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Analysis of threshold effects in ultracold atomic collisions
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At the ultracold temperatures which occur in cold atom traps and Bose-Einstein condensates, only a few
partial waves contribute to the scattering of ground-state alkali-metal atoms, and cross sections are extremely
sensitive to threshold effects. We present an analysis of these threshold effects, using a generalized multichan-
nel quantum defect theory~GMQDT! to construct a close-coupled scattering wave function which is analytic
in energy across thresholds. We illustrate the theory using the hyperfine transitions in Na1Na collisions, and
show that it gives results completely equivalent to the usual close-coupled cross sections. The virtue of the
GMQDT is that it treats both open and closed channels on an equal footing, and all interchannel dynamics is
summarized in a single real symmetric matrixY(E) which is essentially constant across thresholds~and often
over excursions of energy which exceed the hyperfine splittings!. The multichannel threshold energy behavior
can then be related to calculable properties of the individual channels that are being closed. Many of the
smaller spin depolarization cross sections are determined by very long-rangea2/R3 spin-spin interactions
which are not well treated by GMQDT, and we correct these specific elements with a perturbative distorted-
wave approximation which yields the observed threshold dependences and brings the GMQDT into perfect
agreement with the exact close-coupled results.

PACS number~s!: 34.10.1x, 34.50.2s, 34.20.Cf
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I. INTRODUCTION

Collisions between ultracold atoms@1–7# have been ob-
served and calculated at temperatures below 1 mK. Th
differ from ‘‘normal’’ collisions atT@1 K in several signifi-
cant ways. The long-time and distance scales associated
ultracold collisions enhance the importance of weak inter
tions such as those associated with hyperfine couplings@1–5#
or external magnetic@6# or optical fields@7#. Moreover, only
a few partial waves contribute to the cross sections, and
dynamics become extremely sensitive to threshold effec

Our analysis of threshold effects is derived from a gen
alized version of multichannel quantum defect theory~GM-
QDT! previously developed to describe the dissociation
diatomic molecules@8–12#. We will use as a case study th
collision-induced hyperfine transitions

Na~3s, f a ,ma!1Na~3s, f b ,mb!

→Na~3s, f a8 ,ma8!1Na~3s, f b8 ,ma8! ~1.1!

of ground-state Na atoms at temperatures on the order
mK. For the 23Na isotope, the nuclear spinI 5 3

2 combined
with the S5 1

2 electronic spin of the ground state Na(3s 2S)
atom yields two hyperfine angular momenta statesf a51 and
2 which are split by 0.059095 cm21 or equivalently 85.024
mK. This splitting is huge compared to the incident relati
kinetic energy«'1 mK, and the energy released in an ex
thermic collision is sufficient to eject the atoms from ultr
cold traps@1–5#. Such binary loss mechanisms are often
major deterrent to achieving Bose-Einstein condensat
The detailed close-coupled~CC! description of these colli-
sions, and the interactions that are required to induce th
are discussed in Sec. II.
1050-2947/2000/62~1!/012708~19!/$15.00 62 0127
se

ith
-

he

r-

f

1

a
n.

m,

The goal of GMQDT is to represent the exact solutions
the close-coupled scattering equations in a form that is
analytic function of the total collision energyE, especially as
we cross some threshold at, sayE50, where a subset o
channels can open or close. A real, symmetric, ener
insensitive matrixY is defined which completely and exact
summarizes all the dynamics that we have managed to
clude in our close-coupled expansion of the scattering w
functions. In this paper we present numerical algorithm
based on a Milne analysis@10–12# of each channel contrib
uting to the scattering, which directly evaluatesY. At a given
E the set ofN5NO1NC channels included in the close
coupled equations includeNO open andNC closed channels
and theN3N matrix Y blocks into open and closed subse

Y5FYOO YOC

YCO YCC
G . ~1.2!

This will be used to define a physically meaningful~observ-
able! NO3NO scattering matrixSOO(E) which is completely
equivalent to that obtained from the usual CC equations.

It must be emphasized that the complete physics of
scattering problem is already dictated by theN3N interac-
tion matrixWi , j (R) that is used in solving the close-couple
equations. The goal of GMQDT is not so much to add a
new physics, but rather to add new insight into the dynam
by representing thesesame exactsolutions to the resultant se
of CC scattering equations in a form that is an analytic fu
tion of the total energyE. As described in Sec. III, theY(E)
matrix has no intrinsic meaning by itself, but rather isdefined
by our choice of reference potentials Vj (R) and the resultant
pair of independent reference wave functionsf j (E,R) and
gj (E,R) that we assign to each of the channel statesu j& that
©2000 The American Physical Society08-1
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are included in the expansion of the multichannel continu
wave functionC i

15S j u j &F j ,i(R)/R incident in channelui&.
If we are careful in choosing an appropriate set ofN refer-
ence potentials, and take care to define reference funct
which are properly analytic inE, we can insure that the ma
trix Y(E) is also analytic in energy, and can be safely e
trapolated across thresholds. Generally we can choose r
ence potentials which insure thatY(E) is a slowly varying
function of E, and often essentially a constantY(E)'Y(0)
throughout the threshold region@8,9#.

Let us first consider the case when all open channels
appreciablyabove threshold. From the analytic asympto
properties of the individual reference functionsf j (E,R) and
gj (E,R) we obtain an energy-dependent elastic scatte
phase shiftj j (E) for each open channelj 51, NO and an
energy dependent bound-state phasen j (E) for each closed
channelj 5NO11,N. Given the matrixY and the diagona
NO3NO matrix of elastic scattering phase shiftsjO(E) and
the diagonalNC3NC matrix of bound-state phasesnC(E)
the scattering matrix is given by the expression@8#

SOO~E!5e1 i jO~E!@11 i ȲOO~E!#@12 i ȲOO~E!#21e1 i jO~E!,
~1.3!

whereȲOO(E) incorporates any resonance structure cau
by coupling to closed channels, and can be appreciably
ergy dependent due to its dependence on the bound
phasenC(E):

ȲOO~E!5YOO2YOC@ tannC~E!1YCC#21YCO . ~1.4!

At first glance, one can see how GMQDT recovers the
ergy variation of the multichannelSOO(E) through the en-
ergy dependence of the single-channel QDT parame
jO(E) andnC(E). Resonances are approximately located
the poles of the matrix@ tannC(E)1YCC#21, where the zeros
of the bound-state phase tannC(E)50 locate the bound-stat
eigenvalues in the closed channels, andYCC introduces shifts
in the resonance positions induced by the close coupling.
generally refer to such closed-channel resonances as F
bach resonances. This analytic behavior is one of the sa
features of the GMQDT approach to close-coupling pheno
ena, and has been amply demonstrated in many cases@8–11#
not involving thresholds. In the special case whenall chan-
nels are closed the determinant conditionutannC(En)1YCCu
50 exactly locates the eigenvaluesEn for the close-coupled
bound states@8,9# of the diatom. The detailed structure o
both shape and closed-channel~Feshbach! resonances, a
well as pure bound states in the vicinity of thresholds
especially interesting and will be presented in a subseq
paper.

In this paper we want to demonstrate the advantage
using the GMQDT approach in analyzing many interest
aspects of multichannel threshold phenomena, especial
it impacts on the physics of ultracold atom-atom collision
Basically, the validity of Eq.~3! requires that the WKB-like
boundary conditions that we use to define the open-cha
reference functions in the classically assessible region
short range actually persists out to infinity where we extr
01270
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SOO . As we approach threshold this condition is violat
and we need to introduce a second set of reference funct
sO and cO with WKB-like boundary conditions set in the
asymptotic region. This introduces two additional energ
sensitive QDT parametersCO(E) and tanlO(E) which give
an analytic connection between the short-range (f O ,gO) and
long-range (sO ,cO) sets of reference functions. The mult
channel effects of these parameters are introduced by d
ing a modified matrixR̄OO(E) in place of ȲOO(E) in Eq.
~3!,

SOO~E!5e1 i jO~E!@11 i R̄OO#@12 i R̄OO#21e1 i jO~E!,
~1.5!

where

R̄OO~E!5CO~E!21@ȲOO
212tanlO~E!21#CO~E!21.

~1.6!

Specifically, theCO(E) parameter connects the amplitud
between the functionsf O and sO , both of which are well
behaved asR→0. The departure ofCO(E) from 1 measures
the magnitude of the deviation from the WKB approxim
tion. As the WKB approximation relies on a phase-amplitu
approximation, a change inCO generally leads to a change i
phase. The tanlO(E) parameter accounts for this modifica
tion in phase, and its deviation from 0 also means a depar
from WKB behavior. Note that well above threshold the p
rameters approach tanlO(E)→0 and CO(E)→1, respec-
tively, and we retrieve Eqs.~3! and ~4!.

Since theN3N matrix Y(E) is essentially a constan
across threshold, the multichannel threshold behavior in
~5! is simply determined by the threshold properties of t
individual channels that participate in the close couplin
Each channelui&, with a given asymptotic threshold energ
Ei

` , is characterized by four channel parametersj i , n i , l i ,
andCi which are functions of the asymptotic kinetic ener
« i5E2Ei

` . These parameters can be calculated separa
and economically, over any interesting mesh of total en
gies, while Y(E) need only be determined at one or tw
widely separated energies, andSOO(E) can easily be con-
structed. We have written numerical codes which can ca
late the four required QDT parameters for any given ref
ence potential we may choose to associate with a gi
channel. This will be discussed in Sec. III, with the detail
algorithms presented in Appendix A. Furthermore, we ha
developed CC scattering codes, using the Milne function
proach @10–12#, which yield Y(E). The numerical proce-
dures are found in Appendix B.

An example of the analytical behavior ofY(E) is given in
Fig. 1, where the various matrix elementsY for a six-channel
CC calculation are seen to be invariant across the th
thresholds occurring atE/EHF50, 1, and 2. These result
will be discussed in greater detail in the next few sectio
but this figure does illustrate the salient feature we are d
ing towards. GivenY, the detailed resonant and thresho
structure exhibited by the squared transition matrix eleme
uTOOu25u12SOOu2 in Fig. 1 is analytically given by the
properties we extract from the reference functionsf i andgi .
8-2
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ANALYSIS OF THRESHOLD EFFECTS IN ULTRACOLD . . . PHYSICAL REVIEW A62 012708
The figure also demonstrates the exact agreement th
achieved between the numerical CC results~circles! and the
analytic GMQDT results~curve!.

Mies and Julienne@9# already pointed out the importan
role played by tanl and C21 in understanding threshol
laws. Obviously they measure the validity of the WKB a
proximation, and by implication define the energy range

FIG. 1. Comparison of six-channel (F50, p511) GMQDT
and CC calculations. Energy-ordered channels are labeled from
6. The top panel demonstrates the negligible energy variation o
adiabaticY(E) matrix computed atRo535 a.u. Only off-diagonal
uTi j u2 elements involving exchange interaction are plotted. Th
lower panels show the energy variation ofuTi j u2 associated with the
three hyperfine thresholds~marked by vertical lines: EHF

50.0591 cm21585.0 mK). The solid curve shows GMQDT resul
in excellent agreement with exact CC results~full circles!, with
Y(E) linearly interpolated betweenEmin520.2 cm21 and Emax5
10.2 cm21. The GMQDT parametersC21, tan(l), and phase shift
j are evaluated atR5400 a.u., the same distance used to obtain
CC results.
01270
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the associated threshold laws. The expected threshold be
ior of the four QDT parameters are summarized in Table
in Sec. III. Of utmost importance in this paper is the fact th
as« i→0, the parameterCi(E)21 for the closing channelui&
vanishes aski

l i11/2 wherel i is the partial wave quantum num
ber andk5A2m« i /\2 is the asymptotic wave number de
fined by the colliding atoms with reduced massm. This
threshold behavior appears in the matrix elementR̄i , j

5Ci
21$¯%Cj

21 in Eq. ~1.6!, and is the origin of the so-called
Wigner threshold laws that we associate with the o
diagonal elementsSi , j in Eq. ~1.5!. We will see many ex-
amples of this expected threshold behavior. We also n
that for l .0, C21(E) is extremely sensitive to tunnelin
through the rotational barriers, and gives a powerful me
of isolating the effects of shape resonances in a multichan
problem. Close to threshold an interesting ‘‘multichanne
shape resonance effect is introduced by the energy varia
of tanlO that appears in the denominator of Eq.~6!. In ad-
dition, the behavior ofC21(E) for l 50 at threshold is di-
rectly related to what have been called ‘‘zero-energy’’ res
nances@13#. In view of space limitations most of this shap
resonance phenomena will be demonstrated in a subseq
paper devoted to resonance threshold effects.

An implicit assumption in deriving the GMQDT expres
sion~1.5! is that the couplings which contribute to the matr
Y are achieved at short range, at distances well before
reference channel parameters in Table II acquire their thre
old behavior. Very long-range potential terms proportiona
a2R23 play an important role in determining the spin dep
larization cross sections in Eq.~1!. The very long-range na
ture of these terms have a profound effect on the thresh
laws and perturbative corrections must be applied to som
the MQDT matrix elements in Eq.~1.5!. If we designate the
scattering matrix elements generated by the short-rangY
matrix in Eq. ~1.5! as SOO(Y), we can use the distorted
wave approximation~DWA! @14# to apply a perturbative
long-range correction to these elements,

Si , j5Si , j~Y!1Si , j
DWA , ~1.7!

Si , j
DWA522p i K « iUCi , j

R3 U« j L , ~1.8!

where the energy-normalized continuum statesu« i& and u« j&
are defined by the reference potentials. This can be evalu
numerically and has been found to yield excellent resu
This and several other aspects of the long-range interact
are discussed in detail in Sec. IV. A summary and conc
sions are presented in Sec. V.

II. CLOSE-COUPLED DESCRIPTION OF HYPERFINE
TRANSITIONS

In a field-free collision between Na atoms in Eq.~1.1!,
both the total angular momentumF5fa1fb1 l5f1 l and the
total parity p561 are constants of motion and the col
sional loss rate constants are derived from the appropr
sums involving the scattering matricesSOO(F,p,E). These
are calculated from standard CC codes for a givenF, p, and

to
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e

8-3



at

f

te
u

ne
je
a-
h
en

ad

t t

um
ce
l
o
pr

l-

ed

rnal

u-
-
ady
re

n

y
ber

ns

d to

y
h-
ns.

as-

of
lu-

ons

-

FREDERICK H. MIES AND MAURICE RAOULT PHYSICAL REVIEW A62 012708
E, using the usual channel state basisuF,M ,p; l , f , f a , f b& @4#,

C i
1~F,M ,p,E,R!5 (

j 5 l , f , f a , f b

uF,M ,p; j &F j ,i~E,R!/R,

~2.1!

which describes the asymptotic properties of the separ
atoms, wherel is the nuclear angular momentum~partial
wave quantum number!, and f represents the magnitude o
the channel angular momentumf5fa1fb . The channel
states are appropriately symmetrized with respect to in
change of the atoms associated with the total atomic ang
momentafa and fb , respectively. AsF increases, up to 20
channels can contribute toSOO(F,p,E). However, for F
50 andp511 only the six-channels list in Table I~a! con-
tribute to the scattering, and most of our examples, such
those given in Fig. 1, will involve this simple case. This o
set exhibits almost all the interesting effects we can pro
from GMQDT, with the exception of the frame transform
tion effects associated with degenerate channel states. T
effects contribute to, and will be illustrated with, the sev
channelF51, p521 case listed in Table I~b!.

The complete physics of the scattering problem is alre
dictated by the interaction matrixWi , j (R) that is used in
solving the close-coupled equations. We presuppose tha
finite set of molecular channel statesu j& ( j 51,N) that has
been included in the CC expansion of the total continu
wave function~2.1! is sufficiently complete to span the spa
of all coordinates~with the obvious exclusion of the radia
interatomic coordinateR!, or at least complete enough t
describe all inelastic processes of importance at the
scribed total energyE. TheN3N matrix of radial functions
F(E,R) are obtained from a numerical solution of the fo
lowing close-coupled equations@20#,

TABLE I. F50, parity11 ~a! andF51, parity21 ~b! channel
states.*Only channels withidentical ~l,f ! are strongly coupled by
the short-range exchange interaction in Eq.~2.7!.

~a!

Channel l f f a f b E`(mK)

1* 0 0 1 1 0.0
2 2 2 1 1 0.0
3 2 2 1 2 85.024
4* 0 0 2 2 170.048
5 2 2 2 2 170.048
6 4 4 2 2 170.048

~b!

Channel l f f a f b E` (mK)

1* 1 1 1 1 0.0
2* 1 1 1 2 85.024
3 1 2 1 2 85.024
4 3 2 1 2 85.024
5 3 3 1 2 85.024
6* 1 1 2 2 170.048
7 3 3 2 2 170.048
01270
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\2 D @E2W~R!#F~R!50, ~2.2!

wherem5mAmB /(mA1mB) is the reduced mass associat
with the collision of A1B. The interaction matrixW(R)
becomes asymptotically diagonal, and defines the inte
energyEi

` associated with each channel stateui& introduced
in the expansion

Wj ,i~R! ;
R→`

@Ei
`1 l ~ l 11!\2/2mR2#d j ,i1O~R2s!,

~2.3!

wheres>3. To be perfectly general we could include a Co
lomb potential, withs51, but this merely introduces need
less complications which we do not require, and has alre
been elegantly treated in the vast body of MQDT literatu
@15# ~see Ref.@16# for a collection of the literature!.

If we impose N well-behaved boundary conditions o
F(E,R)→0 asR→0, we can obtainN independent solutions
which satisfy Eq.~2.2!. Given the asymptotic kinetic energ
« i5E2Ei

` , and the associated asymptotic wave num
ki(E)5A(2m« i /\2) for each channel, the set ofN channels
are seen to includeNO open channels,« i.0, with ki real and
positive, andNC closed channels,« i,0, with imaginaryki
5eip/2uki u. Thus we can block the matrixF as

F5FFOO FOC

FCO FCC
G . ~2.4!

If we impose well-behaved asymptotic boundary conditio
FCO→0 on the closed-channel components of the firstNO
set of column solutions vectors we obtain a total ofNO well-
behaved solutions which are normalizable and correspon
physically meaningful continuumwave functions. The re-
maining set ofNC solution vectors all contain asymptoticall
diverging elements inFCC , and must be rejected as mat
ematically correct, but physically meaningless solutio
These conditions imply that we expectFOO to asymptotically
yield an accurate (NO3NO) reactance matrixKOO(E), i.e.,

FOO~E,R! ;
R→`

@JO~«,R!1NO~«,R!KOO~E!#AOO
1 ,

~2.5!

where Ji→ki
21/2sin(kiR2pl/2) and Ni→ki

21/2cos(kiR
2pl/2) conform to the usual spherical Bessel functions
sociated with the nuclear angular momentuml for the open
channelsi 51, NO in Eq. ~2.3! ~see Appendix C of Ref.
@17#!. Note that @JO(«,R)1NO(«,R)KOO(E)# represents
the asymptotic form for a particular set ofNO solutions to
Eq. ~2.2!. We can always chose any linear combinations
these to define a variety of equally exact well-behaved so
tions. The matrixAOO

1 (E) in Eq. ~2.5! is used to impose the
usual incoming plane-wave scattering boundary conditi
on the wave functionsC i

1 in Eq. ~2.1!. Given KOO we
chooseAOO

1 (E)5@12 iKOO(E)#21, and obtain the associ
ated scattering matrixSOO(E) which defines the dynamic
properties of the system:
8-4
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SOO~E!5@11 iKOO~E!#@12 iKOO~E!#21. ~2.6!

Making the reasonable assumption that the molecular hy
fine Hamiltonian can be adequately represented by a un
frame transformation of the asymptotic atomic hyperfi
Hamiltonians, the accuracy of the interaction matrixWj ,i is
basically limited by the accuracy of the molecular intera
tions we incorporate in our CC scattering codes. To perfo
the dynamic calculations, we require four accurate molec
potentialsVS,V(R): one defined by the groundX 1(g

1 state
with S50 and with molecule-fixed spin projectionV50;
and three defined by the lowesta 3(u

1 state withS51 and
spin projectionsV50,61. These potentials take the follow
ing asymptotic forms@4,18#:

V0,0~R!;2Cexce
2aR1~C6R261C8R281C10R

210!,
~2.7a!

V1,0~R!;1Cexce
2aR1~C6R261C8R281C10R

210!

1a2R231VV50
SO ~R!, ~2.7b!

V1,61~R!;1Cexce
2aR1~C6R261C8R281C10R

210!

21/2a2R231VV561
SO ~R!. ~2.7c!

The knowledge of these potentials is adequate to comple
describe the ultracold collision dynamics of all the alk
atoms that have been studied to date. The terms proporti
to a2R23 in Eqs.~2.7b! and ~2.7c! are the so-called relativ
istic spin-spin~SS! or dipole-dipole interactions@19# which
are second order in the fine-structure constanta' 1

137. The
role of these terms in inducing spin depolarization has b
elegantly treated in a series of papers by the Verhaar gr
@3#. The short-range second-order spin-orbit~SO! terms play
a similar role, and in fact dominate over the SS terms, for
heavier alkalis@4,5#, but are negligible for Na. As discusse
above, the very long-range nature of the SS terms ha
profound effect on the threshold laws, and perturbative c
rections, given by Eqs.~1.7! and ~1.8!, must be applied to
certain of the GMQDT matrix elements in Eq.~1.5!. This
and several other aspects of the long-range interactions
discussed in detail in Sec. IV C.

Two colliding ground-state alkali-metal atoms in~ns! or-
bitals, have, to good order, zero total electronicorbital an-
gular momentumL5(La1Lb)'0. As a consequence, in th
absence of the long-range SS or short-range SO interact
the molecular Hamiltonian implies thatl and f are good
quantum numbers. The physical reason is that forL50 there
are no electrostatic interactions that cause a locking of
electron-spin angular momentum of the system to the in
nuclear axis. Ultimately, the weak SS and SO interacti
cause the total electronic spinS5(sa1sb) to couple to the
axis, and lead to small energetic splittings betweenV pro-
jections represented in Eq.~2.7!. If we ignore these latter
interactions theV projections are perfectly degenerate, a
we can easily transform the asymptotic channel sta
uF,M ,p; l , f , f a , f b& into a basis defined by the total electro
spin angular momentumS (S5sa1sb) and the total nuclea
spin I (I5 ia1 ib), wheresa andsb are the atomic electron
01270
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spin angular momenta, andia and ib are the nuclear-spin
angular momenta~for 23Na, sa5sb5 1

2 and i a5 i b5 3
2 ),

uF,M ,p; l , f ,S,I &

}(
f af b

A~2S11!~2I 11!~2 f a11!~2 f b11!

3H sa i a f a

sb i b f b

S I f
J uF,M ,p; l , f , f a , f b&. ~2.8!

In this representation@4# two adiabatic Born-Oppenheime
potentials, uniquely identified by the quantum numbersS
50 ~from X 1(g

1) andS51 ~from a 3(u
1), appear on the

diagonal of the Hamiltonian matrix. The hyperfine intera
tions can introduce a simultaneous change inI andS. How-
ever, these couplings are constrained to subblocks which
sure thatf5I1S is conserved, and we find bothf and l
remain perfectly good quantum numbers at all distances
course, at small distances, where the exchange splitting
tween the molecular potentials is large compared to the
perfine splittings, even this coupling is negligible. Howev
as we shall see, at distances of the orderR'(20– 40)aO , the
hyperfine interaction becomes important and theI↔S cou-
pling drives the system back into the asymptotically diago
basis of channel statesuF,M ,p; l , f , f a , f b&.

III. SUMMARY OF MQDT THEORY
UTILIZING MILNE FUNCTIONS

The NO3NO matrix of radial functionsFOO(E,R) in Eq.
~2.5! is obtained from a numerical solution of the CC equ
tions, and yields the associated scattering matrixSOO(E) in
Eq. ~2.6!, which fully defines the dynamic properties of th
system. The goal of GMQDT is to represent thesesameex-
act solutions to thesame set of close-coupled scatterin
equations in a form that is an analytic function of the to
energyE, especially as we cross thresholds. The final res
achieved is given in Eq.~1.5!.

We begin bychoosinga set of reference potentialsVj (R)
that we will associate with each of thej 51,N channel states
u j& that have been included in the close-coupled expansio
the total continuum wave function. As summarized in Tab
III of Appendix A, each reference potential defines a pair
reference radial functionsf i(« i ,R) andgi(« i ,R) analytic in
the asymptotic kinetic energy« i5E2Vi(`) prescribed by
E. This allows us to represent the exact close-coupled s
tions to Eq.~2.2! in the following matrix form@20#.

F~E,R!5@ f ~«,R!1g~«,R!Y~E,R!#A~E,R!. ~3.1!

Assuming that each reference potential has been chose
have the exact asymptotic behavior prescribed by the e
interaction matrixW in Eq. ~2.3!, the matricesY(E,R)
→Y(E) and A(E,R)→A(E) will approach constants a
somefinite distance, and the asymptotic solutions approa

F~E,R! ;
R→`

@ f ~«,R!1g~«,R!Y~E!#A~E!. ~3.2!
8-5
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If we choose a reasonable set of reference potentialsV(R)
5$Vi(R)d i 8,i% to define the associated sets of independ
reference functionsf («,R)5$ f i(« i ,R)d i 8,i% and g(«,R)
5$gi(« i ,R)d i 8,i% which are properly analytic inE, we can
insure that the matrixY(E) is also analytic, and can b
safely extrapolated across thresholds as various chan
open and close. The dynamics prescribed by the scatte
matrix in Eq.~1.5! is completely determined by the real sym
metric analytic matrixY(E), and of course the asymptoti
properties of the analytic reference functions. An example
this behavior has already been given in Fig. 1, where
various matrix elementsY for this six-channel CC calcula
tion are seen to be essentially constant across three th
olds. GivenY, the detailed resonant and threshold struct
exhibited in Fig. 1 is given by the properties we extract fro
the reference functionsf and g. Note that the nonanalytic
matrix A(E) remains at our disposal, and can be used
asymptotically normalize the radial solutionsF(E,R) to con-
form to Eqs.~2.4!–~2.6!. An explicit evaluation ofA(E) is
only required to describehalf-collision processes such a
photodissociation@26#, where the short-range properties
the energy-normalized continuum wave functions are
quired.

The relationship between GMQDT and conventional sc
tering theory becomes quite apparent when comparing E
~3.2! and~2.5!. The usual ansatz in CC scattering theory is
asymptotically match the exact or numerically derived sc
tering wave functionFOO in Eq. ~2.5! directly with the well-
defined spherical Bessel functionsJi(« i ,R) and N(« i ,R).
This yields, by definition, the reactance matrixKOO and the
scattering matrixSOO that are needed to calculate observa
cross sections. This procedure relies on Eq.~2.3!, and recog-
nizes that eachopenchannel is associated, at least asym
totically, with some well-defined partial wave with an ang
lar momentum quantum numberl and a concomitan
centrifugal potential proportional tol ( l 11)/R2. Since the
Bessel functions represent exact solutions to the centrifu
portion of Eq.~2.3!, we merely need integrateFOO(E,R) out
to some very large but finite distance where all residual
teraction matrix elements become small compared to 1/R2,
and whereFCO can be made to exponentially vanish. In th
case the resultant numerical multichannelKOO(E) is ex-
tremely energy dependent, and implicitly incorporates all
resonant and threshold behavior inherent in the dynam
involving both open and closed channels. As already imp
in Eqs.~1.3!–~1.6!, we will find that the bulk of this energy
dependence is introduced by the higher-order terms ass
ated with thediagonalelements in Eq.~2.3!.

In the GMQDT expression~3.2! we go one step further
and substitute a different but equally valid independent p
of analytic reference functionsf («,R) and g(«,R) with
which to fit the exact solution vectors. These are defined
whatever particular set of diagonal reference potentialsV
5$Vid j ,i% we have decided will most effectively summariz
the dynamics. Certainly we expectVi to incorporate the lead
ing asymptotic ciR

2s dependence implied in Eq.~2.3!,
which means we can terminate the integration ofF(E,R) at a
much smaller distanceR where the exactf («,R) andg(«,R)
basis now replaces the Bessel functions. Furthermore, g
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the analytic properties of the reference functions we can n
evaluate the closed channel componentsFOC(E,R) at small
R, and explicitly enumerate the resonance contribution a
Eq. ~1.4!.

Although we have employed the notation and analysis
Refs. @8#, @9#, several other comparable studies have be
devoted to a generalization of QDT to non-Coulomb pote
tials @10–12,21#, and more explicitly to long-rangeR2s ref-
erence potentials@22–24#. Recently a very ingenious set o
standardized long-rangereferences functions were define
by Burke, Greene, and Bohn@12#, which have the virtue of
offering a compact representation of multichannel cold-at
dynamics which is easily converted to observables. Howe
the present analysis relies on using the Milne solutions
Appendix A to generate exact reference functions for a
prescribedV(R), and is committed to choosingf («,R) to be
well behaved asR→0. One very useful feature of this choic
is that Y(E,R), which begins at zero atR50, can be fol-
lowed as a function ofR, and allows us to pinpoint exactly
where and between what channels the close coupling is
curring. This feature is demonstrated in Sec. IV. Furtherm
the resultantY(E) should be less energy dependent sin
f («,R), and its associated phase shift, already incorpora
the energy variation of the short-range potential. Finally,
important virtue is thatf («,R) can often be used to obtai
reliable perturbative estimates of theY(E) matrix elements
@25,26#, or explicitly used in DWA expressions such as E
~1.8!.

It cannot be emphasised too strongly that the quality
the calculations is independent of our choice of refere
potential V(R). In principle, the wisdom of our choice o
V(R) is irrelevant since the dynamics has already been p
scribed for us by whatever interaction matrixW(R) has been
used to solve the coupled equations~2.2! for F. Again this
feature is shown in Fig. 1, where close-coupled and GMQ
calculations are seen to give identical results.

Two rather obvious choices of reference potentials can
made. The first we call the diabatic basis where we ta
Vj (R)5Wj , j (R). Alternatively we often use the adiabat
basis@8–10,17# obtained by diagonalizing the exact clos
coupled interaction matrix,W5MV OM̃ . Of course, since in
our scheme we obtainY(E) from an exact solution of the
coupled equations, using the exact interaction matrixW, it
does not really matter which basis we use—the combina
of Y(E) and the associated channel parameters togethe
guaranteed to always give the exactSOO(E). However, two
considerations may help in choosing the basis. If one wa
to explore close coupling over an extensive range of en
gies, then we would like a basis which yields the mo
slowly varyingY(E). If one wishes to develop perturbativ
approximations@25,26#, then the basis with the smalles
Y(E) elements would be preferable. Of the two, we gen
ally find the adiabatic basis to be the most useful. Howev
in the present case, because of the marked differences
tween the strongly coupled short-range exchange interac
and the weakly coupled long-range SS interaction, we h
found it most instructive to use a mixed basis.

We choose toseparatelydiagonalize the individual blocks
of channels with equivalentl, and use these diagonalize
8-6
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elements as our reference potentials. In this wayl persists in
remaining a well-defined quantum number throughout
analysis, and the coupling between differentl blocks remains
diabatic and amenable to perturbation theory. For exam
the threel 52 channels in theF50 case in Table I~a! are
strongly coupled by the exchange interaction, and when
agonalized yields the reference potentialsa52, 3, and 5 in
Fig. 2, where, at smallR, and out to where the exchang
interaction termCexc in Eq. ~2.7! remains dominant,a52
correlates withX 1Sg

1 , and a53 and 5 correlate with
a 3Su

1 . As seen in Fig. 2, the diagonalization of the twol
50 channel interactions yield the reference potentiala51
which correlates withX 1Sg

1 and thea54 potential which
correlates witha 3Su

1 . The singlel 54 channel, designate
a56, corresponds to a pure triplet state, and only couple
the other channels by SS coupling. The basis we have ch
for F51 consists of two separate adiabatic blocks forl 51
and 3, each of which contains a single channel which co
lates with X 1Sg

1 , with the remainder correlating with
a 3Su

1 .
Returning to Eq.~3.2!, we block theN3N matrix of so-

lutions vectorsF into open and closed subsets, designated
subO and subC indices@20#;

F5F f O1gOYOO gOYOC

gCYCO f C1gCYCC
GFAOO AOC

ACO ACC
G ~3.3!

The single indexO or C on the reference functionsf andg
are meant to indicate diagonal matrices which contribute

FIG. 2. ~A! Reference potentials for theF50, p511 channel
statesa51 – 6. Subblocks of channels with a given nuclear angu
momental are diagonalized separately. At short distances thl
50 channela51 and thel 52 channela52 adiabatically corre-
late with theX 1Sg

1 state. All the remaining channels adiabatica
correlate with thea 3Su

1 state.~B! Asymptotic correlations of the
F50, p511 solid (l 50), dashed (l 52), and dotted (l 54) chan-
nels. See Table I for a description of asymptotic properties.EHF

585.024 mK.
01270
e

e,

i-

to
en

e-

y

o

the blocksOO or CC. Since thegCYCO component in the
first NO columns of solution vectors is always exponentia
rising, none of the solutions are physically meaningful.

Although only two independent reference solutions c
exist for each channel, the pair ofanalytic functions f («,R)
andg(«,R) can be used to define a variety of special so
tions, as in Table III of Appendix A, which satisfy variou
interesting boundary conditions.All these solutions are
uniquely specified by the single amplitudea(«,R) and the
associated phaseb(«,R) which we obtain from solution of
the Milne equation with the analytic WKB-like boundar
conditions imposed ona(«,Re) anda8(«,Re) at the equilib-
rium distanceRe associated with the reference potential.

As discussed in Appendix A, for closed channe
both f→sinnAe1ukuR1cosnBe2ukuR and g→cosnAe1ukuR

2sinnBe2ukuR are exponentially divergent asR→`. It is one
of the major chores of GMQDT to find the particular line
combination of channel reference functions which decays
ymptotically whenever a channel is closed. This is des
nated by the functionf(«,R) in Table III, i.e., for«,0, and
R→`:

f~«,R!5@ f ~«,R!cosn~«!2g~«,R!sinn~«!#→Be2ukuR.
~3.4!

This combination is defined by what we often call thebound-
state phasen~«! in Eq. ~A5!, which is analytic throughout
«,0, in contrast to the scattering phase shiftj~«! which is
analytic throughout«.0, and might well be called the
continuum-statephase.

Choosing AOO5BOO and ACO52(tannC
1YCC)21YCOBOO in Eq. ~3.3! we obtain a new set ofNO
solutions,

FOO5~ f O1gOȲOO!BOO ~3.5a!

FCO5
2fC

cosnC
~ tannC1YCC!21YCOBOO , ~3.5b!

whereFCO is well behaved and vanishes asymptotically
required in Eq.~2.4!. Since we can never choose anyAOC
andACC coefficients which will avoid the divergences in th
closed channels, we conclude, as in Eq.~2.4!, that we must
reject the remaining set ofNc solution vectors as physically
meaningless.

The open-channel block of radial solution vectorsf O

1gOȲOO in Eq. ~3.5a! now involves the transformedȲOO
matrix defined in Eq.~1.4!, which is seen to embody th
resonant coupling to the closed channels through the r
nance sensitive denominator (tannC1YCC). In previous
studies@8–11# we have very carefully considered the effec
of closing various subsets of channels. This gives rise t
resonance structure that manifests itself as predissociatio
atom-atom scattering processes, and as autoionizatio
electron-ion scattering. This effect, particularly its thresho
behavior, will be demonstrated in detail in a subsequ
paper.

r

8-7



w

n
c
a

n

l

m
ti

-

tly

av

ie

x-
m

yti
i-

hi
s
rs

ers
of

y
the

ead
se
uf-

II
eri-
A.
-
pa-
co-
d
r is
of

ted in

tain
rms

els 2,
y

g

vel

ble.
int

the

ve
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To finally extract the scattering matrix we need to kno
the asymptotic properties of the open-channel blockf O

1gOȲOO in Eq. ~3.5a!, which requires knowing the
asymptotic properties of the open, channel reference fu
tions f O and gO . As seen in Table III, the pair of analyti
functions f («,R) and g(«,R) are expressed in terms of
second pair of independent functionss andc:

f ~«,R!5a sinb5Cs~«,R!, ~3.6a!

g~«,R!5a cosb5C21@c~«,R!2~ tanl!C2s~«,R!#,
~3.6b!

which have the well-defined asymptotic boundary conditio
that we require,

s~«,R! ;
R→`

~cosj!J~«,R!1~sinj!N~«,R!

→k1/2sin~kR2p l /21j!, ~3.7a!

c~«,R! ;
R→`

~2sinj!J~«,R!1~cosj!N~«,R!

→k1/2cos~kR2p l /21j!, ~3.7b!

whereJ(«,R) and N(«,R) conform to the spherical Besse
functions in Eq.~2.5!. Note thats(«,R), which is well be-
haved atR50, is the usual energy-normalizable continuu
wave function defined by the prescribed reference poten
at any energy above threshold«.0. To make Eq.~3.5! con-
sistent with Eq. ~2.5!, we must set BOO5@1O

2(tanlO)ȲOO#21CO
21@1O2 i R̄OO#21ei jO. Multiplying ( f O

1gOȲOO) from the right by@1O2(tanlO)ȲOO#21CO
21 we

obtainsO1cOR̄OO , with R̄OO defined by Eq.~1.6!. Further
multiplication by @1O2 i R̄OO#21ei jO then leads to expres
sion ~1.5! for SOO .

Well above threshold, asC(E)→1 and tanl(«)→0, the
asymptotic behavior of the analytic functions is exac
given by Eq.~3.7!, andR̄OO→ȲOO . Viewed in reverse we
see that the usual energy-normalizable continuum w
functionss(«,R) andc(«,R),

s~«,R!5C21~«! f ~«,R!, ~3.8a!

c~«,R!5C~«!$g~«,R!1@ tanl~«!# f ~«,R!%, ~3.8b!

only conform to the analytic reference functions at energ
sufficiently removed from threshold, whereC(«)→1 and
tanl(«)→0. These conditions imply that the WKB appro
mation gives a valid description of the wave functions fro
R5Re where we set the boundary conditions on the anal
functionsf andg, out to infinity where the boundary cond
tions for thes and c functions are obtained. However, as«
→01, f andg begin to lose the asymptotic phase relations
implied by Eq.~3.7!, and their asymptotic behavior require
the introduction of the two additional MCQDT paramete
C(«) and tanl(«), which appear in Eq.~3.6! and markedly
influence the threshold energy dependence ofSOO .
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The threshold laws obeyed by the four QDT paramet
are summarized in Table II, and are a sensitive function
the asymptotic power dependenceR2s associated with the
reference potential defined by Eq.~2.3!. We see no necessit
to present a very lengthy and tedious analysis based on
analytic properties of the spherical bessel functions that l
to Table II. Certainly the threshold behavior for the pha
shift is well documented in the scattering literature. It is s
ficient to note that the remaining threshold laws in Table
have been thoroughly and completely confirmed by num
cal results obtained from the Milne analysis in Appendix
We shall see examples withs56 and 3. A detailed discus
sion of the analytic properties of various quantum defect
rameters using Jost functions is given by Greene and
workers @21# and Rau@27#, but the parameters are define
somewhat differently than here, and the threshold behavio
not made as explicit as in Table II. The consequences
these various dependences are discussed and demonstra
detail in Sec. IV.

IV. COMPARISON TO EXACT CLOSE-COUPLING
RESULTS

A. Exchange and short-range coupling

At short range there is a strong coupling between cer
channels which is associated with the exchange te
Cexce

2aR in Eq. ~2.7!. This exchange couplingalwayscon-
serves the channel quantum numbers (f ,l ), and occurs for
example between channels 1 and 4, and between chann
3, and 5 in Table I~a!. This short-range behavior is nicel
demonstrated in Fig. 3.Y(E,R) begins to deviate from zero
in the vicinity of R518 a.u., where the exchange splittin
between theX 1Sg

1 and a 3Su
1 state potentials (V0,0 and

V1,V) becomes comparable to the atomic hyperfine le
splitting. For these particular channelsY(E,R)→Y(E) al-
ready approaches its asymptotic limit by aboutR535 a.u.,
where the exchange splitting becomes completely negligi
As expected, only elements conforming to the constra
( f ,l )5const have any significant magnitude. Note that
abrupt behavior of the adiabaticY matrix elements in the
vicinity of R523 a.u. is simply due to a nearly diabatic cur

TABLE II. Threshold laws for MQDT parameters forV;R2s

reference potentials.

~1! j~«! →
«→06

~2Aluku!2l11 2l11<~s22! a

j~«! →
«→01

ks22 2l 11.~s22!

~2! 1/C2~«! →
«→06

~Bl uku!2l 11 all l

~3!
tanl~«! →

«→01

tanl~0!2OS 1

C4~«!D
~4!

cotn~«! →
«→02

cotn~0!1
~21!l

C2~«!

~5! tanl(0) tann(0)521

aExcept fors53, l 50, which approacheskln(k) @36,37#.
8-8
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crossing of channel 4 with channels 2 and 3, which
coupled by the weak SS interaction. This behavior becom
even more apparent in Sec. IV B.

In Fig. 1 we demonstrated the perfect agreement tha
obtained between the CC and adiabatic GMQDT results
the six-channel case. (F50, p511). Note, however, tha
we have only presented the results for channels 1 and 4,
for channels 2, 3, and 5 which are strongly coupled by
short-range exchange interactions. In the top panel we
see that the energy variation of the adiabaticY matrix is
negligible throughout the region from the threshold for t
( f a , f b)5(1,1) channels atE/EHF50 to beyond the
( f a , f b)5(2,2) threshold atE/EHF52. Y(E) is computed at
RO535 a.u., at which point exchange interactions beco
negligible. This result suggests that we can numerica
evaluateY(E) at two energies of our choiceEmin andEmax,
and then use a linear interpolation of theY(E) matrix for
energies in between. The GMQDT calculations shown
Fig. 1 actually correspond to aY matrix linearly interpolated
betweenEmin520.2 andEmax510.2 cm21.

The log-log plot in Fig. 4 shows the exchange domina
inelastic transition matrix elements in the vicinity of th
( f a , f b)5(2,2) threshold. The diagonal elements are p
sented in Fig. 5. In this case we have used the mixed bas
reference potentials discussed in Sec. III. Again, the ene
variation of theY matrix is negligible, and we again obtai

FIG. 3. R variation of theY(E,R) matrix elements~six-channel
case,F50, even parity!. Only the off-diagonal matrix element
induced by short-range exchange interactions are plotted.Y(E) has
been evaluated atE50.2 cm21, when all channels are open. In th
example completely adiabatic reference potentials were used.
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perfect agreement between the CC and GMQDT results, c
firming that our GMQDT results are not dependent on
choice of reference potentials.

Using Eq.~1.5! the transition matrixTOO can be repre-
sented as

TOO5~12SOO!

5~12ei2jO!22iei jOR̄OO~12 i R̄OO!21ei jO,

~4.1a!

FIG. 5. DiagonaluTii u2 elements for the six-channel (F50, p
511) case, same conditions as in Fig. 4. Dashed curves with o
circles are the GMQDT results. Solid curves with solid dots are
CC results. Below«510mK the elementsuT44u2, uT55u2, anduT66u2

show thek2 expected for a long-rangeR23 potential. At higher
energies both elementsuT55u2 and uT66u2 switch to ak8 dependence
associated with anR26 potential.

FIG. 4. Exchange-dominatedoff-diagonal uTi j u2 elements for
the six-channel (F50, p511) case in Table I~a!. « is measured
relative to thef a52, f b52 threshold, where all channels are ope
The analytic GMQDT results~circles! compare perfectly with the
exact CC results~solid line!. uT14u2 exhibits thek dependence ex-
pected for a closingl 50 channel, whileuT25u2 and uT35u2 conform
to the k5 threshold law expected for a closingl 52 channel. CC
T-matrix elements were evaluated atRmax.70 000 a.u.
8-9



rg

rm
d

so
d

ie
a

no
u
re

g

or

t
r

is

le
bl
ue
in
t

f
he

he

ell-

f
w
ase

onal

hese
2

e
ee
r-

hift

two
on.

ag-
st
, of

pre-
d

ate

otic
f

FREDERICK H. MIES AND MAURICE RAOULT PHYSICAL REVIEW A62 012708
which is equivalent to the following:

TOO5~12ei2jO!22iCO
21ei jO

3@ȲOO
212~ tanlO1 iCO

22!#21CO
21ei jO. ~4.1b!

Because of theCi
21(E) and Cj

21(E) parameters which

bracket the elementR̄i , j (E) in Eq. ~1.6!, the threshold energy
dependence of theinelasticuTi , j (E)u2 element, withiÞ j , as
channeli approaches threshold, is determined by the ene
variation ofCi

22(E). For those channels with«@0 we ex-
pect a WKB-like behavior which definesCi51. However,
for closing channels this parameter has the limiting fo
C21(«)→(Blk) l 1(1/2) as «→01, and yields the expecte
Wigner threshold lawuTi , j u25uTj ,i u2}ki

2l 11.
The elementuT14u2 in Fig. 4 exhibits the prescribedk

dependence for a closingl 50 channel, while theuT25u2 and
uT35u2 elements show the expectedk5 dependence for closing
l 52 channels. Actually, in cases involving shape re
nances, as seen in the vicinity of the channel 3 threshol
Fig. 1, which involves anl 52 incident partial wave, there
can also be a substantialincreasein Ci

22, indicating an en-
hanced tunneling of amplitude across the centrifugal barr
This interesting behavior will be explored in more detail in
subsequent paper devoted to threshold resonance phe
ena. However, even in this case, if we approach close eno
to threshold, the predicted threshold laws will eventually p
vail, and indeed we find that theuT23u2 matrix element ulti-
mately approaches the expectedk5 dependence for a closin
l 52 channel.

To understand the origin of theC21 behavior and its in-
fluence onR̄OO , recall that bothf («,R) ands(«,R) are well
behaved atR50, but the second boundary condition f
f («,R) has been set atR5Rm to insure that this function is
analytic across the threshold«50, whiles(«,R) has been se
at infinity to give the usual energy normalizable bounda
condition, i.e.,^s(«)us(«8)&5(p\2/2m)d(«2«8). The ini-
tial condition for the Milne functiona(R) which definesf
5a sinb has been set to the usual WKB conditiona(Rm)
51/AK(Rm) at Rm5Re , whereK8(Re)50. Well away from
threshold we can expect the Milne function to follow th
behavior to infinitya(R)'1/AK(R)→1/Ak, and C21→1.
However, as we approach thresholdC21(«) begins to de-
crease and ultimately exhibits the limiting behavior in Tab
II. Viewed from an asymptotic perspective, the normaliza
functions(«,R) begins to experience a partial reflection d
to the long-range potential, and has difficulty in penetrat
to short distances. As a consequence the amplitiude of
function in the vicinity of Rm is diminished tos(«,Rm)
→@C21/AK(Rm)#sinb(Rm). Presumably the amplitude o
the channel is already diminished in the vicinity where t
close coupling has generated the quantity@ȲOO

212tanlO#21

in Eq. ~1.6! and the matrixR̄OO is reduced accordingly.
From Eq.~4.1b! we find that the energy dependence of t

elasticscattering elementsTi ,i depends both onCi
22 and on

the scattering phase shiftj i for the closing channel,
01270
y

-
in

r.

m-
gh
-

y

e

g
he

Ti ,i5~12ei2j i !22iCi
22ei2j i@ȲOO

212~ tanlO1 iCO
22!# i ,i

21,

~4.2!

Both these parameters in turn are defined by the w
behaved analytic reference functionf («,R)→C(E)s(«,R)
associated with channelui&, since the asymptotic form o
s(«,R) yields the phase shift. As seen in Table II, for lo
partial waves the threshold behavior for the scattering ph
shift j~«! exactly mimicsC22, i.e., j→(2Alk)2l 11. How-
ever, depending on the leading powerR2s of the long-range
potential in Eq.~2.3!, the higher partial waves will begin to
deviate from theC22 behavior, i.e.,j→(Ask)s22, whenever
(2l 11).(s22).

Examples of these various dependences for the diag
matrix elementsuTii u2 are given in Fig. 5 forl 50, 2, and 4
channels. Channels 1, 2, and 3 are strongly open, and t
elements remain essentially constant in the vicinity of the
12 threshold. TheuT44u2 element rises likek2, as expected
for an incidentl 50 channel. Both theuT55u2 element with
l 52 and theuT66u2 element withl 54 are very small, and
show the appropriatek2 at threshold due to long-rang
Cii /R3 contributions in their reference potentials. As we s
in Eq. ~1.7!, the next leading term in the asymptotic refe
ence potentials varies as 1/R6. Note that at aboutE
5100mK the uT55u2 element switches to ak8 dependence,
indicating that thes56 dependence adds to the phase s
and now dominates over thes53 contribution. TheuT66u2
element exhibits the same phenomena atE51000mK, but in
this case there is a distructive interference between the
contributions and the element dips toward zero in this regi
This behavior is consistent with the relative signs of theC3
andC6 coefficients in Eq.~2.7! for these two channels.

For single-channels-wave scattering, wherej(«)→
2A0k in Table II, the parameterA0 is the scattering length
defined by the chosen reference potential. The sign and m
nitude ofA0 is a sensitive function of the position of the la
bound state supported by the reference potential. This is
course, given by the conditionn(«n)5np. In fact, an ana-
lytic relationship exists between thes-wave scattering length
A0 and Milne bound-state phasen(0) evaluated at threshold
@4#,

A052
]n

]kU
k→0

FcotS p

s22D1cotn~0!G , ~4.3!

where«52h2k2/2m. The parameters in cot„p/(s22)… is
defined by the leading asymptotic power lawCs /Rs for the
potential. This expression has been used@4# to derive some
general relations between the position of bound states
dicted byn(«n)5np and the scattering length. If a boun
state «n52h2kn

2/2m lies just below threshold, thenn(0)
'np2(]n/]k)kn and A0→1/kn . However if n(0)'np
1(]n/]k)k̄n , then we can imagine a pseudo-bound-st
existing at a positive energy«̄n51h2k̄n

2/2m just above
threshold, andA0→21/k̄n .

Since the quantity 2]n/]kuk→0 is basically an
asymptotic property that only depends on the asympt
form of the reference potentialCs /Rs, and is independent o
8-10
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any variations in the shorter-range terms in Eq.~2.7!, it can
be shown to scale asbs5(2muCsu/\2)1/(s22). All ground-
state alkali-metal-atom interactions are dominated by
C6 /R6 in Eq. ~2.7! with both thea 3Su and theX 1S1g
potentials having the sameC6 , and we have cot@p/(s22)#
51. The authors of Ref.@12# found that for such potential
2]n/]k→0.477b6 , which agrees perfectly with our calcu
lations for both 23Na and 87Rb collisions. An expression
completely analogous to Eq.~4.3! was first derived by Grib-
akin and Flambaum@23# using a semiclassical expression
define the phasen(0). This semiclassical approach was fu
ther refined in Ref.@24# to obtain the effective range beha
ior, and applied to cold atom scattering. Based on Eq.~20! in
Ref. @24#, we can replace their semiclassical phaseF
2p/2(s22) with n(0)1p/2, and retrieve Eq.~4.3!, with
2]n/]k being defined analytically as follows:

2
]n

]k
5sinS p

s22D ~s22!22/~s22!

GS s23

s22D
GS s21

s22D bs . ~4.4!

For s56, this predicts2]n/]k→0.478b6 , and confirms our
numerical results. The same behavior is predicted in Eq.~9!
of Ref. @22#, with Kl 50

0 (0)[tan@n(0)1p/2#. Thes-wave co-
efficent C22→2B0k obeys a similar threshold dependen
asj(«)→2A0k, and we can use the expressions in Table
to derive an analogous relationship forB0 ,

C22

k
→B052

]n

]kU
k→0

sin22n~0![2
]n

]kU
k→0

cos22 l~0!,

~4.5!

which again is well confirmed by our numerical calculation

B. Cusp behavior at channel closings

A simple example of threshold and cusp effects forl 50
channels is demonstrated by theuT11u2, uT14u2, and uT44u2

elements associated withF50, p511 case in Table I~a!.
These two channels with (l , f )5(0,0) are strongly coupled a
short range by exchange interactions, and, as expected f
l 50 channel, the elementuT14u2}k4 and uT44u2}k4

2 as chan-
nel 4 closes atE/EHF52. This was already demonstrated
Figs. 4 and 5. Furthermore we see in Fig. 1 that as chann
closes a cusp appears in theuT11u2 matrix element. This is
shown in more detail in Fig. 6, and again we find that t
behavior is reproduced perfectly by the GMQDT analys
An analysis of a two-channel cusp was given in Appendix
of Ref. @9#. We only expect a pronounced cusp behav
when the closing channel, such as channel 4 in this c
corresponds to ans-wave channel withl 50. It is simply
related to the energy variation of the four GMQDT para
etersj, tanl, C22, andn, as given in Table II. The approac
of uT11u2 to threshold from below as«→02 depends on
]n4 /]«, which we can obtain from Eq.~4.4!, while from
above «→01 it depends on both]l4 /]« and ]C4

22/]«.
01270
e

I

.

an

l 4

.

r
e,

-

These limiting forms, combined with the threshold constra
tanl(0)tann(0)521, allow us to easily evaluate the cus
behavior.

C. Perturbative corrections for weak long-range
spin-spin couplings

The terms proportional toa2R23 in Eqs.~2.7b! and~2.7c!
are the so-called spin-spin~SS! interactions@3,19#, which are
second order in the fine-structure constanta. Because the SS
terms persist to such large distances, we can expect a sl
convergence of theY matrix elements associated with suc
couplings. As we shall see shortly, higher-order long-ran
SS interactions dominate the coupling when channel 6
open. Such long-range behavior is especially evident in
Y5,6 element in Fig. 7, which, even well above threshold,
not yet converged at 200 a.u. Examining Table 1~a! we see
that Y5,6 involves coupling between a pair of asymptotica
degeneratechannels with orbital angular momental differing
by 2. In the Born approximation we can expect these wea
coupled elements to be proportional toYi , j
}^ j l(kR)ua2R23u j l 12(kR)&, which is a very slowly con-
verging integral and leads to this boring behavior. Furth
more, as the energy is lowered the Bessel functions in
integrand penetrate more deeply into nonclassical regio
and we must be on guard for significant energy variation
these particular long-rangeY matrix elements.

In Eq. ~1.7! we designate the scattering matrix eleme
generated by the short-rangeY matrix in Eq. ~1.5! as
SOO(Y), and use the distorted-wave approximation~DWA!
in Eq. ~1.8! to apply a perturbative long-range correctio
Si , j

DWA522p i ^« i uCi , j /R3u« j& to these elements, where th

FIG. 6. Six-channel (F50, p511) case. There is a cusp be
havior in uT11u2 for channel 1 (l 50) at the opening of channel 4
( l 50). Very close to threshold the open channels 5 (l 52) and 6
( l 52) are effectively treated as closed. This is because the cla
cally accessible regions beyond the centrifugal barrier occur w
beyondRmax570 000 a.u.
8-11
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energy-normalized continuum states are given by the asy
totically defined reference functions, u« i&
5(2m/p\2)1/2si(« i ,R) in Eq. ~3.7a!, obtained in the mixed
representation using adiabatic reference potentials define
each subset of~f,l! channels. This integral can be evaluat
numerically, and has been found to yield excellent resu
However, for degenerate channels, whenboth reference
functions approach the Bessel functionsi(« i ,R)→Ji(« i ,R)
→ki

21/2sin(kiR2pl/2), we retrieve the simple Born approx
mation which can be evaluated analytically. For anl→ l 12
transition we obtain

Si , j
DWA~ l 50!→2 i7.63209A« i~mK !Ci , j a.u., ~4.6a!

Si , j
DWA~ l 51!→2 i0.848267A« i~mK !Ci , j a.u., ~4.6b!

Si , j
DWA~ l 52!→2 i0.424084A« i~mK !Ci , j a.u., ~4.6c!

This implies auniversal k2 threshold dependence for a
uTi j u2 elements involving degenerate channels that are do
nated by long-range spin-spin couplings.

Confirmation of this behavior can be seen in Fig. 8, wh
we plot the only three matrix elementsuT11u2, uT22u2, and
uT12u2 that are open at the (f a51, f b51) threshold. The
diagonal elements are given perfectly by the pure MQ
scattering matrixSOO(Y) in Eq. ~1.7!. The uT11u2 element
has thek2 dependence we expect for ans-wave channel,
while uT22u2 begins ask2 because of the long-rangeR23

dependence of the reference potential for thisd-wave chan-
nel, but then switches over to thek8 dependence associate
with a R26 potential combined with anl 52 partial wave.
However, theuT12(Y)u2 element in Fig. 8 exhibits the typica
k6 dependence predicted by Eq.~1.6! for an s- to d-wave
transition if the interaction matrix elementV12 were short
ranged, and is much too small compared to the close-cou
results which give thek2 dependence predicted by Eq.~4.6a!.

FIG. 7. R dependence of spin-spin-coupledY26(R), Y36(R), and
Y56(R) elements for the six-channel (F50, p511) case. Solid
curves are for a kinetic energy«50.0818 cm21 above thef a52,
f b52 threshold. Dashed curves are for«50.00181 cm21.
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By evaluating Eq.~4.6a! and adding this toS12(Y) in Eq.
~1.7!, we obtain perfect agreement with the close-coup
results, as seen in Fig. 8.

For some of the very small spin-spin matrix elements
find an interesting second-order approximation which is v
precise. This is shown in Fig. 9 for the elementsuT45u2,
uT56u2, and uT46u2 that open at the (f a52, f b52) threshold.
The close-coupled results for bothuT45u2 and uT56u2 are in

FIG. 8. uTi j u2 elements for the six-channel (F50, p511) case.
« is measured relative to thef a51, f b51 threshold, where only
a51 and 2 channels are open. Solid curves indicate CC res
Dashed curves with solid dots show the excellent agreement w
the perturbative SS correctionS(Y)1SDWA in Eq. ~1.7! is applied
to uT12u2. The dashed curve with open circles shows theuT12(Y)u2

element by itself, which appropriately varies ask6 but is negligible
compared touT12

DWAu2.

FIG. 9. uTi j u2 elements for the six-channel (F50, p511) case.
« is measured relative to thef a52, f b52 threshold where all chan
nels are open. The solid curves indicate CC results. The da
curve with solid dot shows results usingS(Y)1SDWA in Eq. ~1.7!,
and the second-order correction in Eq.~4.7! is used to evaluate
uT45u2, uT56u2, anduT46u2. The dashed curve with open circles show
the uT45(Y)u2 element by itself, which appropriately varies ask6 but
is negligible compared touT45

DWAu2.
8-12
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ANALYSIS OF THRESHOLD EFFECTS IN ULTRACOLD . . . PHYSICAL REVIEW A62 012708
excellent agreement with the first-order predictions of E
~4.6a! and ~4.6c!, respectively. However, since the angul
momentl for channels 4 and 6 differ by 4, there is no dire
spin-spin coupling between these states. However, they
be coupled by the sequence 4→5→6, and we predict

uTi ,k
DWA~ l→ l 14!u25uTi , j

DWA~ l→12!u2

3uTj ,k
DWA~ l 12→ l 14!u2/4. ~4.7!

This expression can be derived from the half-collision a
plitude theory@28# we developed based essentially on GM
QDT. The exquisite agreement between this expression
the exact close coupling is demonstrated in Fig. 9. Si
uT45u2 and uT56u2 each vary ask2, we find that the overall
threshold dependence of theuT46u2 element isk4, as implied
by the product in Eq.~4.7!. This expression isnot dependent
on perturbation theory, but rather relies on the fact that
sequence of transitions occur in different regions of inter
clear separation. It is a special application of the more g
eral result.

uTi ,k~sequence!u25uTi , j~ inner!u2uTj ,k~outer!u2/4. ~4.8!

If there are competing pathways there are complicated in
ferences that must be introduced, but for present applicat
Eq. ~4.7! is quite adequate.

A final demonstration of Eq.~4.7! is observed in the ele
ment uT16u2 in Fig. 10, where the sequence of half-collisio
amplitude transitions is actually carried to third order. Fi
we note thatuT45u2 and uT56u2 vary ask2, in quantitative
agreement with the DBA predictions in Eq.~4.6!. Further-
moreuT46u2 varies ask4, and equals the second-order expre
sion uT45u2uT56u2/4 given by Eq.~4.7!. Finally we find that
uT16u25uT14u2uT46u2/4 varies ask5, and follows the sequenc

FIG. 10. uTi j u2 elements for the six-channel (F50, p511)
case.« is measured relative to thef a52, f b52 threshold where all
channels are open. The solid curves indicate CC results. The da
curves with solid dot shows result using theS(Y)1SDWA correction
in Eq. ~1.7! and the second-order correction in Eq.~4.8!. The ele-
ment uT16u2 has ak5 dependence consistent with a third-order p
cess, and is well represented by the approximat
uT16(sequence)u25uT14u2uT45u2uT56u2/16.
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1→4→6 predicted by Eq.~4.8!. In this case theuT14u2 ele-
ment is due to exchange coupling and is given by the sh
rangeuT14(Y%u2, which varies ask. Since uT46u2 is already
shown to follow the sequence 4→5→6 we see thatuT16u2
5uT14u2uT45u2uT56u2/16, and the inelastic transition from
channel 1 to channel 6 follows the third-order pathway
→4→5→6.

D. Frame transformation analysis of l-degenerate
channel couplings

So far all the long-range SS couplings we have conside
in the F50, p511 block of channel states in Table I~a!
have involved channels which differ in both their chann
spin state quantum numberf and in their nuclear angula
momentum statel. However, in collisions involving hyper-
fine transitions, we often encounter SS coupling between
ymptotically degenerate channel states which differ by
channel state quantum numberf, but which have identicall.
Examining the block of channel states in Table I~b! for F
51 andp521 we see this situation occurs between cha
nels 2 and 3 withl 51 and between channels 4 and 5 wi
l 53. All four channels asymptotically correlate with th
( f a51, f b52) threshold, and the long-range portion of th
reference potentials we will use for these channels are sh
in Fig. 11. These reference potentialsVO correspond to the
mixed basis we discussed in Sec. III, where the fourl 51
channels and the threel 53 channels in Table I~b! are diago-
nalized separately, using an orthogonal matrixM (R)
5@0

M l 51(R)
M l 53(R)
0 #, which preserves the indentity of th

angular momentum quantum numberl. The comparable ma
trix for the F50, p511 channels approaches the unit m
trix as R→`, and the associated reference potentials p
serve the asymptotic identity of the channel spin statef.
However, because SS coupling between thel-degenerate

ed

-
n

FIG. 11. Asymptotic correlation of the (F51, p521) channels
a52, 3, 4, and 5 which dissociate to thef a51, f b52 threshold at
E50. Channel 4 adiabatically correlates with theX 1Sg

1 potential
at short distances, while the remaining three channels all adia
cally correlate witha 3Su

1 at smallR.
8-13
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FREDERICK H. MIES AND MAURICE RAOULT PHYSICAL REVIEW A62 012708
channel states in theF51, p521 block persists out to in-
finity, the orthogonal matrixM (`)Þ1 is no longer a unit
matrix and the reference potentials correlate withrotatedsets
of the channel states. We will show how the asymptotic m
trix M (`) defines a simple frame transformation that we c
use, in combination with our MQDT theory, to obtain a
accurate reproduction of the close-coupled results.

The scattering matrixSg,g8 we require to describe th
cross sections and rate for the hyperfine transitions
Na1Na must be constructed in an asymptotic basis using
well-defined channel quantum statesj 5 l , f , f a , f b in Eq.
~2.1! and Table I. We often refer to these as the case e b
because of their analogy to the Hund’s case~e! angular mo-
mentum coupling scheme used in diatomic spectrosc
@29#, and we will specify the particular interaction matrix
Eqs.~2.2! and~2.3! asW~case e!, and we specify the result
ant scattering matrix in Eq.~2.6! asS~case e!.

In performing the CC calculations forF51 andp521
we have two equally valid options. First we can integrate
~2.1! explicitly using W~case e! to obtainK ~case e! in Eq.
~2.5!, and thus directly evaluateS~case e! using Eq.~2.6!. Of
course in this basis thel-degenerate channels haveoff-
diagonal R23 couplings which persist in contributing to th
scattering out to extremely large distances. To achieve c
vergence on spin-spin elements we find we must often i
grate out toR.10 000 a.u. or more@see Ref.@30# for a dis-
cussion of similar long-range concerns for theR23

polarization potential in H11F collisions#. This is no prob-
lem if one uses amplitude following algorithms, such as
Gordon method@31#, but it does restrict the numerical op
tions at one’s disposal.

An alternative close-coupled approach~which we find is
critical to use in our MQDT analysis! is to perform the cal-
culations in a rotated basis of channel states, which remo
the asymptotic R23 couplings, and use the following rotate
interaction matrix in the close-coupled equations~2.1!:

W~rot,R!5M ~`!W~case e,R!M̃ ~`!, ~4.9!

Note that the off-diagonal elementsW2,3~rot! and W4,5~rot!
now vanish asR26, while the diagonal elements still vanis
as R23 and we achieve convergence of theS~rot! matrix
elements at much shorter distances. Thus if we use the m
reference potentials to obtain the correspondingY(rot,E,R)
in Eq. ~3.1!, we can expect it will convergence at a conv
niently small distanceR, and we can use Eq.~1.5! to ob-
tained a good representation of the close-coupled scatte
matrix S~rot!. Numerically we find that theY23~rot! and
Y45~rot! elements, and their associated diagonal elements
fully converged byR540 a.u. GivenS~rot! we can then re-
trieveS~case e! by a simple frame transformation at the co
clusion of the calculation,

S~case e!5M̃ ~`!S~rot!M ~`!. ~4.10!

The excellent agreement between the close-coupled
MQDT results is illustrated in Fig. 12.

Note that Eq.~4.10! is a generalized version of the fram
transformation theory@32# that has been applied so succe
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fully to treat spin-exchange collisions involvedA(2s)
1B(2s) atoms. For example, the frame transformation m
trix M ~`! consists of two 232 orthogonal matrices
@2sin wl

coswl
coswl
sin wl # that are described by two separatel-dependent

rotation anglesw l . If we look at, say, the 232 block
@S5,4

S4,4
S5,5

S4,5# of S~rot!, that will undergo thew l 53 rotation,

we see it is dominated by the diagonal elementsSi ,i'ei2j i,
and the resultant off-diagonal case e element essent
equals

T4,5~case e!5cosw3 sinw3@ei2j4~rot!2ei2j5~rot!#.
~4.11!

Recall from Fig. 11 thata54 correlates with theX 1Sg
1

state at short distances, whilea55 correlates with the
a 3Su

1 state, and we see that Eq.~4.11! depends on the
difference between the elastic-scattering scattering ph
shifts for the triplet and singlet molecular potentials. Th
Eq. ~4.11! is identical to the well-known spin-exchange e
pression, which also involves such a difference@32#. The
result for this one special element is consistent with our p
vious study of the loss rates in cold87Rb187Rb collisions
@4#, where we found extremely small loss rates because
scattering lengths, and hence the phase shifts for the2
triplet and singlet potentials were almost identical. Equat
~4.11! is good confirmation of that effect.

V. DISCUSSION AND CONCLUSIONS

We have presented an analysis of threshold effects ba
on GMQDT, which gives an exact analytic representation

FIG. 12. uTi j u2 elements for the seven-channel (F51, p521)
case in Table I~b!. « is measured relative to thef a51, f b52 thresh-
old, where five channels are open. As seen in Fig. 11, channe
and 3 withl 51 are degenerate, and channels 4 and 5 withl 53 are
degenerate. The circles and dots indicate the exact CC results
curves indicate the excellent results obtained by applying the fra

transformationS(case e)5M̃ (`)S(rot)M (`) to the rotatated scat
tering matrixS(rot) obtained with the GMQDT method. The ele
ments shown in this figure are only those that are strongly coup
by the exchange interaction.
8-14
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ANALYSIS OF THRESHOLD EFFECTS IN ULTRACOLD . . . PHYSICAL REVIEW A62 012708
the multichannel threshold laws, and yields results which
numerically equivalent to the close-coupled results for th
channels that are strongly coupled at short range. The
long-range spin-spin interactions are analyzed using
distorted-wave approximation in Eq.~1.7!, and the result
gives us a complete quantitative description of all thresh
laws associated with the hyperfine transitions in ultrac
atomic collisions.

In general the scattering matrixSOO(E) and the associ-
ated transition matrixTOO(E)512SOO(E) vary rapidly
with energy. Thus direct numerical integration of the clos
coupled equations~2.2!, while always giving exact results
must be performed over a narrow grid of energies and
pensive searches must be performed, especially if un
lyzed resonance structure is present.~This is demonstrated
by the CC data points in Fig. 1.! Furthermore, brute force
integration does not offer any insight into the threshold
havior of the resultant cross sections and rates. Howeve
the coupling in our system occurs predominantly in clas
cally accessible regions where the diagonal elements oE
2W(R).0 are positive, it is preferable to use the GMQD
expansion of the CC wave function in Eq.~3.1!. With a
careful choice of a diagonal set of reference potentialsV(R)
which reflect the long-range properties of the interaction m
trix in Eq. ~2.3!, we expect that, except near threshold, t
dominant energy variations inSOO can be associated with th
diagonal set of phase shiftsjO(E) for open channels, and th
bound-state phase shiftsnC(E) for closed channels define
by V(R).

As we approach threshold from above two additional
rametersCO(E) and lO(E) come into play, and dominat
the threshold behavior. The associated matrixY(E) varies
almost monotonically with energy, and we can substantia
and sometimes profoundly reduce the number of clo
coupled calculations we must perform to describe a gi
process. Essentially we use reference potentials which e
tively go well beyond the leading asymptotic term provid
by l ( l 11)/R2, and can do a good job of describing th
‘‘elastic’’ scattering in each channel. IfY is almost constan
the systematics of the energy structure is simply related
the single-channel parameters that occur in analytic exp
sion ~1.5! for SOO .

In addition to the obvious, but rather mundane, econo
advantage of the GMQDT analysis in performing clos
coupling calculations even when all channels are open,
theory becomes truly interesting as we approach thresh
where various channels begin to close. In this region t
very important and closely related energy-dependent eff
become significant. First, whenever« i,0 and a channel be
comes completely closed, both reference functionsf i andgi
become asymptotically divergent, and the well-behaved
ear combination given in Eq.~3.4! manifests inself as a
closed-channel resonance. Resonances are approximate
cated at the poles of the matrix@ tannC(E)1YCC#21 where
the zeros of the bound-state phase tannC(E)50 locate the
bound-state eigenvalues in the closed channels, andYCC in-
troduces shifts in the resonance positions induced by
close coupling. Note thatC(E) is extremely sensitive to tun
neling through the rotational barriers, and gives a powe
01270
re
e
ry
e

d
d

-

x-
a-

-
if

i-

-
e

-

y
-

n
c-

to
s-

ic
-
e

ds
o
ts

-

lo-

e

l

means of isolating the effects of shape resonances in a
tichannel problem. Close to threshold an interesting ‘‘mu
channel’’ shape resonance effect is introduced by the ene
variation of tanlO that appears in the denominator of Eq.~6!.
In addition, the behavior ofC21(E) for l 50 at threshold is
directly related to what have been called ‘‘zero-energ
resonances@13#. These shape resonance phenomena will
presented in a subsequent resonance paper.

The second effect, which is the primary concern of th
paper, is associated with the threshold behaviors just ab
and just below a channel closing. This is related to the
ergy dependence of the four MQDT parametersj, n, l, and
C, which are defined for each channel. Their threshold
pendences are summarized in Table II. Except at ener
just abovea threshold, the two phasesj~«! andn(«) are in
fact sufficient to perform a rather complete and rigoro
GMQDT analysis of close-coupled wave functions, inclu
ing, for example, many manifestations of overlapping a
non-Lorentzian resonant structure. Below threshold we
always rely on Eq.~1.3! to be valid, even as«→02 from
below. However, as«→01 from above the analytic refer
ence functions,f and g begin to loss the asymptotic phas
relationship implied by Eqs.~3.7!, and their asymptotic be
havior requires the introduction of the two additional QD
parametersC(«) and tanl~«! in Eq. ~3.6! These appear in
the analytic expression~1.4! which describes the scattering
For short-range interactions, this analysis leads to the thr
old laws summarized in Table II which are well substantia
by the many comparisons made in Sec. IV.

Once again, it must be emphasized that the comp
physics of the scattering problem is already dictated by
N3N interaction matrixW(R) that is used in solving the
close-coupled equations.Y by itself has no intrinsic mean
ing, but rather is dictated by ourchoiceof reference poten-
tials Vi(R). What GMQDT offers is an alternative set o
exact solutions to thesameset of close-coupled scatterin
equations which are constructed to be an analytic function
the total energyE. It converts the raw numerical output o
the close-coupled scattering equations into a form wh
gives physical insight into the multichannel dynamics, es
cially in the presence of closed-channel resonances, or w
multichannel Wigner threshold laws are of concern.

For those spin depolarization cross sections which
dominated by very weak long-rangea2R23 couplings we
must apply the Born approximation correction in Eq.~4.6!,
and we find a universalk2 threshold dependence for alluTi j u2
elements associated with such transitions. In addition
have found that many transition matrix elements are qua
tively represented as asequenceof first-order transitions, as
expressed in Eqs.~4.7! and ~4.8!, and this is seen to persis
even to third order. Finally, for spin-spin-coupled degener
channels which haveidentical nuclear angular momental,
we have introduced a simple frame transformation in E
~4.10! which removes the asymptotic coupling, and allows
to use short-range GMQDT expressions to obtain accu
results.

APPENDIX A: MILNE ANALYSIS OF GMQDT
REFERENCE FUNCTIONS AND PARAMETERS

The relationships between the various reference functi
are summarized in Table III. The analytic set~f,g! is adapted
8-15
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TABLE III. Milne-based definition of various specialized reference functions.W(a,b)5ab82a8b.

Analytic reference functions: analytic in« across threshold,W(g, f )51
f («,R)5a sinb 5Cs(«,R) →0 R→0

g(«,R)5a cosb 5@C21c(«,R)2(tanl)C(«)s(«,R)# →` R→0

Continuum functions: «.0, W(c,s)51

s(«,R)5C21f («,R) 5
a

C
sinb →(cosj)J1(sinj)N R→`

c(«,R)5C@g(«,R)1(tanl)f(«,R)# 5
a

C cosl
cos(b1l) →(sinj)J1(cosj)N R→`

Asymptotically well-behaved closed-channel functiona: «,0
f(«,R)5@ f («,R) cosn2g(«,R)sinn# 5a sin(b2n)

n(«)5*0
`
dR/a2(«,R)

→exp(2ukuR)
n(«)→np as

R→`
«→«n

WKB limit : if «@0, C(«)→1, tanl(«)→0
f~«,R!5Cs~«,R! →s~«,R! «.

g~«,R!5@C21c~«,R!~tanl)Cs(«,R)] →c(«,R) «.

af (a,R) is generally divergent asR→0. True bound states occur whenevern(a)5np.
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to the short-range portion of the reference potential, w
boundary conditions set in the classically allowed regio
This insures that these functions are analytic in energy ac
threshold. The close-coupled wave function is analyzed w
this set and the analyticY(E) matrix is obtained.

In place of our previous analysis@8# of the reference func-
tions in GMQDT, we shall use the more versatile Milne co
struction@10–12# to define the analytic reference function

f ~R!5a~R!sinb~R!, ~A1!

g~R!5a~R!cosb~R!. ~A2!

Note thatf («,R) plays a central role in GMQDT, since it i
uniquely defined to be thatparticular solution of the homo-
geneous second-order equation,@d2/dR21K2(«,R)# f («,R)
50, which is well behavedas R→0. This equation is pre-
scribed by the reference potentialV(R) we choose to asso
ciate with the given channel such thatK2(«,R)52m@E
2V(R)#/\2→2m«/\2→k2. The irregular functiong(«,R)
is also a solution to this equation, and together they form
particular pair ofindependentsolutions at asymptotic kinetic
energy« with a Wronskian prescribed to bef 8g2g8 f 51.
The independent solutiong, is always divergent asR→0.

Although only two independent solutions can exist, the
can be used to define an infinite variety of special soluti
which satisfy useful boundary conditions, such as those
fined in Table III.All such solutions are uniquely specifie
by the single amplitudea(«,R) and the associated phas
b(«,R) defined by the inhomogeneous Milne equation:

@d2/dR21K2~E,R!#a~«,R!5a23~«,R!. ~A3!

By definition the phaseb(«,R) is related to the amplitude
a(«,R) as follows,db/dR[1/a2. The constant of integra
tion is chosen such that

b~«,R!5E
0

R

dR/a2~«,R8!, ~A4!
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which then insures thatf («,R)5a sinb is well behaved as
R→0. At this point the pair of boundary conditions we mu
prescribe fora(«,r ) are still completely at our disposal, an
will be chosen below to insure proper analytic behavior w
«, especially as we cross thresholds.

In the vicinity just above a dissociation threshold we i
troduce a second set of reference functions~s,c! which is
specifically adapted to describe the asymptotic scatte
properties of open channels, using the usual asympto
boundary conditions given in Eq.~3.7!. In this appendix we
explain the numerical procedures used to determine the
nection between these two sets of reference functions. T
connection is characterized by the three MQDT parame
j, C, and tanl which appear in Eq.~3.8!.

Except at specific eigenvalues, the analytic functionsf and
g for closed channels both contain an exponentially ris
term asR→`, i.e., f 5(sinn)Ae1kR1(cosn)Be2kR, and g
5(cosn)Ae1kR2(sinn)Be2kR. Our chore is to find the par
ticular phasen~«! in Eq. ~3.4! which insures that the well-
behaved functionf(«,R)5a sin(b2n) decays asymptoti-
cally. The bound states associated with the refere
potential are defined by the condition sinn(«n)50, which in-
sures that the reference functionf («n ,R) is well behaved at
bothR50 andR5`. We will define the modular-p bound-
state phase such thatn(«n)5np is a measure of the numbe
of nodes in the functionf («n ,R).

Given any initial values for a(«,Rm) and its derivative
a8(«,Rm), we can always obtain an exact numerical soluti
to the Milne equation~A3!, and the resultant reference fun
tions are completely defined. Further, this formulation h
the important feature thatanyparticular solution to the Milne
equation will give an energy-dependent bound-state ph
integral

n~«!5E
0

`

dR/a2~«,R! ~A5!

which insures that the solutionf(«,R)5a sin(b2n)
8-16
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5a sin@*R
`dR8/a2(«,R8)#→0 is well behaved atR→`. For

energies«,0, the conditionn(«n)5np is only satisfied at
discrete eigenenergies«5«n where the solutionf («,R) is
equivalent to the solutionf(«,R). At such energies bothf
andf are well behaved at bothR50 andr 5`, and repre-
sent a single normalizable bound-state solution, or eig
function, of @d2/dR21K2(«n ,R)# f («n ,R)50. All the ir-
regular character has been isolated in the single, unphy
solutiong, which can then be rejected.

As discussed by Pan and Mies@33# we usually set our
initial boundary conditions ona(«,Rm) anda8(«,Rm) at the
equilbrium distanceRm5Re defined by the minimum in the
reference potential wheredV(R)/dRuRe

50, and choose them
to have the following WKB-like initial values.

a~«,Re!'1/AK~«,Re!, ~A6a!

a8~«,Re!'0,. ~A6b!

SinceK(«,Re) is analytic inE throughout the rangeV(Re)
,E,`, the functionsa(«,R) andb(«,R) and the resultan
reference functionsf («,R) andg(«,R) are analytic inE over
this range as well, and especially across the important thr
old region. To have Eq.~A1! perfectly consistent with WKB-
like behavior in the vicinity ofR'Re , the Milne equation
~A3! implies thatK2a@a9 at Re . A more self-consisten
scheme we have often used is to chooseRm to coincide with
the conditiond2@K21/2(E,R)#/dR2uRm

50, and then set the

initial condition a8(«,Rm)'d@K21/2(E,R)#/dRuRm
. This is

a very useful choice for electronic reference functions wh
are often not very WKB-like. Fortunately, for the heav
masses encountered in atomic scattering theory it is usu
quite adequate to chooseRm at the equilibrium positionRe
defined by the attractive potentialV(R), and set the bound
ary conditions using Eqs.~A6!.

The boundary conditions in Eqs.~A6! yield our previous
expressions @8# for tann5K(t2g)/(tg1K2), cotl5K(g
2u)/(ug1K2), and C225(s2K1s82/K) evaluated atR
5Re , where s and s8 and the log derivativesg5 f 8/ f , t
5f8/f, andu5c8/c are obtained from the direct numeric
integration of the homogenious@d2/dR21K2(«,R)#w(«,R)
50. Since at threshold«50 the asymptotic boundary con
dition for bothu andt exactly equal zero,t(0,R) andu(0,R)
are equivalent atR5Re , and we obtain the required thres
old constraint tanl(0)52cotn(0). Alternatively we can in-
tegrate the nonlinear Milne equation~A3! and numerically
evaluate Eq.~A5!. Both methods give identical results, an
by definition,n(«n)5np will alwaysyield exact eigenval-
ues. However, of even more importance, the resultant bou
state phasen~«! in Eq. ~A5! is a very monotonic, smoothly
varying function of« that can be easily interpolated ov
wide excursions in energy.

The numerical procedure we use with the Milne equat
is as follows. First thef andg functions are evaluated usin
a(«,R) obtained from integrating Eq.~A3!. The propagation
is generally started at the minimumRe of the potential well,
where the WKB-like initial conditions in Eq.~A6! are well
satisfied. Separate inward~from Re to Rmin) and outward
01270
n-

al

h-

h
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d-

n

~from Re to Rmax) propagations are performed to obtain t
amplitudea(«,R) at all R. The accumulated phaseb(«,R)
in Eq. ~A4! is then obtained by numerical integration. A
shown in Eq.~A5! the critical GMQDT parameter for close
channelsn~«! is nothing else thanb~«, `!. However, in
evaluating the other GMQDT parameters one must be car
in using the Milne method for very low asymptotic energi
where centrifugal barriers associated withl .0 potentials
must be penetrated. Under these conditions Lee and L
@34# showed thatspuriousoscillations ofa(«,R) can occur
at distancesR.Rtop beyond the centrifugal barrier peak
R5Rtop. To bypass this difficulty Lee and Light split th
space into two regions, to the left and right of the barri
The functionsf and g at R<Rtop are determined exactly a
described above. ForR.Rtop an intermediate pair of refer
ence functionsf `5a`sinb` andg`5a`cosb` are obtained
by propagatinginward from some large distanceRmax using
a second solutiona`(R) to the Milne equation defined by
the asymptotic boundary condition

a`~Rmax!51/AK~Rmax!→1/Ak` ~A7!

in place of Eq.~A6!, and

b`~«,R!5E
Rtop

R

dR8/a`
2 ~«,R8! ~A8!

in place of Eq.~A4!. This insures thatf ` and g` are well
behaved at long range, and can be asymptotically matche
spherical Bessel functions

f `~«,R! ;
R→`

~cosd`!J~«,R!1~sind`!N~«,R!,

~A9a!

g`~«,R! ;
R→`

2~sind`!J~«,R!1~cosd`!N~«,R!.

~A9b!

By imposing continuity on both sets of functions and th
derivatives atR5Rtop, we can obtain a numerically reliabl
representation of the analytic reference functions forR
.Rtop:

f ~«,R!5a f`~«,R!1bg`~«,R!, R>Rtop, ~A10a!

g~«,R!5c f`~«,R!1dg`~«,R!, R>Rtop,
~A10b!

and easily obtain the required GMQDT parameters. For
stance, matching Eq.~A10a! to Eqs. ~3.6a! and ~3.7a!, we
find C(E)5Aa21b2 and tanj5(asind`2bcosd`)/
(acosd`2bsind`). Given C andj it is then an easy matte
to match Eq.~A10b! to Eqs. ~3.6b! and ~3.7!, and obtain
tanl5(aC222d)/b. It should be pointed out that even fo
s-wave scattering some caution must be taken at thresho
avoid spurious oscillations ina(«,R) at large distances
Again we can chose an arbitraryRtop for l 50, using, for
example, the sameRtop defined by the correspondingl 51
reference potential, and perform the same matching in E
~A10!.
8-17
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APPENDIX B: NUMERICAL ANALYSIS OF Y „R,E…

In this appendix we describe how theY matrix and itsR
variation is obtained in both diabatic and adiabatic repres
tations. In both cases the set of close-coupled equations~2.2!
are propagated in the diabatic representation using a va
of the renormalized Numerov~RN! method implemented by
Johnson@35#. As explained by Johnson, the ratio matrixR
which is propagated in the RN method can be replaced b
log-derivative matrixL . Again the diabatic log-derivative
matrix L is obtained. Let us first explain how the diaba
matrix Yd is extracted from the close coupling. For a giv
energyE the diabatic close-coupled wave functionFd is ana-
lyzed with the diabatic reference functions defined by
diagonal interaction matrix elementsWii (R),

Fd~R!5@ f d~R!2gd~R!Yd~R!#Ad~R!, ~B1a!

Fd8~R!5@ f d8~R!2gd8~R!Yd~R!#Ad~R!, ~B1b!

whereFd , Yd , andAd are full N3N square matrices, andf d
andgd are diagonal matrices. Since, by definition,

Ld~R!5Fd8~R!Fd~R!21, ~B2!

we find

Yd~R!5@Ld~R!gd~R!2gd8#21@Ld~R! f d~R!2 f d8#.
~B3!

This analysis is qualitatively similar to the one made in st
dard scattering theory to extract theKOO collision matrix,
. S

d

E.

S.

ys

J

ys
e,

. A
-
.
ev
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except it is performed at eachR value using the diabatic
reference functionsf d and gd in place of the asymptotic
Bessel functionsJ andN, and more fundamentally the com
plete N3N matricesFd(R) and Yd(R) are obtained using
both open and closed channels.

Let us now explain how the adiabatic log-derivative m
trix La can be derived fromLd . As described in Ref.@8#, we
introduce the adiabatic wave functionFa5M (R)Fd(R),
which can be shown to have the structure

M ~R!Fd~R!5@ f a~R!2ga~R!Ya~R!#Aa~R!, ~B4a!

M ~R!Fd8~R!5@ f a8~R!2ga8~R!Ya~R!#Aa~R!, ~B4b!

where M (R) is the orthogonal matrix which either com
pletely or partially diagonalizes the diabatic interaction m
trix W(R)5M (R)VO(R)M̃ (R), and produces the matrixVO

whose diagonal elements define the adiabatic reference f
tions f a and ga . Using Eq.~B4! we can construct an adia
batic log-derivative as follows:

La~R!5M ~R!Ld~R!M̃ ~R! ~B5a!

[@ f a8~R!1ga8~R!Ya~R!#@ f a~R!1ga~R!Ya~R!#21.
~B5b!

Thus, givenLa(R) obtained from the CC calculation at eac
R, we can extract the adiabaticYa(R) matrix as follows:

Ya~R!5@La~R!ga~R!2ga8~R!#21@La~R! f a~R!2 f a8~R!#.
~B6!
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