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Disappearance of the dressed bound states in photodetachment from a short-range potential
by an intense high-frequency laser field

R. M. Potvliege
Department of Physics, University of Durham, Durham DH1 3LE, United Kingdom

~Received 24 February 2000; published 9 June 2000!

It is proved that in three dimensions, and contrary to what is usually found in one dimension, the number of
bound Kramers-Hennebrger states always reduces to zero in strong fields if the range of the potential is short
and its depth finite. Numerical results showing the disappearance of the dressed ground state of an exponential
potential in an intense high-frequency field are also presented.

PACS number~s!: 32.80.Rm, 42.50.Hz
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I. INTRODUCTION

Much progress has been made in the theory of photo
tachment in very strong laser fields through the study
simple one-dimensional~1D! models in which a single active
electron is initially bound by a short-range potential. As fi
noted by Bhatt, Piraux, and Burnett more than twelve ye
ago @1#, the number of dressed bound states supported
such one-dimensional systems tends to increase with th
tensity if the frequency is sufficiently high. The appearan
in strong fields of additional, ‘‘light-induced’’ dressed stat
has been described for a variety of potentials, e.g., for
1D polarization potential@1,2#, the 1D zero-range potentia
@3#, the 1D Gaussian potential@4,5#, and the 1D square well
@5#. Their counterparts in real systems have recently b
found in three-dimensional, correlated multielectron calcu
tions taking the long-range Coulomb interaction into a
count, in the form of new nonautoionizing bound states
H2 and of multiply charged negative hydrogen ions appe
ing in ultraintense laser fields@6–8#.

The present article is concerned with photodetachm
from a short-rangethree-dimensional potential by a high
frequency field. This case has received less attention
those mentioned above. It is generally assumed that
broadly similar with regard to the appearance of lig
induced states. However, it is shown below that there is
proliferation of such states in three dimensions if the pot
tial is of finite depth and has no Coulomb tail. To the co
trary, the number of dressed bound states tends todecrease
when the intensity increases, and always reduces to ze
the strong field limit: increasing the intensity leads to t
disappearance of the dressed bound states that the pot
may support in weak field, rather than to the appearanc
new ones.

Under the effect of an incident field described in dipo
approximation by the vector potentialA(t), the wave func-
tion of an electron initially bound by a potentialVat(r) varies
in time according to the equation

i\
]

]t
F~r,t !5S 2

\2

2m
¹22

ie\

m
A~ t !•“1Vat~r! DF~r,t !.

~1!

Some insight into the strong field dynamics of the syst
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can be gained by passing to the Kramers-Henneberger~KH!
frame, whose origin is located at the position

a~ t !5
e

mE
2`

t

A~ t8!dt8 ~2!

in the laboratory frame. Changingr into r1a(t) in Eq. ~1!
yields the Schro¨dinger equation

i\
]

]t
FKH~r,t !5S 2

\2

2m
¹21Vat@r1a~ t !# DFKH~r,t !,

~3!

whereFKH(r,t)[F@r1a(t),t#. In the laboratory frame, the
origin of the Kramers-Henneberger frame follows the clas
cal trajectory of an electron freely quivering in the field.
the field is stationary and the quiver motion is too fast for t
wave function to respond immediately to the variation
Vat@r1a(t)#, which happens if the frequency and the inte
sity are sufficiently high, the electron behaves, in first a
proximation, as if it were submitted to the effective potent
@9#

Vdr~a0 ,r!5
v

2pE0

2p/v

Vat@r1a~ t !#dt. ~4!

The average potentialVdr(a0 ,r) is often called the ‘‘dressed
potential.’’ It depends onv and on the electric field ampli
tude only through the excursion amplitudea05maxua(t)u.
This parameter increases with the intensity, and, whilea0
50 and Vdr(a0 ,r)[Vat(r) in zero field,Vdr(a0 ,r) greatly
differs fromVat(r) at high intensity. Typically,Vdr(a0 ,r) has
a larger range and a smaller depth thanVat(r). The bound
states supported by the former, the so-called KH states,
found by solving the equation

S 2
\2

2m
¹21Vdr~a0 ,r! Dun~a0 ,r!5wn~a0!un~a0 ,r!.

~5!

If the intensity is high enough, the KH states whose bind
energy is somewhat smaller than the photon energy are g
approximations of exact dressed bound states supporte
Vat(r) in a stationary field@4,5#. The latter correspond to
quasistationary solutions of Eq.~1! or ~3! satisfying bound-
©2000 The American Physical Society03-1
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ary conditions appropriate to bound states decaying by m
tiphoton ionization@9,10#. Conversely, one can expect th
any dressed bound state reduces to a KH state in the h
frequency limit.

The one-dimensional case is examined in Sec. II, for
sake of completeness. It is proved that the number of
states always increases without bound whena0 increases, if
the field-free potential is both short range and nonposi
everywhere. Additional states appear in this case becaus
dressed potential becomes more and more elongated aa0
increases, and the increase of its range is sufficiently fas
compensate the concomitant decrease of its depth.

The range of any non-Coulombic, nonpositive thre
dimensional dressed potential increases witha0, too,but not
in every direction. Hence, in three dimensions the decrea
in the depth ofVdr(a0 ,r) may be accompanied by a redu
tion in the number of KH states that it supports. That
some of the eigenenergieswn(a0) may become zero, a
which point the corresponding states cease to be bound
become resonances. In fact, and this is proved in Sec. II
all KH states disappear as bound states in the high-inten
limit when Vat(r) has a finite depth and goes to zero fas
than 1/r 3 for uru→`. The proof does not apply to the 3Dd
potential. It does not apply either to potentials decreasing
slowly as a Coulomb potential at large distances, and th
fore there is no contradiction with the persistence of the
states in atomic hydrogen@9# and with the appearance of ne
ones in negative ions@6–8#.

The disappearance of the KH states for short-range po
tials implies that of the corresponding exact dressed state
intense high-frequency fields. Numerical results showing
disappearance of the dressed ground state of an expone
potential are given in Sec. III B in illustration of this poin
Not all discrete, physical Floquet states vanish, howev
since those emanating from field-free resonances remain

II. THE 1D CASE

We consider only potentials that are nonpositive eve
where, i.e., such thatVat(x)<0 for all x. We also assume tha
there exist two positive constantsV0 anda such that

Vat~x!<2V0,0 ~6!

for uxu<a. Let W(x) be the square well potential

W~x!5H 2V0 , uxu<a,

0, uxu.a.
~7!

The corresponding dressed potential is

Wdr~a0 ,x!5
v

2pE0

2p/v

W~x1a0sinvt !dt. ~8!

Clearly, we have

Vdr~a0 ,x!<Wdr~a0 ,x!<0 ~9!
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for all x. A straightforward calculation shows that the min
mum of uWdr(a0 ,x)u on the intervaluxu<a02a, for a0.a,
occurs atx50. At this point,

Wdr~a0 ,x50!52
2

p
V0arcsin

a

a0
. ~10!

Therefore, we also have, for all values ofx,

Wdr~a0 ,x!<U~a0 ,x!<0, ~11!

whereU(a0 ,x) is the square well potential

U~a0 ,x!5H 2U0 , uxu<R,

0, uxu.R,
~12!

with U05(2aV0)/(pa0) and R5a02a. The number of
bound states supported byU(a0 ,x) is roughly proportional
to (U0R2)1/2 @11#, and thus increases without limit whena0
increases. Because of the relations~9! and ~11!, the same is
true for the dressed potentialVdr(a0 ,x).

There is also proliferation of KH states for the on
dimensional zero-range potential@3#

Vat~x!52Bd~x!, B.0, ~13!

although it does not satisfy the condition~6!, because the
corresponding dressed potential never exceedsU(a0 ,x) for
U05B/(pa0) and R5a0. On the other hand, there is n
proliferation for potentials with an attractive Coulomb ta
the infinite accumulation of bound states at the continu
threshold indeed prevents additional ones from appearin
high intensity. There may not be any additional KH sta
either if the potential is not attractive everywhere. An e
ample is the Morse potential

Vat~x!5D~e22bx22e2bx!, D,b.0, ~14!

which is repulsive forx!0: it can be shown analytically tha
the dressed Morse potential supports fewer bound state
largea0 than ata050 @12#.

Incidentally, a similar reasoning can be used, with t
help of Ref. @13#, for showing that in two dimensions
Vdr(a0 ,r) always supports at least one bound state ifVat(r)
is attractive everywhere.

III. THE 3D CASE

A. Disappearance of the KH states

For simplicity, we assume thatVat(r)<0 everywhere.
This condition is not essential here, as the proof develo
below can be immediately extended to the case wh
Vat(r).0 in some region of space by considering the pot
tial

Vat
(2)~r!5H Vat~r!, Vat~r!<0,

0, Vat~r!.0,
~15!
3-2
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instead ofVat(r) itself. We also assume~1! that Vat(r) is of
finite depth, i.e., that maxuVat(r)u is finite, and ~2!, that
uVat(r)u decreases sufficiently fast at large distances for
integral

I @Vat#5E uVat~r!udr ~16!

to exist. It follows from the definition of the dressed potent
that Vdr(a0 ,r)<0 everywhere and thatuVdr(a0 ,r)u is
bounded:

uVdr~a0 ,r!u<V0~a0!, ~17!

andV0(a0)5maxuVdr(a0 ,r)u is finite. Moreover, the integra

I @Vdr#5E uVdr~a0 ,r!udr ~18!

does not depend ona0:

I @Vdr#5
v

2pE0

2p/v S E uVat@r1a~ t !#udr Ddt

FIG. 1. Variation with the excursion amplitudea0 of the ground
state quasienergy for photodetachment from the potential~30!. ~a!
the real part of the quasienergy;~b! the photodetachment rate. A
quantities are expressed in atomic units. Solid curve:v51 a.u.,
linear polarization; dashed curve:v52 a.u., linear polarization;
dotted curve:v52 a.u., circular polarization.
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v

2pE0

2p/v S E uVat~r8!udr8 Ddt

5I @Vat#. ~19!

The depth of the dressed potentialV0(a0) is a decreasing
function of a0 ~at least for sufficiently large values of thi
variable!. This can be seen from the following argument.
view of the finiteness ofI @Vat# and ofVat(r), one can always
find two strictly positive constantsU0 anda such that

uVat~r!u<U~r![
U0

a21uru2
~20!

for any r. Hence, maxuVdr(a0 ,r)u<maxUdr(a0 ,r), where

Udr~a0 ,r!5U0

v

2pE0

2p/v dt

a21ur1a~ t !u2
. ~21!

Assuming that the incident field is monochromatic a
propagates in thez direction, the vectora(t) has the genera
form

a~ t !5a0sin~vt1f!x̂1a0tanx cos~vt1f!ŷ, ~22!

with 2p/4<x<p/4. The phasef is unimportant and can
be set to zero. Since

a21ur1a~ t !u2>a21~x1a0sinvt !2, ~23!

we have

Udr~a0 ,r!<U0

v

2pE0

2p/v

@a21~x1a0sinvt !2#21dt

<~U0 /a!Im$@~x2 ia !22a0
2#21/2%

<~U0 /a!u~x2 ia !22a0
2u21/2. ~24!

It follows from the last relation that

Udr~a0 ,r!<U0~2a3a0!21/2 ~25!

if a0.a. ThereforeV0(a0) decreases as least as fast
1/a0

1/2 for a0→`.
Now, in three dimensions, the number of bound sta

supported by the dressed potential,N@Vdr#, cannot exceed
the limit set by the Cwikel-Lieb-Rozenbljum bound@14,15#.
In the present case, the latter implies that

N@Vdr#<hE uVdr~a0 ,r!u3/2dr, ~26!

where h is a constant that does not depend ona0. This
relation holds provided the integral appearing in the rig
hand side exists. But it follows from Eqs.~16!–~19! that

E uVdr~a0 ,r!u3/2dr<V0
1/2~a0!I @Vat#. ~27!
3-3
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Therefore the right-hand side of Eq.~26! exists andN@Vdr#
tends to zero at least as fast as 1/a0

1/4 for a0→`.

B. Disappearance of a dressed bound state

The KH states are approximations of the exact dres
bound states of the system. Those can be obtained by loo
for solutions of Eq.~1! in the Floquet form@10#,

F~r,t !5e2 iEt(
N

e2 iNvtfN~r!, ~28!

for a stationary incident field—e.g., for a vector potential

A~ t !5A0Re@ ê exp~2 ivt !#. ~29!

In order to represent a decaying bound state, the wave f
tion must reduce foruru→` to a superposition of outgoing
waves in the open channels and exponentially damped w
in the closed channels. These Gamow-Siegert boundary
ditions make the quasienergyE complex. The rate of photo
detachment isG522 ImE/\.

The variation witha0 of the ground state quasienergy f
the potential

Vat~r!522 exp~2r ! ~30!

is presented in Fig. 1.~Atomic units are used throughout th
section.! This potential supports only one bound state.
binding energy, 0.158 a.u., is much smaller than the pho
energies for which results are given in the figure,\v51 or
tt
o,

A

e

tt.

r

01340
d
ng

c-

es
n-

s
n

2 a.u. The high-frequency approximation can thus be
pected to be reliable. The quasienergy was calculatedab ini-
tio, by complex scaling@16#, using the method and program
described in Ref.@17#.

The results show that the real part of the quasiene
slowly approaches 0 whena0 increases, both for linear an
for circular polarization. It eventually passes the thresh
~i.e., it becomes positive!, after which the dressed groun
state has unphysical features and is a shadow state@18#. For
a givena0 , ReE for linear polarization is about the same
v52 a.u. as atv51 a.u. This strongly suggests that th
trajectory of the quasienergy follows the variation of t
eigenenergy of the corresponding KH state, as is expecte
these high frequencies. Note also the sharp and susta
drop in the photodetachment rate visible in Fig. 1~b!, which
is diagnostic of adiabatic stabilization. Each curve peaks
value of a0 close to where the rate of ionization from th
ground state of atomic hydrogen is a maximum for the sa
frequency, i.e., close to the intensity for which (\v/2P)1/2

'1, whereP is the ponderomotive energy@19#.
Numerical results similar to those of Figs. 1~a! and 1~b!

have been obtained by Day for photodetachment from
spherical square well in the high-frequency regime@20#.
However, there is neither disappearance of the dressed b
state nor adiabatic stabilization in photodetachment from
three-dimensional zero-range potential by a circularly po
ized field @21#. Again, there is no contradiction since th
potential does not satisfy the assumptions under which
disappearance of KH states is proved in Sec. III A.
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Preobrazhenski�, Zh. Éksp. Teor. Fiz.103, 559 ~1993! @JETP
76, 559 ~1993!#.
3-4


