ) where the gap vanishes. We will discuss this point more
o thoroughly later and in the Appendix. We therefore go on
Wx=WT" (219 and apply the TF approximation to the superfluid state. It has

been shown i9,6] that to lowest order itk the gap equa-

In order to increase the central density there is interest i'?ion is given by

making rather strong eccentricities ang/w, = is a typi-
cal value which we will adopt in this paper. In a second step d3k
we fix w, and deform around the axis, again keeping the A(R,p)= J 2—ﬁ3v(p,k)
volume fixed. We define the deformation parameter as (27h)

A(RK) I‘(E(R,k))
2E(RK) M o1 )

(3.2
5= &' (2.16  whereE(R,p) is the quasiparticle energy,
We fi ” . p?—p2(R)\2 1/2
e finally have the two-parameter deformation E(R,p)= (T(R) +A2(R,p)} , (3.2
W= we??

with pg(R)=7%kg(R) the local Fermi momentun{2.6).
wy=wo Bs12 (2.17  Since the effective mas®* is so far unknown for trapped
gases of atomic fermions we will take* =m. Furthermore,

—13s12, for the time being, as if5], we will eliminate the inter-

w,= 0o
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FIG. 2. The gap for a spherical trap as a function of the radius.

atomic potentiab in Eq. (3.1), expressing it by the scattering
length (2.7). We then obtair}5]

d3k
2mh)3

tanH E(R,k)/2T]
2E(R,k)

A(R,p)=gf(

A(R,k), (3.3

_L)
2l er(R)]

where P stands for principal values,=#2k?/2m, and s
=#2k2/2m. At zero temperature, as described([irl], Eq.
(3.3y can be solved analytically in the Ilimit
A(R,pe(R))/ e(R)—0. The result is given by

Ar(R)=A(R,ke(R))=8e 2e(R)e [ "2F(Rlal]
(3.9

A posteriorione can verify thal\r /e <1 for all values oR
and therefore Eq(3.4) is an excellent approximation to Eq.
(3.3). This has also been found [i5]. For 286 50(fLi atoms,
the case considered [®], the gap is shown for a spherical
trap as a function of the radius in Fig. 2.

For determination of the critical temperaturg and, later
on, for the moment of inertia we will need the valdeof the
gap at the Fermi energy. Since the detailed level structure

the Fermi energy is unknown and in fact unimportant, we.
will consider the gap\(eg) averaged over the states at the

Fermi energy,
A(ep)=A=Ti{Ap(ep)], (3.5
with
S(e—H),
(3.6)

Se)= N
P(e)=gray 2 IMHnlote—en) =575

PHYSICAL REVIEW A 62 013608

g(e)=2, de—e,)=Trd(e—H) (3.7

is the level density.
It has been shown ifL2] that again the TF approximation
leads to an excellent average value,

A 1
- gTF(SF)

In the spherical case with(R) from Eq.(3.4) all integrals

but the radial one can be performed analytically, the last
being done numerically. For the case shown in Fig. 2 one
obtains

d°R d®p
(27Tﬁ)3 Ap(R)é(ep— HCI)-

(3.9

A=16.4nkK. (3.9
Quantum-mechanically the BCS equations should be solved
in the self-consistent Hartree-Fo@dF) basis and theil is
a global parameter which must be determined from the solu-
tion of the quantum-mechanical gap equation. Since we be-
lieve that the value in Eq(3.90 comes rather close to the
gquantum-mechanical value of the gap at the Fermi energy,
we can obtaiT; from the usual BCS weak-coupling relation
[13] A=1.76T, to be

T.~10 nK. (3.10
From Eg. (3.9 we obtain the coherence length
=#%2kg /MA=2er/AKg. With £-=983.67 nK, which cor-
responds to our approximate “self-consistent” harmonic so-
lution with w=8.21nK andkg|a|=0.56, one obtainst
~(4x10°)a, which is about a factor of 7 larger than the
oscillator length of the tragsee abovgthat contains 286 500
particles. This seems to invalidate the TF approximation.
However, we know by experience that often the TF approxi-
mation remains quite reasonable beyond its lipg}L For
example, the conditions of validity if9,12] for superfluid
nuclei are much worse than here and still the results are
accurate beyond expectation. We therefore think that the val-
ues of Eqs(3.9 and(3.10 are reasonable estimates for the
gap and the critical temperature. In order to check this as-
sumption we give in the Appendix a more refined semiclas-
sical solution of the gap equation, which demands only that
%Pe TF approximation in the normal-fluid state is well justi-
ied. We find values foA and T, that are~30% lower than
in Egs. (3.9 and(3.10. In view of the crudeness of the TF
approach, this indicates a quite satisfying consistency be-
tween the results.

We also will have to know the detailed dependence of
the gap,A(T), which, however, in BCS theory, givel(0)
andT,, is determined by the universal functid(T)/A(0)
in terms of T/T.. This function is determined from the so-
lution of the equatior13]

:A(

_m(ﬂ)

A(0)

A(T)

where|n) ande, are the states and energies of the harmonic

oscillator with frequencyw and

with
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with
e H=Ho—QL,=Hy+H, 4.3
08
AT) where nowH, is the shell-model Hamiltonia(®.4), or rather
X@ a6 the approximate one used in E¢8.18 and(2.19), and
0.4} Ly=rypz—rzPy,
02 the angular momentum operator corresponding to a rotation
| ! ! ! with angular frequency? around thex axis. In Eq.(4.2) G
0 02 o, ™ of 1o and F are the normal and anomalous Matsubara Green’s
functions(see Chap. 51 df16])
FIG. 3. Ratio of the energy gap to the gap®Bt0K as a L
function of temperature. Gn=—(T,an(nay (7)),
+ + + (4.4
- 1 /y2+u2 F nn’:_<Tran (nay " (7 )>
A(u)= | dy—=—=|1—-tanh———||. (3.1 . . . .
(W) J’o yw/y2+ u? }‘( 2 ) (319 Linearizing Eq. (4.2 with respect toH,, that is, G=Gg,

N o .  +Gy, F"=Fg+F;, andA=A,+A; (as mentioned we
For completeness it is shown in Fig. 3. We will later use thiswill neglect the influence of the rotational field éty), one
T dependence of the gap for the evaluation of the moment odbtains for Eq.(4.2)

inertia.

G1=G1g+Gim, (4.5

IV. MOMENT OF INERTIA .
with
The moment of inertia of a rotating nucleus has been fully

formulated in linear response theofiye. the random-phase G1g=GoH1Go+FoHiFg ,
approximation by Thouless and Valatinl4]. The corre- (4.9
sponding expression is therefore called, in the nuclear phys- Giv=—GoA;Fg —F7 AT Gy,

ics literature[6], the Thouless-Valatin moment of inertia. It
consists of two parts, the so-called Inglis term, which de-2nd
scribes the free-gas response, and the part that accounts for _ . 4 .
the reaction of thge mearﬁ)field and pair ppotential to the rota-  '1 =DoH1Fo +FoH1Go—FoA1Fg +DoAT Go,
tion. In the superfluid case the Inglis part has been general- 4.7)
ized by Belyae\[15] and the linear response of the gap pa-\ypere

rameter to the value of the moment of inertia was first

evaluated, together with the Inglis term, by Migdal. The iw,—Hog iw,+Hg

reaction of the HF field to the rotation is a minor effect and D= W2t HZL A2 0T ZrHZ1 A2

we will neglect it in this work. We therefore will write the no 070 no 070

moment of inertia as a sum of the Inglis-Belyaev tefg A

and the Migdal tern®,, . In total Fo=——a—,
wptHg+HAG

®:|B+®M' (41)
and w, are the Matsubara frequencigis].

In order to derive an expression f@ in linear response In Egs. (4.5 and (4.7 we have split the first-order
theory we will use the Gorkov approach described in detailGreen’s function in an obvious notation into the Inglis-
in many textbookgin what follows we will use the notation Belyaev and Migdal contributions. For the latter one needs
of [16]). Since in addition the derivation of the linear re- the linear reaction of the pair field to the rotation. We will
sponse fo® is given in the original article of Migddl7] and  see later how this can be determined from Ef7). First,
represented in a more elaborate versiorf8h we will be  however, let us evaluate the IB part of the moment of inertia.
very brief here and only give more details where in our opin-
ion the presentations {7,8] may not be entirely explicit. Let A. The Inglis-Belyaev part of the moment of inertia
us start by writing down the Gorkov equations in matrix

notation, The IB part of the moment of inertia can be evaluated

without knowledge ofA,, i.e., without the use of Eq4.7).

) The density response corresponding@eg of Eq. (4.5 is
(— 3 H+u|G=1-AF", evaluated from the limit’— 7" or from summing over the
Matsubara frequencies in the upper half plasee Chap. 7
3 (4.2 of [16]). One obtains the well-known res(i—8,15,16
—+H*+u |F*=A*G, ,
ot # (p1i)nn =(n|LyIN")For (4.8
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with
®|B:f dedw’
F=F, (1—-f—f")+F_(f—f"), (4.9

d°R o®p , ,
where Xf(277—ﬁ)3{(|-x)w[l-x(w:w JwF+(w,0"),
EnEn T £nén— A(en)A£n) (4.19

2E,.E, (E,*E,) ’ with
(4.10

F.=F.(en,en)=

[L(w,0)w=L8(0’—HoL8(w—Ho)lw. (4.17

1
f=f(en)= 1T e f'="1(e,), (4.11 Introducing into Eq(4.17) the Fourier representations of the
te two & functions and transforming to center-of-mass and rela-

tive coordinates one obtains
and

, dTdr ier ior
En=VE+AZ(e,), En=en—u, (4.12 [Ly(o,0 )]w:”@wmze ez

are the quasiparticle energies witly the energies of the
harmonic-oscillator potentidR.19. The gap parameters,

have been replaced in Eg.10, in analogy to Eq(3.5), to
statistical accuracy by (e,), the ones averaged over the with
energy shell. The moment of inertia is given by

X

, (4.18

W

e—iHOTLX<%) e HoT

E= , =w—ow', 4.1
Og=Tr(Lxp1i8)- (4.13 2 eremo (4.19

Since we are interested in temperatufes T, which are ~ and
very low with respect to the Fermi energy, we checked that _ LiHgt —iHot
one can to very good accuracy neglect in Eq9) the ther- O(t)=e"'0(0)e ' (4.20

mal factors(4.11). The only important temperature depen- 1 |owest order irh we replace the triple operator product in

dence of the moment of inertia therefore exists via The Eq. (4.18 by the product of their Wigner transfornié]
dependence of the gap. We thus will henceforth treat all ’

formulas as in theT=0 limit keeping, however, thd de- _
pendence of the gap. With this in mind we can write for the lim
moment of inertia h=0

e—iHoTLX(%) o iHoT

:e—iZHOdTL;I(%),
w

(4.21)
®IB:2 f fdwdw’é(w—sn) and therefore
" [Li(@,0")w=Ly(E.e.R,p)
X 80’ —en)(N[Lyn")PF (0,0"). (4.1
dr . T
:%5(5_ Hom)f gier/2h cl(_),
In this formula the important quantity to calculate to statis- (2mh) “\2
tical accuracy is (4.22
Lz(n,n")=[(n|Lyn")P=Tr (L) (In")}n’|Ln)(n])] with
d°R d’p LYt =Ry(1)p,(1) — Ry(1)py(1). (4.23

= W(Lx)w[|n/><n’|Lx|n><n|]W-
At this point the choice of our approximate self-consistent
(4.15 potential of harmonic-oscillator forrfsee Eq.(2.19] turns

_ out to be very helpful, since the classical trajectories in Eq.
whereO,,=0(R,p) means the Wigner transform of the op- (4.22) can be given analytically:

erator O [6]. To this purpose we again replace the density

matrices|n){n| and|n’){n’| by their average on the energy pi
shell (3.6), Ri(t)=R; cogfiot) + ——coshit),
|
N (4.29
[n)(n[—p(en). pi(t)=p; cogfi w;t) + Mw;R; codfiwit),
We therefore obtain with i=X,y,z.
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In the phase-space integral of E¢.15, for reasons of
symmetry, only the diagonal terms bﬁ'Lf('(t) survive and
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Finally one obtains for the IB part of the moment of inertia
the following analytical expressiq7,8]:

therefore we obtain

G, 0w’ +G_o”
dc*Rp 015=0igig 1_—w2+w2 : (4.29
f WLXLX(U -
where
=J d°R p™(R)(R7+R2)cogfiwyt)cogfim,t) hao.
0+=0y* 0, Gi_G(Z_A_)' (4.30
29y | 2@z . :
+ Ryw—Z+RZw—y)sm(hwyt)sm(ﬁwzt) (429 g
where o wt ) (w§+ w?) 3D
pTF:_lz 2_n;(E_V))3/2 (4 26) rigid — 24ﬁ3 wgwxwi .
6 i '
4 is the moment of inertia of rigid rotation. From Ed..29 we
is the density in the TF approximatigeee Eq.(2.5)]. see that
The product of cosine and sine in E@.25 can be ex- lim 0,5=0 lim ®,-=0.
. . . rigid » 1B
pressed in terms of the cosine of the sum and difference of A—0 Ao

the arguments and then theintegral in Eq.(4.23 can be _ _ _
performed. This leads t@ functions, which allows one to The latter result is clearly unphysical and we will see how
perform the e integral also. Furthermore, as shown by taking account of the reaction of the pair field to the rotation

Migdal [7],
F.(Ec)~ 1—6(%”5@—“), 4.27)
where[see Eq(3.5)]
A=A(er)
and
G0 arcsinlix) 4.29
X)= ——-. .
( X\1+x?

anInn/AOn’ +A0nHlnn’§n’ + AOnAlnn’AOn’ _(EnEn’ + fnfn’)A*

will reestablish the physical situation.

B. The Migdal term

The density response corresponding to the Migdal term is
obtained from Eq(4.6):

gnAlnn’AOn’ + AOnAInnrgn’
2E.E(E,+E,)

(PlM)n,n’: (4.32

In Eq. (4.32 we need to knowA; which we can gain from
Eq. (4.7) in the following way. In the limitr’— 7+ we ob-
tain fromF, the anomalous density; ,

1nn’

+
(kg Yo =—

In analogy with the nonrotating case whetg=A/2E, we
also have

(Kf)nn’: —A%

2E.E.(E,+E,)

(4.33

there is no further first-order correction, since in our case the
external field is a time-odd operator and thus

1
1“”’(4_En+ 4En,)- (439 Af=-A=-i0y. (439
This relation stems from the fact that the quasiparticle
energies contain the gap only in the foah* and therefore Equating(4.33 and(4.34) yields
ZgnHInnrAOn’+2AOnH1nn’§n’+ZAOnAlnn’AOn’+[A(2)n+A(2)n'+(§n_gn’)z]AInnf -0 (4 3@

2E,En(En+En)
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At this point we again exploit the fact that expressidr36)

is strongly peaked around the Fermi energy surface. Follow-

ing [7], in analogy with Eq(4.27), we have

1 Eq—Eqy eptey
[EnEn,(En+En,)]‘1~PG( “ZA“ )5 ”2 . —M).
(4.37
With Eq. (4.395 we then obtain for Eq(4.36
(n|Lyn"y  [en—en\? (8n—8n/ enten
{ oA T\ Taa X |Gl ol T e
=0, (4.39

whereL, stands for the time derivative &f,. Summing on
nandn’ and following exactly the same line of semiclassical
approximations as the ones used for the derivatio® @f,
one arrives at the following relatigi8]:

(m—Hoe) =0

+oo a3
[Corein| o
(4.39

whereG(7) is the Fourier transform o&(x) [Eq. (4.28)].
For the potential in Eq(2.19), Eq. (4.39 is solved by

e &)

2A  4A?

x(R)=aRR,, (4.40

with
=—2A Cs+G- 4.4
“ mefw_wiGJr—i-wz_G,' (4.43

Inserting this solution into Eq4.32 leads for the Migdal
part of the moment of inertia tf7,8]

o 0?
®M:®rigid 2

W

(G,+G.)?
+0’ 0 Gt G "

(4.42

Together with Eq(4.29 the expression for the moment of

inertia is now complete. Let us again mention that we ne- j
glected the temperature dependence except that contained in

A=A(T), since all otherT dependence fof <T. is negli-

gible. The moment of inertia can then be calculated as a
function of deformation and temperature. For example, it is

immediately obvious that foA —o Eq. (4.42 yields the
irrotational-flow value,

2 2\2
ltnx®M:®irrot:®rigid m , (4.43
and therefore
lim @=lim (0,_g+ 0 ) =00, (4.44

A*)OO A*}OC

which is the correct physical result.
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V. CURRENT DISTRIBUTION

Other quantities that may also be interesting from the ex-
perimental point of view are the current distributions of the
superfluid rotating gas. Indeed, after a sudden switching off
of the (rotating trap, the atoms will expand, keeping
memory of their rotational state. So if the velocity distribu-
tion of the expanding atoms can be measured, one may be
able to deduce the rotational motion the atoms had before the
trap was taken away. The current distribution, as we will see,
like the moment of inertia, depends strongly on the super-
fluid state of the gas. In order to calculate the current distri-
bution we first write down the Wigner function of the density
response which can easily be read off from the formulas
given in Sec. IV. In obvious notation we obtdi8]

p1us(R,P)=Q[RXp]é(u—Hoe)

w+G,—w,G+

-0 2w,

Ryp,

w,G_+w_G,

Rzpy} S(pn—Hoq),

Zwy
(5.1
R D)= 7 aQ w+G+—w,G,R
pam( ,p)—ﬁx e, vPz
0, G, tw_G_
+—Rzpy 5(M_H0cl)-
y
(5.2
With the usual definition of the current
(R —f d3p P R 5.3
J(R)= (ZTﬁ)gﬁp( ), (5.3
one obtains
) 0w, G_tw_ G
J;B:_PTF(R)RZQ[1_+7 (5.4a
y
G_—w_G
B_ _ FQR(%l—gi——————i, 5.4
z pre(R) y 20, ( )
(0, G_(G_+G,) w.G_+w_G,]
M_ (OFS + + +
ly = PTF(R)RZQ_ ©2G,+w2G_ wy §
(5.59

(w0 (G_+G,) w,G_—w_G,]
| wiG++w2_G_

i¥=-pr(RIRQ

(5.5b)

Wz

with, of course,j,=0. Again we see that in the limiA
—oo the current approaches the correct irrotational-flow
limit,

2 2

w w
—2p1EQ —— .
PTF wywaV(fyfz), (5.6)

j——

A—o

013608-8



MOMENT OF INERTIA OF A TRAPPED SUPERFLUID . .. PHYSICAL REVIEW &2 013608

0.003

a . . - . A=200K
0.002 s e EEEE e .
Lo W ST E RS
bt ¢ B KX PRR e @ -
S RIRBQGHEEFRPE Z ¢
z (cm) 01 ; gg ; ; : : i g‘g ﬁ i ®/®rigid
2 RPANI DD S v
VO e p SRS w
2 X HEDEDED S » v
-0.002 s B D DD s o e
-0.003 g G2 0,001 ] 0.001 0.002
At (nK)
y (em) FIG. 5. The moment of inertia as a function of the gap for
0.01 - T different values of the deformatiof=w,/w, ando=1/8.
o 3 also as a function of. We see that for a typical eccentric-
0,005+ - & - ity 6=w,/w,=0.8 the moment of inertia changes, as a func-
0.004] R tion of temperature, by large factors. At=0 the gap values
= (i - found in this paper are in the range of 10-20 nK and there-
00021 - EE e - fore the moment of inertia is close to its irrotational-flow
z (cm) o] . b limit. This actually means that the moment of inertia is very
000 S I small with respect to its rigid-body value, since fér-1,
= DD = i.e., for spherical symmetry around the rotational ais
-0.004 s e - axis), the moment of inertia goes to zdrsee Eqs(4.43 and
0,006 - 2 = (4.44]. Consequently in this case the gas is not following the
rotation of the trap at all. However, increasing the tempera-
00081 ture, i.e., decreasing the gap value, has a dramatic influence
oot . . : on the rotational motion of the gas, since in the rangel0
21 0.002 -0.001 0 0.001 0.002

<T. the moment of inertia rises very steeply, attaining its
y (cm) rigid-body value forT=T,. In this limit the gas rotates as a
whole with the same angular frequency as the trap. The
abruptness of the rise is the more pronounced the smaller the
eccentricitys (see Fig. 5. Experimentally, nondestructive or
expansion imaging can be used to watch the gas rotate and
then the rotational energy

FIG. 4. The current distribution for the two extreme cases of
irrotational (@) and rigid-body(b) flow in the laboratory frame. In
both cases the deformation parameters are settt/8, 5=0.8 and
the angular frequenc{) around thex axis to 1 nK.

whereas in the limit oA — 0 we obtain a rigid-body current.

. 0
As we have seen fo#), as a function of temperature and E. == 02 (6.1)
deformation, we can easily go from one limit to the other.

VI. RESULTS AND CONCLUSION can t_)e obta_ined by integ_rating the angular veloci_ty over the
density profile. The rotational energy therefore directly fol-
We show in Figs. @) and 4b) the current distribution for lows the variation of the moment of inertia. One deduces that
the two extreme cases of irrotational and rigid-body flow inmeasurement of the variation as a functionTodf the rota-
the laboratory frame. We see that the flow pattern is comtional energy should be well within experimental possibili-
pletely different in the two cases. In Fig(b} the flow pat- ties, once the technique of putting the trap into rotation has
tern clearly corresponds to rigid rotation of an ellipsoid with been perfected.
the long axis in the direction. Figure 4) represents a typi- In our discussion we have ignored the possibilities of vor-
cal irrotational-flow pattern well known from hydrodynam- tex formation. The determination of the onset of instabilities
ics. As a function of temperature one can pass continuouslyersus vortex formation in a finite Fermi system is not a
from one flow pattern to the other. The point we want tocompletely easy task and we will postpone such an investi-
make is that for small deformation$ as can be seen from gation to future work. However, since the rotational frequen-
Eq. (5.6) there is almost no irrotational current for low tem- cies () considered in this paper are much smaller than the
peratures and this will be reflected in a very low rotationaloscillator constantw(Q2/wy<<1), we think that our result
energy, as we will discuss now. will not be changed by the appearance of vortices. An indi-
In Fig. 5 we show® as a function ofA(T) and with Fig.  cation can also come from the case of trapped bosons where
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vortices, depending somewhat on the number of atoms, do tanh(E,,,/2T) P

not appear for value®/w,<0.5 (see Ref[2]) Ap=2 (nmlo|n' M)A, 5E 2em—e0))
From the above discussion we see that it may well be n’ " ook (A1)

within experimental reach to reveal an eventual superfluid

state of the gas once the technique of putting the trap IntE}vheren labels the states of thispherical harmonic oscilla-
rotation has been perfected. A closely related phenomenon E%r with single-particle energies, andn is the time-reversed
rotation is the so-called scissors mode which was originally T L
discussed and found in deformed nudlév] and then pro- state. As usuaEn,—_, (8.“_8F) FAnis the quasiparticle en-
posed[18] and also very recently founfll9] for trapped ©€'9Y and(nnjv|n'n’) is the matrix element of the zero-
boson condensates. Suppose the trapped atomic system'#19€ two-body force

rotating very slowly and suddenly the rotation of the de- ,
formed trap potential is stopped. Due to inertia the atomic go(r—r’).
cloud will continue rotating back and forth around the fixed ) ] )
trap position if the initial rotation was gentle enough. If for Since what matters is the gap at the Fermi level and since for
the purpose of a rough argument we suppose that this oscikarticle numbers of the order 16he degeneracy of the os-
latory motion has so small an amplitude that in a first ap-Cillator shells is very high, it seems a very reasonable ap-
proximation we can neglect shape distortions of the cloudproximation to replace all quantities in E¢AL) by their
then, if the oscillations are in the harmonic regime, the fre<corresponding values averaged over the energy $he.

(A2)

=C/0, 6.2 0 tanHE(€e’)/2T
wg ( ) Anzj dslg(SI)U(S,SI)A(SI) %
whereC is the constant of the restoring force. The frequency 0
ws Will strongly depend on whether the system is in the P
superfluid state or not. In this way the above cited experi- - m) (A3)
F

ment has indeed unambiguously revealed that the Bose con-
densate is in a superfluid stdtE9]. It is evident that scissors
modes could also be excited in trapped Fermi systems,
was already mentioned if18]. Since in Fermi systems for
temperaturesT~T,. one can suppose that the temperature
dependence of the_ forc_e constant is_weak with respect to that v(s,e')= 1 : E Se—e,)8(s —en)
of the moment of inerti@, one will find a large difference g(e)g(e’) 1
between the values abg in the superfluid and unpaired re- .
gimes(see Fig. 5 A more detailed investigation of the scis- X(nnfu[n'n"). (Ad)
sors mode for trapped fermions may be given in future work. . . )
In summary we proposed in this work to measure theAt this stage one cquld try to solve the gap equathn numeri-
dynamics of a rotating trapped gas of atomic fermions as &ally._ However, in view _of th_e huge_number of particles it is
function of temperature and deformation to detect whethef€rtainly a good approximation again to pass to the Thomas-
the system is in a superfluid state or not. Quite detailed anfférmi limit. For the level densityg(s) this is straightfor-
quantitative calculations for the moment of inertia and veloc-Wardly performed. The TF limit of Eq(A4) can be obtained
ity distributions have been presented. Other quantities welPy locally summing over plane waves and we obtain
studied in the case of rotating superfluid nudlgj such as

vghere g(e) is the level density(3.7) andv(e,e’) is the
a .
averaged two-body matrix element

Yrast lines, even-odd effects, particle alignment, etc., may v(ee')= g 2_m 31
also become of interest in this case. ’ 9" (e)g™(e")\ A% ) 4m3
inf(r ,rgr)
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particle number$20]. We notice that Eq(A5) needs the TF

approximation only in the nonsuperfluid state where it is well
In this Appendix we want to give a more refined semi-justified (see Sec. )l Having an expression for average level

classical solution of the gap equation. Let us write the quaneensity and matrix element at hand, we can proceed to solve

tal version of Eq.(3.3) at T=0 in the BCS approximation Eq. (A3). We will do this again in the limitA(eg)/ep<1

[6], and obtain(see[11]) at T=0

APPENDIX
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1572 _ — 2,447~ 1572/64k¢|al
Ster)=Ber 0| ~ g +len)|. (40 Alep)=Bope 2o BTRETEL (A9
F
with With ex=983.67 nK, which corresponds to our “self-
5 0 o ) consistent” harmonic solution, arid-|a]=0.56 one obtains
ec)=2 1d Xv(Xef ,e)/v(ep ,e¢) — 1 (A7) A(eg)=11.29 nK. This value is about 30% smaller than the
(ep)= 0 X 1-x° ) one extracted in Eq(3.9), which, however, in view of the

roughness of the TF approximation can be considered as a
The integrall (eg) is evaluated numerically and we obtain rather satisfying consistency of the results.
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