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Magic numbers predicted by a three-dimensiapaeformed harmonic oscillator with,(8) Dsq,(3) sym-
metry are compared to experimental data for atomic clusters of alkali n{etalNa, K, Rb, and Cy noble
metals(Cu, Ag, and Aq, divalent metal$Zn and Cd, and trivalent metal§Al and In), as well as to theoretical
predictions of jellium models, Woods-Saxon and “wine bottle” potentials, and to the classification scheme
using the 31+1 pseudo quantum number. In alkali-metal clusters, and noble-metal clusters the three-
dimensionalg-deformed harmonic oscillator correctly predicts all experimentally observed magic numbers up
to 1500(which is the expected limit of validity for theories based on the filling of electronic sheltsle in
addition it gives satisfactory results for the magic numbers of clusters of divalent metals and trivalent metals,
thus indicating that 3), which is a nonlinear extension of th&3) symmetry of the sphericalthree-
dimensional isotropicharmonic oscillator, is a good candidate for being the symmetry of systems of several
metal clusters. The Taylor expansions of angular-momentum-dependent potentials approximately producing
the same spectrum as the three-dimensiapaéformed harmonic oscillator are found to be similar to the
Taylor expansions of the symmetrized Woods-Saxon potential and wine bottle symmetrized Woods-Saxon
potential, which are known to provide successful fits of the Ekardt potentials.

PACS numbgs): 36.40.Cg, 03.65.Fd

[. INTRODUCTION tra of g-deformed oscillators increase either less rapidty
g being a phase factor, i.eq=¢'", with 7 being real or
Metal clusters have recently been the subject of manynore rapidly(for g being real, i.e.q=¢€", with 7 being real
investigationgsee Refs[1-4] for relevant reviews One of in comparison to the equidistant spectrum of the usual har-
the first fascinating findings in their study was the appearmonic oscillator[32], while the correspondingequivalent
ance of magic numbers, analogous to but different from thevithin the limits of perturbation theory or WKB equivalent
magic numbers appearing in the shell structure of atomigotentialg33,34] resemble the harmonic-oscillator potential,
nuclei[5]. Different kinds of metallic clustergalkali metals truncated at a certain enerdfpr g being a phase factpor
(Na [6-9], Li [10,11], K [12], Rb[13], and Cs[7,14,19), not (for q being rea), the deformation inflicting an overall
noble metals(Cu [16,17], Ag [16,18, and Au[16]), and widening or narrowing of the potential, depending on the
divalent metals of the IIB groufpZzn and Cd [19], trivalent  value of the deformation parametgr
metals of the Ill grougAl and In) [20]] exhibit different sets Very recently, a g-deformed version of the three-
of magic numbers. The analogy between the magic numbeidimensional harmonic oscillator was construdig$], taking
observed in metal clusters and the magic numbers observedivantage of the ((3)Dsq,(3) symmetry [36,37. The
in atomic nuclei led to the early description of metal clustersspectrum of this three-dimensiorgldeformed harmonic os-
in terms of the Nilsson-Clemenger mod@ll], which is a  cillator was found 35] to reproduce very well the spectrum
simplified version of the Nilsson mod¢R2,23 of atomic  of the modified harmonic oscillator introduced by Nilsson
nuclei, in which no spin-orbit interaction is included. Further[22,23, without the spin-orbit interaction term. Since the
theoretical investigations in terms of the jellium model model of Refs[22,23 without the spin-orbit term is essen-
[24,25 demonstrated that the mean-field potential in the caséally the Nilsson-Clemenger model used for the description
of simple metal clusters bears great similarities to theof metallic clusterd21], it is worth examining if the three-
Woods-Saxon potential of atomic nuclei, with a slight modi- dimensionalg-deformed harmonic oscillator can reproduce
fication of “wine bottle” type [26,27]. The Woods-Saxon the magic numbers of simple metallic clusters and, if this this
potential itself looks like a harmonic oscillator truncated at ais possible, to determine potentials giving the same spectrum
certain energy value and flattened at the bottom. It shoul@s this oscillator and compare them with the symmetrized
also be recalled that an early schematic explanation of th&/oods-Saxon potential and wine bottle symmetrized
magic numbers of metallic clusters was given in terms of aVoods-Saxon potential, which successfully [f26,27] the
scheme intermediate between the level scheme of the threEkardt potential§24]. These are the subjects of the present

dimensional harmonic oscillator and the square wall investigation.
Again, in this case the intermediate potential resembles a It is worth mentioning at this point that an effort has been
harmonic oscillator flattened at the bottom. made to describe the magic numbers of metal clusters by a

On the other hand, modified versions of harmonic oscil-quantum number 3+1 [6], wheren is the number of nodes
lators [28,29 have recently been investigated in the math-in the solution of the radial Schdinger equation antlis the
ematical framework of quantum algebf{&9,31], which are  angular momentum quantum number. This approach was in-
nonlinear generalizations of the usual Lie algebras. The spespired by the fact that degenerate energy levels in the hydro-
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gen atom are characterized by the same value of the quantum q—q
numbern+1, due to the s@) symmetry underlying this sys- [X]= — (2
tem, while degenerate energy levels in the spherical har- a—q

monic oscillator (i.e. the three-dimensional isotropic har- o

monic oscillatoy are characterized by the same value of the!S the definition ofq numbers andj operators. _ _

parameter B+1, due to the s(8) symmetry underlying this The energy a_genva]ues of the three-dimensional

system. The B+ quantum number was usg@l to approxi- ~ d-deformed harmonic oscillator are thEsb]

mate the magic numbers of alkali-metal clusters with some

success, and focusing potentials characterized by this degen- Eq(n,)=h o [n]g"* =

eracy were determine[8B8], but no relevant Lie symmetry

could be determinef38,39. ) o
In Sec. Il the three-dimensiongtdeformed harmonic os- vv_here n is the number of vibrational quant_a_arhds the

cillator will be briefly described, while in Sec. Il the magic €igenvalue of the angular momentum, obtaining the values

numbers provided by this oscillator will be compared with! =n.n—2,...,0 or 1. In thelimit of g—1 one obtains

the experimental data for Na and Li clusters, as well as witdiMq—1Eq(n.1) =% wen, which coincides with the classical

the predictions of other theorieghe jellium model, the result. _

Woods-Saxon and “wine bottle” potentials, and a classifi- For small values of the deformation parametefwhere

cation scheme using then3-1 pseudo-quantum-number d=¢€7), one can expand Ed3) in powers of7, obtaining

Additional comparisons of magic numbers predicted by thd 35]

three-dimensionai-deformed harmonic oscillator to experi-

mental data and to the results of other theoretical approachds(M!) =ft@on—fwer(I(I+1)—n(n+1))

aig—q™ 1)

2] (r+11,

will be made in Sec. IMfor other alkali-metal clusters and 1

noble-metal clustejs Sec. V (for divalent group-11B metal —hawer?| 1(1+1)— §n(n+ 1)(2n+ 1)) +0(7%).
clustersg, and Sec. V(for trivalent group-Ill metal clustejs

while in Sec. VII potentials giving approximately the same (4)

spectrum as the three-dimensiogatleformed harmonic os-

cillator will be determined, and subsequently compared to The last expression to leading order bears great similarity
the symmetrized Woods-Saxon potential and “wine bottle” to the modified harmonic oscillator suggested by Nilsson
symmetrized Woods-Saxon potential. Finally, Sec. VIII will [22,23 (with the spin-orbit term omitted

contain a discussion of the present results and plans for fur-

1 M w
ther work. V=Shop’~hor'(L2=(L2)y), p=r\/ 2 ()
Il. THREE-DIMENSIONAL ¢g-DEFORMED HARMONIC where
OSCILLATOR
The space of the three-dimensiomglleformed harmonic (L2 = N(N+3) ®

oscillator consists of completely symmetric irreducible rep- 2

resentations of the quantum algebrg3). In this space a _ _ - _
deformed angular momentum algebra,(8), can bedefined The energy eigenvalues of Nilsson’s modified harmonic os-
[35]. The Hamiltonian of the three-dimensiorgteformed  Cillator are[22,23

harmonic oscillator is defined so that it satisfies the following
requirements.

(@) Itis an s@(3) scalar, i.e., the energy is simultaneously
measurable with thg-deformed angular momentum related
to the algebra g@3) and itsz projection. It has been proved35] that the spectrum of the three-

(b) It conserves the number of bosons, in terms of whichdimensionalg-deformed harmonic oscillator closely repro-
the quantum algebras,(8) and sg(3) are realized. duces the spectrum of the modified harmonic oscillator of

(0) In the limit g—1 it is in agreement with the Hamil- Nilsson. In both cases the effect of th@+1) term is to
tonian of the usual three-dimensional harmonic oscillator. flatten the bottom of the harmonic oscillator potential, thus

It was proved[35] that the Hamiltonian of the three- making it resemble the Woods-Saxon potential.
dimensionalg-deformed harmonic oscillator satisfying the  The level scheme of the three-dimensiomgtleformed
above requirements takes the form harmonic oscillator(for Awy=1 and 7=0.038) is given in

Table I, up to a certain energy. Each level is characterized by

the quantum numbers (number of vibrational quantand|
c@t, (1)  (angular momentumNext to each level its energy, the num-
ber of particles it can accommodafghich is equal to
2(21+1)], and thetotal number of particles up to and in-
whereN is the number operator ar(r‘.ff) is the second-order cluding this level are given. If the energy difference between
Casimir operator of the algebra g8), while two successive levels, which we shall denotedhys larger

1
En=fon—fiou I(I+1)—§n(n+3) . )
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TABLE I. Energy spectrunig(n,l) of the three-dimensional-deformed harmonic oscillatg¢Eq. (3)],
for hwg=1 andq=e” with 7=0.038. Each level is characterized iythe number of vibrational quantand
| (the angular momentum2 (2l + 1) represents the number of particles each level can accommodate, while
under “total” the total number of particles up to and including this level is given. Magic numbers, reported
in boldface, correspond to energy gaps larger thar0.39, reported between the relevant pairs of energy

levels.
n I Eq(n,1) 2(21+1) Total n | Eq(n.1) 2(21+1) Total
0 0 0.000 2 2 9 5 12.215 22 462
1.000 11 11 12.315 46 508
1 1 1.000 6 8 10 8 12.614 34 542
1.006 9 3 12.939 14 556
2 2 2.006 10 18 0.397
2 0 2.243 2 20 9 1 13.336 6 562
0.780 12 12 13.721 50 612
3 3 3.023 14 34 10 6 13.863 26 638
0.397 11 9 14.154 38 676
3 1 3.420 6 40 0.603
0.638 10 4 14.757 18 694
4 4 4.058 18 58 0.449
0.559 13 13 15.206 54 748
4 2 4.617 10 68 10 2 15.316 10 758
4 0 4.854 2 70 10 0 15.554 2 760
5 5 5.116 22 92 11 7 15.592 30 790
0.724 12 10 15.777 42 832
5 3 5.841 14 106 0.884
6 6 6.204 26 132 11 5 16.660 22 854
5 1 6.238 6 138 14 14 16.779 58 912
0.860 0.606
6 4 7.098 18 156 11 3 17.385 14 926
7 7 7.328 30 186 12 8 17.410 34 960
6 2 7.657 10 196 13 11 17.490 46 1006
6 0 7.895 2 198 11 1 17.782 6 1012
0.502 0.667
7 5 8.396 22 220 15 15 18.449 62 1074
8 8 8.494 34 254 12 6 18.660 26 1100
0.627 0.645
7 3 9.121 14 268 14 12 19.305 50 1150
0.397 13 9 19.330 38 1188
7 1 9.518 6 274 12 4 19.554 18 1206
9 9 9.709 38 312 0.559
8 6 9.743 26 338 12 2 20.113 10 1216
0.894 16 16 20.226 66 1282
8 4 10.637 18 356 12 0 20.350 2 1284
10 10 10.980 42 398 0.417
9 7 11.146 30 428 13 7 20.767 30 1314
8 2 11.196 10 438 0.464
8 0 11.434 2 440 15 13 21.231 54 1368
0.781 14 10 21.360 42 1410
0.475
13 5 21.835 22 1432
17 17 22.119 70 1502
0.441
13 3 22.560 14 1516
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TABLE Il. Same as Table I, but with w,=1 andg=e" with (i) Only magic numbers up to 1500 are reported, since it
7=0.020. The energy gap separating different shells has been takgg known that filling of electronic shells is expected to occur
to be §=0.20 . only up to this limit[6]. For large clusters beyond this point

it is known that magic numbers can be explained by the
completion of icosahedral or cuboctahedral shells of atoms

0 0 0.000 2 2 55 5032 22 92 [6].

n | Eqnl) 2(20+1) Total n | E4(n,l) 2(21+1) Total

1.000 0.369 (iil) Up to 600 particles there is consistency among the
1 1 1.000 6 8 5 3 5401 14 106 various experiments and between the experimental results on
1.002 0.205 the one hand and our findings on the other hand.
2 2 2002 10 18 5 1 5.606 6 112 (iii) Beyond 600 particles the results of the four experi-
2 0 2124 2 20 0.450 ments, which report magic numbers in this region, are quite
0.882 6 6 6.056 26 13g different. However, the results of all four experiments are
3 3 3.006 14 34 0.453 well accommodated by the present model. In addition, each
0.205 6 4 6509 18 156 Imagic number _predicted by the model is supported by at
east one experiment.
31 3_5351 6 40 6 2 Oé.27%3§5 10 166 In Table IV the predictions qf threg simple the_oreticql
4 4 4016 18 58 6 0 6918 5 168 models[5] [nondeformed three-dlmens_|onal harmonic oscil-
0-287 2 4 7'090 30 198 lator (column 10, a square-\_/v_ell poten_tla(bolumn 9,and a
: : rounded square-well potenti@htermediate between the pre-
42 4303 10 68 0.536 vious two, column 8| are also reported for comparison. It is
4 0 4.425 2 70 7 5 7.626 22 220

clear that the predictions of the nondeformed three-
0.607 0.369 dimensional harmonic oscillator are in agreement with the
experimental data only up to magic number 40, while the

. . ) .other two models correctly give a few more magic numbers
than 0.39, it is considered as a gap separating two SUCCGSSI{/@S’ 92, and 138 although they already fail by predicting

shells, and the energy difference is reported between the t""r?]agic numbers at 68, 70, 106, 112, and 156, which are not
levels. In this way magic numbers can be easily read in th@ypserved. It should be noted at this point that the first few
fcable: they are the numbers appearing above the gaps, W”tt‘?ﬂagic numbers of alkali clustetsp to 92 can be correctly

in boldface characters. _ _ reproduced by the assumption of the formation of shells of

Additional level schemes of the three-dimensionalaioms instead of shells of delocalized electrgag], this
g-deformed harmonic oscillator are given in Tablefdr = 455umption being applicable under conditions not favoring a
=0.020 and an energy gap=0.20) and in Table llifor 7 gelocalization of the valence electrons of alkali atoms.
=0.050 and an energy gap=0.38). The following remarks  comparisons among the present results, experimental data
are now in place. for Na clusterdby Martin et al.[6] (column 2 and Pedersen

(i) Small magic numbers do not change much as the past al. [9] (column 3], experimental data for Li clusters
rameter 7 is varied (taking positive valugs while large  [Brechignacet al. [10] (column 4], and theoretical predic-
magic numbers are more influenced by the parameter mod{ions more sophisticated than these reported in Table IV, can
fication. In general, the ordering of the levels does nothe made in Table V, where magic numbers predicted by
change rapidly with the value of the parameterfor = yarious jellium model calculationolumns 5-§6,7,2,43),
>0). and Woods-Saxon and wine bottle potentiégd®lumn 9,

(i) A rapid change of the magic numbers as a function 0f43]), as well as by a classification scheme using the-8
7 occurs whenr takes negative values, but this case is i"e"pseudo-quantum—numbécolumn 10[6]) are reported. The
evant to the contents of the present work. fo”owing Observations can be made:

(iii) Magic numbers are influenced nore drastically by the (i) Al magic numbers predicted by the three-dimensional
value of the energy gap. If in the spectrum obtained for a g-deformed harmonic oscillator are supported by at least one
given value of the parameterthe energy separation between experiment, with no exception.
two successive levels is only slightly smaller than the energy (i) Some of the jellium models, as well as tha-8I
gap s, this can be considered as an indication of the presenc@assification scheme, predict magic numbers at 186 and 540/
of a “secondary” magic numbe(See the end of Sec. lll for 542 which are not supported by experiment. Some jellium
specific examples. models also predict a magic number at 748 or 758, again
without support from experiment. The Woods-Saxon and
wine bottle potentials of Ref43] predict a magic number at
68, for which no experimental support exists. The present

The magic numbers provided by the three-dimensionascheme avoids problems at these numbers. It should be
g-deformed harmonic oscillator in Table | are compared tonoted, however, that in the cases of 186 and 542 the energy
available experimental data for Na clust¢®-9] and Li  gaps following them in the present scheme are 0.329 and
clusters[10,11] in Table IV (columns 2—-7. Some prelimi- 0.325, respectivelysee Table ), i.e., quite close to the
nary results concerning Na clusters were already given eathreshold of 0.39 which we have considered as the minimum
lier in Ref.[40]. The following comments apply. energy gap separating different shells. One could therefore

IIl. SODIUM AND LITHIUM CLUSTERS
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TABLE lll. Same as Table I, but withwg=1 andg=e", with 7=0.050. The energy gap separating
different shells has been taken to 8&0.38 .

n I Eq(n,1) 2(21+1) Total n | Eq(n.1) 2(21+1) Total
0 0 0.000 2 2 11 11 13.334 46 486
1.000 0.389
1 1 1.000 6 8 9 5 13.723 22 508
1.010 10 8 14.044 34 542
2 2 2.010 10 18 0.658
2 0 2.327 2 20 9 3 14.702 14 556
0.713 12 12 15.069 50 606
3 3 3.040 14 34 9 1 15.233 6 612
0.531 0.540
3 1 3.571 6 40 10 6 15.773 26 638
0.530 11 9 15.971 38 676
4 4 4.101 18 58 0.985
0.751 13 13 16.956 54 730
4 2 4.852 10 68 10 4 16.989 18 748
4 0 5.168 2 70 0.751
5 5 5.202 22 92 10 2 17.740 10 758
0.979 11 7 17.981 30 788
5 3 6.181 14 106 10 0 18.056 2 790
6 6 6.356 26 132 12 10 18.057 42 832
5 1 6.712 6 138 0.954
0.860 14 14 19.011 58 890
6 4 7.572 18 156 0.435
7 7 7.573 30 186 11 5 19.446 22 912
0.750 0.878
6 2 8.323 10 196 13 11 20.324 46 958
6 0 8.639 2 198 12 8 20.368 34 992
8 8 8.866 34 232 11 3 20.424 14 1006
7 5 9.038 22 254 0.531
0.979 11 1 20.955 6 1012
7 3 10.017 14 268 15 15 21.257 62 1074
9 9 10.248 38 306 0.840
7 1 10.548 6 312 12 6 22.097 26 1100
8 6 10.595 26 338 0.697
1.137 14 12 22.794 50 1150
10 10 11.732 42 380 13 9 22.960 38 1188
8 4 11.811 18 398 12 4 23.313 18 1206
0.447 0.403
9 7 12.258 30 428 16 16 23.716 66 1272
8 2 12.562 10 438 12 2 24.064 10 1282
8 0 12.878 2 440 12 0 24.381 2 1284
0.456 0.589
13 7 24.970 30 1314

gualitatively remark that 186 and 542 are “built into” the metal cluster§Cu ( [16], column 3, Ag ( [18] in column 8
present scheme as ‘“secondarythot very pronounced and[16]in column 9, Au ([16], column 10Q] are reported in
magic numbers. Table VI, along with the theoretical predictions of the three-
dimensionalg-deformed harmonic oscillator given in Table
I. The following comments apply.
(i) In the cases of RAL3], Cu[16], Ag [16], and Au[16],
Experimental data for various alkali-metal clusterswhat is seen experimentally is cations of the typeyRb
[Li ([10], column 2, Na( [6], column 3, K ([12], column  Cuy, Agy , and Ay, which containN atoms each, bukl
4), Rb( [13], column §, Cs([7,14], column 6] and noble- —1 electrons. The magic numbers reported in Table VI are

IV. OTHER ALKALI METALS AND NOBLE METALS
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TABLE IV. Magic numbers provided by the three-dimensiogaleformed harmonic oscillatdiTable ),
reported in column 1, are compared to the experimental data for Na clusters by Bteatifi6] (column 2,
Bjdrnholmet al.[7] (column 3, Knight et al.[8] (column 4, and Pederseet al.[9] (column 5, as well as
to the experimental data for Li clusters by Bhégnacet al. (Ref.[10] in column 6, and Ref.11] in column
7). The magic numbers providd&] by the (non-deformedl three-dimensional harmonic oscillat@olumn
10), the square-well potentigicolumn 9 and a rounded square well potential intermediate between the
previous two(column § are also shown for comparison. See text for discussion.

Theor. Expt. Expt. Expt. Expt. Expt. Expt. Theor.  Theor.  Theor.
present Na Na Na Na Li Li int. sg. well  h. osc.
Table | Ref[6] Ref.[7] Ref.[8] Ref.[9] Ref.[10] Ref.[11] Ref.[5] Ref.[5] Ref.[5]

2 2 2 2 2 2 2 2
8 8 8 8 8 8 8 8
(18 18 18 18
20 20 20 20 20 20 20 20
34 34 34 34
40 40 40 40 40 40 40 40 40
58 58 58 58 58 58 58 58
68,70 68 70
92 90,92 92 92 92 93 92 92 90,92
106,112 106 112
138 138 138 138 134 138 138 132,138
198 198-2 196 198 191 198 156 156 168
254 260-4 258
268 263t5 264 262
338 3415 344+ 4 344 342 336
440 4435 440+ 2 442 442 440
556 5575 558+ 8 554 552 546
676 680
694 70015 695 710
832 840t 15 800 822 820
912 902
1012 10420 970 1025 1065
1100 1120
1206 12220
1284 1297 1270
1314 1310
1410 143620
1502 1500 1510
electron magic numbers in all cases. numbers of electrons are twice the magic numbers of atoms.

(i) All alkali metals and noble metals give the sameThe magic numbers of electrons for Zn and Cd clusf&€3
magic numbers, at least within the ranges reported in thare reported in Table VI(in columns 4 and 5, respectivgly
table. For most of these metals the range of experimentallglong with the magic numbers predicted by the three-
determined magic numbers is rather limited, with[l§§ Cs  dimensionalg-deformed harmonic oscillator for two differ-
[7,14], Li [10], and Ag[18] being notable exceptions. ent parameter valuggiven in Tables | and I, and reported

(iii ) The magic numbers occurring in N&], Cs[7,14], Li in columns 1 and 2, respectivglyand the magic numbers
[10], and Ag[18] are almost identical, and are described verygiven by a potential intermediate between the simple har-
well by the three-dimensional-deformed harmonic oscilla- monic oscillator and the square-well potenti&ll9], column
tor of Table I. The limited data on K, Rb, Cu, and Au also 3). The following comments can be made:
agree with the magic numbers of Table I. (i) The experimental magic numbers for Zn and [@8]
are almost identical. Magic numbers reported in parentheses
are “secondary” magic numbers, while the magic numbers
without parentheses are the “main” ones, as indicated in

For these metals the quantities determined experimentallRef. [1].

[19] are numbers of atoms exhibiting “magic” behavior. (i) In column 1 of Table VII, magic numbers of the three-
Each atom has two valence electrons; therefore, the magdimensionalg-deformed harmonic oscillator witkh=0.038

V. DIVALENT METALS OF THE 1IB GROUP
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TABLE V. Magic numbers provided by the three-dimensiogaleformed harmonic oscillatdiable |,
reported in column 1, are compared to the experimental data for Na clusters by Bteatifi6] (column 2,
and Pederseat al.[9] (column 3, as well as to the experimental data for Li clusters bydBignacet al.
[10] (column 4 and to the theoretical predictions of various jellium model calculations reported by Martin
et al.[6] (column 5, Bjérnholmet al.[7] (column 6, Brack[2] (column 7, and Bulgac and Lewenkop#2]
(column 8; the theoretical predictions of Woods-Saxon and “wine bottle” potentials reported by Nishioka
et al. [43] (column 9; and to the magic numbers predicted by the classification scheme usingithe 3
pseudo-quantum-number, reported by Mastral. [6] (column 10. See text for discussion.

Theor. Expt. Expt. Expt. Theor. Theor.  Theor. Theor. Theor. Theor.
present Na Na Li jell. jell. jell. jell. WS 8+l
Table | Ref[6] Ref.[9] Ref.[10] Ref.[6] Ref.[7] Ref.[2] Ref.[42] Ref.[43] Ref.[6]
2 2 2 2 2 2 2
8 8 8 8 8 8 8
(18 18 18 18 18
20 20 (20 20 20 20
34 34 34 34 34 34 34
40 40 40 (40 40 40
58 58 58 58 58 58 58 58 58
68
92 90,92 92 93 92 92 92 92 92 90
138 138 138 134 134 138 138 138 138 132
186 186 186 186 186
198 1982 198 191 (196 196 198
254 254 254 254 254 254 252
268 2635 264 262 (268 268
338 3415 344 342 338356) 338 338 338 338 332
440 4435 442 442 440 440 438,440 440 440 428
542 542 540
556 5575 554 552 562 556 556 556 562
676 680 676 676 676 670
694 700t 15 695 704 694
758 748
832 840-15 800 822 852 832 832 832 832 820
912 902 912 912
1012 104620 970 1025 1074 1074 1012 990
1100 1120 1100 1100 1100
1206 122@20 1216 1182
1284 1297 1284 1284
1314 1310 1314
1410 143620 1398
1502 1500 1502 1502 1516

and energy gaps larger than 0.26 are reported. Decreasing tharmonic oscillator and the experimental data is not sensi-
energy gaps, considered as separating different shells fromtively dependent on the parameter value, but, in contrast,
0.39(used in Table)lto 0.26(used in Table VI), has as the quite different parameter values£0.038 and 0.020pro-
result that the numbers 70 and 106 become magic, in closdde quite similar sets of magic numbe(at least in the re-
agreement with the experimental data. Similar but even be@ion of relatively small magic numbers

ter results are obtained from the three-dimensional (iii) Both oscillators reproduce all the “main” magic
g-deformed harmonic oscillator of Table II, reported in col- "umbers of Zn and Cd, while the intermediate potential be-
umn 2 of Table VII. This oscillator is characterized by tween the simple harmonic oscillator and the square-well po-

=0.020, while the energy gap between different shells is ential, reported in column 3, reproduces all the “main”
set equal to 0.20. We observe that the second oscillator pré|jag|c numbers except 108.

dicts an additional magic nu_mber at 112, in agreement Wl_th VI. TRIVALENT METALS OF THE Il GROUP
experiment, but otherwise gives the same results as the first

one. We therefore remark that the general agreement be- Magic numbers of electrons for the trivalent metals Al
tween the results given by the three-dimensiapdkeformed and In[20] are reported in Table VI{in columns 7 and 8,
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TABLE VI. Magic numbers provided by the three-dimensiogaleformed harmonic oscillatdiTable ),
reported in column 1, are compared to the experimental data for clusters[@DLicolumn 2, Na [6]
(column 3, K [12] (column 4, Rb[13] (column 5, Cs[7,14] (column 6§, Cu[16] (column 7, Ag (Ref.[18]
in column 8, and Ref(16] in column 9, and Au[16] (column 10Q. See text for discussion.

Theor. Expt. Expt. Expt. Expt. Expt. Expt. Expt. Expt. Expt.
present Li Na K Rb Cs Cu Ag Ag Au
Table | Ref[10] Ref.[6] Ref.[12] Ref.[13] Ref.[7,14] Ref.[16] Ref.[18] Ref.[16] Ref.[16]
2 2 2 2 2 2 2 2

8 8 8 8 8 8 8 8 8
(18 18 18 18

20 20 20 20 20 20 20 20 20
34 34 34 34 34 34 34 34
40 40 40 40 40 40 (40 40

58 58 58 58 58 58 58 58
92 93 90,92 92 92 92 92 92
138 134 138 138 138 138 138 138
198 191 19&2 198+2 186+4 198

254

268 262 26x5 263+5 2685

338 342 34%5 341+5 338+ 15

440 442 4435 4435 440+ 15

556 552 5575 557+5

676

694 695 70615 700+ 15

832 822 84a 15 840+ 15

912 902

1012 1025 104820 1040= 15

1100

1206 1226-20

1284 1297

1314

1410 143620

1502

respectively, along with the predictions of the three- scribes the magic numbers of several metallic clusters. On
dimensional g-deformed harmonic oscillator of Table Il the other hand, it is known that metallic clusters are success-
(column 6. The following comments can be made: fully described by the Ekardt potentiglg4] (for which ana-

(i) Itis known[1,20] that small magic numbers in clusters |ytical expressions are lackingwhich have been recently
of Al'and In cannot be explained by models based on .th;)arametrized in terms of the symmetrized Woods-Saxon po-
filling of electronic shells, because of the symmetry breakin ential and wine bottle symmetrized Woods-Saxon potential

Eg?ssiﬁisb%r?;elg‘Igolgglﬁ%[()i,x\iz?”e for large magic num- [26,27] (for which analytical expressions are knowiithere-

(i) The 3-dimensionat|-deformed harmonic oscillator of fOre the following questions are created. _ _
Table Il provides the magic numbers reported in column 6 (8 Is it possible to determine some potentials which,
of Table VII. These magic numbers agree quite well with thewhen put into the Schrbnger equation, will provide ap-
experimental findings, with an exception in the region ofproximately the same spectrum as the 3-dimensional
small magic numbers, where the model fails to reproduce thg-deformed harmonic oscillator?
magic numbers 164 and 198, predicting only a magic num- (b) If such potentials can be found, how do they compare
ber at 186. In addition the oscillator predicts magic numbersvith the symmetrized Woods-Saxon and “wine bottle” sym-
at 398, 890, and 1074, which are not seen in the experimemhetrized Woods-Saxon potentials?

reported in column 7. Question(a) is a standard problem of inverse scattering
[44]. Classical potentials giving approximately the same
VIl. POTENTIALS CORRESPONDING spectrum as the one-dimensiogadleformed harmonic oscil-
TO THE THREE-DIMENSIONAL  g-DEFORMED lator have been determined either through use of standard
HARMONIC OSCILLATOR perturbation theon|33], or within the limits of the WKB

As we have seen in previous sections, the threeapproximation[34]. In what follows we are going to deter-
dimensionalb-deformed harmonic oscillator successfully de- mine potentials giving approximately the same spectrum as
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TABLE VII. Magic numbers provided by the three-dimensiogaleformed harmonic oscillator of Table
I with energy gaps=0.26 (column 1 and of Table ll(column 2, are compared to the experimental data for
Zn clusters[19] (column 4 and Cd cluster$19] (column 5, as well as to the theoretical predictions of a
potential intermediate between the simple harmonic oscillator and the square-well p¢fedjtiablumn 3.
In addition, the magic numbers provided by the three-dimensigiukaformed harmonic oscillator of Table
Il (reported in column Bare compared to the experimental data fof 20] (column % and In[20] (column
8). See text for discussion.

Theor. Theor. Theor. Expt. Expt. Theor. Expt. Expt.
present present Zn Cd present Al In
Table | Table Il Ref[19] Ref.[19] Ref.[19] Table 11l Ref.[20] Ref. [20]
2 2 2
8 8 8
20 20 20 20 20 20
34 34 34 (36) (36) 34
40 40 40 40 40 40
58 58 58 56 56 58
(60) (60)
68 (64) (64)
70 70 70 70 70
(80) (80)
(82
92 92 92 92 92 92
106 106 102 108 108
112 112 (114
(120 (120
138 138 138 138 138 138 138 138
164
186
198 198
254 252
338 336
398
440 438
486 4686
542 534+ 6
612 594+ 6
676 688+ 6
748 742-6
832 83210
890
912 918+ 10
1006 100:10
1074
1100 1112-10
1206 122410

the three-dimensionaj-deformed harmonic oscillator by us-  E= ¢, + x+ 3\ + 15u+ 1056+ (2« + 6X + 40w + 280¢)n
ing the method of Ref.33], i.e. perturbation theory. Accord- 5 5 .
ing to this method, a potential of the form + (6N +30u +3505)n“+ (20u + 1405)n°+ 70¢n".
9
V=Vo+ kx?+ A\x4+ uxS+ x84 . .. 8 .
The second term in Eq@8) corresponds to the usual har-
monic oscillator. For appropriate values of the numerical co-
corresponds, in first-order perturbation theory and keepingfficientsk, N\, u, and¢, the rest of the terms can be con-
terms up tox® only, to a spectrum sidered as perturbations to the harmonic oscillator.
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It is clear that this method can be applied in cases ircase we determine the coefficierts\, ., and&. Substitut-
which the spectrum under study depends on only one quaring these coefficients into E{8), for each case we deter-
tum number, the number of excitation quantan the case mine the corresponding potential, keeping terms uprto
of the three-dimensionaf-deformed harmonic oscillator (whereq=e"). The first few cases are
[Eqg. (3)], however, the spectrum depends on an additional

quantum number: the angular momentun®ne way out of N I i T_2+ 474 2
this is to determine ahdependent equivalent potential, as it hog  \2 2 15 2 2 15
is done in several branches of phydid$§,46|. In order to do s 4 s 4
this, for each possible value bfl=n,n—2n—-4,...1,0r0 T e T —)x6 for 1=n
[see EQq.(3)] one determines the energy as a functiomof 6 9 30 45 '
only, and then calculates the corresponding potential. (19
In the case of the three-dimensionptieformed harmonic
oscillator, the energy spectruiy(n,l) for the various pos- V(X)|—n_2 1 72 873 84
sible values of the angular momentum(l=n, n—2, n “Fo §+4r+ 5 +?+ 5 )
—4,...,1o0r 0 can be put into the forms @o
1 377 107° 447
E,(n,n)=Awg[N for I=n, 10 — — 2
(. =hodnlg 10 NPT 15)x
Eq(n.n—2)=fwy(q’[n—1]2+g*") forl=n-2, 2 453 115
(17) =+ =+ x*
6 3 9
Eq(n,n—4)=ﬁw0(q4[n—2]q2+q2(”_1)[2]q2) 2 2.3 A
6 —n—
for I=n—4, (12) +(§)+ E+§ forI=n—-2, (20
Eq(n,n—6) =% wo(q°[n—3]+q?""2[3],2)
for I=n—6, (13 V(%) 1 7 2 A 1 2 4/ ,
hra 27276 157127 2" 15)"
_ 27.3 P 7_2 A
Eq(N,3)=%wo(q®[[n—3]]g2+q *[[5]]q2 T T | T e
{(n.3)=fwo(q[n 3]+~ [[5]], 2-Z 6x+(30 -
~q7 (3] + 1) s
=Eq(n,0)~fiwo(q°—1)(1+q~*) for1=3, +<m+ m)xs for =0, (21
(14) ,
V(X)j=1=V(X)|=g—frwo(q°—1)
Eq(n.2)=hoo(q[n-2]]e2+q*[[3]]2~ 1) 5 g
~ _ 2, 8 2t _
:Eq(nyo)_ﬁwo(q4_q_2) for | =2, (15) —V(X)|:0 ﬁwo 27+ 27+ 3 + 3 ) for =1,
Eq(nD)=hwo(q*[[n—1]]¢+1) (22)
=Eq(n,0)—fwp(g’—1) forl=1, (16  V(X)i—=V(X)i—o=fiwo(q*=q~?)
~ _ 2 3 4 —
Eq(n,o):ﬁwoqz[[n]]q2 for 1=0, (17) —V(X)|:0 ﬁwo(67+67 +127°+107") for =2,
23
where theq numbers of Eq(2) are denoted byn],, which @3
are symmetric under the excharmge>q~ 1, while theq num- V(X)—3=V(X)|—o—hwo(q®—1)(1+q~ %)
bers
=V(X),—o— hwo(127+ 1272+ 487°+ 447)
q"-1 _
[[n]lq= -1 (18 for | =3. (24)

and so on. We remark that for small valuesrofike the ones
occurring in the previous sections, the potentials occurring
for I=n andl=n—2 are of the form

which are not symmetric under the exchamge-q ! are

denoted bifn]],. For all of these equations it is clear that

they reduce to the classical expressiBtn)=7%wgn in the

limit q—1. V(X)=Vo+ax?—bx*+cx8, (25)
We then consider the Taylor expansions for these energy

expressions. By comparing these to E), and equating the with a,b,c>0. The potentials occurrring fd=0, 1, 2, and

coefficients of the various powers af (up ton?), in each 3 are of the form

013203-10
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V(x)=Vy+ax?+bx*+cx®+dx8, (26) and the wine bottle symmetrized Woods-Saxon potential
with a,b,c,d>0. o wr? sinhR/a)
o ; o , Vwe(r)=—Vo| 1+ = :
It is instructive at this point to compare these potentials R“ | cosh{r/a)+cosi{R/a)
with the symmetrized Woods-Saxon potential
O<sr<om, (28
B sin(R/a) which have been usg@6,27) to parametrize the Ekardt po-
Vswdr)=—Vo , Osrso, - o :
coshr/a)+coshR/a) tentials[24]. In order to facilitate the comparisons, we con-
(27 sider the Taylor expansions of these potentials:
|
Vswdrl) 1 . 1 r2 5—cosiR/a) r*
Vesinh(R/a)  1+cosl{R/a) '~ 2(1+coshR/a))? @  24(1+cosKR/a))® a*
(cosiR/a))?>— 28 cosliR/a) + 61 r®
+ 5 (29)
720(1+ cosiR/a))* a
Vwg(r) 1 . 1 w a?\ r? 5—coshR/a)
Vosinh(R/a) 1+coshiR/a) ' | 2(1+coshR/a))?2 1+coshR/a) R?|a? | 241+ coshR/a))?
w a?\ r* [ (coshR/a))>—28cosliR/a)+61 w(5—cosiR/a)) a?| r® 30
2(1+costR/a))? R?) a* 720(1+ cost{R/a))* 24(1+ cosh{R/a))3 R?| a°
|
The following comments can now be made. Potentials with exponential spectra were considered in Ref.

(i) The Taylor expansions of the symmetrized Woods-[47], but in this case only the form of the potential near the
Saxon and wine bottle symmetrized Woods-Saxon potentiaRrigin could be determined.
which have been used for fitting the Ekardt potentials used (iv) Focusing potentials leading ton3-1 degeneracy of
for the description of metallic clusters, have the same fornthe energy levelgwhich was found to describe reasonably
as the potentials corresponding to the three-dimensionayell the magic numbers of alkali clustef6]) were deter-
g-deformed harmonic oscillator, i.e., they contain all themined in Ref[38]. They have the forms
even powers of the relevant varialind no odd powejslt

4
is therefore not surprising that the three-dimensional Us(r)=— 2_” (r/R) (32)
g-deformed harmonic oscillator gives a good description of R*[(r/R)®+1]%
the magic numbers of metallic clusters.
(i) The potentials obtained through the use of perturba- 5 2L5  (rIRy)*
tion theory are valid near the origix £ 0) and for relatively Va(r)=E- mR2, [(r/Ry)®+1]? (33
low values ofn. They do not give information about the
shape of the potential near its edges, or for very large valueBoth of them are of the form
of n. The determination of potentials which will be accurate
near their edges remains an open problem. It should also be x*
examined if these potentials possess any deeper relation to V(X):E_A(X6+ 1)% (34)

the quantum algebraic symmetry characterizing the three-
dimensionalg-deformed harmonic oscillator. For example, which corresponds to a Taylor expansion of the form
one could check if these potentials are related to the genera-
tors of the relevant quantum algebra. The existence of such a V(x)=E—A(x*—2x10+3x10+ .. .). (35
relation also remains an open problem. ) _ o
(iii) For very large values of, the spectrum obtains an We remark that this Taylor expansion bears no similarity to

exponential form. For example, E4L0) becomes(for 7 the Taylor expansions of the symmetrized Woods-Saxon po-

>0) tential and wine bottle symmetrized Woods-Saxon potential,

since it contains only some of the even powers of the rel-

evant variable and not all of them. Indeed, these focusing

om  —2m 2 potentials are known to exhibit a strongly exaggerated wine
E,(n,n)=fiwy—— ~fiwg————. (31 bottle featurd38], lacking in parallel the flat bottom charac-

d e’ —e 27 e?’—e 27 terizing the Woods-Saxon and Ekardt potentials. However
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potentialU5(r) has the major advantage that it reproduced38,39. In view of the present findings the lack of Lie sym-

the edge behavior of the Ekardt potentials quite \Wed]. metry related to 8+1 is quite clear: the symmetry of the
system appears to be a quantum algebraic symrhe($)],
VIIl. DISCUSSION which is a nonlinear extension of the Lie symmet(g)u
) (iv) The ability of the three-dimensiongtdeformed har-
The following general remarks can now be made. monic oscillator to reproduce correctly the magic numbers of

(i) From the results reported above it is quite clear that theeyeral metal clusters is not a surprise, if one considers po-
three—d|menS|onad1—_deformed harmonic _oscnlator describes ientials giving approximatelywithin the limits of perturba-
very well the magic numbers of alkali-metal clusters andijon theory the same spectrum as this oscillator. The Taylor
noble-metal clusters in all regions, using only one free papypansions of these potentials have the same form as the
rameter (=e” with 7=0.038). It also provides an accurate Taylor expansions of the symmetrized Woods-Saxon poten-
description of the “main” magic numbers of clusters of di- tja| and wine bottle symmetrized Woods-Saxon potential,
valent group-liB metals, either with the same parameteyyhich successfully fit[26,27 the Ekardt potentialg24],
value (7=0.038) or with a different value#=0.020). In  \hich characterize the structure of metal clusters.
addition, it gives a satisfactory description of the magic num- |, summary, we have shown that the three-dimensional
bers of clusters of trivalent group-1ll metals with a different g-deformed harmonic oscillator with,(8) Dsg,(3) symme-
parameter values(=0.050). _ ~try correctly predicts all experimentally observed magic

(i) It is quite remarkable that the three-dimensionalnympers of alkali-metal clusters and of noble-metal clusters
Q'defor_med harmonic OSCil!ator reproduces long sequencagy to 1500, which is the expected limit of validity for theo-
of magic number¢Na, Cs, Li, and Agat least as accurately ries pased on the filling of electronic shells. In addition it
as other, more sophisticated, models by using only one fregives a good description of the “main” magic numbers of
parameter ¢=e”). (It should not be forgotten at this point group-1IB (divaleny metal clusters, as well as a satisfactory
that these other models have deep physical roots, while thgescription of group-lli(trivalent metal clusters. This indi-
present approach is based on symmetry arguments, which a¢gtes that §(3), which is a nonlinear deformation of th¢3)
justified a posterioriby their successful predictionsOnce  symmetry of the sphericdthree-dimensional isotropidiar-
the parameter is fixed, the whole spectrum is fixed and nenonic oscillator, is a good candidate for the symmetry of
further manipulations can be made, the choice of the energyystems of several metal clusters. Furthermore, the Taylor
gap 6 being the only exception. However, the choice of theexpansions of potentials giving approximately the same
value of the energy gap does not influence the order of the spectrum as the three-dimensionadieformed harmonic os-
energy levels, but just decides which energy separations wilkjjjator are found to have the same form as the Taylor ex-
be considered as corresponding to main magic numbers afghnsions of the symmetrized Woods-Saxon potential and
which will not. The successful prediction of the magiC num-wine bottle Symmetrized Woods-Saxon potentiaL which suc-
bers can be considered as evidence that the thregesstfully fit the Ekardt potentials underlying the structure of
dimensional g-deformed harmonic oscillator possesses ametal clusters. Naturally, these Taylor expansions are valid
symmetry[the 1,(3)Dsq,(3) symmetry appropriate for the near the origin. The determination of potentials which will
description of the physical systems under study. be accurate near their edges remains an open problem. Also

(iii) As we have already mentioned, it was remarkéll  an open problem is the existence of any deeper relation be-
that |f n is the number of nodes in the solution of the radialtween these potentia]s and the guantum a|gebra characteriz-
Schralinger equation antlis the angular momentum quan- ing the three-dimensional-deformed harmonic oscillator,

tum number, then the degeneracy of energy levels of thgs for example, some relation between these potentials and
hydrogen atom characterized by the samel is due to the  the generators of the quantum algebra.

sa4) symmetry of this system, while the degeneracy of en-
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