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Unified description of magic numbers of metal clusters in terms
of the three-dimensionalq-deformed harmonic oscillator
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Magic numbers predicted by a three-dimensionalq-deformed harmonic oscillator with uq(3).soq(3) sym-
metry are compared to experimental data for atomic clusters of alkali metals~Li, Na, K, Rb, and Cs!, noble
metals~Cu, Ag, and Au!, divalent metals~Zn and Cd!, and trivalent metals~Al and In!, as well as to theoretical
predictions of jellium models, Woods-Saxon and ‘‘wine bottle’’ potentials, and to the classification scheme
using the 3n1 l pseudo quantum number. In alkali-metal clusters, and noble-metal clusters the three-
dimensionalq-deformed harmonic oscillator correctly predicts all experimentally observed magic numbers up
to 1500~which is the expected limit of validity for theories based on the filling of electronic shells!, while in
addition it gives satisfactory results for the magic numbers of clusters of divalent metals and trivalent metals,
thus indicating that uq~3!, which is a nonlinear extension of the u~3! symmetry of the spherical~three-
dimensional isotropic! harmonic oscillator, is a good candidate for being the symmetry of systems of several
metal clusters. The Taylor expansions of angular-momentum-dependent potentials approximately producing
the same spectrum as the three-dimensionalq-deformed harmonic oscillator are found to be similar to the
Taylor expansions of the symmetrized Woods-Saxon potential and wine bottle symmetrized Woods-Saxon
potential, which are known to provide successful fits of the Ekardt potentials.

PACS number~s!: 36.40.Cg, 03.65.Fd
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I. INTRODUCTION

Metal clusters have recently been the subject of m
investigations~see Refs.@1–4# for relevant reviews!. One of
the first fascinating findings in their study was the appe
ance of magic numbers, analogous to but different from
magic numbers appearing in the shell structure of ato
nuclei @5#. Different kinds of metallic clusters@alkali metals
~Na @6–9#, Li @10,11#, K @12#, Rb @13#, and Cs@7,14,15#!,
noble metals~Cu @16,17#, Ag @16,18#, and Au @16#!, and
divalent metals of the IIB group~Zn and Cd! @19#, trivalent
metals of the III group~Al and In! @20## exhibit different sets
of magic numbers. The analogy between the magic num
observed in metal clusters and the magic numbers obse
in atomic nuclei led to the early description of metal clust
in terms of the Nilsson-Clemenger model@21#, which is a
simplified version of the Nilsson model@22,23# of atomic
nuclei, in which no spin-orbit interaction is included. Furth
theoretical investigations in terms of the jellium mod
@24,25# demonstrated that the mean-field potential in the c
of simple metal clusters bears great similarities to
Woods-Saxon potential of atomic nuclei, with a slight mo
fication of ‘‘wine bottle’’ type @26,27#. The Woods-Saxon
potential itself looks like a harmonic oscillator truncated a
certain energy value and flattened at the bottom. It sho
also be recalled that an early schematic explanation of
magic numbers of metallic clusters was given in terms o
scheme intermediate between the level scheme of the th
dimensional harmonic oscillator and the square well@1#.
Again, in this case the intermediate potential resemble
harmonic oscillator flattened at the bottom.

On the other hand, modified versions of harmonic os
lators @28,29# have recently been investigated in the ma
ematical framework of quantum algebras@30,31#, which are
nonlinear generalizations of the usual Lie algebras. The s
1050-2947/2000/62~1!/013203~13!/$15.00 62 0132
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tra of q-deformed oscillators increase either less rapidly~for
q being a phase factor, i.e.,q5ei t, with t being real! or
more rapidly~for q being real, i.e.,q5et, with t being real!
in comparison to the equidistant spectrum of the usual h
monic oscillator@32#, while the corresponding~equivalent
within the limits of perturbation theory or WKB equivalen!
potentials@33,34# resemble the harmonic-oscillator potentia
truncated at a certain energy~for q being a phase factor! or
not ~for q being real!, the deformation inflicting an overal
widening or narrowing of the potential, depending on t
value of the deformation parameterq.

Very recently, a q-deformed version of the three
dimensional harmonic oscillator was constructed@35#, taking
advantage of the uq(3).soq(3) symmetry @36,37#. The
spectrum of this three-dimensionalq-deformed harmonic os
cillator was found@35# to reproduce very well the spectrum
of the modified harmonic oscillator introduced by Nilsso
@22,23#, without the spin-orbit interaction term. Since th
model of Refs.@22,23# without the spin-orbit term is essen
tially the Nilsson-Clemenger model used for the descript
of metallic clusters@21#, it is worth examining if the three-
dimensionalq-deformed harmonic oscillator can reprodu
the magic numbers of simple metallic clusters and, if this t
is possible, to determine potentials giving the same spect
as this oscillator and compare them with the symmetriz
Woods-Saxon potential and wine bottle symmetriz
Woods-Saxon potential, which successfully fit@26,27# the
Ekardt potentials@24#. These are the subjects of the prese
investigation.

It is worth mentioning at this point that an effort has be
made to describe the magic numbers of metal clusters b
quantum number 3n1 l @6#, wheren is the number of nodes
in the solution of the radial Schro¨dinger equation andl is the
angular momentum quantum number. This approach was
spired by the fact that degenerate energy levels in the hy
©2000 The American Physical Society03-1
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gen atom are characterized by the same value of the qua
numbern1 l , due to the so~4! symmetry underlying this sys
tem, while degenerate energy levels in the spherical h
monic oscillator ~i.e. the three-dimensional isotropic ha
monic oscillator! are characterized by the same value of
parameter 2n1 l , due to the su~3! symmetry underlying this
system. The 3n1 l quantum number was used@6# to approxi-
mate the magic numbers of alkali-metal clusters with so
success, and focusing potentials characterized by this de
eracy were determined@38#, but no relevant Lie symmetry
could be determined@38,39#.

In Sec. II the three-dimensionalq-deformed harmonic os
cillator will be briefly described, while in Sec. III the mag
numbers provided by this oscillator will be compared w
the experimental data for Na and Li clusters, as well as w
the predictions of other theories~the jellium model, the
Woods-Saxon and ‘‘wine bottle’’ potentials, and a class
cation scheme using the 3n1 l pseudo-quantum-number!.
Additional comparisons of magic numbers predicted by
three-dimensionalq-deformed harmonic oscillator to exper
mental data and to the results of other theoretical approa
will be made in Sec. IV~for other alkali-metal clusters an
noble-metal clusters!, Sec. V ~for divalent group-IIB metal
clusters!, and Sec. VI~for trivalent group-III metal clusters!,
while in Sec. VII potentials giving approximately the sam
spectrum as the three-dimensionalq-deformed harmonic os
cillator will be determined, and subsequently compared
the symmetrized Woods-Saxon potential and ‘‘wine bottl
symmetrized Woods-Saxon potential. Finally, Sec. VIII w
contain a discussion of the present results and plans for
ther work.

II. THREE-DIMENSIONAL q-DEFORMED HARMONIC
OSCILLATOR

The space of the three-dimensionalq-deformed harmonic
oscillator consists of completely symmetric irreducible re
resentations of the quantum algebra uq~3!. In this space a
deformed angular momentum algebra, soq(3), can bedefined
@35#. The Hamiltonian of the three-dimensionalq-deformed
harmonic oscillator is defined so that it satisfies the follow
requirements.

~a! It is an soq(3) scalar, i.e., the energy is simultaneous
measurable with theq-deformed angular momentum relate
to the algebra soq~3! and itsz projection.

~b! It conserves the number of bosons, in terms of wh
the quantum algebras uq(3) and soq(3) are realized.

~c! In the limit q→1 it is in agreement with the Hamil
tonian of the usual three-dimensional harmonic oscillator

It was proved@35# that the Hamiltonian of the three
dimensionalq-deformed harmonic oscillator satisfying th
above requirements takes the form

Hq5\v0H @N#qN112
q~q2q21!

@2#
Cq

(2)J , ~1!

whereN is the number operator andCq
(2) is the second-orde

Casimir operator of the algebra soq~3!, while
01320
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@x#5
qx2q2x

q2q21
~2!

is the definition ofq numbers andq operators.
The energy eigenvalues of the three-dimensio

q-deformed harmonic oscillator are then@35#

Eq~n,l !5\v0H @n#qn112
q~q2q21!

@2#
@ l #@ l 11#J , ~3!

where n is the number of vibrational quanta andl is the
eigenvalue of the angular momentum, obtaining the val
l 5n,n22, . . . ,0 or 1. In thelimit of q→1 one obtains
limq→1Eq(n,l )5\v0n, which coincides with the classica
result.

For small values of the deformation parametert ~where
q5et), one can expand Eq.~3! in powers oft, obtaining
@35#

Eq~n,l !5\v0n2\v0t„l ~ l 11!2n~n11!…

2\v0t2S l ~ l 11!2
1

3
n~n11!~2n11! D1O~t3!.

~4!

The last expression to leading order bears great simila
to the modified harmonic oscillator suggested by Nilss
@22,23# ~with the spin-orbit term omitted!

V5
1

2
\vr22\vk8~L22^L2&N!, r5rAMv

\
, ~5!

where

^L2&N5
N~N13!

2
. ~6!

The energy eigenvalues of Nilsson’s modified harmonic
cillator are@22,23#

Enl5\vn2\vm8S l ~ l 11!2
1

2
n~n13! D . ~7!

It has been proved@35# that the spectrum of the three
dimensionalq-deformed harmonic oscillator closely repro
duces the spectrum of the modified harmonic oscillator
Nilsson. In both cases the effect of thel ( l 11) term is to
flatten the bottom of the harmonic oscillator potential, th
making it resemble the Woods-Saxon potential.

The level scheme of the three-dimensionalq-deformed
harmonic oscillator~for \v051 andt50.038) is given in
Table I, up to a certain energy. Each level is characterized
the quantum numbersn ~number of vibrational quanta! and l
~angular momentum!. Next to each level its energy, the num
ber of particles it can accommodate@which is equal to
2(2l 11)], and thetotal number of particles up to and in
cluding this level are given. If the energy difference betwe
two successive levels, which we shall denote byd, is larger
3-2



while
orted
rgy

UNIFIED DESCRIPTION OF MAGIC NUMBERS OF . . . PHYSICAL REVIEW A 62 013203
TABLE I. Energy spectrumEq(n,l ) of the three-dimensionalq-deformed harmonic oscillator@Eq. ~3!#,
for \v051 andq5et with t50.038. Each level is characterized byn ~the number of vibrational quanta! and
l ~the angular momentum!. 2(2l 11) represents the number of particles each level can accommodate,
under ‘‘total’’ the total number of particles up to and including this level is given. Magic numbers, rep
in boldface, correspond to energy gaps larger thand50.39, reported between the relevant pairs of ene
levels.

n l Eq(n,l ) 2(2l 11) Total n l Eq(n,l ) 2(2l 11) Total

0 0 0.000 2 2 9 5 12.215 22 462
1.000 11 11 12.315 46 508

1 1 1.000 6 8 10 8 12.614 34 542
1.006 9 3 12.939 14 556

2 2 2.006 10 18 0.397
2 0 2.243 2 20 9 1 13.336 6 562

0.780 12 12 13.721 50 612
3 3 3.023 14 34 10 6 13.863 26 638

0.397 11 9 14.154 38 676
3 1 3.420 6 40 0.603

0.638 10 4 14.757 18 694
4 4 4.058 18 58 0.449

0.559 13 13 15.206 54 748
4 2 4.617 10 68 10 2 15.316 10 758
4 0 4.854 2 70 10 0 15.554 2 760
5 5 5.116 22 92 11 7 15.592 30 790

0.724 12 10 15.777 42 832
5 3 5.841 14 106 0.884
6 6 6.204 26 132 11 5 16.660 22 854
5 1 6.238 6 138 14 14 16.779 58 912

0.860 0.606
6 4 7.098 18 156 11 3 17.385 14 926
7 7 7.328 30 186 12 8 17.410 34 960
6 2 7.657 10 196 13 11 17.490 46 1006
6 0 7.895 2 198 11 1 17.782 6 1012

0.502 0.667
7 5 8.396 22 220 15 15 18.449 62 1074
8 8 8.494 34 254 12 6 18.660 26 1100

0.627 0.645
7 3 9.121 14 268 14 12 19.305 50 1150

0.397 13 9 19.330 38 1188
7 1 9.518 6 274 12 4 19.554 18 1206
9 9 9.709 38 312 0.559
8 6 9.743 26 338 12 2 20.113 10 1216

0.894 16 16 20.226 66 1282
8 4 10.637 18 356 12 0 20.350 2 1284
10 10 10.980 42 398 0.417
9 7 11.146 30 428 13 7 20.767 30 1314
8 2 11.196 10 438 0.464
8 0 11.434 2 440 15 13 21.231 54 1368

0.781 14 10 21.360 42 1410
0.475

13 5 21.835 22 1432
17 17 22.119 70 1502

0.441
13 3 22.560 14 1516
013203-3
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DENNIS BONATSOSet al. PHYSICAL REVIEW A 62 013203
than 0.39, it is considered as a gap separating two succe
shells, and the energy difference is reported between the
levels. In this way magic numbers can be easily read in
table: they are the numbers appearing above the gaps, wr
in boldface characters.

Additional level schemes of the three-dimension
q-deformed harmonic oscillator are given in Table II~for t
50.020 and an energy gapd50.20) and in Table III~for t
50.050 and an energy gapd50.38). The following remarks
are now in place.

~i! Small magic numbers do not change much as the
rameter t is varied ~taking positive values!, while large
magic numbers are more influenced by the parameter m
fication. In general, the ordering of the levels does
change rapidly with the value of the parametert ~for t
.0).

~ii ! A rapid change of the magic numbers as a function
t occurs whent takes negative values, but this case is irr
evant to the contents of the present work.

~iii ! Magic numbers are influenced nore drastically by
value of the energy gapd. If in the spectrum obtained for a
given value of the parametert the energy separation betwee
two successive levels is only slightly smaller than the ene
gapd, this can be considered as an indication of the prese
of a ‘‘secondary’’ magic number.~See the end of Sec. III fo
specific examples.!

III. SODIUM AND LITHIUM CLUSTERS

The magic numbers provided by the three-dimensio
q-deformed harmonic oscillator in Table I are compared
available experimental data for Na clusters@6–9# and Li
clusters@10,11# in Table IV ~columns 2–7!. Some prelimi-
nary results concerning Na clusters were already given
lier in Ref. @40#. The following comments apply.

TABLE II. Same as Table I, but with\v051 andq5et with
t50.020. The energy gap separating different shells has been t
to bed50.20 .

n l Eq(n,l ) 2(2l 11) Total n l Eq(n,l ) 2(2l 11) Total

0 0 0.000 2 2 5 5 5.032 22 92
1.000 0.369

1 1 1.000 6 8 5 3 5.401 14 106
1.002 0.205

2 2 2.002 10 18 5 1 5.606 6 112
2 0 2.124 2 20 0.450

0.882 6 6 6.056 26 138
3 3 3.006 14 34 0.453

0.205 6 4 6.509 18 156
3 1 3.211 6 40 0.286

0.805 6 2 6.795 10 166
4 4 4.016 18 58 6 0 6.918 2 168

0.287 7 7 7.090 30 198
4 2 4.303 10 68 0.536
4 0 4.425 2 70 7 5 7.626 22 220

0.607 0.369
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~i! Only magic numbers up to 1500 are reported, sinc
is known that filling of electronic shells is expected to occ
only up to this limit@6#. For large clusters beyond this poin
it is known that magic numbers can be explained by
completion of icosahedral or cuboctahedral shells of ato
@6#.

~ii ! Up to 600 particles there is consistency among
various experiments and between the experimental result
the one hand and our findings on the other hand.

~iii ! Beyond 600 particles the results of the four expe
ments, which report magic numbers in this region, are qu
different. However, the results of all four experiments a
well accommodated by the present model. In addition, e
magic number predicted by the model is supported by
least one experiment.

In Table IV the predictions of three simple theoretic
models@5# @nondeformed three-dimensional harmonic osc
lator ~column 10!, a square-well potential~column 9!, and a
rounded square-well potential~intermediate between the pre
vious two, column 8!# are also reported for comparison. It
clear that the predictions of the nondeformed thre
dimensional harmonic oscillator are in agreement with
experimental data only up to magic number 40, while t
other two models correctly give a few more magic numb
~58, 92, and 138!, although they already fail by predictin
magic numbers at 68, 70, 106, 112, and 156, which are
observed. It should be noted at this point that the first f
magic numbers of alkali clusters~up to 92! can be correctly
reproduced by the assumption of the formation of shells
atoms instead of shells of delocalized electrons@41#, this
assumption being applicable under conditions not favorin
delocalization of the valence electrons of alkali atoms.

Comparisons among the present results, experimental
for Na clusters@by Martin et al. @6# ~column 2! and Pedersen
et al. @9# ~column 3!#, experimental data for Li cluster
@Bréchignacet al. @10# ~column 4!#, and theoretical predic-
tions more sophisticated than these reported in Table IV,
be made in Table V, where magic numbers predicted
various jellium model calculations~columns 5–8@6,7,2,42#!,
and Woods-Saxon and wine bottle potentials~column 9,
@43#!, as well as by a classification scheme using the 3n1 l
pseudo-quantum-number~column 10@6#! are reported. The
following observations can be made:

~i! All magic numbers predicted by the three-dimension
q-deformed harmonic oscillator are supported by at least
experiment, with no exception.

~ii ! Some of the jellium models, as well as the 3n1 l
classification scheme, predict magic numbers at 186 and
542, which are not supported by experiment. Some jelli
models also predict a magic number at 748 or 758, ag
without support from experiment. The Woods-Saxon a
wine bottle potentials of Ref.@43# predict a magic number a
68, for which no experimental support exists. The pres
scheme avoids problems at these numbers. It should
noted, however, that in the cases of 186 and 542 the en
gaps following them in the present scheme are 0.329
0.325, respectively~see Table I!, i.e., quite close to the
threshold of 0.39 which we have considered as the minim
energy gap separating different shells. One could there

en
3-4
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TABLE III. Same as Table I, but with\v051 andq5et, with t50.050. The energy gap separatin
different shells has been taken to bed50.38 .

n l Eq(n,l ) 2(2l 11) Total n l Eq(n,l ) 2(2l 11) Total

0 0 0.000 2 2 11 11 13.334 46 486
1.000 0.389

1 1 1.000 6 8 9 5 13.723 22 508
1.010 10 8 14.044 34 542

2 2 2.010 10 18 0.658
2 0 2.327 2 20 9 3 14.702 14 556

0.713 12 12 15.069 50 606
3 3 3.040 14 34 9 1 15.233 6 612

0.531 0.540
3 1 3.571 6 40 10 6 15.773 26 638

0.530 11 9 15.971 38 676
4 4 4.101 18 58 0.985

0.751 13 13 16.956 54 730
4 2 4.852 10 68 10 4 16.989 18 748
4 0 5.168 2 70 0.751
5 5 5.202 22 92 10 2 17.740 10 758

0.979 11 7 17.981 30 788
5 3 6.181 14 106 10 0 18.056 2 790
6 6 6.356 26 132 12 10 18.057 42 832
5 1 6.712 6 138 0.954

0.860 14 14 19.011 58 890
6 4 7.572 18 156 0.435
7 7 7.573 30 186 11 5 19.446 22 912

0.750 0.878
6 2 8.323 10 196 13 11 20.324 46 958
6 0 8.639 2 198 12 8 20.368 34 992
8 8 8.866 34 232 11 3 20.424 14 1006
7 5 9.038 22 254 0.531

0.979 11 1 20.955 6 1012
7 3 10.017 14 268 15 15 21.257 62 1074
9 9 10.248 38 306 0.840
7 1 10.548 6 312 12 6 22.097 26 1100
8 6 10.595 26 338 0.697

1.137 14 12 22.794 50 1150
10 10 11.732 42 380 13 9 22.960 38 1188
8 4 11.811 18 398 12 4 23.313 18 1206

0.447 0.403
9 7 12.258 30 428 16 16 23.716 66 1272
8 2 12.562 10 438 12 2 24.064 10 1282
8 0 12.878 2 440 12 0 24.381 2 1284

0.456 0.589
13 7 24.970 30 1314
e

rs

e-
le

are
qualitatively remark that 186 and 542 are ‘‘built into’’ th
present scheme as ‘‘secondary’’~not very pronounced!
magic numbers.

IV. OTHER ALKALI METALS AND NOBLE METALS

Experimental data for various alkali-metal cluste
@Li ~@10#, column 2!, Na ~ @6#, column 3!, K ~ @12#, column
4!, Rb ~ @13#, column 5!, Cs ~ @7,14#, column 6!# and noble-
01320
metal clusters@Cu ~ @16#, column 7!, Ag ~ @18# in column 8
and@16# in column 9!, Au ~ @16#, column 10!# are reported in
Table VI, along with the theoretical predictions of the thre
dimensionalq-deformed harmonic oscillator given in Tab
I. The following comments apply.

~i! In the cases of Rb@13#, Cu @16#, Ag @16#, and Au@16#,
what is seen experimentally is cations of the type RbN

1 ,
CuN

1 , AgN
1 , and AuN

1 , which containN atoms each, butN
21 electrons. The magic numbers reported in Table VI
3-5
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TABLE IV. Magic numbers provided by the three-dimensionalq-deformed harmonic oscillator~Table I!,
reported in column 1, are compared to the experimental data for Na clusters by Martinet al. @6# ~column 2!,
Bjo”rnholmet al. @7# ~column 3!, Knight et al. @8# ~column 4!, and Pedersenet al. @9# ~column 5!, as well as
to the experimental data for Li clusters by Bre´chignacet al. ~Ref. @10# in column 6, and Ref.@11# in column
7!. The magic numbers provided@5# by the ~non-deformed! three-dimensional harmonic oscillator~column
10!, the square-well potential~column 9! and a rounded square well potential intermediate between
previous two~column 8! are also shown for comparison. See text for discussion.

Theor. Expt. Expt. Expt. Expt. Expt. Expt. Theor. Theor. Theo
present Na Na Na Na Li Li int. sq. well h. osc.
Table I Ref.@6# Ref. @7# Ref. @8# Ref. @9# Ref. @10# Ref. @11# Ref. @5# Ref. @5# Ref. @5#

2 2 2 2 2 2 2 2
8 8 8 8 8 8 8 8
~18! 18 18 18
20 20 20 20 20 20 20 20
34 34 34 34
40 40 40 40 40 40 40 40 40
58 58 58 58 58 58 58 58

68,70 68 70
92 90,92 92 92 92 93 92 92 90,92

106,112 106 112
138 138 138 138 134 138 138 132,138
198 19862 196 198 191 198 156 156 168
254 26064 258
268 26365 264 262
338 34165 34464 344 342 336
440 44365 44062 442 442 440
556 55765 55868 554 552 546
676 680
694 700615 695 710
832 840615 800 822 820
912 902
1012 1040620 970 1025 1065
1100 1120
1206 1220620
1284 1297 1270
1314 1310
1410 1430620
1502 1500 1510
e
th
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electron magic numbers in all cases.
~ii ! All alkali metals and noble metals give the sam

magic numbers, at least within the ranges reported in
table. For most of these metals the range of experiment
determined magic numbers is rather limited, with Na@6#, Cs
@7,14#, Li @10#, and Ag@18# being notable exceptions.

~iii ! The magic numbers occurring in Na@6#, Cs@7,14#, Li
@10#, and Ag@18# are almost identical, and are described ve
well by the three-dimensionalq-deformed harmonic oscilla
tor of Table I. The limited data on K, Rb, Cu, and Au al
agree with the magic numbers of Table I.

V. DIVALENT METALS OF THE IIB GROUP

For these metals the quantities determined experimen
@19# are numbers of atoms exhibiting ‘‘magic’’ behavio
Each atom has two valence electrons; therefore, the m
01320
e
lly

y

lly

ic

numbers of electrons are twice the magic numbers of ato
The magic numbers of electrons for Zn and Cd clusters@19#
are reported in Table VII~in columns 4 and 5, respectively!,
along with the magic numbers predicted by the thre
dimensionalq-deformed harmonic oscillator for two differ
ent parameter values~given in Tables I and II, and reporte
in columns 1 and 2, respectively!, and the magic number
given by a potential intermediate between the simple h
monic oscillator and the square-well potential~ @19#, column
3!. The following comments can be made:

~i! The experimental magic numbers for Zn and Cd@19#
are almost identical. Magic numbers reported in parenthe
are ‘‘secondary’’ magic numbers, while the magic numbe
without parentheses are the ‘‘main’’ ones, as indicated
Ref. @1#.

~ii ! In column 1 of Table VII, magic numbers of the thre
dimensionalq-deformed harmonic oscillator witht50.038
3-6
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TABLE V. Magic numbers provided by the three-dimensionalq-deformed harmonic oscillator~Table I!,
reported in column 1, are compared to the experimental data for Na clusters by Martinet al. @6# ~column 2!,
and Pedersenet al. @9# ~column 3!, as well as to the experimental data for Li clusters by Bre´chignacet al.
@10# ~column 4! and to the theoretical predictions of various jellium model calculations reported by M
et al. @6# ~column 5!, Bjo”rnholmet al. @7# ~column 6!, Brack@2# ~column 7!, and Bulgac and Lewenkopf@42#
~column 8!; the theoretical predictions of Woods-Saxon and ‘‘wine bottle’’ potentials reported by Nish
et al. @43# ~column 9!; and to the magic numbers predicted by the classification scheme using then1 l
pseudo-quantum-number, reported by Martinet al. @6# ~column 10!. See text for discussion.

Theor. Expt. Expt. Expt. Theor. Theor. Theor. Theor. Theor. Theo
present Na Na Li jell. jell. jell. jell. WS 3n1 l
Table I Ref.@6# Ref. @9# Ref. @10# Ref. @6# Ref. @7# Ref. @2# Ref. @42# Ref. @43# Ref. @6#

2 2 2 2 2 2 2
8 8 8 8 8 8 8
~18! 18 18 18 18
20 20 ~20! 20 20 20
34 34 34 34 34 34 34
40 40 40 ~40! 40 40
58 58 58 58 58 58 58 58 58

68
92 90,92 92 93 92 92 92 92 92 90
138 138 138 134 134 138 138 138 138 132

186 186 186 186 186
198 19862 198 191 ~196! 196 198
254 254 254 254 254 254 252
268 26365 264 262 ~268! 268
338 34165 344 342 338~356! 338 338 338 338 332
440 44365 442 442 440 440 438,440 440 440 428

542 542 540
556 55765 554 552 562 556 556 556 562
676 680 676 676 676 670
694 700615 695 704 694

758 748
832 840615 800 822 852 832 832 832 832 820
912 902 912 912
1012 1040620 970 1025 1074 1074 1012 990
1100 1120 1100 1100 1100
1206 1220620 1216 1182
1284 1297 1284 1284
1314 1310 1314
1410 1430620 1398
1502 1500 1502 1502 1516
g
m

lo
be
na
l-

pr
it
fi
b

nsi-
ast,

c
be-
po-
’’

Al
and energy gaps larger than 0.26 are reported. Decreasin
energy gapd, considered as separating different shells fro
0.39 ~used in Table I! to 0.26~used in Table VII!, has as the
result that the numbers 70 and 106 become magic, in c
agreement with the experimental data. Similar but even
ter results are obtained from the three-dimensio
q-deformed harmonic oscillator of Table II, reported in co
umn 2 of Table VII. This oscillator is characterized byt
50.020, while the energy gapd between different shells is
set equal to 0.20. We observe that the second oscillator
dicts an additional magic number at 112, in agreement w
experiment, but otherwise gives the same results as the
one. We therefore remark that the general agreement
tween the results given by the three-dimensionalq-deformed
01320
the

se
t-
l

e-
h
rst
e-

harmonic oscillator and the experimental data is not se
tively dependent on the parameter value, but, in contr
quite different parameter values (t50.038 and 0.020! pro-
vide quite similar sets of magic numbers~at least in the re-
gion of relatively small magic numbers!.

~iii ! Both oscillators reproduce all the ‘‘main’’ magi
numbers of Zn and Cd, while the intermediate potential
tween the simple harmonic oscillator and the square-well
tential, reported in column 3, reproduces all the ‘‘main
magic numbers except 108.

VI. TRIVALENT METALS OF THE III GROUP

Magic numbers of electrons for the trivalent metals
and In @20# are reported in Table VII~in columns 7 and 8,
3-7
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TABLE VI. Magic numbers provided by the three-dimensionalq-deformed harmonic oscillator~Table I!,
reported in column 1, are compared to the experimental data for clusters of Li@10# ~column 2!, Na @6#
~column 3!, K @12# ~column 4!, Rb @13# ~column 5!, Cs@7,14# ~column 6!, Cu @16# ~column 7!, Ag ~Ref. @18#
in column 8, and Ref.@16# in column 9!, and Au@16# ~column 10!. See text for discussion.

Theor. Expt. Expt. Expt. Expt. Expt. Expt. Expt. Expt. Expt.
present Li Na K Rb Cs Cu Ag Ag Au
Table I Ref.@10# Ref. @6# Ref. @12# Ref. @13# Ref. @7,14# Ref. @16# Ref. @18# Ref. @16# Ref. @16#

2 2 2 2 2 2 2 2
8 8 8 8 8 8 8 8 8
~18! 18 18 18
20 20 20 20 20 20 20 20 20
34 34 34 34 34 34 34 34
40 40 40 40 40 40 ~40! 40
58 58 58 58 58 58 58 58
92 93 90,92 92 92 92 92 92
138 134 138 138 138 138 138 138
198 191 19862 19862 18664 198
254
268 262 26365 26365 26865
338 342 34165 34165 338615
440 442 44365 44365 440615
556 552 55765 55765
676
694 695 700615 700615
832 822 840615 840615
912 902
1012 1025 1040620 1040615
1100
1206 1220620
1284 1297
1314
1410 1430620
1502
-
I

rs
th
in

f

h
o
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e

ee
e-
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ss-

po-
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nal
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as
respectively!, along with the predictions of the three
dimensionalq-deformed harmonic oscillator of Table II
~column 6!. The following comments can be made:

~i! It is known@1,20# that small magic numbers in cluste
of Al and In cannot be explained by models based on
filling of electronic shells, because of the symmetry break
caused by the ionic lattice@20#, while for large magic num-
bers this problem does not exist.

~ii ! The 3-dimensionalq-deformed harmonic oscillator o
Table III provides the magic numbers reported in column
of Table VII. These magic numbers agree quite well with t
experimental findings, with an exception in the region
small magic numbers, where the model fails to reproduce
magic numbers 164 and 198, predicting only a magic nu
ber at 186. In addition the oscillator predicts magic numb
at 398, 890, and 1074, which are not seen in the experim
reported in column 7.

VII. POTENTIALS CORRESPONDING
TO THE THREE-DIMENSIONAL q-DEFORMED

HARMONIC OSCILLATOR

As we have seen in previous sections, the thr
dimensionalq-deformed harmonic oscillator successfully d
01320
e
g

6
e
f
e
-
s
nt

-

scribes the magic numbers of several metallic clusters.
the other hand, it is known that metallic clusters are succe
fully described by the Ekardt potentials@24# ~for which ana-
lytical expressions are lacking!, which have been recently
parametrized in terms of the symmetrized Woods-Saxon
tential and wine bottle symmetrized Woods-Saxon poten
@26,27# ~for which analytical expressions are known!. There-
fore the following questions are created.

~a! Is it possible to determine some potentials whic
when put into the Schro¨dinger equation, will provide ap-
proximately the same spectrum as the 3-dimensio
q-deformed harmonic oscillator?

~b! If such potentials can be found, how do they compa
with the symmetrized Woods-Saxon and ‘‘wine bottle’’ sym
metrized Woods-Saxon potentials?

Question~a! is a standard problem of inverse scatteri
@44#. Classical potentials giving approximately the sam
spectrum as the one-dimensionalq-deformed harmonic oscil-
lator have been determined either through use of stand
perturbation theory@33#, or within the limits of the WKB
approximation@34#. In what follows we are going to deter
mine potentials giving approximately the same spectrum
3-8
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TABLE VII. Magic numbers provided by the three-dimensionalq-deformed harmonic oscillator of Tabl
I with energy gapd50.26~column 1! and of Table II~column 2!, are compared to the experimental data f
Zn clusters@19# ~column 4! and Cd clusters@19# ~column 5!, as well as to the theoretical predictions of
potential intermediate between the simple harmonic oscillator and the square-well potential@19# ~column 3!.
In addition, the magic numbers provided by the three-dimensionalq-deformed harmonic oscillator of Tabl
III ~reported in column 6! are compared to the experimental data for Al@20# ~column 7! and In@20# ~column
8!. See text for discussion.

Theor. Theor. Theor. Expt. Expt. Theor. Expt. Expt.
present present Zn Cd present Al In
Table I Table II Ref.@19# Ref. @19# Ref. @19# Table III Ref. @20# Ref. @20#

2 2 2
8 8 8
20 20 20 20 20 20
34 34 34 ~36! ~36! 34
40 40 40 40 40 40
58 58 58 56 56 58

~60! ~60!

68 ~64! ~64!

70 70 70 70 70
~80! ~80!

~82!

92 92 92 92 92 92
106 106 102 108 108

112 112 ~114!
~120! ~120!

138 138 138 138 138 138 138 138
164

186
198 198

254 252
338 336
398
440 438
486 46866
542 53466
612 59466
676 68866
748 74266
832 832610
890
912 918610
1006 1000610
1074
1100 1112610
1206 1224610
-
-

in

r-
co-
-

the three-dimensionalq-deformed harmonic oscillator by us
ing the method of Ref.@33#, i.e. perturbation theory. Accord
ing to this method, a potential of the form

V5V01kx21lx41mx61jx81••• ~8!

corresponds, in first-order perturbation theory and keep
terms up tox8 only, to a spectrum
01320
g

E5e01k13l115m1105j1~2k16l140m1280j!n

1~6l130m1350j!n21~20m1140j!n3170jn4.

~9!

The second term in Eq.~8! corresponds to the usual ha
monic oscillator. For appropriate values of the numerical
efficientsk, l, m, andj, the rest of the terms can be con
sidered as perturbations to the harmonic oscillator.
3-9
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It is clear that this method can be applied in cases
which the spectrum under study depends on only one qu
tum number, the number of excitation quantan. In the case
of the three-dimensionalq-deformed harmonic oscillato
@Eq. ~3!#, however, the spectrum depends on an additio
quantum number: the angular momentuml. One way out of
this is to determine anl-dependent equivalent potential, as
is done in several branches of physics@45,46#. In order to do
this, for each possible value ofl ( l 5n,n22,n24, . . . 1, or 0
@see Eq.~3!# one determines the energy as a function on
only, and then calculates the corresponding potential.

In the case of the three-dimensionalq-deformed harmonic
oscillator, the energy spectrumEq(n,l ) for the various pos-
sible values of the angular momentuml ( l 5n, n22, n
24, . . . ,1 or 0! can be put into the forms

Eq~n,n!5\v0@n#q2 for l 5n, ~10!

Eq~n,n22!5\v0~q2@n21#q21q2n! for l 5n22,
~11!

Eq~n,n24!5\v0~q4@n22#q21q2(n21)@2#q2!

for l 5n24, ~12!

Eq~n,n26!5\v0~q6@n23#q21q2(n22)@3#q2!

for l 5n26, ~13!

•••

Eq~n,3!5\v0~q8@@n23##q21q24@@5##q2

2q22@@3##q211!

5Eq~n,0!2\v0~q621!~11q24! for l 53,

~14!

Eq~n,2!5\v0~q6@@n22##q21q22@@3##q221!

5Eq~n,0!2\v0~q42q22! for l 52, ~15!

Eq~n,1!5\v0~q4@@n21##q211!

5Eq~n,0!2\v0~q221! for l 51, ~16!

Eq~n,0!5\v0q2@@n##q2 for l 50, ~17!

where theq numbers of Eq.~2! are denoted by@n#q , which
are symmetric under the exchangeq↔q21, while theq num-
bers

†@n#‡q5
qn21

q21
, ~18!

which are not symmetric under the exchangeq↔q21 are
denoted by†@n#‡q . For all of these equations it is clear th
they reduce to the classical expressionE(n)5\v0n in the
limit q→1.

We then consider the Taylor expansions for these ene
expressions. By comparing these to Eq.~9!, and equating the
coefficients of the various powers ofn ~up to n4), in each
01320
n
n-

al

y

case we determine the coefficientsk, l, m, andj. Substitut-
ing these coefficients into Eq.~8!, for each case we deter
mine the corresponding potential, keeping terms up tot4

~whereq5et). The first few cases are

V~x! l 5n

\v0
52S 1

2
2

t2

2
1

4t4

15 D1S 1

2
2

t2

2
1

4t4

15 D x2

2S t2

6
2

t4

9 D x41S t2

30
2

t4

45D x6 for l 5n,

~19!

V~x! l 5n22

\v0
52S 1

2
14t1

7t2

2
1

8t3

3
1

8t4

5 D
1S 1

2
12t1

3t2

2
1

10t3

3
1

44t4

15 D x2

2S t2

6
1

4t3

3
1

11t4

9 D x4

1S t2

30
1

2t3

15
1

t4

9 D x6 for l 5n22, ~20!

•••

V~x! l 50

\v0
52S 1

2
1

t

2
2

t3

6
2

t4

15D1S 1

2
2

t2

2
1

4t4

15 D x2

1S t

6
2

2t3

9
2

t4

6 D x41S t2

30
2

t4

45D x6

1S t3

210
1

t4

210D x8 for l 50, ~21!

V~x! l 515V~x! l 502\v0~q221!

.V~x! l 502\v0S 2t12t21
4t3

3
1

2t4

3 D for l 51,

~22!

V~x! l 525V~x! l 502\v0~q42q22!

.V~x! l 502\v0~6t16t2112t3110t4! for l 52,

~23!

V~x! l 535V~x! l 502\v0~q621!~11q24!

.V~x! l 502\v0~12t112t2148t3144t4!

for l 53. ~24!

and so on. We remark that for small values oft, like the ones
occurring in the previous sections, the potentials occurr
for l 5n and l 5n22 are of the form

V~x!5V01ax22bx41cx6, ~25!

with a,b,c.0. The potentials occurrring forl 50, 1, 2, and
3 are of the form
3-10
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V~x!5V01ax21bx41cx61dx8, ~26!

with a,b,c,d.0.
It is instructive at this point to compare these potenti

with the symmetrized Woods-Saxon potential

VSWS~r !52V0

sinh~R/a!

cosh~r /a!1cosh~R/a!
, 0<r<`,

~27!
s
tia
se
rm
n

he

na
o

ba

e
lu
te
o
n

re
e,
e
ch

n

01320
s

and the wine bottle symmetrized Woods-Saxon potential

VWB~r !52V0S 11
wr2

R2 D sinh~R/a!

cosh~r /a!1cosh~R/a!
,

0<r<`, ~28!

which have been used@26,27# to parametrize the Ekardt po
tentials@24#. In order to facilitate the comparisons, we co
sider the Taylor expansions of these potentials:
VSWS~r !

V0sinh~R/a!
52

1

11cosh~R/a!
1

1

2„11cosh~R/a!…2
r 2

a2 2
52cosh~R/a!

24„11cosh~R/a!…3
r 4

a4

1
„cosh~R/a!…2228 cosh~R/a!161

720„11cosh~R/a!…4
r 6

a6 , ~29!

VWB~r !

V0sinh~R/a!
52

1

11cosh~R/a!
1S 1

2„11cosh~R/a!…2
2

w

11cosh~R/a!

a2

R2D r 2

a2 2S 52cosh~R/a!

24„11cosh~R/a!…3

2
w

2„11cosh~R/a!…2
a2

R2D r 4

a4 1S ~cosh~R/a!…2228cosh~R/a!161

720„11cosh~R/a!…4
2

w„52cosh~R/a!…

24„11cosh~R/a!…3
a2

R2D r 6

a6 . ~30!
ef.
he

ly

to
po-
ial,
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-
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The following comments can now be made.
~i! The Taylor expansions of the symmetrized Wood

Saxon and wine bottle symmetrized Woods-Saxon poten
which have been used for fitting the Ekardt potentials u
for the description of metallic clusters, have the same fo
as the potentials corresponding to the three-dimensio
q-deformed harmonic oscillator, i.e., they contain all t
even powers of the relevant variable~and no odd powers!. It
is therefore not surprising that the three-dimensio
q-deformed harmonic oscillator gives a good description
the magic numbers of metallic clusters.

~ii ! The potentials obtained through the use of pertur
tion theory are valid near the origin (x50) and for relatively
low values ofn. They do not give information about th
shape of the potential near its edges, or for very large va
of n. The determination of potentials which will be accura
near their edges remains an open problem. It should als
examined if these potentials possess any deeper relatio
the quantum algebraic symmetry characterizing the th
dimensionalq-deformed harmonic oscillator. For exampl
one could check if these potentials are related to the gen
tors of the relevant quantum algebra. The existence of su
relation also remains an open problem.

~iii ! For very large values ofn, the spectrum obtains a
exponential form. For example, Eq.~10! becomes~for t
.0)

Eq~n,n!5\v0

e2tn2e22tn

e2t2e22t
.\v0

e2tn

e2t2e22t
. ~31!
-
l,
d

al

l
f

-

es

be
to

e-

ra-
a

Potentials with exponential spectra were considered in R
@47#, but in this case only the form of the potential near t
origin could be determined.

~iv! Focusing potentials leading to 3n1 l degeneracy of
the energy levels~which was found to describe reasonab
well the magic numbers of alkali clusters@6#! were deter-
mined in Ref.@38#. They have the forms

U3~r !52
2v
R4

~r /R!4

@~r /R!611#2 , ~32!

V3̃~r !5E2
2Lm

2

mRm
2

~r /Rm!4

@~r /Rm!611#2 . ~33!

Both of them are of the form

V~x!5E2A
x4

~x611!2 , ~34!

which corresponds to a Taylor expansion of the form

V~x!5E2A~x422x1013x161••• !. ~35!

We remark that this Taylor expansion bears no similarity
the Taylor expansions of the symmetrized Woods-Saxon
tential and wine bottle symmetrized Woods-Saxon potent
since it contains only some of the even powers of the
evant variable and not all of them. Indeed, these focus
potentials are known to exhibit a strongly exaggerated w
bottle feature@38#, lacking in parallel the flat bottom charac
terizing the Woods-Saxon and Ekardt potentials. Howe
3-11
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potentialU3(r ) has the major advantage that it reproduc
the edge behavior of the Ekardt potentials quite well@38#.

VIII. DISCUSSION

The following general remarks can now be made.
~i! From the results reported above it is quite clear that

three-dimensionalq-deformed harmonic oscillator describe
very well the magic numbers of alkali-metal clusters a
noble-metal clusters in all regions, using only one free
rameter (q5et with t50.038). It also provides an accura
description of the ‘‘main’’ magic numbers of clusters of d
valent group-IIB metals, either with the same parame
value (t50.038) or with a different value (t50.020). In
addition, it gives a satisfactory description of the magic nu
bers of clusters of trivalent group-III metals with a differe
parameter value (t50.050).

~ii ! It is quite remarkable that the three-dimension
q-deformed harmonic oscillator reproduces long sequen
of magic numbers~Na, Cs, Li, and Ag! at least as accuratel
as other, more sophisticated, models by using only one
parameter (q5et). ~It should not be forgotten at this poin
that these other models have deep physical roots, while
present approach is based on symmetry arguments, whic
justified a posteriori by their successful predictions.! Once
the parameter is fixed, the whole spectrum is fixed and
further manipulations can be made, the choice of the ene
gapd being the only exception. However, the choice of t
value of the energy gapd does not influence the order of th
energy levels, but just decides which energy separations
be considered as corresponding to main magic numbers
which will not. The successful prediction of the magic num
bers can be considered as evidence that the th
dimensional q-deformed harmonic oscillator possesses
symmetry@the uq(3).soq(3) symmetry# appropriate for the
description of the physical systems under study.

~iii ! As we have already mentioned, it was remarked@6#
that if n is the number of nodes in the solution of the rad
Schrödinger equation andl is the angular momentum quan
tum number, then the degeneracy of energy levels of
hydrogen atom characterized by the samen1 l is due to the
so~4! symmetry of this system, while the degeneracy of e
ergy levels of the spherical harmonic oscillator~i.e., of the
three-dimensional isotropic harmonic oscillator! character-
ized by the same 2n1 l is due to the su~3! symmetry of this
system. 3n1 l was used@6# to approximate the magic num
bers of alkali-metal clusters with some success, and focu
potentials characterized by this degeneracy were determ
@38#, but no relevant Lie symmetry could be determin
,
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@38,39#. In view of the present findings the lack of Lie sym
metry related to 3n1 l is quite clear: the symmetry of th
system appears to be a quantum algebraic symmetry@uq(3)#,
which is a nonlinear extension of the Lie symmetry u~3!.

~iv! The ability of the three-dimensionalq-deformed har-
monic oscillator to reproduce correctly the magic numbers
several metal clusters is not a surprise, if one considers
tentials giving approximately~within the limits of perturba-
tion theory! the same spectrum as this oscillator. The Tay
expansions of these potentials have the same form as
Taylor expansions of the symmetrized Woods-Saxon po
tial and wine bottle symmetrized Woods-Saxon potent
which successfully fit@26,27# the Ekardt potentials@24#,
which characterize the structure of metal clusters.

In summary, we have shown that the three-dimensio
q-deformed harmonic oscillator with uq(3).soq(3) symme-
try correctly predicts all experimentally observed mag
numbers of alkali-metal clusters and of noble-metal clust
up to 1500, which is the expected limit of validity for theo
ries based on the filling of electronic shells. In addition
gives a good description of the ‘‘main’’ magic numbers
group-IIB ~divalent! metal clusters, as well as a satisfacto
description of group-III~trivalent! metal clusters. This indi-
cates that uq(3), which is a nonlinear deformation of the u~3!
symmetry of the spherical~three-dimensional isotropic! har-
monic oscillator, is a good candidate for the symmetry
systems of several metal clusters. Furthermore, the Ta
expansions of potentials giving approximately the sa
spectrum as the three-dimensionalq-deformed harmonic os
cillator are found to have the same form as the Taylor
pansions of the symmetrized Woods-Saxon potential
wine bottle symmetrized Woods-Saxon potential, which s
cessfully fit the Ekardt potentials underlying the structure
metal clusters. Naturally, these Taylor expansions are v
near the origin. The determination of potentials which w
be accurate near their edges remains an open problem.
an open problem is the existence of any deeper relation
tween these potentials and the quantum algebra charact
ing the three-dimensionalq-deformed harmonic oscillator
as, for example, some relation between these potentials
the generators of the quantum algebra.
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@11# C. Bréchignac, Ph. Cahuzac, F. Carlier, M. de Frutos, and
Ph. Roux, Phys. Rev. B47, 2271~1993!.

@12# W. D. Knight, W. A. de Heer, K. Clemenger, and W. A. Sau
ders, Solid State Commun.53, 445 ~1985!.

@13# N. D. Bhaskar, R. P. Frueholz, C. M. Klimcak, and R. A
Cook, Phys. Rev. B36, 4418~1987!.
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