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Disappearance of the dressed bound states in photodetachment from a short-range potential
by an intense high-frequency laser field
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It is proved that in three dimensions, and contrary to what is usually found in one dimension, the number of
bound Kramers-Hennebrger states always reduces to zero in strong fields if the range of the potential is short
and its depth finite. Numerical results showing the disappearance of the dressed ground state of an exponential
potential in an intense high-frequency field are also presented.

PACS numbd(s): 32.80.Rm, 42.50.Hz

I. INTRODUCTION can be gained by passing to the Kramers-Hennebékgey
frame, whose origin is located at the position
Much progress has been made in the theory of photode-
tachment in very strong laser fields through the study of
simple one-dimension&lD) models in which a single active
electron is initially bound by a short-range potential. As first
noted by Bhatt, Piraux, and Burnett more than twelve yearén the laboratory frame. Changinginto r+ a(t) in Eq. (1)
ago[1], the number of dressed bound states supported byields the Schrdinger equation
such one-dimensional systems tends to increase with the in- .
tensity if the frequency is sufficiently high. The appearance ., d
in strong fields of additional, “light-induced” dressed states 'hﬁq)KH(r't):( B %V2+Va{r+ a(t)])q)KH(r't)'
has been described for a variety of potentials, e.g., for the (3)
1D polarization potential1,2], the 1D zero-range potential
[3], the 1D Gaussian potentigh,5], and the D square well ~ where®yy(r,t)=®[r+ a(t),t]. In the laboratory frame, the
[5]. Their counterparts in real systems have recently beefrigin of the Kramers-Henneberger frame follows the classi-
found in three-dimensional, correlated multielectron calculacal trajectory of an electron freely quivering in the field. If
tions taking the long-range Coulomb interaction into ac-the field is stationary and the quiver motion is too fast for the
count, in the form of new nonautoionizing bound states ofvave function to respond immediately to the variation of
H~ and of multiply charged negative hydrogen ions appearValr+ a(t)], which happens if the frequency and the inten-
ing in ultraintense laser field$—8§]. sity are sufficiently high, the electron behaves, in first ap-
The present article is concerned with photodetachmerproximation, as if it were submitted to the effective potential
from a short-rangehreedimensional potential by a high- [9]
frequency field. This case has received less attention than w (2m
those mentioned above. It is generally assumed that it is _ @ [eme
broadly similar with regard to the appearance of light- Val@o,N= 277Jo Valr+ a(t)]dt. @
induced states. However, it is shown below that there is no
proliferation of such states in three dimensions if the potenThe average potentidy(«g,r) is often called the “dressed
tial is of finite depth and has no Coulomb tail. To the con-potential.” It depends orw and on the electric field ampli-
trary, the number of dressed bound states tendietwease tude only through the excursion amplitudg=maxa(t)|.
when the intensity increases, and always reduces to zero ifhis parameter increases with the intensity, and, while
the strong field limit: increasing the intensity leads to the=0 andVy(ag,r)=V4(r) in zero field,V4(agq,r) greatly
disappearance of the dressed bound states that the poteniilififers fromV(r) at high intensity. TypicallyVq(«g,r) has
may support in weak field, rather than to the appearance @ larger range and a smaller depth thagr). The bound
new ones. states supported by the former, the so-called KH states, are
Under the effect of an incident field described in dipolefound by solving the equation
approximation by the vector potentia(t), the wave func-
tion of an electron initially bound by a potenti](r) varies ( h?

e[t
a(t)=af_x.A(t’)dt’ 2

2

— 5= VZ+ Vgl o, 1) | Un(ag,N) =Wy( o) Un(ag,r).

in time according to the equation 2m
®)
2 .
iﬁi(l)(r,t): - —V2- ﬂA(t)~V+Vat(r))<b(r,t). If the intensity is high enough, the KH states whose binding
ot 2m m energy is somewhat smaller than the photon energy are good

@ approximations of exact dressed bound states supported by
V,(r) in a stationary field4,5]. The latter correspond to
Some insight into the strong field dynamics of the systenmmquasistationary solutions of E@l) or (3) satisfying bound-
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ary conditions appropriate to bound states decaying by mulffor all x. A straightforward calculation shows that the mini-
tiphoton ionization[9,10]. Conversely, one can expect that mum of |Wy(«q,X)| on the intervalx|< ay—a, for ap>a,
any dressed bound state reduces to a KH state in the higleccurs atx=0. At this point,
frequency limit.

The one-dimensional case is examined in Sec. Il, for the 2 a
sake of completeness. It is proved that the number of KH W @g,x=0)=——Voarcsin . (10
states always increases without bound whgrincreases, if 0
the field-free pot_e_ntial is both short range and nonpOSitiverherefore, we also have, for all valuesf
everywhere. Additional states appear in this case because the
dressed potential becomes more and more elongated, as
increases, and the increase of its range is sufficiently fast to
compensate the concomitant decrease of its depth.

The range of any non-Coulombic, nonpositive three-
dimensional dressed potential increases wightoo, but not
in every direction Hence, in three dimensions the decrease U(ag,x)=
in the depth ofV4(«aq,r) may be accompanied by a reduc- o
tion in the number of KH states that it supports. That is,
some of the eigenenergies,(ap) may become zero, at with U,=(2aVo)/(mag) and R=ap—a. The number of
which point the corresponding states cease to be bound ambund states supported ty(aq,x) is roughly proportional
become resonances. In fact, and this is proved in Sec. Ill Ao (U,R?)Y?[11], and thus increases without limit wher
all KH states disappear as bound states in the high-intensityicreases. Because of the relatid@s and (11), the same is
limit when V(r) has a finite depth and goes to zero fastertrye for the dressed potentisll,(ag,X).
than 1t for [r|—o. The proof does not apply to the 3® There is also proliferation of KH states for the one-
potential. It does not apply either to potentials decreasing agimensional zero-range potent(a]
slowly as a Coulomb potential at large distances, and there-
fore there is no contradiction with the persistence of the KH Va(X)=—Bd&(x), B>0, (13)
states in atomic hydrogd®] and with the appearance of new

ones in negative iong5—8. although it does not satisfy the conditidf), because the

The disappearance of the KH states for short-range pOte'?:'orresponding dressed potential never excaéfis,,x) for

tials implies that of the corresponding exact dressed states il']0=B/(7m0) and R=a,. On the other hand, there is no

ljntense h|gh-freq??;cy(/jﬂelds.dNumer(ljcaIt rtesuli'fs showing th%r liferation for potentials with an attractive Coulomb tail;
ISappearance of the dressed ground state of an exponen infinite accumulation of bound states at the continuum

potential are given in Sec. lII B in illustration qf this point. threshold indeed prevents additional ones from appearing at
NOt all discrete, phyS|caI ququet states vanish, hOW(?Verhigh intensity. There may not be any additional KH states
since those emanating from field-free resonances remain. either if the potential is not attractive everywhere. An ex-

ample is the Morse potential

W ag,X)<U(ag,x)<0, (11)
whereU («q,X) is the square well potential

_Uo, |X|$R,

0, IX|>R, (12)

Il. THE 1D CASE

— —2bx__ —bx
We consider only potentials that are nonpositive every- Va(x)=D(e 2e ™), D,b=0, (14)

where, i.e., such that(x) =<0 for all x. We also assume that

there exist two positive constants anda such that which is repulsive fox<<0: it can be shown analytically that

the dressed Morse potential supports fewer bound states at
large a than atay=0 [12].

Incidentally, a similar reasoning can be used, with the
) help of Ref.[13], for showing that in two dimensions
for [x|<a. Let W(x) be the square well potential Vgl a,r) always supports at least one bound state fr)
is attractive everywhere.

V(X)<—V,<0 (6)

_Vo, |X|$a,
W(x)= 7
0 0, |x|>a. @ ll. THE 3D CASE
. N A. Di f the KH stat
The corresponding dressed potential is Isappearance ot fne states
For simplicity, we assume that(r)<0 everywhere.
w (270 This condition is not essential here, as the proof developed
Wyl ag,X)= o W(Xx+ agsinwt)dt. (8) below can be immediately extended to the case where
mJo Va(r)>0 in some region of space by considering the poten-
tial
Clearly, we have
Val(r)! Val(r)gov
Vi = (15)
Val g, X)<Wg(ag,X)<0 9 0,  Va(nN=>0,
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—1[Val. (19)
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g

The depth of the dressed potentig)(«) is a decreasing
function of o (at least for sufficiently large values of this
variable. This can be seen from the following argument. In
view of the finiteness off V] and ofV,(r), one can always
find two strictly positive constantd, anda such that

008 -

Re(E) (a.u.)

012 };
; U,
Va(n|<U(n=——— (20
a‘+|r|
-0.16
for anyr. Hence, mai/y(aq,r)|<maxUy(ag,r), where
0.03 f ® -
3 Ul arg,)=Upe fzm a (21)
] ag,f)=Uyz— _.
‘g’ an o 270 a?+|r+at)?
g
EO‘OZ Assuming that the incident field is monochromatic and
g propagates in the direction, the vector(t) has the general
g form
=
2 0.01 . - -
£ a(t)= apSin(wt+ @)X+ agtany cog wt+ @)y, (22
with — 7r/4< y<w/4. The phasep is unimportant and can
0.00 LN be set to zero. Since
' 8 12 16 _
Excursion amplitude (a.u.) a+|r+ a(t)|?=a+ (x+ agsinwt)?, (23

FIG. 1. Variation with the excursion amplitudg of the ground e have
state quasienergy for photodetachment from the potet8@l (a)
the real part of the quasienerglg) the photodetachment rate. All w (27lo
quantities are expressed in atomic units. Solid cuwez1l a.u., Udr(aoJ)guozf [a®+ (X + agsinwt)?]~'dt
linear polarization; dashed curvei=2 a.u., linear polarization; 0
dotted curvew=2 a.u., circular polarization. o ooy
<(Up/a)Im{[(x—ia)’—ag] V2

instead ofV,(r) itself. We also assumél) thatV (r) is of

finite depth, i.e., that maX,(r)| is finite, and (2), that <(Uo/a)l(x—ia)*~ag| V2 (24)
|V,(r)| decreases sufficiently fast at large distances for the i
integral It follows from the last relation that
Ugl(ag,1)<Ug(2a%ag) 2 (25
IVal= [ 1Vadnlar 16
if ag>a. ThereforeVy(ay) decreases as least as fast as
12
to exist. It follows from the definition of the dressed potential /ag - for ag—o. _
that Vg (eo.r)<0 everywhere and thaiVy(ao.r)| is Now, in three dimensions, the number of bound states
bounded: supported by the dressed potentill,Vy], cannot exceed
the limit set by the Cwikel-Lieb-Rozenbljum boufti4,15.
[Valag, 1| <Vo(ag), (17) In the present case, the latter implies that
andV =maxV, ,N| is finite. Moreover, the integral
0(“0) )4 dr(ao )l g N[Vdr]gﬁJ’ |Vdr(a’o,r)|3/2dr, (26)
I[Vdr]:J [Vad ao 1) dr 18 here » is a constant that does not depend @f This
relation holds provided the integral appearing in the right-
does not depend oa: hand side exists. But it follows from Eg&L6)—(19) that
w (27w
l[Vdr]:EJO U |Valr+ a(t)]]dr |dt J IVl oo, 1) |¥2dr< VI ag) [Vl (27)
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Therefore the right-hand side of E(6) exists andN[ V] 2 a.u. The high-frequency approximation can thus be ex-

tends to zero at least as fast a&éﬂ for ag—oe. pected to be reliable. The quasienergy was calculaleihi-
tio, by complex scalindg16], using the method and program
B. Disappearance of a dressed bound state described in Ref{17].

The KH states are approximations of the exact dressed The results show that the real part of the quasienergy

bound states of the system. Those can be obtained by IookirféOWI_y approache_s 0 whenm, increases, both for linear and
for solutions of Eq.(1) in the Floquet forn{10], r circular polarization. It eventually passes the threshold
(i.e., it becomes positiye after which the dressed ground

et Nt state has unphysical features and is a shadow [st8teFor
d(rH=e % e én(n), (28 a givenay, ReE for linear polarization is about the same at
w=2 a.u. as aw=1 a.u. This strongly suggests that the
for a stationary incident field—e.g., for a vector potential trajectory of the quasienergy follows the variation of the
R eigenenergy of the corresponding KH state, as is expected at
A(t)= AR eexp—iwt)]. (29 these high frequencies. Note also the sharp and sustained
drop in the photodetachment rate visible in Figh)1 which

{inor?r:jnirsttor;z?esefgqtr? dic?g'ggsgoi?doztigg% tof}eovl;/?\geinfun% diagnostic of adiabatic stabilization. Each curve peaks at a
- A

. perposit 909 "\ a1ue of aq close to where the rate of ionization from the
waves in the open channels and exponentially damped waves

in the closed channels. These Gamow-Siegert boundary co round state of aromlct h);grogetn 'S.? Taxm;]ur‘r’; fo/rzéh?/zsame
ditions make the quasienergycomplex. The rate of photo- requency, 1.e., close fo he intensity for whic ®/2P)
detachment id" = — 2 Im E/4. ~1, wher.eP is the pondgromouve enerqgg].
The variation witha of the ground state quasienergy for Numerical res_ults similar to those of Figsaland 1b)
: have been obtained by Day for photodetachment from a
the potential . ) . .
spherical square well in the high-frequency regifi2d].
V(r=—2exg—r) (30) However, there is neither disappearance of the dressed bound
state nor adiabatic stabilization in photodetachment from the
is presented in Fig. XAtomic units are used throughout this three-dimensional zero-range potential by a circularly polar-
section) This potential supports only one bound state. Itsized field [21]. Again, there is no contradiction since this
binding energy, 0.158 a.u., is much smaller than the photopotential does not satisfy the assumptions under which the
energies for which results are given in the figuiey=1 or  disappearance of KH states is proved in Sec. Il A.
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