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Momentum transfer for an optical transition in a prepared two-level atom
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We consider the interaction of a traveling optical wave with a resonant two-level atom, which is initially in
its general superposition state, i.e., in the superposition state of the ground and excited internal energy levels
and simultaneously has mutually different momentum distributions, corresponding to each of these internal
energy levels. We show that during the interaction, the atom periodically gets large-scale changes in these
momentum distributions. As a consequence, a portion of the atomic momentum of the states, corresponding to
each internal energy level, gets large-scale changes too, much more than the momentum\k of an ab-
sorbed/emitted photon. The amount of momentum that a photon transfers between the atomic internal energy
levels is in general more than its own momentum\k. The special case is discussed in which the atom’s
preliminary superposition state is created as a result of interaction of the atom with the resonant standing wave.
Also it is pointed out that in appropriate time intervals the mentioned phenomenon can be presented as a
transformation of the resonant Kapitza-Dirac splitting of atomic states into the Stern-Gerlach-type splitting.

PACS number~s!: 42.50.Vk, 32.80.Qk, 32.80.Wr
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I. INTRODUCTION

When an atom interacts with a resonant traveling wa
the atomic total momentum changes in units of one pho
momentum\k. What can be said about distributions a
mean values of momentum for translational states conne
with each atomic level? The answer is well-known and
trivial, if the atom before the interaction is on one of th
internal energy levels: the momentum distribution on
other level gets shifted by\k and the mean value of momen

tum gets shifted also by\k; p̄e5 p̄g1\k, wherep̄g and p̄e

are mean values of momentum, corresponding to ground
excited internal levels consequently@one-dimensional~1D!
case#. Therefore, a photon, during an absorption or em
sions, transfers between the atomic internal energy level
amount of momentumDp just equal to its own momentum
\k. What would we have in a general case, that is, when
atom before the interaction with the traveling wave is in t
superposition state of ground and excited levels with mu
ally different momentum distributions there, that is, when
‘‘two-level atom’’ is in its most general superposition stat
In the following just this question will be elucidated, rath
in general form and for the important special case. It will
shown that in general alreadyDpÞ\k, that is, a photon be
ing absorbed or emitted by an atom, transfers between in
nal atomic energy levels the amount of momentum not n
essarily equal to the photon’s own momentum; moreov
this amount may even greatly exceed the photon’s own
mentum.

In Sec. II it will be shown that due to the interaction wi
the traveling wave the essential momentum distributions
possible in corresponding atomic states to each internal
ergy level. These redistributions are a direct consequenc
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interference between the amplitudes of translational state
the ground internal energy level and the excited one. Fur
we present conditions when the redistributions are lar
scale and respective variations of mean momentum per e
internal energy level greatly exceed one photon momen
\k.

In Sec. III we will discuss from the practical point of view
a very important case, when the preliminary superposit
state of the atom is realized by the coherent diffraction of
atom in the field of a resonant standing wave, which is of
being referred to as the resonant Kapitza-Dirac effect. It w
be pointed out that the redistribution of momenta in the tr
eling wave can be considered as a transition from the re
nant Kapitza-Dirac splitting to the Stern-Gerlach-type sp
ting. In Sec. IV will be discussed in details the tempo
behavior of mean momenta corresponding to both inter
energy levels. The results are summarized in Sec. V, wh
the possibility of experimental observation of this pheno
enon is sketched too.

II. MOMENTUM DISTRIBUTIONS AND MEAN
MOMENTA PER ATOMIC INTERNAL ENERGY LEVELS

Let us discuss the resonant interaction of a two-level at
with the radiation field@1#. For the sake of simplicity, sup
pose the field has a plane wavefront and linear polariza
~these assumptions will be conserved for the standing wa
discussed in Sec. III, too!. Let us suppose then that the fie
amplitude turns on instantly. Let the internal wave functio
of a free two-level atom in ground~g! and excited~e! levels
be wg(rW ,t) andwe(rW ,t), respectively, whererW is the atomic
internal coordinate~the radius vector of the optical electron
relative to the atomic center of mass!. The wave function of
an interacting atom will be@1#

C5Awg~rW ,t !1Bwe~rW ,t !, ~1!
©2000 The American Physical Society01-1
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whereA andB are the probability amplitudes of the atom
the ground and excited internal energy levels correspo
ingly.

When taking into account the translational motion of t
atomic center of mass, it is necessary to separate the c
sponding parts~wave functions! in A and B coefficients. If,
for example, the atom at the internal energy level has
well-defined value of momentump, the corresponding wave
function is given by the function

x~p!5
1

A2p\
expS i

\
pzD , ~2!

that is, by an exponential function with imaginary degree.
general, if an atom does not have definite values of mom
tum at any energy level, the coefficientsA and B will be
expressed by the series ofx(p) states:

A~ t,z!5E a~p,t !x~p!dp, B~ t,z!5E b~p,t !x~p!dp,

~3!

with probability amplitudesa(p,t) andb(p,t) of the atom to
have momentump ~at the momentt of time! and simulta-
neously to be at the ground or excited internal energy lev
correspondingly.

Inserting the expressions~1!–~3! into the quantum-
mechanical determination of atom momentum

^p&5E C* p̂CdrW dz, E C* CdrW dz51, ~4!

and doing the standard transformations we arrive at

^p&5E ua~p,t !u2pdp1E ub~p,t !u2pdp. ~5!

The first member specifies the contribution of translatio
states per ground internal energy level into the total mom
tum,

^p&g5E ua~p,t !u2pdp. ~6!

Accordingly, the second member specifies the excited lev
state’s contribution,

^p&e5E ub~p,t !u2pdp. ~7!

Both these momenta are time-dependent and their cha
for interaction timet will be

^Dp&g5E @ ua~p,t !u22ua~p,0!u2#pdp, ~8a!

^Dp&e5E @ ub~p,t !u22ub~p,0!u2#pdp. ~8b!

When the atom interacts with the traveling wave, the inter
ground level coefficienta(p,t) relates with the excited inter
01340
d-

re-

e

n-

s,

l
n-

’s

es

l

nal level coefficientb(p1\k,t) ~the spontaneous transition
are not taken into account!. As a result we get a conservin
quantity

ua~p,t !u21ub~p1\k,t !u2

5const5ua~p,0!u21ub~p1\k,0!u2 ~9!

@it can be checked by Eqs.~25!#. We can connect̂Dp&g to
^Dp&e by means of this relation:

^Dp&e5E @ ub~p1\k,t !u22ub~p1\k,0!u2#

3~p1\k!d~p1\k!

52E @ ua~p,t !u22ua~p,0!u2#~p1\k!d~p1\k!

52^Dp&g1\kE @ ua~p,t !u22ua~p,0!u2#dp

52^Dp&g1\k Dng , ~10!

where Dng52Dne5*@ ua(p,t)u22ua(p,0)u2#dp
52*@ ub(p,t)u22ua(p,0)u2#dp is the change of interna
ground level’s population, or which is the same, the popu
tion changeDne of the internal excited level with the oppo
site sign@see Eq.~19!#. From the equality of the first and las
parts of Eq.~10!, the well known inequality between th
momenta of photon and total atom directly follows:

^Dp&5^Dp&g1^Dp&e5\k Dng<\k. ~11!

Note, nevertheless, that this ‘‘one photon demarcation’’ p
tains to the total momentum of the atom and not to the m
mentum per ground and excited internal levels, separat
Their changes, in accordance with Eqs.~8a! and ~8b!, in
principle, can be arbitrary, depending on the distributions
ua(p,t)u22ua(p,0)u2 and ub(p,t)u22ub(p,0)u2 in the mo-
mentum space. From the expressions~8a! and ~8b! also it is
obvious that to get great values for^Dp&g(^Dp&e), it is nec-
essary that the distribution ofua(p,t)u22ua(p,0)u2 @or
ub(p,t)u22ub(p,0)u2# be strictly nonsymmetric, relative to
the replacementp→2p, and to have a gathering in th
range of great values ofupu.

And now let us show that the one-photon abso
tion/emission process in the field of traveling waves rea
allows a behavior, mentioned above. The Hamiltonian of
system, in the dipole approximation, can be written as

Ĥ5Ĥ02d̂E~ t,z!, ~12!

whereĤ0 is the free atom Hamiltonian,d̂ is the dipole mo-
ment operator, and

Ē~ t,z!5
Ē

2
exp~ ikz2 ivt !1c.c., t.0 ~13!

is the electric field, whose frequencyv is equal to the Bohr
transition frequencyv0.
1-2
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From the Schro¨dinger equation forA(t,z) andB(t,z) am-
plitudes we arrive at

i
]A~ t,z!

]t
52n exp~2 ikz!B~ t,z!, ~14a!

i
]B~ t,z!

]t
52n exp~ ikz!A~ t,z!, ~14b!

the Rabi solutions of which are@1#

A~z,t !5A~z,0!cosnt1 iB~z,0!exp~2 ikz!sinnt,
~15a!

B~z,t !5B~z,0!cosnt1 iA~z,0!exp~ ikz!sinnt, ~15b!

where n5dE/2\ represents the Rabi frequency,d
5^waud̂uwb&.

Performing thex(p) expansion@see Eq.~3!# in Eqs.~15a!
and ~15b!, we obtain

a~p,t !5a~p,0!cosnt1 ib~p1\k,0!sinnt, ~16a!

b~p,t !5b~p,0!cosnt1 ia~p2\k,0!sinnt. ~16b!

At first, it is readily verified that if the atom is at one of th
energy levels before the interaction, the extraordinary thi
will not take place. Really, if for exampleb(p,0)50, then

^Dp&g5~cos2nt21!E ua~p,0!u2pdp

5~cos2 nt21!^p&gu t50 , ~17a!

^Dp&e5~12cos2 nt !@^p&gu t501\k#, ~17b!

that is, the contribution of momentum per each internal
ergy level evolves periodically and this is the evoluti
merely caused by a periodic exchange of the population
tween the internal energy levels@posed by the term (1
2cos2nt)#. Note also that in conditions under considerati
the momentum distributions coincide with each other with
\k shift: b(p1\k,t)5 ia(p,t) tannt, as was mentioned in
the Introduction.

The situation is totally diverse, if the atom is initially in
superposition state of the internal ground and excited lev
now the initial momentum distributions on the intern
ground and excited levels in general are not required to
identical with the\k shift: b(p,0)Þa a(p2\k,0) (a is
some constant, independent ofp). Then, it unavoidably fol-
lows from Eqs.~16a! and ~16b! that the optical transition
besides the changes in the internal energy levels’ pop
tions, also leads to periodic evolutions in the form of m
mentum distributions. Thus the atomic amplitudesa(p,t)
andb(p,t) are not mutually proportional~with any constant
shift!.

To wash out the contributions, appropriate to evolution
the internal energy level populations, let us introduce a p
of new quantities,p̄g andp̄e , which would be scaled in units
of the level populationsng andne , respectively:
01340
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p̄g5^p&g /ng , p̄e5^p&e /ne , ~18!

ng5E ua~p,t !u2dp, ne5E ub~p,t !u2dp. ~19!

Since these new quantities are already independent of
internal level populations, their possible evolutions would
stipulated by form deformations in the internal energy le
momentum distributions. Afterwards we will call them mea
momenta of an internal ground energy level (p̄g) and of an
internal excited energy level (p̄e) correspondingly. Thereby
the total momentum of an atom, in addition to Eq.~5!, can be
represented in the more convenient form

^p&5ngp̄e1nep̄g . ~20!

These mean momenta,p̄g and p̄e , remain constant, of
course, if the atom is initially at one of the energy leve
They also remain constant if the initial distributions are m
tually proportional with the constant\k shift:

b~p,0!5a a~p2\k,0!. ~21!

Really, putting Eq.~21! in relations ~16a! and ~16b! and
making the obvious substitutions, we arrive at

p̄g5

ucosnt2 ia sinntu2E ua~p,0!u2pdp

ucosnt2 ia sinntu2E ua~p,0!u2dp

5 p̄gu t50

for the internal ground energy level, andp̄e5 p̄eu t50 for the
internal excited energy level. In these circumstances in
~20! the time evolution exhibits only the internal energy lev
populationsne andng .

In the general case, nevertheless, the state evolution is
to the interference of nonsimilarly distributed amplitude. T
atomic amplitudes distributions per internal energy levels
not proportional to each other and subsequently the m
momentap̄e and p̄g get temporal evolution, too.

For acquisition of more concrete and quantitative resu
let us note that for the intentions of atom optics and interf
ometry @2#, the coherent scattering of atoms in the reson
field of a standing wave is the routine for preparation o
large spreaded momentum distribution. The probability a
plitudes, prepared in a such way, cannot satisfy the ‘‘un
sirable’’ condition ~21!, in principle, since in the field of a
standing wave, as is well known, any state with momentump
at one internal energy level is connected simultaneously
the two states at the other internal energy level with m
mentap2\k and p1\k. Therefore, any atom prepared b
means of resonant Kapitza-Dirac effect, during its later
teraction with the traveling wave, ought to implicitly chang
the momentum distributions at the internal energy lev
with the results mentioned above.
1-3
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III. THE CASE OF PREPARATION OF ATOMIC
SUPERPOSITIONAL STATES BY SCATTERING

IN THE FIELD OF RESONANT STANDING WAVES

Let us consider that the atom has a coherent interac
with the resonant (v5v0) standing wave@3# during the time
ts before the interaction with the traveling wave. We restr
ourselves to the relatively simple case when the interac
proceeds by the well known scheme of mutually orthogo
atom-standing wave beams. Moreover, the Raman-Nath
proximation will be applied, which permits us to put out th
kinetic energy term in the Hamiltonian from the problem
hand@note that the kinetic energy term has not been inclu
in Eq. ~12! either#. Although the scheme of calculations
well known and is represented in detail see, for exam
@2,3#! we find it convenient to give here an account of t
main intermediate formulas, too.

To describe the interaction in the preparing stand
wave, the electric field~13! in the Hamiltonian~12! must be
exchanged by

E~ t,z!5Es coskzexp~2 ivt !1c.c., 2ts<t<0.
~22!

As a consequence, the atomic amplitudesAs(z,t) and
Bs(z,t) have to satisfy Eqs.~14a! and ~14b! type equations
where the following replacements must be performedn
→2ns52dEs /\ ~which is the mean Rabi frequency in th
standing wave!, exp(6ikz)→coskz. Allowing that the atom
has been at the ground level before the interaction (t,
2ts), we arrive at

As~z,t !5cos@2ns~ t1ts!coskz#, ~23a!

Bs~z,t !5 i sin@2ns~ t1ts!coskz#. ~23b!

These amplitudes at the momentt50, when the standing
wave is turned off, just represent the initial amplitud
A(z,0) andB(z,0) for an interaction with the traveling wav
@see the formulas~15a! and ~15b!#. Making their x(p) ex-
pansions@4#,

As~z,0!5cos~2nsts coskz!

5 (
m52`

`

i 2mJ2m~2nsts!exp~ i2mkz!, ~24a!

Bs~z,0!5 i sin~2nsts coskz!

5 (
m52`

`

i 2m11J2m11~2nsts!exp„i ~2m11!kz…,

~24b!

wherem is the number of photons reemited from one into t
other of the counterpropagating waves,Jm(x) is a Bessel
function. For the atomic center-of-mass motion probabi
amplitudesa(p,t) andb(p,t), we get the following expres
sions:
01340
n

t
n
l
p-

t
d

,

g

a~2m\k,t !5 i 2m@cosnt J2m~2nsts!2sinnt J2m11~2nsts!#,
~25a!

b„~2m11!\k,t…5 i 2m11@cosnt J2m11~2nsts!

1sinnt J2m~2nsts!#, ~25b!

a„~2m11!\k,t…5b~2m\k,t !50. ~25c!

We see that the superposition state, created as a result o
interaction with the standing wave, represents discrete m
folds of states, where the space between the adjacent va
of momentum is 2\k, herewith the manifolds for the groun
and excited internal energy levels are totally shifted w
respect to each other by\k ~half of 2\k) @3#.

The formulas~25a!–~25c! contain explicitly the sought-
after result about the evolution of momentum distribution
To exhibit this evolution, let us first note that the initial mo
mentum distribution for both internal energy levels is sy
metric relative to valuep50. Really, they are specified b
i 2mJ2m(•) and i 2m11J2m11(•) functions for the ground and
excited energy levels, respectively, and are symmetric r
tive to 2m→22m, 2m11→2(2m11) transformations,
that is, relative to the valuem50 (p50). This symmetry
signifies that the momentum per each internal energy le
@both for Eq.~5! and Eq.~20! values# is zero@3# before the
interaction with the traveling wave. Nevertheless, in acc
dance to Eqs.~25a! and ~25b!, the symmetry breaks unde
the ‘‘influence’’ of the traveling wave: the one-photo
absorption/emission process gives the beginning of as
metric transformations in the form of momentum distrib
tions, periodically running in opposite directions for th
ground and excited internal energy levels.

A typical form of the initial distributions and the follow
ing redistributions~due to a single-photon process! are de-
picted in Figs. 1~a! and 1~b! for the ground and excited en
ergy levels by turns. Single-photon large-scale changes
apparent.

Now let us notice that in conditions of Figs. 1~a! and 1~b!
we get almost one-side distributions: the translational sta
with n.0 for the ground internal energy level only and th
translational states withn,0 for excited internal level only.
So, the state of the total atom has been split into two s
groups, where one subgroup represents the ground-leve
oms with positive values of the momentum, and the sec
subgroup represents the opposite, namely the excited-l
atoms with negative values of momentum. Of course, thi
a Stern-Gerlach-type splitting. That is, a one-photon opt
transition implements the resonant Kapitza-Dirac splitti
into the Stern-Gerlach-type splitting.

The phenomenon of one-photon coherent accumulatio
the momentum on the internal energy levels~OP-CAMEL!
can get some expansion, if the initial momentum distrib
tions will be taken in an asymmetric form. This kind of di
tribution can also be obtained by the standing wave, but o
if a traveling wave is preceding it@5#. Such a sequence o
pulses is obtained if the standing wave is formed by me
of the reflection of a laser pulse from the mirror~see, for
example,@6#!. To avoid the overloading of the text we do n
1-4
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give the formulas, and the behavior of the OP-CAMEL
these conditions will be given only by some graphs. In Fi
2~a! and 2~b!, the case is presented when the moment
distribution in resonant Kapitza-Dirac splitting is maximu
asymmetric. As is seen from the graphs, in this special c
OP-CAMEL appears already as an accumulation of an as
metry for one~ground! internal energy level at the appea
ance of its suppressing for the other~excited! internal energy
level.

IV. TIME EVOLUTION OF MEAN MOMENTUM PER
GROUND AND EXCITED INTERNAL ENERGY LEVELS

IN THE FIELD OF TRAVELING WAVES

Let us now take the case of preparation by the stand
wave and discuss the evolution of momentap̄g and p̄e . By
means of expressions for the quantities definingp̄g and p̄e
@see Eqs.~18!, ~19!, ~6!, and~7!# we will have

^p&g5\k (
m52`

`

2m@cosnt J2m~u!2sinnt J2m11~u!#2

52\kF12J0~2u!

2
sin2nt1

u2J1~2u!

4
sin 2nt G ,

~26!

ng5 (
m52`

`

@cosnt J2m~u!2sinnt J2m11~u!#2

5
1

2
1

J0~2u!

2
cos 2nt2

J1~2u!

2
sin 2nt ~27!

FIG. 1. Probability distribution of definite-momentum state
~Upper plot! Wground

(m) 5ua(2m\k,t)u2 for ground internal energy
level and~lower plot! Wexcited

(m) 5ub„(2m11)\k,t…u2 for excited in-
ternal energy level, prepared symmetrically in the momentum sp
by the interaction with the standing wave. The chosen par
eters are 2nsts540, consequently uA(2ts)/x(P0)u251,
uB(2ts)/x(P0)u250, nt5p/4.
01340
.

se
-

g

for the ground internal energy level, and

^p&e5\k (
m52`

`

~2m11!@cosnt J2m11~u!

1sinnt J2m11~u!#2

5\kF11J0~2u!

2
sin2 nt1

u1J1~2u!

4
sin 2nt G ,

~28!

ne5 (
m52`

`

@cosnt J2m11~u!1sinnt J2m~u!#2

5
1

2
2

J0~2u!

2
cos 2nt1

J1~2u!

2
sin 2nt512ng ~29!

for the excited internal energy level. Hereu52nsts . The
last forms of Eqs.~26!–~29! are obtained by using the for
mulas of summations of Bessel functions@7# just as

^p&gu t5050, ^p&eu t5050 ~the same forp̄g and p̄e), so their
values at any next momentt present simultaneously the
changes for the timet: ^Dp&g5^p&g , ^Dp&e5^p&e .

In Figs. 3~a! and 3~b!, the temporal evolutions of mo
menta are given, corresponding to each internal energy le
while they are interacting with traveling~accumulating!
waves. Population changes, which are also responsible
the momentum time evolutions in general, are depicted in
figure by dashed lines. In the represented case during
interaction with the traveling wave, the populations are pr
tically constant, which follows from Eqs.~27! and~29!, too,

.

ce
-

FIG. 2. Probability distribution of definite-momentum state
~Upper plot! Wground

(m) for internal ground energy level and~lower
plot! Wexcited

(m) for internal excited energy level, prepared asymme
cally by the interaction with the standing wave. The chosen par
eters are 2nsts540, consequently uA(2ts)/x(P0)u251/2,
uB(2ts)/x(P0)u251/2, nt5p/4.
1-5
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if we take into account thatJ0,1(2u)!1 for u@1. Respec-
tively, the temporal evolutions of the mean momentap̄g and
p̄e are due to the redistributions of momentum at the ene
levels only and are shown in Figs. 4~a! and 4~b!. The param-
eters of the preparing standing wave are the same as in
1~a! and 1~b!, where the distance between the left-hand a

FIG. 3. Temporal behavior of momentum per~upper plot!
ground internal energy level and~lower plot! excited internal en-
ergy level. Time interval includes all parts of interaction: wi
preparing-standing and accumulating-traveling waves. All par
eters have the same values as in Fig. 1.

FIG. 4. Temporal behavior of mean momentum per~upper plot!
ground internal energy level and~lower plot! excited internal en-
ergy level.
01340
y

gs.
d

right-hand maxima~the width of momentum distribution! is
about 70\k. Such magnitudes for the resonant Kapitza-Dir
splitting are totally in the limits of experimental realization
@8#.

Note also that the comparison of the deviation ofp̄g or p̄e
@from Figs. 4~a! and 4~b!# and the width of momentum dis
tribution @from Figs. 1~a! and 1~b!# show the same order o
magnitude for them. Since the width of momentum distrib
tion has multiphoton nature~created by means of a multipho
ton process of reemission of photons from one wave into
counterpropagating one!, the large-scale variations in OP
CAMEL may be called as ‘‘multiphoton.’’

Multiphoton OP-CAMEL manifests itself in Eqs.~26! and
~28! in the following way. When the initial momentum dis
tribution is sufficiently widespread, that is,Dp@\k, thenu
52nsts@1 ~because in the theory of the resonant Kapitz
Dirac effect the connection between momentum widthdp
and the number of Rabi-flops 2nsts is dp'2nsts\k). Tak-
ing also into account thatJ1,0(x)<1, we obtain that the
members1

4 \k usin 2nt in Eq. ~26! and2 1
4 \kusin 2nt in Eq.

~28! stand out as the prevailing terms for^p&g and ^p&e ,
respectively:

^p&g'2
u

4
\k sin 2nt, ^p&e'

u

4
\k sin 2nt.

Sinceu@1, we see that the changes of each momentum
Rabi period, being (u/2)\k, exceed greatly the photon’s mo
mentum\k.

V. SUMMARY

A simple theoretical consideration of the optical transiti
for general conditions, when the atom in the superposit
state of ground and excited internal energy levels initia
has different momentum distributions, shows that the o
photon optical transition leads to radical asymmetric chan
in momentum distributions at each internal energy level.
other words, a photon’s change of the mean momentum

FIG. 5. The ground internal energy level; definite momentu
state of an atom~zone 1! transforms into a superposition one b
coherent interaction with a resonant standing wave~zone 2!. The
next interaction with the traveling wave leads to large-scale chan
in atomic momentum distributions per internal energy level. So
lines present the ground-level and the dotted lines present
excited-level atomic states.

-

1-6



w

tio
t

te
na
to
te

o
u

ta

ea
on
on

nly
els,
om-

of
er
is
tin-

of
tion

ien-

MOMENTUM TRANSFER FOR AN OPTICAL TRANSITION . . . PHYSICAL REVIEW A62 013401
each internal energy level is more than the photon’s o
momentum.

For an important case, when the preliminary superposi
state of the atom is prepared by coherent scattering at
resonant standing wave, the phenomenon for definite in
vals of time can be presented as a transition from reso
Kapitza-Dirac splitting of atomic translational states in
Stern-Gerlach-type splitting. This is schematically depic
in Fig. 5.

Finally, let us make some remarks on the possibility
experimental observation of the phenomenon. First, let
notice that the ‘‘nonoptical’’ methods, which detect the to
atom~for example, the ‘‘hot-wire’’ method!, cannot be used
for this purpose, because the phenomenon deals with
individual internal energy level; the momentum distributi
of the total atom does not change, or rather, it changes
in one-photon momentum limits.
-

-
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It is preferable to use detecting methods, which deal o
with one of the resonantly connected internal energy lev
such as the adjacent optical transitions. Then the phen
enon will appear as a pronounced asymmetry in the profile
Doppler broadening, relative to Bohr frequency. Anoth
possibility we see in using the long-living energy levels
that thus far the atomic translational states can be dis
guished in space before the spontaneous emission~zone 3 in
Fig. 5!. In this case the space-sensitive schemes
spontaneous-emission collection or probe pulse absorp
will result in a desirable outcome.
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