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We derive general relationships of theSmatrix of fields containing evanescent components. Our formalism
covers time-independent quantum scattering as well as scattering of classical scalar waves. We show that
reciprocity, energy~or probability! conservation, and time-reversal symmetry in the presence of evanescent
waves lead to relationships that extend the well-known relations previously derived in asymptotic scattering.
On this basis, we discuss the link between reciprocity and time-reversal symmetry. We also address the
experimental feasibility of time reversal of a field containing evanescent components.
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I. INTRODUCTION

The scattering matrix (S matrix! was introduced by
Heisenberg to describe a scattering process without any
sumption about the details of the interaction@1#. In this for-
malism, the process is thought of as a transformation o
incoming stateC in into an outgoing stateCout , which de-
scribe the system far away from the interaction potent
Hence, theS matrix describes the scattering processasymp-
totically. The mathematical transcription of this transform
tion is an operator relationshipCout5SC in , where S is
called theS matrix @2,3#. It is well known that theS matrix
exhibits some properties that are independent of the spe
problem under study. In particular, it is unitary and symm
ric, these two properties reflecting probability~or energy!
conservation in elastic scattering and reciprocity, resp
tively @3#. The general aim being to get maximum inform
tion about theS matrix with minimum knowledge about th
interaction itself, other properties may be derived, based,
example, on dispersion relations and causality conditions@4#.
The existence of such general properties of theS matrix is
the reason why it has become a fundamental tool in m
areas of theoretical physics, e.g., in quantum scattering@2,3#,
in particle physics@5#, in field theory, and in statistical phys
ics @6#. Its definition and its use have also been extended
scattering of classical~acoustic and electromagnetic! waves
@7,8#. For example, theS matrix has become a fundament
tool ~as well as a practical one! to compute scattered fields i
physical optics@9#. This formalism has also found a wid
range of applications with the development of rando
matrix theory@10#, which has recently acquired renewed i
terest through its use in quantum- and classical-wave tr
port in random media@11,12#.

The S matrix was originally defined as an operator acti
on asymptoticstates. In scattering by a time-independent p
tential ~we shall restrict our discussion to this case!, this
means that theSmatrix relates the far-field amplitudes of th
incoming and outgoing fields@2,7,8#. Nevertheless, in the
last ten years, new effects have been observed and new
1050-2947/2000/62~1!/012712~7!/$15.00 62 0127
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niques developed that involve scattering and/or direct m
surement of evanescent waves~near fields!. For example,
evanescent-wave scattering is involved in the emission p
cess of an atom or a molecule close to a surface@13# or in the
surface-plasmon-polariton~SPP! mechanism which leads to
the enhanced backscattering of light on slightly rough me
surfaces@14#. It is also the basic principle of near-field sca
ning probe microscopies, using either electron@15# or photon
@16# tunneling. Modeling the image formation in scannin
near-field optical micoscopy~SNOM! requires a precise de
scription of a mechanism involving scattering of evanesc
waves@17#. The advent of SNOM has also allowed a dire
experimental study of SPP excitation and scattering@18# and
Anderson localization of surface excitations@19# and stimu-
lated theoretical works on SPP scattering by surface rou
ness or localized objects@20#. In all these fields, the descrip
tion of the coupling between an incident evanescent w
and a scattered propagating or evanescent wave is of fu
mental interest. AnS-matrix formalism, with a definition in-
cluding the near-field components, should be very usefu
this context. TheS matrix also provides a useful formalism
to discuss time reversal of wave fields, and especially its l
with reciprocity ~symmetry of theS matrix! and probability
or energy conservation~unitarity!. In particular, the question
of time reversal of fields containing evanescent compone
has recently received increasing attention, with the dem
stration of phase conjugation of optical near fields@21# and
of time reversal of acoustic waves@22#. In this last case, the
S- matrix formalism was used to discuss the properties o
time-reversal acoustic cavity, without taking into account t
role of evanescent waves@23#. Nevertheless, the question o
subwavelength focusing of a field by time reversal w
raised. This is an important issue, whose discussion requ
the use of a formalism including the evanescent compon
of the field.

Finding general properties of theS matrix, extended to
evanescent waves, is of major importance in understand
and modeling all phenomena and devices involving ne
field scattering. To our knowledge, this problem has recei
©2000 The American Physical Society12-1
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little attention until now, except in electromagnetic wav
guide theory where reciprocity and unitarity relations for t
S matrix in the presence of evanescent modes have b
briefly discussed@24#. In this work, we concentrate on rec
procity, unitarity, and time-reversal symmetry in the fram
work of scattering from a localized potential, in the presen
of evanescent waves in both the incoming and outgo
fields. The formalism we use covers time-independent qu
tum scattering as well as scattering of classical scalar wa
In Sec. II, we define theS matrix based on the angular rep
resentation of the field, sometimes called thepartitioned S
matrix in the literature@9,25#. In Sec. III, we give a genera
derivation of theSmatrix reciprocity for scalar~quantum and
classical! fields, in the presence of evanescent waves. In S
IV, we show that energy~or probability! conservation in
scattering of fields containing evanescent components le
to generalized unitarity relations of theSmatrix. These rela-
tions extend those previously derived for source-free fie
~i.e., fields without evanescent components! @9,25#, and those
obtained in electromagnetic waveguide theory@24#. In Sec.
V, we address the problem of time-reversal symmetry
wave fields containing evanescent components. We s
that the time-reversal invariance condition leads to a diff
ent relationship for theS matrix. On this basis, the link be
tween reciprocity, unitarity, and time-reversal invariance
discussed. This problem is of fundamental and practical
portance, due, for example, to its potential application
time reversal of acoustic waves@22#. Finally, we give a sum-
mary and a general conclusion in Sec. VI.

II. DEFINITION OF THE S MATRIX

Let us consider the scattering problem depicted in Fig
The regions 0,z,z1 and z2,z,L, denoted byR 2 and
R 1, respectively, are assumed to be of constant potentia
that the wave field in these regions obeys the tim
independent wave equation

¹2C~r !1k2C~r !50, ~1!

where r5(x,y,z). In Eq. ~1!, C(r ) is either the time-
independent wave function of a state of energyE @k2

52m/\2(E2V), whereV is the potential andm the mass of
the particle#, or a monochromatic classical wave of fr
quency v (k5v/c, where c is the phase velocity in the
medium!. The wave numberk2 is real, but can be negative
e.g., in a tunneling barrier. The scattering potential is

FIG. 1. Scattering geometry and notation.
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sumed confined within the stripz1,z,z2, and independen
of the field ~linear scattering!. The regionsz,0 andz.L
contain sources, the presence of which, at finite dista
from the scattering region, is necessary to ensure the e
tence of incident evanescent waves in bothR 2 and R 1.
The evanescent waves explicitly appear when the angu
spectrum representation~or plane-wave expansion! of the
field is used. In this representation, the fieldsC2 in R 2 and
C1 in R 1 are written@9#

C6~r !5E a6~K !exp~ iK•R1 igz!d2K

1E b6~K !exp~ iK•R2 igz!d2K , ~2!

whereg(K )5Ak22K2 for K2<k2 ~homogeneous or propa
gating components! andg(K )5 iAK22k2 for K2.k2 ~inho-
mogeneous or evanescent components!. We use the notations
R5(x,y) andK5uK u. Except when the integration domai
is specified, all integrals in this paper are extended to2`
,(Kx ,Ky),1`. Note that Eq.~2! is a representation of the
field valid in regionsR 2 andR 1 whereuzu remains finite,
so that there is no divergence of evanescent waves wheuzu
increases.

In the angular-spectrum representation~2!, the partitioned
S matrix relates the outgoing vector Cout(K )
5@b2(K ) a1(K )# to the incoming vector C in(K )
5@a2(K ) b1(K )# by the relation@9,25#

Cout~K !5E S~K ,K 8!C in~K 8!d2K 8, ~3!

whereS is a 232 matrix, sometimes called the partitionedS
matrix @9,25#, which can be written in the form

S~K ,K 8!5F r ~K ,K 8! t~K ,K 8!

t~K ,K 8! r~K ,K 8!
G . ~4!

The four elementsr ,t,r,t have the meaning of generalize
reflection and transmission coefficients@9,25#. Their defini-
tion can easily be extended to vector fields, as in electrom
netic scattering. In this case, the four coefficients beco
tensor operators@26#.

III. RECIPROCITY RELATION

For incoming and outgoing fields without evanesce
components~source-free fields!, reciprocity and unitarity re-
lations for the partitionedS matrix are well established
@9,25#. They were derived as a consequence of the symm
and unitarity of the asymptotic~far-field! S matrix. Extend-
ing these relations to general wave fields with evanesc
components requires a different procedure. Note that r
procity of evanescent waves was derived previously in s
cific cases, such as electromagnetic waveguide theory@24#,
electromagnetic~vector field! scattering@26#, and elastic-
wave scattering at a solid-solid interface@27#. In these ex-
amples, a suitable formulation of the reciprocity theorem w
used for each particular case. In this paper, we give a p
of reciprocity of theSmatrix for scattering of both homoge
2-2



te
id

e
ig
-

ia
to

r-

s
-

o-

-

e-
rs

t
e

he
o

es
the
ity

r-
f
m-

the

per,
re-
field
w-
w

ace

th

the

of
een

en-
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neous and evanescent scalar waves from a localized po
tial, starting from a general formulation of reciprocity val
for any kind of scalar wave.

Let C1 and C2 be two fields that are solutions of th
scattering problem depicted in Fig. 1. With reference to F
2, let us consider the volumeV delimited by the closed sur
face S composed of two planesz5z2 and z5z1 and a
sphere of radiusR centered at the center of the potent
region. The application of Green’s second identity leads

E
V
~C2DC12C1DC2!dV5E

S
S C2

]C1

]n
2C1

]C2

]n DdS,

~5!

where]/]n5n•¹ and n is the outward normal on the su
faceS. Both C1 andC2 satisfy Eq.~1! in R 2 andR 1, so
that the integrand in the left-hand side in Eq.~5! vanishes.
Moreover, in the far-field asymptotic limitukur→`, one has
]C j /]r 5 ikr 21C j , so thatC2]C1 /]n2C1]C2 /]n van-
ishes identically on the sphere surface when its radiuR
tends to infinity. Finally, Eq.~5! leads to the following equal
ity:

E
z5z2

S C2

]C1

]z
2C1

]C2

]z Dd2R

5E
z5z1

S C2

]C1

]z
2C1

]C2

]z Dd2R. ~6!

Equation~6! is a scalar version of Lorentz’s reciprocity the
rem, originally derived for the electromagnetic field@28#. In
order to obtain a reciprocity theorem for theS matrix, we
introduce the angular-spectrum representation Eq.~2! of the
fields C1 andC2 into Eq. ~6!. After some algebra, one ob
tains the following expression:

E E @a1
2~K ! b1

1~K !#$g~K !S~K ,K 8!

2g~K 8!ST~2K 8,2K !%Fa2
2~K 8!

b2
1~K 8!

Gd2K d2K 850, ~7!

where the superscriptT denotes the transposed matrix. B
cause Eq.~7! must be satisfied for any incoming vecto
@a1

2(K ) b1
1(K )# in situation 1 and@a2

2(K ) b2
1(K )# in

situation 2, one finally obtains

g~K !S~K ,K 8!5g~K 8!ST~2K 8,2K !. ~8!

Equation~8! is valid for 0,uK u,1` and 0,uK 8u,1`,
i.e., for propagating and evanescent waves. Note that
presence of the factorsg in Eq. ~8! is a consequence of th
definition of the angular spectrum of the field@Eq. ~2!# by
integration over the parallel wave vectorK . When using an
integration over the solid angleV, with k dV5d2K /g, these
factors disappear from the reciprocity relations. Nevert
less, the presence of evanescent waves would involve c
plex angles in theV representation, so that theK represen-
tation looks more appropriate.
01271
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IV. EXTENDED UNITARITY RELATIONS

The second basic property of theSmatrix is unitarity. It is
satisfied by theSmatrix of a lossless system~elastic scatter-
ing!. It is often assumed that the unitarity condition involv
only propagating waves. This belief is, in fact, based on
use of asymptotic fields in the derivation. Indeed, unitar
has been studied extensively in far-field~asymptotic! scatter-
ing @2# or scattering of source-free fields in the angula
spectrum representation@9,25#. Conversely, the extension o
unitarity relations to wave fields containing evanescent co
ponents has received little attention until now, except in
context of electromagnetic waveguide theory@24#. Neverthe-
less, as discussed in the Introduction of the present pa
extended unitarity relations could be helpful in various
cent applications, such as time-reversed acoustics, near-
optics, or propagation through random media from the vie
point of random-matrix theory. In this section, we show ho
such relations may be derived in the framework of free-sp
scattering from a localized potential.

In eitherR 2 or R 1, the current density associated wi
the field is J(r )5A Im$C* (r )¹C(r )%, whereA is a con-
stant, Im denotes the imaginary part, and the asterisk is
complex conjugate. With reference to Fig. 2, energy~or
probability! conservation states that the total fluxf
5*J•n dSflowing outside the volumeV vanishes. When the
radiusR of the sphere tends to infinity, the contribution
the flux through the portions of the sphere surface betw
the two planesz5z2 and z5z1 vanishes. Finally, energy
~or probability! conservation reads

fz25fz1, ~9!

where

fz65E
z5z6

J~R,z6!•n d2R. ~10!

FIG. 2. Closed volume used for the application of Green’s id
tity and the energy~or probability! balance.
2-3
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Using the angular-spectrum representation Eq.~2!, the cur-
rent fz6 accross a planez5z6 in R 6 can be cast in the
following form:

fz65AE
K2<k2

g@ ua6~K !u22ub6~K !u2#d2K

1AE
K2.k2

g@a6~K !b6* ~K !2a6* ~K !b6~K !#d2K .

~11!

This expression for the current deserves some commen
explicitly shows two separated contributions, one stemm
from propagating waves (K2<k2), and the other stemming
from evanescent waves only (K2.k2). Note that the latter is
a crossed term between counterdecaying evanescent w
For a givenK such thatK2.k2, if either a(K ) or b(K )
vanishes, then the associated current also vanishes. Fo
aim pursued in this section, it is precisely the existence
this contribution to the current that leads to the extend
unitarity relations of theS matrix. Introducing Eq.~11! into
Eq. ~9!, and using the definition of theS matrix ~3!, one
obtains the three following relations, involving scattering b
tween two propagating waves, between two evanes
waves, and between one evanescent and one propag
wave:

E
K8<k

g~K 9!

g~K 8!
S~K ,K 8!S†~K 9,K 8!d2K 8

5d~K2K 9!U for K<k,K9<k, ~12!

5S~K ,K 9! for K<k,K9.k, ~13!

5S~K ,K 9!2S* ~2K ,2K 9!

for K.k,K9.k, ~14!

whereU is the 232 unit matrix. The superscript † denote
the conjugated and transposed matrix.

Equation~12! is the well-known unitarity condition of the
S matrix restricted to the homogeneous components of
fields, which was obtained previously@2,3,25#. Using the
partitioned form of theSmatrix Eq.~4!, this condition can be
developed in terms of the generalized reflection and tra
mission coefficients. The resulting four expressions are
generalized Stokes relations of surface optics, which w
derived in @25#. Equations~13! and ~14! express, in theS
matrix formalism, probability~or energy! conservation in a
scattering process in which the incoming and/or the outgo
fields contain evanescent components. Hence, they ca
considered as extended unitarity conditions for theS matrix
of fields containing evanescent components. Because thS-
matrix formalism is used in many fields of theoretical phy
ics, and because there has been increasing interest in
nomena involving direct use and measurement of evanes
fields, we believe that this result may have important con
quences and applications. For example, the developmen
Eqs. ~13! and ~14! in terms of generalized reflection an
transmission coefficients leads to relationships that ext
01271
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the generalized Stokes relations to evanescent fields. S
relations may be useful, e.g., in the context of surfaces,
films, and multilayers optics. The generalized Stokes re
tionships and their extension to fields containing evanesc
components are given in the Appendix.

V. TIME-REVERSAL INVARIANCE

In this section we discuss time-reversal invariance
classical scalar waves~we exclude from the discussion th
question of time reversal in quantum mechanics which
difficult to separate from the measurement problem!.

A. Time reversal in angular-spectrum representation

Let C(r ,t) be a classical scalar fieldin the time domain,
and C(r ,v) its frequency spectrum. BecauseC(r ,t) is a
real function, its frequency spectrum satisfiesC(r ,v)
5C* (r ,2v). From this condition, it is straightforward to
show that the time-reversed fieldC(r ,2t) has a frequency
spectrum C* (r ,v). Hence time reversal ofC(r ,t) is
equivalent to complex conjugation ofC(r ,v) throughout all
space. Note that time reversal is not equivalent to phase
jugation in only one plane@29#. We shall come back to this
point later.

Let us see what time reversal means in terms of the
gular spectrum of the monochromatic fieldC(r ) ~the vari-
ablev is omitted in the following!. From complex conjuga-
tion of Eq. ~2! and the change of variableK→ÀK , one
obtains

C* ~r !5E a* ~2K !exp~ iK•R2 ig* z!d2K

1E b* ~2K !exp~ iK•R1 ig* z!d2K . ~15!

The symbols6 have been omitted in Eq.~15! because we do
not need to specify at this stage whether the field propag
in R 1 or in R 2. We see that, in terms of angular spectru
time reversal is equivalent to the transformati
a(K )exp(igz)→a* (2K )exp(2ig*z) and b(K )exp(2igz)
→b* (2K )exp(ig*z) for all values of zin eitherR 1 or R 2.
Note that Eq.~15! is valid in regions of space for whichuzu
remains finite, so that there is no divergence of time-rever
evanescent waves whenuzu increases.

B. Time-reversal invariance: consequence for theS matrix

In order to study the implication of time-reversal invar
ance for theS matrix, let us consider a monochromatic fie
C1(r ) which is a solution of the scattering problem depict
in Fig. 1, the scattering potential being described by theS
matrix S. Let C2(r ) be the time reversal of the fieldC1(r ).
In terms of the angular spectrum, this means that

a2
1~K !exp~ igz!1b2

1~K !exp~2 igz!

5a1
1* ~2K !exp~2 ig* z!1b1

1* ~2K !exp~ ig* z!

~16!
2-4
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for all values ofz in R 1 and

a2
2~K !exp~ igz!1b2

2~K !exp~2 igz!

5a1
2* ~2K !exp~2 ig* z!1b1

2* ~2K !exp~ ig* z!

~17!

for all values ofz in R 2. The scattering problem is invarian
under time reversal if, and only if,C2(r ) is also a solution of
the scattering problem, described bythe same Smatrix S.
This means that the outgoing vectorsC1

out(K )
5@b1

2(K ) a1
1(K )# and C2

out(K )5@b2
2(K ) a2

1(K )# are
connected to the incoming vectors C1

in(K )
5@a1

2(K ) b1
1(K )# and C2

in(K )5@a2
2(K ) b2

1(K )#, re-
spectively, by relation~3!. Introducing these conditions int
Eqs.~16! and ~17! leads to the following relations:

E
K8<k

S~K ,K 8!S* ~2K 8,K 9!d2K 8

5d~K1K 9!U for K<k,K9<k, ~18!

52S~K ,2K 9! for K<k,K9.k, ~19!

5S* ~2K ,K 9!2S~K ,2K 9!

for K.k,K9.k, ~20!

where the asterisk denotes the conjugated matrix. Thes
lations express the condition of time-reversal invariance
terms of theSmatrix of fields containing evanescent comp
nents.

The set of Eqs.~18!–~20! is very similar to the set of Eqs
~12!–~14!, which describes energy conservation. In fact, it
easy to see that these two sets of equations are equiva
provided that the reciprocity relation~8! is satisfied. Indeed
Eqs.~18!–~20! are transformed into Eqs.~12!–~14! by using
Eq. ~8! and changingK 9→2K 9. The result we have ob
tained can be summarized as follows: the condition of tim
reversal invariance is equivalent to both energy conserva
~extended unitarity condition! and reciprocity~symmetry of
the S matrix!. Although this result was already known fo
source-free fields@23#, we have demonstrated that it hold
for fields containing evanescent components.

C. Time-reversal invariance and reciprocity

The results in this paper also provide a basis to discuss
link between time-reversal symmetry and reciprocity, wh
is sometimes confusing in the literature@3# ~see also a dis-
cussion of this point in Ref.@26#!. For a scattering system i
which energy is conserved@Eqs.~12!–~14! are satisfied#, the
conditions of time-reversal invariance@Eqs. ~18!–~20!# and
reciprocity@Eq. ~8!# are equivalent. This is probably the re
son why time-reversal symmetry and reciprocity are of
mistaken. In particular, reciprocity is often presented a
consequence of time-reversal invariance@3#. This is in gen-
eral incorrect. For example, we have seen that impos
time-reversal invariance leads to Eqs.~18!–~20! and not to
01271
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the reciprocity condition Eq.~8!. Moreover, a scattering sys
tem may be reciprocal, without being conservative@Eq. ~8! is
satisfied, but not Eqs.~12!–~14!#. In this case, the system i
not invariant under time reversal@Eqs. ~12!–~14! cannot be
satisfied#. These conclusions hold for fields with or withou
evanescent components.

D. Experimental feasibility of time reversal

An important problem is the experimental achievement
time reversal in a situation involving wave scattering. In o
tics, the development of phase conjugating mirrors provi
a practical tool to produce fields that are conjugates of e
other in a given plane. Nevertheless, it has been shown th
this type of phase conjugation is not equivalent to time
versal when the fields involved contain evanescent com
nents@29#. The subject of time reversal of fields containin
evanescent components is of particular interest in the con
of time-reversed acoustics@22#. In this technique, the acous
tic field in a direct situation is recorded on a given surfaceS,
after scattering by an arbitrary object. In the reversed sit
tion, the time-reversed field is emitted from the surfaceS, in
the presence of the same scattering object. In the freque
domain, the fields in the two situations are complex con
gates of each other onS. Thus, this experiment is equivalen
to achieving acoustic phase conjugation on the surfaceS. In
both optics@21# and acoustics@22#, the possibility of achiev-
ing time reversal of both the homogeneous and evanes
components of the field by phase conjugation may be qu
tioned.

The first part of the answer is given by showing that pha
conjugation on the surface of a closed cavity~or equivalently
along two planesz5z1 andz5z2) is equivalent to time re-
versal at all pointsinside the cavity ~or in the stripz1,z
,z2). This assertion is a consequence of the following
sult: two fields defined inside the stripz1,z,z2 that are
complex conjugates in the two planesz5z1 and z5z2 are
complex conjugates at all points within the stripz1,z,z2.
Therefore, they are time reversed from each other in
cavity. This result holds for fields containing evanesce
components. It can be derived by extending the discussio
Ref. @29# to a situation involving phase conjugation alon
two planesz5z1 and z5z2. Consequently, phase conjug
tion on a closed surface~or along two planes! may be a
practical way to achieve complete time reversal of a field

The second part of the answer must take into account
presence of sources inside the cavity in the direct exp
ment. In theory, reversing time leads automatically to
transformation of all primary sources into sinks. Therefo
to achieve time reversal experimentally, the field on the s
face of the cavity has to be time reversed,and the sources
have to be transformed into sinks. This is probably the gre
est experimental challenge. This is also the necessary co
tion to obtain complete time reversal~i.e., with evanescen
waves included! and achieve, for example, time-reversed f
cusing below the diffraction limit. The necessity of replacin
sources by sinks in the time-reversed situation can be un
stood as follows. In the direct situation, a subwavelen
source radiates a localized field whose angular spectrum
2-5
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tains evanescent waves. In the reversed situation, the si
equivalent to a source with opposite phase. This locali
source also radiates evanescent waves which allow the t
reversed field to focus below the diffraction limit.

VI. CONCLUSION

In summary, we have derived general properties of thS
matrix of fields containing evanescent components. In p
ticular, we have shown that energy~or probability! conser-
vation leads to relationships that extend the well-known u
tarity condition of the asymptoticS matrix. Using the
partitionedS matrix, we have shown that these relationsh
lead to extended Stokes relations. We have also obta
different relationships as a consequence of time-reversa
variance. On this basis, we have discussed the link betw
unitarity, time-reversal symmetry, and reciprocity. With t
increasing interest in techniques based on measuremen
control of evanescent waves, we think that this work sho
find broad applications. In particular, we have briefly d
cussed its implications in time reversal of scattered fields
phase conjugation.
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APPENDIX: GENERALIZED STOKES RELATIONS
FOR FIELDS CONTAINING EVANESCENT WAVES

In this Appendix, we summarize the relations that a
obtained by inserting the coefficients of the partitionedS
matrix Eq. ~4! into relations~12!–~14!. The first four rela-
tions are the generalized Stokes relationships obtaine
Ref. @25#. The other relations are extensions of the Sto
relationships to fields containing evanescent compone
We use the notationsg85g(K 8) andg95g(K 9).

1. Relations involving homogeneous waves only

Relations valid forK<k andK9<k:

E
K8<k

d2K 8@r~K ,K 8!t* ~K 9,K 8!1t~K ,K 8!r * ~K 9,K 8!#
g9

g8

50, ~A1!

E
K8<k

d2K 8@r~K ,K 8!r* ~K 9,K 8!1t~K ,K 8!t* ~K 9,K 8!#
g9

g8

5d~K2K 9!, ~A2!

E
K8<k

d2K 8@r ~K ,K 8!r * ~K 9,K 8!1t~K ,K 8!t* ~K 9,K 8!#
g9

g8

5d~K2K 9!, ~A3!
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E
K8<k

d2K 8@r ~K ,K 8!t* ~K 9,K 8!1t~K ,K 8!r* ~K 9,K 8!#
g9

g8

50. ~A4!

2. Relations involving conversion of homogeneous
to evanescent waves

Relations valid forK<k andK9.k:

E
K8<k

d2K 8@r~K ,K 8!t* ~K 9,K 8!1t~K ,K 8!r * ~K 9,K 8!#
g9

g8

5t~K ,K 9!, ~A5!

E
K8<k

d2K 8@r~K ,K 8!r* ~K 9,K 8!1t~K ,K 8!t* ~K 9,K 8!#
g9

g8

5r~K ,K 9!, ~A6!

E
K8<k

d2K 8@r ~K ,K 8!r * ~K 9,K 8!1t~K ,K 8!t* ~K 9,K 8!#
g9

g8

5r ~K ,K 9!. ~A7!

E
K8<k

d2K 8@r ~K ,K 8!t* ~K 9,K 8!1t~K ,K 8!r* ~K 9,K 8!#
g9

g8

5t~K ,K 9!. ~A8!

3. Relations involving conversion of evanescent
to evanescent waves

Relations valid forK.k andK9.k:

E
K8<k

d2K 8@r~K ,K 8!t* ~K 9,K 8!1t~K ,K 8!r * ~K 9,K 8!#
g9

g8

5t~K ,K 9!2t* ~2K ,2K 9!, ~A9!

E
K8<k

d2K 8@r~K ,K 8!r* ~K 9,K 8!1t~K ,K 8!t* ~K 9,K 8!#
g9

g8

5r~K ,K 9!2r* ~2K ,2K 9!, ~A10!

E
K8<k

d2K 8@r ~K ,K 8!r * ~K 9,K 8!1t~K ,K 8!t* ~K 9,K 8!#
g9

g8

5r ~K ,K 9!2r * ~2K ,2K 9!, ~A11!

E
K8<k

d2K 8@r ~K ,K 8!t* ~K 9,K 8!1t~K ,K 8!r* ~K 9,K 8!#
g9

g8

5t~K ,K 9!2t* ~2K ,2K 9!. ~A12!
2-6
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