PHYSICAL REVIEW A, VOLUME 62, 012712

Reciprocity, unitarity, and time-reversal symmetry of the S matrix
of fields containing evanescent components

R. Carminatit J. J. Sanz? J.-J. Greffet and M. Nieto-Vesperinds
L aboratoire d’Energéique Moleulaire et Macroscopique, Combustion, Ecole Centrale Paris,
Centre National de la Recherche Scientifique, 92295t€my-Malabry Cedex, France
2Departamento de Bica de la Materia Condensada and Instituto de Ciencia de Materiales “NicGlabrera,”
Universidad Autooma de Madrid, Cantoblanco, 28049 Madrid, Spain
3Instituto de Ciencia de Materiales de Madrid, Consejo Superior de InvestigacionesfiCamti
Cantoblanco, 28049 Madrid, Spain
(Received 7 February 2000; published 16 June 2000

We derive general relationships of tBamatrix of fields containing evanescent components. Our formalism
covers time-independent quantum scattering as well as scattering of classical scalar waves. We show that
reciprocity, energyor probabilityy conservation, and time-reversal symmetry in the presence of evanescent
waves lead to relationships that extend the well-known relations previously derived in asymptotic scattering.
On this basis, we discuss the link between reciprocity and time-reversal symmetry. We also address the
experimental feasibility of time reversal of a field containing evanescent components.

PACS numbeis): 03.65.Nk, 03.50-z, 42.25.Fx, 11.55:m

[. INTRODUCTION niques developed that involve scattering and/or direct mea-
surement of evanescent wavésear fields. For example,
The scattering matrix § matrix) was introduced by evanescent-wave scattering is involved in the emission pro-
Heisenberg to describe a scattering process without any asess of an atom or a molecule close to a surfa&or in the
sumption about the details of the interactidd. In this for-  surface-plasmon-polarito(SPP mechanism which leads to
malism, the process is thought of as a transformation of athe enhanced backscattering of light on slightly rough metal
incoming state¥’;, into an outgoing stat&’ ., which de-  surfaced14]. It is also the basic principle of near-field scan-
scribe the system far away from the interaction potentialning probe microscopies, using either electfd®] or photon
Hence, theS matrix describes the scattering procesymp- [16] tunneling. Modeling the image formation in scanning
totically. The mathematical transcription of this transforma-near-field optical micoscop{SNOM) requires a precise de-
tion is an operator relationshif,,;=S¥;,, where S is  scription of a mechanism involving scattering of evanescent
called theS matrix [2,3]. It is well known that theS matrix ~ waves[17]. The advent of SNOM has also allowed a direct
exhibits some properties that are independent of the specifiexperimental study of SPP excitation and scattefi&} and
problem under study. In particular, it is unitary and symmet-Anderson localization of surface excitatiofi®] and stimu-
ric, these two properties reflecting probabilitgr energy  lated theoretical works on SPP scattering by surface rough-
conservation in elastic scattering and reciprocity, respecness or localized objecf&0]. In all these fields, the descrip-
tively [3]. The general aim being to get maximum informa- tion of the coupling between an incident evanescent wave
tion about theS matrix with minimum knowledge about the and a scattered propagating or evanescent wave is of funda-
interaction itself, other properties may be derived, based, fomental interest. Ar5-matrix formalism, with a definition in-
example, on dispersion relations and causality condifidhs cluding the near-field components, should be very useful in
The existence of such general properties of $heatrix is  this context. TheS matrix also provides a useful formalism
the reason why it has become a fundamental tool in mosdo discuss time reversal of wave fields, and especially its link
areas of theoretical physics, e.g., in quantum scatt¢@f8,  with reciprocity (symmetry of theS matrix) and probability
in particle physicg5], in field theory, and in statistical phys- or energy conservatiofunitarity). In particular, the question
ics [6]. Its definition and its use have also been extended tof time reversal of fields containing evanescent components
scattering of classicalacoustic and electromagnetiwaves has recently received increasing attention, with the demon-
[7,8]. For example, thés matrix has become a fundamental stration of phase conjugation of optical near fiefd4] and
tool (as well as a practical ohéo compute scattered fields in of time reversal of acoustic wavég2]. In this last case, the
physical optics[9]. This formalism has also found a wide S matrix formalism was used to discuss the properties of a
range of applications with the development of random-time-reversal acoustic cavity, without taking into account the
matrix theory[10], which has recently acquired renewed in- role of evanescent wav¢23]. Nevertheless, the question of
terest through its use in quantum- and classical-wave transubwavelength focusing of a field by time reversal was
port in random medif11,17. raised. This is an important issue, whose discussion requires
The S matrix was originally defined as an operator actingthe use of a formalism including the evanescent components
on asymptoticstates. In scattering by a time-independent po-of the field.
tential (we shall restrict our discussion to this cgsthis Finding general properties of th® matrix, extended to
means that th& matrix relates the far-field amplitudes of the evanescent waves, is of major importance in understanding
incoming and outgoing field§2,7,8]. Nevertheless, in the and modeling all phenomena and devices involving near-
last ten years, new effects have been observed and new tedfeld scattering. To our knowledge, this problem has received
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R~ R sumed confined within the strip<z<z,, and independent
| . of the field (linear scattering The regionsz<<0 andz>L
a1K) i :W} contain sources, the presence of which, at finite distance
\ ; from the scattering region, is necessary to ensure the exis-
SONFCis ) I tence of incident evanescent waves in b@&h and R .
e . | \ The evanescent waves explicitly appear when the angular-
b(K) Sifgf;f;:;‘? (K spectrum representatiofor plane-wave expansiprof the
i i field is used. In this representation, the fieldls in R ~ and
i i Z v in R* are written[9]
7=0 7=71 1=7, Z=L

=+ — * : H 2
FIG. 1. Scattering geometry and notation. v (r)_f a”(K)exp(iK -R+iyz)d“K

I|ttl.e attention until now, except in eI_ect_romagngtm wave- +f b* (K)expiK - R—iyz)d?K, 2
guide theory where reciprocity and unitarity relations for the

S matrix in the presence of evanescent modes have been i 9 L2
briefly discussed24]. In this work, we concentrate on reci- wherey(K) = Jk®—K* for K*<k” (homogeneous or propa-

procity, unitarity, and time-reversal symmetry in the frame-9ating componentsand y(K) =i yK*—k* for K2>k? (inho-

work of scattering from a localized potential, in the presencd0geneous or evanescent componettée use the notations

of evanescent waves in both the incoming and outgoing?= (%:¥) andK=|K|. Except when the integration domain

fields. The formalism we use covers time-independent quarls SPecified, all integrals in this paper are extended-to

tum scattering as well as scattering of classical scalar waves: (Kx.Ky)<+2. Note that Eq(2) is a representation of the

In Sec. I, we define th& matrix based on the angular rep- field valid in regionsk ~ andR " where|z| remains finite,

resentation of the field, sometimes called thetitioned S SO that there is no divergence of evanescent waves \aien

matrix in the literaturd9,25]. In Sec. I, we give a general NCreases. -

derivation of theS matrix reciprocity for scalafquantum and In the angular-spectrum representatiay the partitioned

classical fields, in the presence of evanescent waves. In Se® Mmatrix relates the outgoing  vector W°U{(K)

IV, we show that energyor probability conservation in =[b (K) a"(K)] to the incoming vector ¥'"(K)

scattering of fields containing evanescent components leads[@ (K) b™(K)] by the relation(9,25]

to generalized unitarity relations of tt®matrix. These rela-

tions extend those previously derived for source-free fields WOUt(K):f SK,KHPN(K")d?K’, 3)

(i.e., fields without evanescent componeng25], and those

obtained in electromagnetic waveguide thef®g]. In Sec.  yhereSis a 2x 2 matrix, sometimes called the partitiongd

V, we _address tht_’-_\ .problem of time-reversal symmetry of,5trix [9,25], which can be written in the form

wave fields containing evanescent components. We show

that the time-reversal invariance condition leads to a differ-

ent relationship for th& matrix. On this basis, the link be- S(K,K")=

tween reciprocity, unitarity, and time-reversal invariance is

discussed. This problem is of fundamental and practical imThe four elements,t,p,r have the meaning of generalized

portance, due, for example, to its potential application toreflection and transmission coefficieni825]. Their defini-

time reversal of acoustic wavé®2]. Finally, we give a sum- tion can easily be extended to vector fields, as in electromag-

mary and a general conclusion in Sec. VI. netic scattering. In this case, the four coefficients become
tensor operatorg26].

r(k,K")y 7(K,K")

t(K,K') p(K, KN @

Il. DEFINITION OF THE S MATRIX
lll. RECIPROCITY RELATION
Let us consider the scattering problem depicted in Fig. 1. . _ . . _
The regions &<z<z, and z,<z<L, denoted byR ~ and For incoming and outgoing fields without evanescent

R *, respectively, are assumed to be of constant potential, sgPmponentgsource-free fields reciprocity and unitarity re-
that the wave field in these regions obeys the timeJations for the partitionedS matrix are well established

independent wave equation [9,25]. They were derived as a consequence of the symmetry
and unitarity of the asymptotitfar-field) S matrix. Extend-
V2 (r)+k>¥(r)=0, (1) ing these relations to general wave fields with evanescent

components requires a different procedure. Note that reci-
where r=(x,y,z). In Eq. (1), ¥(r) is either the time- procity of evanescent waves was derived previously in spe-
independent wave function of a state of ener§y[k® cific cases, such as electromagnetic waveguide thigdfy
=2m/k%(E—V), whereV is the potential andnthe mass of  electromagnetiqvector field scattering[26], and elastic-
the particld, or a monochromatic classical wave of fre- wave scattering at a solid-solid interfaf27]. In these ex-
quency w (k=w/c, wherec is the phase velocity in the amples, a suitable formulation of the reciprocity theorem was
medium). The wave numbek? is real, but can be negative, used for each particular case. In this paper, we give a proof
e.g., in a tunneling barrier. The scattering potential is aseof reciprocity of theS matrix for scattering of both homoge-
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neous and evanescent scalar waves from a localized poten- 3
tial, starting from a general formulation of reciprocity valid
for any kind of scalar wave. V\

Let ¥, and ¥, be two fields that are solutions of the '

scattering problem depicted in Fig. 1. With reference to Fig. R-
2, let us consider the volumé delimited by the closed sur-
face 3 composed of two planez=z~ and z=z' and a

sphere of radiuRR centered at the center of the potential L
region. The application of Green’s second identity leads to

)

| /
Y
W, - L a'(K)

I,
fv(qIZA\I,l_\I}lA\IIZ)dV: J'E(\IIZW_\P]'W dS,

© /o | N[z
whered/on=n-V andn is the outward normal on the sur-
faceX. Both ¥, and ¥, satisfy Eq.(1) in R~ andR ¥, so =71 S ogez*
that the integrand in the left-hand side in E§) vanishes.
Moreover, in the far-field asymptotic limjk|r — o, one has
W /ar=ikr ¥, so thatW,d¥,/dn—W¥,;0¥,/dn van-
ishes identically on the sphere surface when its radRus FIG. 2. Closed volume used for the application of Green’s iden-
tends to infinity. Finally, Eq(5) leads to the following equal- tity and the energyor probability balance.

ity:

IV. EXTENDED UNITARITY RELATIONS

f (quﬂ _wlﬁ) d?Rr The second basic property of tBenatrix is unitarity. It is
2=z Iz 9z satisfied by theS matrix of a lossless systefelastic scatter-
AN av, ing). It is often assumed that the unitarity condition involves
= L Z+(\P2W_\P1¥>d2R' (6) only propagating waves. This belief is, in fact, based on the

use of asymptotic fields in the derivation. Indeed, unitarity
has been studied extensively in far-fiédsymptotig scatter-
ing [2] or scattering of source-free fields in the angular-
spectrum representati¢f,25]. Conversely, the extension of
unitarity relations to wave fields containing evanescent com-
ponents has received little attention until now, except in the
context of electromagnetic waveguide thef2¢]. Neverthe-
less, as discussed in the Introduction of the present paper,
extended unitarity relations could be helpful in various re-
j f [a; (K) bf(K)]{y(K)S(K,K’) cent applications, such as time-reversed acoustics, near-field
optics, or propagation through random media from the view-
point of random-matrix theory. In this section, we show how
d?K d?K’ =0, (7) such relations may be derived in the framework of free-space
scattering from a localized potential.

In eitherR ~ or R *, the current density associated with
where the superscripk denotes the transposed matrix. Be-the field isJ(r)=AIm{W*(r)V¥(r)}, whereA is a con-
cause Eq.(7) must be satisfied for any incoming vectors stant, Im denotes the imaginary part, and the asterisk is the
[a; (K) by (K)] in situation 1 anda, (K) b, (K)]in  complex conjugate. With reference to Fig. 2, enefgy

Equation(6) is a scalar version of Lorentz’s reciprocity theo-
rem, originally derived for the electromagnetic fi¢RB]. In
order to obtain a reciprocity theorem for tigematrix, we
introduce the angular-spectrum representation(Bgof the
fields ¥, and¥, into Eq. (6). After some algebra, one ob-
tains the following expression:

a; (K")

_7(K,)ST(_K,!_K)} b+(K/)
2

situation 2, one finally obtains probability) conservation states that the total flus
) T ) = [J-ndSflowing outside the volum¥ vanishes. When the
Y(K)S(K,K")=y(K")S' (=K', —K). (8 radiusR of the sphere tends to infinity, the contribution of

_ _ _ ) the flux through the portions of the sphere surface between
Equation(8) is valid for 0<|K|<+e and 0<|K’|<+%,  the two planez=z" andz=z" vanishes. Finally, energy
i.e., for propagating and evanescent waves. Note that thgr probability conservation reads
presence of the factorg in Eq. (8) is a consequence of the
definition of the angular spectrum of the fidlEq. (2)] by b=, (9)

. . . z z™
integration over the parallel wave vectdr When using an
integration over the solid angl@, with k dQ = d?K/y, these
. : . . where
factors disappear from the reciprocity relations. Neverthe-
less, the presence of evanescent waves would involve com-
plex angles in th&) representation, so that thé represen- b t:f J(R,z%)-n d?R. (10)
tation looks more appropriate. z z=7" '
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Using the angular-spectrum representation &g the cur-  the generalized Stokes relations to evanescent fields. Such
rent ¢,= accross a plang=z* in R = can be cast in the relations may be useful, e.g., in the context of surfaces, thin

following form: films, and multilayers optics. The generalized Stokes rela-
tionships and their extension to fields containing evanescent
* * components are given in the Appendix.
pe=h] e )P ()Pl P 9 PP

V. TIME-REVERSAL INVARIANCE

+A a*(K)b™* (K)—a™*(K)b*(K)]d’K.
fK2>k2y[ (K) (K) (K)b=(K)] In this section we discuss time-reversal invariance for

(12) classical scalar wavesve exclude from the discussion the
question of time reversal in quantum mechanics which is

This expression for the current deserves some comment. difficult to separate from the measurement problem
explicitly shows two separated contributions, one stemming
from propagating wavesk(®<k?), and the other stemming A. Time reversal in angular-spectrum representation
from evanescent waves onliKf>k?). Note that the latter is ) i i _
a crossed term between counterdecaying evanescent waves L€t ¥ (r,t) be a classical scalar fieid the time domain
For a givenK such thatk?>k?, if either a(K) or b(K) and ‘P(r,w_) its _frequency spectrum. Becausl_e(_r,t) is a
vanishes, then the associated current also vanishes. For tF@I*funCt'O”' its frequency spectrum satisfids(r, w)
aim pursued in this section, it is precisely the existence of ¥~ (f,— ). From this condition, it is straightforward to
this contribution to the current that leads to the extendednow that the time-reversed fiell(r,—t) has a frequency
unitarity relations of theS matrix. Introducing Eq(11) into ~ SPectrum W*(r,»). Hence time reversal of¥(rt) is
Eq. (9), and using the definition of th& matrix (3), one equivalent to complex conjuga'qon @f(r,g) throughout all
obtains the three following relations, involving scattering be-SPace. Note that time reversal is not equivalent to phase con-
tween two propagating waves, between two evanesceddation in only one plang29]. We shall come back to this
waves, and between one evanescent and one propagatiRgint later.

wave: Let us see what time reversal means in terms of the an-
gular spectrum of the monochromatic field(r) (the vari-
(K" able w is omitted in the following. From complex conjuga-
f , ——8(K,K")S"(K",K")d*K’ tion of Eq. (2) and the change of variabl ——K, one
K<k y(K') obtains
=8(K-K"U for K=<k,K"=Kk, (12
‘If*(r)=f a* (—K)exp(iK-R—iy*z)d?K

=S(K,K") for Ksk,K">Kk, (13)

=S(K,K") =S (—K,—K") +f b*(—K)exp(iK-R+iy*z)d’K. (15)
for K>k,K">Kk, (14

The symbolst have been omitted in EGL5) because we do
whereU is the 2< 2 unit matrix. The superscript T denotes not need to specify at this stage whether the field propagates
the conjugated and transposed matrix. in R* orin R ~. We see that, in terms of angular spectrum,

Equation(12) is the well-known unitarity condition of the time reversal is equivalent to the transformation
S matrix restricted to the homogeneous components of thg(K)exp(yz)—a*(—K)exp(—iy*z) and b(K)exp(—iy2)
fields, which was obtained previous[,3,23. Using the  _p*(—K)exp(y*2) for all values of zin eitherR * or R ~.
partitioned form of theSmatrix Eq.(4), this condition can be  Note that Eq(15) is valid in regions of space for whidz]|
developed in terms of the generalized reflection and transemains finite, so that there is no divergence of time-reversed
mission coefficients. The resulting four expressions are th@vanescent waves whérj increases.
generalized Stokes relations of surface optics, which were
derived in[25]. Equations(13) and (14) express, in theS
matrix formalism, probability(or energy conservation in a
scattering process in which the incoming and/or the outgoing In order to study the implication of time-reversal invari-
fields contain evanescent components. Hence, they can l@@ce for theS matrix, let us consider a monochromatic field
considered as extended unitarity conditions for 8watrix W 1(r) which is a solution of the scattering problem depicted
of fields containing evanescent components. Becaus&the in Fig. 1, the scattering potential being described by $he
matrix formalism is used in many fields of theoretical phys-matrix S. Let ¥,(r) be the time reversal of the fieMf(r).
ics, and because there has been increasing interest in phe-terms of the angular spectrum, this means that
nomena involving direct use and measurement of evanescent N ) N i
fields, we believe that this result may have important conse- @z (K)exp(iyz) + b, (K)exp(—iyz)
guences and applications. For example, the development of - - % -
Egs. (13) and (14) in terms of generalized reflection and =a; " (= K)exp(—iy*2) +b, " (—K)exniy*z)
transmission coefficients leads to relationships that extend (16

B. Time-reversal invariance: consequence for th& matrix
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for all values ofzin R * and the reciprocity condition Eq:8). Moreover, a scattering sys-
tem may be reciprocal, without being conservafitzg. (8) is
a, (K)expiyz)+ b, (K)exp —iyz) satisfied, but not Eqg12)—(14)]. In this case, the system is

- . s . not invariant under time reversHEgs. (12)—(14) cannot be
=a, " (—K)exp(—iy*2)+b; " (—K)expiy*2) satisfied. These conclusions hold for fields with or without
(17  evanescent components.

for all values ofzin R ~. The scattering problem is invariant D. Experimental feasibility of time reversal
under time reversal if, and only i »,(r) is also a solution of

the scattering problem, described the same Snatrix S. i An |mportia_nt pro_kt)lerp IS _the el.\x_penmental a('ith |e_vem|ent of
This means that the outgoing vectorsPeUi(K) ime reversal in a situation involving wave scattering. In op-

- ¥ Uty Ly e ¥ tics, the development of phase conjugating mirrors provides
=1by (K) “a; (K)] and W3 (K)=[b, (K) a,(K)] are a practical tool to produce fields that are conjugates of each
otherin a given plane Nevertheless, it has been shown that
this type of phase conjugation is not equivalent to time re-
versal when the fields involved contain evanescent compo-
nents[29]. The subject of time reversal of fields containing
evanescent components is of particular interest in the context

connected to the incoming  vectors ¥ (K)
=[a; (K) by (K)] and W(K)=[a, (K) bj(K)], re-
spectively, by relatior{3). Introducing these conditions into
Egs.(16) and(17) leads to the following relations:

S(K,K")S* (=K', K")d?K’ of time-reversed acousti¢&2]. In this technique, the acous-
K’<k tic field in a direct situation is recorded on a given surface
=S(K+K"U for K=k,K'<Kk, (1g  after scattering by an arbitrary object. In the reversed situa-
tion, the time-reversed field is emitted from the surfagen
= S(K,—K") for K=k,K">k, (19 the presence of the same scattering object. In the frequency

domain, the fields in the two situations are complex conju-
_ Y Y gates of each other ai. Thus, this experiment is equivalent
=S (=K,K") = S(K,=K") to achieving acoustic phase conjugation on the surkack
for K>k,K">k, (20) _both_optics[Zl] and acoustic22], the possibility of achiev-
ing time reversal of both the homogeneous and evanescent

where the asterisk denotes the conjugated matrix. These réomponents of the field by phase conjugation may be ques-
lations express the condition of time-reversal invariance irfion€d- o _
terms of theS matrix of fields containing evanescent compo- 1€ first part of the answer is given by showing that phase
nents. conjugation on the surface of a closed cayiy equivalently
The set of Eqs(18)—(20) is very similar to the set of Eqs. 2/0ng two planeg=z, andz=2,) is equivalent to time re-
(12)—(14), which describes energy conservation. In fact, it isversal at all pointsnside the cavity (or in the stripz, <z
easy to see that these two sets of equations are equivalefitZz)- This assertion is a consequence of the following re-
provided that the reciprocity relatioi8) is satisfied. Indeed, Sult: two fields defined inside the strip <z<z, that are
Egs.(18)—(20) are transformed into Eq$12)—(14) by using complex conjugates in the two pIa_ne_s Z; and_z=zz are
Eq. (8) and changing<”— —K”. The result we have ob- complex conjugates a_t all points within the stﬂp<z<22_.
tained can be summarized as follows: the condition of time-Therefore, they are time reversed from each other in the
reversal invariance is equivalent to both energy conservatiof@vity. This result holds for fields containing evanescent
(extended unitarity conditionand reciprocity(symmetry of ~components. It can be derived by extending the discussion in
the S matrix). Although this result was already known for Ref. [29] to a situation involving phase conjugation along
source-free field§23], we have demonstrated that it holds tWo planesz=z; andz=z,. Consequently, phase conjuga-

for fields containing evanescent components. tion on aclosedsurface(or along two plangsmay be a
practical way to achieve complete time reversal of a field.

The second part of the answer must take into account the
presence of sources inside the cavity in the direct experi-

The results in this paper also provide a basis to discuss thment. In theory, reversing time leads automatically to the
link between time-reversal symmetry and reciprocity, whichtransformation of all primary sources into sinks. Therefore,
is sometimes confusing in the literatur®] (see also a dis- to achieve time reversal experimentally, the field on the sur-
cussion of this point in Ref26]). For a scattering system in face of the cavity has to be time reversead the sources
which energy is conservddqgs.(12)—(14) are satisfiefl the  have to be transformed into sinks. This is probably the great-
conditions of time-reversal invarian¢&qgs. (18)—(20)] and  est experimental challenge. This is also the necessary condi-
reciprocity[Eq. (8)] are equivalent. This is probably the rea- tion to obtain complete time reverséle., with evanescent
son why time-reversal symmetry and reciprocity are oftenwaves includegland achieve, for example, time-reversed fo-
mistaken. In particular, reciprocity is often presented as ausing below the diffraction limit. The necessity of replacing
consequence of time-reversal invariai@g This is in gen-  sources by sinks in the time-reversed situation can be under-
eral incorrect. For example, we have seen that imposingtood as follows. In the direct situation, a subwavelength
time-reversal invariance leads to Eq$8)—(20) and not to  source radiates a localized field whose angular spectrum con-

C. Time-reversal invariance and reciprocity
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tains evanescent waves. In the reversed situation, the sink i ¥
equivalent to a source with opposite phase. This Iocalize(j d?K'[r (K, KOt (K" K"+ 7(K,K")p* (K" K')]—
source also radiates evanescent waves which allow the timeK'=<k Y
reversed field to focus below the diffraction limit. 0 (Ad)

VI. CONCLUSION
2. Relations involving conversion of homogeneous

In_ summary, we ha_lv_e derived general properties ofShe to evanescent waves
matrix of fields containing evanescent components. In par- ) ] ,
ticular, we have shown that energgr probability conser- Relations valid folK<k andK">k:

vation leads to relationships that extend the well-known uni-

tarity condition of the asymptoticS matrix. Using the 2101 Nk KT ek (K KT
partitionedS matrix, we have shown that these relationships fK'gkd K Lp(K, K7 (KT K+ (K KKK )]7,

lead to extended Stokes relations. We have also obtained

different relationships as a consequence of time-reversal in-  =t(K,K"), (A5)
variance. On this basis, we have discussed the link between

unitarity, time-reversal symmetry, and reciprocity. With the "

increasing interest in techniques based on measurement anﬁ de'[p(K,K')p*(K",K')-I—t(K,K')t*(K”,K’)]y—
control of evanescent waves, we think that this work should/K’<k v

find broad applications. In particular, we have briefly dis-

cussed its implications in time reversal of scattered fields by
phase conjugation.

1"

=p(K,K"), (A6)
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APPENDIX: GENERALIZED STOKES RELATIONS

FOR FIELDS CONTAINING EVANESCENT WAVES =7(K,K"). (A8)
In this Appendix, we summarize the relations that are o . _
obtained by inserting the coefficients of the partitiored 3. Relations involving conversion of evanescent
matrix Eg.(4) into relations(12)—(14). The first four rela- to evanescent waves

tions are the generalized Stokes relationships obtained in Rejations valid fork >k and K”>k:
Ref. [25]. The other relations are extensions of the Stokes

relationships to fields containing evanescent components. y'
We use the notationg’ = y(K") and y"= y(K"). J kd2K’[p(K,K’)7-*(K”,K’)+t(K,K’)r*(K”,K’)]—
K'=s 'y’
1. Relations involving homogeneous waves only =t(K,K")—t*(=K,—K"), (A9)

Relations valid foK<k andK”<k:

yll

¢ d?K'[p(K,K")p* (K" K")+t(K,Kt* (K" K')]—

J de’[p(K,K')T*(K",K')+t(K,K')I’*(K”,K')]y— fK'sk [p( )P )+ T )]‘y'
K’'=<k fy'

-0, (A1) =p(K,K")=p*(=K,=K"), (A10)

! ! '\ p* " ! ' * " ’ 7,,
fK,gkde’[p(K,K’)p*(K”,K’)H(K,K’)t*(K",K')]% JK,gkde [r(K,K)r<(K",K")+r(K,K")r* (K"K )]7
=8(K—K"), (A2) =r(K,K")—r*(—=K,—K"), (A11)

f a2K[r (KK ) (K7, K )+ 7(K,K ) 7 (K7 K ) J 02K 'Tr (K, K )t (K K'Y+ 7(K K ) p* (K" K )]
K'=k v' K'<k y'
= 8(K—=K"), (A3) =7(K,K") =7 (—K,=K"). (A12)
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