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Momentum transfer for an optical transition in a prepared two-level atom
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We consider the interaction of a traveling optical wave with a resonant two-level atom, which is initially in
its general superposition state, i.e., in the superposition state of the ground and excited internal energy levels
and simultaneously has mutually different momentum distributions, corresponding to each of these internal
energy levels. We show that during the interaction, the atom periodically gets large-scale changes in these
momentum distributions. As a consequence, a portion of the atomic momentum of the states, corresponding to
each internal energy level, gets large-scale changes too, much more than the morfiknafnan ab-
sorbed/emitted photon. The amount of momentum that a photon transfers between the atomic internal energy
levels is in general more than its own momentdik. The special case is discussed in which the atom’s
preliminary superposition state is created as a result of interaction of the atom with the resonant standing wave.
Also it is pointed out that in appropriate time intervals the mentioned phenomenon can be presented as a
transformation of the resonant Kapitza-Dirac splitting of atomic states into the Stern-Gerlach-type splitting.

PACS numbes): 42.50.Vk, 32.80.Qk, 32.80.Wr

[. INTRODUCTION interference between the amplitudes of translational states of
the ground internal energy level and the excited one. Further
When an atom interacts with a resonant traveling waveywe present conditions when the redistributions are large-
the atomic total momentum changes in units of one photorgcale and respective variations of mean momentum per each
momentum#k. What can be said about distributions andinternal energy level greatly exceed one photon momentum
mean values of momentum for translational states connectetk-
with each atomic level? The answer is well-known and is N Sec. lll we will discuss from the practical point of view

trivial, if the atom before the interaction is on one of the @ VEry important case, when the preliminary superposition
internal energy levels: the momentum distribution on theState of the atom is realized by the coherent diffraction of the

other level gets shifted bk and the mean value of momen- atom in the field of a resonant standing wave, which is often
, — — — — being referred to as the resonant Kapitza-Dirac effect. It will

tum gets shifted also byk; pe=pg+7k, wherepg andpe  pe pointed out that the redistribution of momenta in the trav-

are mean values of momentum, corresponding to ground anging wave can be considered as a transition from the reso-

excited internal levels consequenflgne-dimensional1D)  nant Kapitza-Dirac spliting to the Stern-Gerlach-type split-

casq. Therefore, a photon, during an absorption or emisting. In Sec. IV will be discussed in details the temporal

sions, transfers between the atomic internal energy levels asehavior of mean momenta corresponding to both internal

amount of momenturd p just equal to its own momentum energy levels. The results are summarized in Sec. V, where

fk. What would we have in a general case, that is, when théhe possibility of experimental observation of this phenom-

atom before the interaction with the traveling wave is in theenon is sketched too.

superposition state of ground and excited levels with mutu-

ally different momentum distributions there, that is, when the

“two-level atom” is in its most general superposition state? Il. MOMENTUM DISTRIBUTIONS AND MEAN

In the following just this question will be elucidated, rather MOMENTA PER ATOMIC INTERNAL ENERGY LEVELS

in general form and for the important special case. It will be L di h . . f level
shown that in general alreadyp# 7k, that is, a photon be- | et us discuss the resonant interaction of a two-level atom
vith the radiation field 1]. For the sake of simplicity, sup-

ing absorbed or emitted by an atom, transfers between intel’ . i e
nal atomic energy levels the amount of momentum not necPose the field has a plane wavefront and linear polarization

essarily equal to the photon’s own momentum: moreover(these assumptions will be conserved for the standing wave,

this amount may even greatly exceed the photon’s own mogiscussed in Sec. lll, tgoLet us suppose then that the field

mentum amplitude turns on instantly. Let the internal wave functions
In Sec. Il it will be shown that due to the interaction with ©f @ free two-level atom in 9r°‘{”@ and e>§c.|tede) Ievel§

the traveling wave the essential momentum distributions arf€ ¢g4(p.t) andee(p,t), respectively, wherg is the atomic

possible in corresponding atomic states to each internal efdternal coordinatéthe radius vector of the optical electron,

ergy level. These redistributions are a direct consequence &¢lative to the atomic center of mas3he wave function of
an interacting atom will b¢1]

*Electronic address: muradyan@ec.sci.am . .
Electronic address: yndanfiz@ysu.am V=Ap4(p,t) +Bee(p,t), (1)
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whereA andB are the probability amplitudes of the atom at nal level coefficienb(p+7k,t) (the spontaneous transitions
the ground and excited internal energy levels correspondare not taken into accountAs a result we get a conserving
ingly. quantity

When taking into account the translational motion of the
atomic center of mass, it is necessary to separate the corre- |la(p,t)|?+[b(p+7ik,t)[?
sponding part§wave functionyin A and B coefficients. If, _ 2 2
f(?r exargpFl)e, the atom at the internal energy level has the =const=[a(p,0)|*+[b(p+7k,0)| 9

well-defined value of momentuim, the corresponding wave [it can be checked by Eq&25)]. We can conneotAp), to
function is given by the function (Ap), by means of this relation: g

1 i
X %pz)' @ <Ap>e=f [Ib(p+7ik,t)|2~|b(p+7ik,0)[2]
that is, by an exponential function with imaginary degree. In X (p+fik)d(p+7k)
general, if an atom does not have definite values of momen-
tum at any energy level, the coefficiemdsand B will be :_f [la(p,t)|?—|a(p,0)|?](p+#k)d(p+7k)
expressed by the series g(p) states:
=—(Ap),+Hk 2 2
A(t,z)=Ja(p,t)x(p)dp, B(t,z)=fb(p,t)x(p)dp, (4P Jua(p’t)' [a(p.0)1dp
3 = —(Ap)g+hkAng, (10

with probability amplitudes(p,t) andb(p,t) of the atom to where An.=—An.= [Tla(p.t)|2=|a(p.0)/21d
have momentunp (at the moment of time) and simulta-  _ —f[lb(p,t)lz—Ia([g),O)Iz]dS iiuth(ep,c)rlang'e(%f )i|nger$1al

neously to t_)e at the ground or excited internal energy Ievelsground level's population, or which is the same, the popula-
correspondingly.

Inserting the expressiongl)—(3) into the quantum- tion changeAn, of the internal excited level with the oppo-

hanical determinati f ot ¢ site sign[see Eq(19)]. From the equality of the first and last
mechanical determination of atom momentum parts of Eq.(10), the well known inequality between the

o R momenta of photon and total atom directly follows:
(p)= f T*pWdpdz, f T*¥dpdz=1, (4
(Ap)=(Ap)g+(Ap)e=rik Ang=rk. (12)
and doing the standard transformations we arrive at Note, nevertheless, that this “one photon demarcation” per-
tains to the total momentum of the atom and not to the mo-
(p):f |a(p,t)|2pdp+f |b(p,t)|?pdp. (5  mentum per ground and excited internal levels, separately.
Their changes, in accordance with Eq8a) and (8b), in
The first member specifies the contribution of translationaPrinciple, can be arbitrary, depending on the distributions of
states per ground internal energy level into the total momenta(p,t)|>—|a(p,0)|* and |b(p,t)|*~|b(p,0)|* in the mo-
tum, mentum space. From the expressiéda and(8b) also it is
obvious that to get great values fak p>g(<2Ap>e), it i% nec-
_ essary that the distribution ofa(p,t)|*—|a(p,0)|* [or
<p>g_J la(p.t)|?pdp. 6) |b(p,t)|?—|b(p,0)|?] be strictly nonsymmetric, relative to

) - ) the replacemenp— —p, and to have a gathering in the
Accordingly, the second member specifies the excited level'sange of great values 9p|.

state’s contribution, And now let us show that the one-photon absorp-
tion/emission process in the field of traveling waves really
<P>e=f |b(p,t)|2pdp. (7)  allows a behavior, mentioned above. The Hamiltonian of the

system, in the dipole approximation, can be written as

Both these momenta are time-dependent and their changes

for interaction timet will be H=H,—dE(t,2), (12

whereH, is the free atom Hamiltoniar is the dipole mo-
<Ap>g:f [la(p,t)|*~]a(p,0)|*]pdp, (88  ment operator, and
— E
(Ap>e=f [|b(p,t)|?—|b(p,0)|*]pdp. (8h) E(t,z)=Eexp(|kz—|wt)+c.c., t>0 (13

When the atom interacts with the traveling wave, the internals the electric field, whose frequenayis equal to the Bohr
ground level coefficiend(p,t) relates with the excited inter- transition frequencyo.
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From the Schidinger equation foA(t,z) andB(t,z) am-
plitudes we arrive at

PHYSICAL REVIEW A2 013401

Bg:<p>g/ng’ E—:-:<p>e/ne’ (18

JA(t,z
i ;t ) __ vexp —ikz)B(t,2), (143 ng=f la(p,t)|*dp, ne=f lb(p,H)[?dp. (19
_dB(t,2) ) Since these new quantities are already independent of the
= 7 expikz)A(t,2), (14D internal level populations, their possible evolutions would be
stipulated by form deformations in the internal energy level
the Rabi solutions of which ard ] momentum distributions. Afterwards we will call them mean
momenta of an internal ground energy le and of an
A(z,t)=A(z,0)cosvt+iB(z,0)exp —ikz)sinwt, . . ! grout 9y V?l_,X
(153 internal excited energy levep{) correspondingly. Thereby,

the total momentum of an atom, in addition to Eg), can be
B(z,t)=B(z,0)cosvt+iA(z,0)exp(ikz)sinvt, (15  represented in the more convenient form

where v=dE/2h

= <‘Pa| a| ®b)-
Performing they(p) expansiorjsee Eq(3)] in Egs.(153
and(15b), we obtain

represents the Rabi frequencyd

<p>=ngae+neag- (20)

These mean momenta,?g and p,, remain constant, of
course, if the atom is initially at one of the energy levels.
They also remain constant if the initial distributions are mu-

a(p,t)=a(p,0)cosvt+ib(p+7%k,0)sinvt,
(p.H)=a(p.0) (p ) tually proportional with the constaritk shift:

(16a
b(p,t)=b(p,0)cosvt+ia(p—7k,0)sinvt. (16b

b(p,0)=aa(p—7k,0). (21)
At first, it is readily verified that if the atom is at one of the
energy levels before the interaction, the extraordinary thi”gﬁeally putting Eq.(21) in relations (168 and (16b) and
will not take place. Really, if for example(p,0)=0, then i aking the obvious substitutions, we arrive at

<Ap>g=<cos?vt—1)f la(p,0)[2pdp

|COSvt—iaSinvt|2f la(p,0)|*pdp
=(coS vt—1)(p)gli=o.

(17a Pg= :pg|t:0
|COSVt—iaSith|2f la(p,0)|%dp
(Ap)e=(1-coS vt)[(p)gli=o+7iK], (17b)
that is, the contribution of momentum per each internal enfor the internal ground energy level, apd=pel;_ for the
ergy level evolves periodically and this is the evolutioninternal excited energy level. In these circumstances in Eq.
merely caused by a periodic exchange of the population bg20) the time evolution exhibits only the internal energy level
tween the internal energy leve[posed by the term (1 populationsn, andn,.
—cogit)]. Note also that in conditions under consideration In the general case, nevertheless, the state evolution is due
the momentum distributions coincide with each other with ato the interference of nonsimilarly distributed amplitude. The
fk shift: b(p+#k,t)=ia(p,t) tanvt, as was mentioned in atomic amplitudes distributions per internal energy levels are
the Introduction. not proportional to each other and subsequently the mean
The situation is totally diverse, if the atom is initially in a momentaae andﬁg get temporal evolution, too.
superposition state of the internal ground and excited levels; For acquisition of more concrete and quantitative results,
now the initial momentum distributions on the internal et ys note that for the intentions of atom optics and interfer-
ground and excited levels in general are not required to bgmetry[2], the coherent scattering of atoms in the resonant
identical with thefk shift: b(p,0)#a a(p—7k,0) (a is  field of a standing wave is the routine for preparation of a
some constant, independentmf. Then, it unavoidably fol-  |arge spreaded momentum distribution. The probability am-
lows from Eq5(16a and (16b) that the Optical transition, p”tudesy prepared in a such way, cannot Satisfy the “unde-
besides the changes in the internal energy levels’ populasirable” condition(21), in principle, since in the field of a
tions, also leads to periodic evolutions in the form of MO-standing wave, as is well known, any state with momenpum
mentum distributions. Thus the atomic amplitud®®,t)  at one internal energy level is connected simultaneously to
andb(p,t) are not mutually proportiondlith any constant  the two states at the other internal energy level with mo-
shift). mentap—#k and p+#k. Therefore, any atom prepared by
To wash out the contributions, appropriate to evolution ofmeans of resonant Kapitza-Dirac effect, during its later in-
the internal energy level populations, let us introduce a paiteraction with the traveling wave, ought to implicitly change
of new quantitiespy andp,, which would be scaled in units the momentum distributions at the internal energy levels
of the level populationg; andng, respectively: with the results mentioned above.
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Ill. THE CASE OF PREPARATION OF ATOMIC a(2miik,t) =i 2" cosvt Jp(2vere) — SiN vt Jpms 1(20670)],
SUPERPOSITIONAL STATES BY SCATTERING (25a)
IN THE FIELD OF RESONANT STANDING WAVES
_i2 1
Let us consider that the atom has a coherent interaction b((2m+1)7ik,1)=i*""{cosvt Jom 1(2vsTs)
with the resonantd= w,) standing wav¢3] during the time +sinut I (2vero) ] (25b)
m S’s ’

75 before the interaction with the traveling wave. We restrict
ourselves to the relatively simple case when the interaction
proceeds by the well known scheme of mutually orthogonal

atom-standing wave beams. Moreover, the Raman-Nath ap- .
proximation will be applied, which permits us to put out the We see that the superposition state, created as a result of the

kinetic energy term in the Hamiltonian from the problem atinteraction with the standing wave, represents discrete mani-
hand[note that the kinetic energy term has not been includede!ds of states, where the space betwc_aen the adjacent values
in Eq. (12) eithed. Although the scheme of calculations is ©f momentum is 2k, herewith the manifolds for the ground
well known and is represented in detail see, for example‘?‘nd excited internal energy levels are totally shifted with

[2,3]) we find it convenient to give here an account of the'®SPect to each other ik (half of 27:k) [3].
main intermediate formulas, too. The formulas(258—-(25¢) contain explicitly the sought-

To describe the interaction in the preparing standin fter result about the evolution of momentum distributions.
wave, the electric field13) in the Hamiltonian(12) must be o exhibit this evolution, let us first note that the initial mo-

a((2m+1)ak,t)=b(2mnk,t)=0. (250

exchanged by mentum distribution for both internal energy levels is sym-
metric relative to valugp=0. Really, they are specified by
E(t,2)=E, coskzexp( —iwt) + .., — r<t<0 i2M3,.(-) andi?™*1J,. . 4(-) functions for the ground and

' (22) excited energy levels, respectively, and are symmetric rela-
tive to 2m——2m, 2m+1——(2m+1) transformations,

As a consequence, the atomic amplitudegz,t) and that_ig., relative to the valuen=0 (p=0)_. This symmetry
B.(z,t) have to satisfy Eqsi14a and (14b) type equations signifies that the momentum per ee_lch internal energy level
where the following replacements must be performed: L[Poth for Eq.(5) and Eq.(20) valued is zero[3] before the
—2v,=2dE,/# (which is the mean Rabi frequency in the interaction with the traveling wave. Nevertheless, in accor-
standing wavk exp(+ikz)—coskz Allowing that the atom dance to Eqs(258 and (25b), the symmetry breaks under

has been at the ground level before the interaction (e “influence” of the traveling wave: the one-photon
— 7)), we arrive at absorption/emission process gives the beginning of asym-

metric transformations in the form of momentum distribu-
(233 tions, periodically running in opposite directions for the
ground and excited internal energy levels.
A typical form of the initial distributions and the follow-
ing redistributions(due to a single-photon procgssre de-
. ) picted in Figs. 1a) and Xb) for the ground and excited en-
These amplitudes at the moment0, when the standing grgy levels by turns. Single-photon large-scale changes are
wave is turned off, just represent the initial amplitudesgpparent.
[see the formulag15a and (15b)]. Making their x(p) ex-  we get almost one-side distributions: the translational states

A(z,t)=cog 2vy(t+ 75)coskz],

Bi(z,t)=i sin2vg(t+ 75)coskz]. (23b

pansiong 4], with n>0 for the ground internal energy level only and the
translational states with<<O for excited internal level only.
As(z,0) = cog 2vsTscoskz) So, the state of the total atom has been split into two sub-

o groups, where one subgroup represents the ground-level at-
_ Z M3, (2v.r)expi2mka, (243 oms with positive values of the momentum, and the second

m=—o subgroup represents the opposite, namely the excited-level
atoms with negative values of momentum. Of course, this is
B«(2,0)=i Sin(2v7s COSK2) a Stern-Gerlach-type splitting. That is, a one-photon optical

transition implements the resonant Kapitza-Dirac splitting
P . into the Stern-Gerlach-type splitting.
:m;w ™ Jom1(2vsTs) expli (2m+ 1)k2), The phenomenon of one-photon coherent accumulation of
the momentum on the internal energy leveBP-CAMEL)
(24b can get some expansion, if the initial momentum distribu-
tions will be taken in an asymmetric form. This kind of dis-
wherem s the number of photons reemited from one into thetribution can also be obtained by the standing wave, but only
other of the counterpropagating wavek,(x) is a Bessel if a traveling wave is preceding [5]. Such a sequence of
function. For the atomic center-of-mass motion probabilitypulses is obtained if the standing wave is formed by means
amplitudesa(p,t) andb(p,t), we get the following expres- of the reflection of a laser pulse from the mirr@ee, for
sions: example[6]). To avoid the overloading of the text we do not

o
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FIG. 1. Probability distribution of definite-momentum states.
(Upper p|0) Wg::))und:|a(2mﬁk,t)|2 for ground internal energy FIG. 2. Probablllty distribution of definite-momentum states.
level and(lower ploy W™, _ = [b((2m+ L)k, t)|? for excited in-  (Upper ploy WD, . for internal ground energy level an@ower
ternal energy level, prepared symmetrically in the momentum spaclot) Wieqfor internal excited energy level, prepared asymmetri-
by the interaction with the standing wave. The chosen paramcally by the interaction with the standing wave. The chosen param-
eters are 2.7,=40, consequently |A(—r)/x(Po)|?=1,  eters are 2,7,=40, consequently |A(—7s)/x(Po)|*=1/2,
IB(— 79)/x(Po)|2=0, vt= /4. |B(—75)/ x(Po)|?=1/2, vt=m/4.

give the formulas, and the behavior of the OP-CAMEL in for the ground internal energy level, and
these conditions will be given only by some graphs. In Figs.
2(a) and 2b), the case is presented when the momentum

[’

distribution in resonant Kapitza-Dirac splitting is maximum <P>e=ﬁkm;_w (2m+1)[cosvt Jpm+1(U)
asymmetric. As is seen from the graphs, in this special case
OP-CAMEL appears already as an accumulation of an asym- +sinvt Jome1(U)]?
metry for one(ground internal energy level at the appear-
ance of its suppressing for the otiexcited internal energy — K 1+J0(2u)sin2 it u+Jl(2u)Sin ot
level. 2 4 '
(28)

IV. TIME EVOLUTION OF MEAN MOMENTUM PER

GROUND AND EXCITED INTERNAL ENERGY LEVELS o
IN THE FIELD OF TRAVELING WAVES Ne= > [COSwtIyms1(U)+sinvtIom(u)]?
m=—o
Let us now take the case of preparation by the standing
i i nt Y 1 Jo(2u J1(2u

wave and d|scuss.the evolution of rr?cljmepga'alﬁj Pe- By _ 1 Jo(2w) 08 20t 1 )sin 20t=1-n, (29
means of expressions for the quantities defingand p, 2 2

[see Eqs(18), (19), (6), and(7)] we will have for the excited internal energy level. Hete=2v 7. The

* last forms of Eqs(26)—(29) are obtained by using the for-
(p)g=rk > 2m[coswt Jyp(U) —sin vt Jymy 1 (U)]2 mulas of summations of Bessel functiofd] just as
o (P)gli=0=0, {P)eli=o=0 (the same foip, andpe), so their
1-Jp(2u) . u—J4(2u) . values at any next momeiitpresent simultaneously their
i e sirfvt+ g sinanty, changes for the time (Ap)y=(p)q, (AP)e=(P)e.

In Figs. 3a) and 3b), the temporal evolutions of mo-
(260 menta are given, corresponding to each internal energy level,

o while they are interacting with travelingaccumulating
_ o 2 waves. Population changes, which are also responsible for
Ng m;w [cospt Jom(U) = Sinvt Jom (W] the momentum time evolutions in general, are depicted in the
figure by dashed lines. In the represented case during the
1 N JO(zu)cos oot Jl(zu)sin ot (o7  interaction with the traveling wave, the populations are prac-
2 2 2 tically constant, which follows from Eq$27) and(29), too,
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a ) i
1,00- Standing Traveling
n, <Pg>{30 wave wave
0.751 15 zone 1
0,50 0
Standing
025 -15
Traveling | 30 Ground levd Resonant Stern-Gerlach
0,00 T T definite-momentum Kapitza-Dirac type splitting
40 20 0 vt 20 atom splitting
L00 b FIG. 5. The ground internal energy level; definite momentum
TN, <p.>30 state of an atonfzone ) transforms into a superposition one by
coherent interaction with a resonant standing wéane 2. The

next interaction with the traveling wave leads to large-scale changes
in atomic momentum distributions per internal energy level. Solid
lines present the ground-level and the dotted lines present the
excited-level atomic states.

0,754

0,504

0231 . right-hand maximathe width of momentum distributioris
Traveling | . about 70%k. Such magnitudes for the resonant Kapitza-Dirac

0,00 ' . " . e . e
o B S vg 20 [sg]llttmg are totally in the limits of experimental realizations

FIG. 3. Temporal behavior of momentum péupper plo} Note also that the comparison of the deviatiorag)forae

ground internal energy level artbwer ploh excited internal en- [from Figs. 4a) and 4b)] and the width of momentum dis-
ergy level. Time interval includes all parts of interaction: with tribution [from Figs. 1a) and Xb)] show the same order of
preparing-standing and accumulating-traveling waves. All parammagnitude for them. Since the width of momentum distribu-
eters have the same values as in Fig. 1. tion has multiphoton naturereated by means of a multipho-
ton process of reemission of photons from one wave into the
if we take into account thaly;(2u)<1 for u>1. Respec- counterpropagating ojethe large-scale variations in OP-

tively, the temporal evolutions of the mean momepgeand ~ CAMEL may be called as “multiphoton.”
— o Multiphoton OP-CAMEL manifests itself in Eq§26) and
pe are due to the redistributions of momentum at the energ

e )(28) in the following way. When the initial momentum dis-
levels only and are shown in Figsi@# and 4b). The param- S . . )
: : .. tribution is sufficiently widespread, that ia,p>#k, thenu
eters of the preparing standing wave are the same as in F|g£.21137S>1 (because in the theory of the resonant Kapitza-

1(a) and Xb), where the distance between the left-hand andDiraC effect the connection between momentum width

and the number of Rabi-flopsi2rs is dp~2vs7shk). Tak-

] P, a ing also into account thal; ((x)<1, we obtain that the
N members; 7k usin 2ut in Eq. (26) and — 3 fikusin 21t in Eq.
(28) stand out as the prevailing terms fQp), and (p).,
0 respectively:
Standing
=301 u . u )
Traveling (Pg~— Zﬁk sin 2ut, <p>e~1ﬁksm 2vt.
-60 T T T
40 20 0 vt 20
_ Sinceu>1, we see that the changes of each momentum per
10{ Pe b Rabi period, being/2)% k, exceed greatly the photon’s mo-
] mentumz#k.
0 Standing V. SUMMARY
N A simple theoretical consideration of the optical transition
.10 Traveling for general conditions, when the atom in the superposition
b En S > state of ground and excited internal energy levels initially

vt has different momentum distributions, shows that the one-

FIG. 4. Temporal behavior of mean momentum peper ploy  photon optical transition leads to radical asymmetric changes
ground internal energy level antbwer plob excited internal en- in momentum distributions at each internal energy level. In
ergy level. other words, a photon’s change of the mean momentum of
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each internal energy level is more than the photon’s own It is preferable to use detecting methods, which deal only
momentum. with one of the resonantly connected internal energy levels,
For an important case, when the preliminary superpositiosuch as the adjacent optical transitions. Then the phenom-
state of the atom is prepared by coherent scattering at thenon will appear as a pronounced asymmetry in the profile of
resonant standing wave, the phenomenon for definite intethoppler broadening, relative to Bohr frequency. Another
vals of time can be presented as a transition from resonayossibility we see in using the long-living energy levels is
Kapitza-Dirac splitting of atomic translational states intothat thus far the atomic translational states can be distin-
Stern-Gerlach-type splitting. This is schematically depictedyyished in space before the spontaneous emigsimme 3 in
in Fig. 5. Fig. 5. In this case the space-sensitive schemes of

Finally, let us make some remarks on the possibility ofspontaneous-emission collection or probe pulse absorption
experimental observation of the phenomenon. First, let ugill result in a desirable outcome.

notice that the “nonoptical” methods, which detect the total

atom (for example, the “hot-wire” methog cannot be used

for _thls purpose, because the phenomenon deal; vylth.each ACKNOWLEDGMENT
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