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At the ultracold temperatures which occur in cold atom traps and Bose-Einstein condensates, only a few
partial waves contribute to the scattering of ground-state alkali-metal atoms, and cross sections are extremely
sensitive to threshold effects. We present an analysis of these threshold effects, using a generalized multichan-
nel quantum defect theolfGMQDT) to construct a close-coupled scattering wave function which is analytic
in energy across thresholds. We illustrate the theory using the hyperfine transitions- MaNzllisions, and
show that it gives results completely equivalent to the usual close-coupled cross sections. The virtue of the
GMQDT is that it treats both open and closed channels on an equal footing, and all interchannel dynamics is
summarized in a single real symmetric matvikE) which is essentially constant across thresh¢#sl often
over excursions of energy which exceed the hyperfine spliftiidgee multichannel threshold energy behavior
can then be related to calculable properties of the individual channels that are being closed. Many of the
smaller spin depolarization cross sections are determined by very long-t&ifgé spin-spin interactions
which are not well treated by GMQDT, and we correct these specific elements with a perturbative distorted-
wave approximation which yields the observed threshold dependences and brings the GMQDT into perfect
agreement with the exact close-coupled results.

PACS numbd(s): 34.10+x, 34.50—s, 34.20.Cf

I. INTRODUCTION The goal of GMQDT is to represent the exact solutions of
the close-coupled scattering equations in a form that is an
Collisions between ultracold atonji$—7] have been ob- analytic function of the total collision enerdy, especially as
served and calculated at temperatures below 1 mK. Thesge cross some threshold at, sky0, where a subset of
differ from “normal” collisions atT>1 K in several signifi- channels can open or close. A real, symmetric, energy-
cant ways. The long-time and distance scales associated withsensitive matrixy is defined which completely and exactly
ultracold collisions enhance the importance of weak interacsummarizes all the dynamics that we have managed to in-
tions such as those associated with hyperfine coupfihgs]  clude in our close-coupled expansion of the scattering wave
or external magnetif6] or optical field§7]. Moreover, only  functions. In this paper we present numerical algorithms,
a few partial waves contribute to the cross sections, and thieased on a Milne analys[40-12 of each channel contrib-
dynamics become extremely sensitive to threshold effects. uting to the scattering, which directly evaluai¥sAt a given
Our analysis of threshold effects is derived from a generE the set ofN=Ng+ N channels included in the close-
alized version of multichannel quantum defect the@®M-  coupled equations includéy open and\¢ closed channels,
QDT) previously developed to describe the dissociation ofand theN <X N matrix Y blocks into open and closed subsets
diatomic molecule$8-12. We will use as a case study the

collision-induced hyperfine transitions Yoo Yoc

. 1.2

Na(3s,f,,m,)+Na(3s,f,,m,) Yco Ycc

—Na(3s,f,,m})+Na3s,f,,m) (1.1 This will be used to define a physically meaningfabserv-
able No X Ng scattering matrixSyo( E) which is completely

of ground-state Na atoms at temperatures on the order of @quivalent to that obtained from the usual CC equations.
uK. For the Na isotope, the nuclear spin=2 combined It must be emphasized that the complete physics of the
with the S= 1 electronic spin of the ground state Na&(3S) scattering problem is already dictated by th& N interac-
atom yields two hyperfine angular momenta stdtgs1 and  tion matrixW; ;(R) that is used in solving the close-coupled
2 which are split by 0.059095 cm or equivalently 85.024 equations. The goal of GMQDT is not so much to add any
mK. This splitting is huge compared to the incident relativenew physics, but rather to add new insight into the dynamics
kinetic energys~1 uK, and the energy released in an exo- by representing thessame exacsolutions to the resultant set
thermic collision is sufficient to eject the atoms from ultra- of CC scattering equations in a form that is an analytic func-
cold traps[1-5]. Such binary loss mechanisms are often ation of the total energ¥. As described in Sec. Ill, th¥(E)
major deterrent to achieving Bose-Einstein condensationnatrix has no intrinsic meaning by itself, but rathedefined
The detailed close-coupleCC) description of these colli- by our choice of reference potentials(R) and the resultant
sions, and the interactions that are required to induce thenpair of independent reference wave functidnég,R) and
are discussed in Sec. Il. g;(E,R) that we assign to each of the channel stajpthat
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are included in the expansion of the multichannel continuumsOO, As we approach threshold this condition is violated
wave function®;" =% |j)F; ;(R)/R incident in channeli).  and we need to introduce a second set of reference functions
If we are careful in choosing an appropriate sefNofefer-  s5 and ¢y with WKB-like boundary conditions set in the
ence potentials, and take care to define reference functiorsgsymptotic region. This introduces two additional energy-
which are properly analytic i, we can insure that the ma- sensitive QDT parametefSo(E) and tamg(E) which give
trix Y(E) is also analytic in energy, and can be safely ex-an analytic connection between the short-ranfige,¢o) and
trapolated across thresholds. Generally we can choose refdong-range §5,co) sets of reference functions. The multi-
ence potentials which insure th¥{(E) is a slowly varying  channel effects of these parameters are introduced by defin-
function of E, and often essentially a constaE)~Y(0)  ing a modified matrixRoo(E) in place of Yoo(E) in Eq.
throughout the threshold regid8,9]. ),

Let us first consider the case when all open channels are
appreciablyabove threshold. From the analytic asymptotic g, (E)=e*é(E)[1+Ryp][1—iRgo] te™i¢0®),
properties of the individual reference functiof)$E,R) and (1.5
gj(E,R) we obtain an energy-dependent elastic scattering
phase shift¢;(E) for each open channgl=1, No and an  where
energy dependent bound-state phagg) for each closed

channelj=Ng+ 1N. Given the matrixY and the diagonal Roo(E)=Co(E) " Yo5—tanko(E) *]Co(E) 2.

NoX Ng matrix of elastic scattering phase shifg(E) and (1.6

the diagonalN:Xx N matrix of bound-state phases:(E) . .

the scattering matrix is given by the expressigh Specifically, theCo(E) parameter connects the amplitude
between the function§y and sg, both of which are well

Soo(E)=e 0B 1+iYoo(E)[1=iYoo(E)] tetiéo®), behaved aRkR—0. The departure o€(E) from 1 measures

(1.3  the magnitude of the deviation from the WKB approxima-
tion. As the WKB approximation relies on a phase-amplitude

whereY oo(E) incorporates any resonance structure cause@PProximation, a change @o generally leads to a change in
by coupling to closed channels, and can be appreciably e,phase. The tang(E) parameter accounts for this modifica-

ergy dependent due to its dependence on the bound stai€n in phase, and its deviation from 0 also means a departure
phasevc(E): from WKB behavior. Note that well above threshold the pa-

rameters approach tag(E)—0 and Co(E)—1, respec-
v3 _ _ + -1 (1 tively, and we retrieve Eqg3) and(4).
YoolE)=Yoo~ Yoc[tanve(E)+Yecl Yeo. (14 Since theNXN matrix Y(E) is essentially a constant
At first g|ance, one can see how GMQDT recovers the enacCross threshold, the multichannel threshold behavior in Eqg.
ergy variation of the multichannéyo(E) through the en- (5) is simply determined by the threshold properties of the
ergy dependence of the single-channel QDT parameteﬂgdividual cha_nnels that participate in the close coupling.
¢o(E) and v(E). Resonances are approximately located aEach channeli), with a given asymptotic threshold energy
the poles of the matriktanve(E)+Ycc] %, where the zeros Ei, is characterized by four channel parametgrsy;, \;,
of the bound-state phase ta(E)=0 locate the bound-state andC; which are functions of the asymptotic kinetic energy
eigenvalues in the closed channels, ¥rg introduces shifts  &i=E—E;". These parameters can be calculated separately,
in the resonance positions induced by the close coupling. wand economically, over any interesting mesh of total ener-
generally refer to such closed-channel resonances as Fegsies, while Y(E) need only be determined at one or two
bach resonances. This analytic behavior is one of the saliemtidely separated energies, aSgdo(E) can easily be con-
features of the GMQDT approach to close-coupling phenomstructed. We have written numerical codes which can calcu-
ena, and has been amply demonstrated in many ¢asdd] late the four required QDT parameters for any given refer-
not involving thresholds. In the special case wladinchan- ence potential we may choose to associate with a given
nels are closed the determinant condit{tenv(E,)+Y (| channel. This will be discussed in Sec. lll, with the detailed
=0 exactly locates the eigenvalugs for the close-coupled algorithms presented in Appendix A. Furthermore, we have
bound state$8,9] of the diatom. The detailed structure of developed CC scattering codes, using the Milne function ap-
both shape and closed-chanr&eshbach resonances, as proach[10-12, which yield Y(E). The numerical proce-
well as pure bound states in the vicinity of thresholds isdures are found in Appendix B.
especially interesting and will be presented in a subsequent An example of the analytical behavior ¥{E) is given in
paper. Fig. 1, where the various matrix elemeidor a six-channel
In this paper we want to demonstrate the advantage oEC calculation are seen to be invariant across the three
using the GMQDT approach in analyzing many interestingthresholds occurring aE/Ep=0, 1, and 2. These results
aspects of multichannel threshold phenomena, especially agll be discussed in greater detail in the next few sections,
it impacts on the physics of ultracold atom-atom collisions.but this figure does illustrate the salient feature we are driv-
Basically, the validity of Eq(3) requires that the WKB-like ing towards. GivenY, the detailed resonant and threshold
boundary conditions that we use to define the open-channsltructure exhibited by the squared transition matrix elements
reference functions in the classically assessible regions &T oo|?=|1—Spo|? in Fig. 1 is analytically given by the
short range actually persists out to infinity where we extracproperties we extract from the reference functibpandg; .
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0.8 the associated threshold laws. The expected threshold behav-
.......... Y S ior of the four QDT parameters are summarized in Table Il
0.4 ¢ / \ in Sec. Ill. Of utmost importance in this paper is the fact that,
0.0 ase;—0, the paramete€;(E) ! for the closing channd|l)
. 1, +1/2 . .
/ vanishes ak:' wherel; is the partial wave quantum num-

—0.4 :___/ _________ Fremge GRS ber andk=\2u¢; /%2 is the asymptotic wave number de-
Yii Yz Yo Y\zs Yss fined by the colliding atoms with reduced mags This

—— diagonal threshold behavior appears in the matrix eleméqy
_yp o7 off diagonal =C;{---}C; tin Eq.(1.6), and is the origin of the so-called

4 Wigner threshold laws that we associate with the off-
diagonal elements, ; in Eq. (1.5. We will see many ex-
amples of this expected threshold behavior. We also note
that for >0, C"Y(E) is extremely sensitive to tunneling
through the rotational barriers, and gives a powerful means
of isolating the effects of shape resonances in a multichannel
problem. Close to threshold an interesting “multichannel”
shape resonance effect is introduced by the energy variation
of tan\g that appears in the denominator of Ef). In ad-
dition, the behavior oC~*(E) for I=0 at threshold is di-
rectly related to what have been called “zero-energy” reso-
nanceq13]. In view of space limitations most of this shape
resonance phenomena will be demonstrated in a subsequent
paper devoted to resonance threshold effects.

An implicit assumption in deriving the GMQDT expres-
sion(1.5) is that the couplings which contribute to the matrix
Y are achieved at short range, at distances well before the
reference channel parameters in Table Il acquire their thresh-
old behavior. Very long-range potential terms proportional to
«?R™3 play an important role in determining the spin depo-
larization cross sections in E¢l). The very long-range na-
ture of these terms have a profound effect on the threshold
laws and perturbative corrections must be applied to some of
the MQDT matrix elements in Eq1.5). If we designate the
scattering matrix elements generated by the short-rahge
matrix in Eq. (1.5 as Syo(Y), we can use the distorted-
o0 05 1.0 15 2.0 25 wave approximationDWA) [14] to apply a perturbative
E / Eg long-range correction to these elements,

Y matrix elements

ooooo

IT® matrix elements
[\M]

FIG. 1. Comparison of six-channeFE&0, p=+1) GMQDT S,j=$,j(Y)+SEJWA, (1.7
and CC calculations. Energy-ordered channels are labeled from 1 to
6. The top panel demonstrates the negligible energy variation of the
adiabaticY (E) matrix computed aR,= 35 a.u. Only off-diagonal SE}NA: —2i < g

|Tij|2 elements involving exchange interaction are plotted. Three
|2

lower panels show the energy variation|35fj associated with the
three hyperfine thresholdgmarked by vertical lines: Ey¢
=0.0591 cm '=85.0 mK). The solid curve shows GMQDT results
in excellent agreement with exact CC resulisll circles), with
Y(E) linearly interpolated betweeR p,=—0.2cm ! and Ep,=
+0.2cnit. The GMQDT parameter€ 2, tan@\), and phase shift
¢ are evaluated @&=400 a.u., the same distance used to obtain th

where the energy-normalized continuum staigs and|e;)

are defined by the reference potentials. This can be evaluated
numerically and has been found to yield excellent results.
This and several other aspects of the long-range interactions
are discussed in detail in Sec. IV. A summary and conclu-
sions are presented in Sec. V.

CC results.
Il. CLOSE-COUPLED DESCRIPTION OF HYPERFINE
. . TRANSITIONS
The figure also demonstrates the exact agreement that is
achieved between the numerical CC res(tiscles and the In a field-free collision between Na atoms in E4.1),
analytic GMQDT resultgcurve. both the total angular momentui+f,+f,+I=f+1 and the

Mies and Julienng9] already pointed out the important total parity p==1 are constants of motion and the colli-
role played by tan and C~! in understanding threshold sional loss rate constants are derived from the appropriate
laws. Obviously they measure the validity of the WKB ap- sums involving the scattering matric&go(F,p,E). These
proximation, and by implication define the energy range ofare calculated from standard CC codes for a gikFep, and
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TABLE I. F=0, parity +1 (a) andF =1, parity—1 (b) channel 9’E 2u
states*Only channels withidentical (1,f) are strongly coupled by R? + ?) [E-W(R)]JF(R)=0, (2.2
the short-range exchange interaction in Ej7).
@ where u=mymg/(my+ mg) is the reduced mass associated
Channel | f ¢ f E*(mK) with the collision of A+B. The interaction matrixWV(R)
2 b becomes asymptotically diagonal, and defines the internal
1* 0 0 1 1 0.0 energyE;” associated with each channel st@jentroduced
2 2 2 1 1 0.0 in the expansion
3 2 2 1 2 85.024
4+ o o0 2 2 170.048 W i(R) ~ [E/+1(1+1):%/2uR?]5; i+ O(R™),
5 2 2 2 2 170.048 R 23
6 4 4 2 2 170.048 '
(b) wheres=3. To be perfectly general we could include a Cou-
Channel | f f, o E (mK) lomb poter_\tlal_, Wlths:_ 1, but this merely_lntroduces need-
less complications which we do not require, and has already
1* 1 1 1 1 0.0 been elegantly treated in the vast body of MQDT literature
2% 1 1 1 2 85.024 [15] (see Ref[16] for a collection of the literatupe
3 1 2 1 2 85.024 If we impose N well-behaved boundary conditions on
4 3 2 1 2 85.024 F(E,R)—0 asR—0, we can obtaiN independent solutions
5 3 3 1 2 85.024 which satisfy Eq(2.2). Given the asymptotic kinetic energy
6* 1 1 2 2 170.048 e;=E—E;", and the associated asymptotic wave number
7 3 3 2 2 170.048 ki(E)=\/(2ue; /%) for each channel, the set bfchannels
are seen to includdy open channels;; >0, with k; real and
positive, andN¢ closed channels;;<0, with imaginaryk;
E, using the usual channel state ba&isM,p;!,f,f,,f,) [4, =€ ™?k;|. Thus we can block the matrix as
4 _ L Foo Foc
VI(FMpER= > |FMpi)Fi(ERIR, F= . (2.4
j=Lt1fa.fp Fco Fec

(2.2

If we impose well-behaved asymptotic boundary conditions
which describes the asymptotic properties of the separated.,—0 on the closed-channel components of the fNgt
atoms, wherd is the nuclear angular momentufpartial  set of column solutions vectors we obtain a totaNgf well-
wave quantum numbgrandf represents the magnitude of behaved solutions which are normalizable and correspond to
the channel angular momenturr=f,+f,. The channel physically meaningful continuumvave functions The re-
states are appropriately symmetrized with respect to intermaining set olN¢ solution vectors all contain asymptotically
change of the atoms associated with the total atomic angulafiverging elements ifFcc, and must be rejected as math-
momentaf, andfy,, respectively. As~ increases, up to 20 ematically correct, but physically meaningless solutions.
channels can contribute t850(F,p,E). However, forF  These conditions imply that we expédgs to asymptotically
=0 andp=+1 only the six-channels list in Tabléa) con-  yield an accurateNoXNg) reactance matriX oo(E), i.e.,
tribute to the scattering, and most of our examples, such as

those given in Fig. 1, will involve this simple case. This one Foo(E,R) ~ [Jo(&,R)+No(e,R)Koo(E)]ALG,
set exhibits almost all the interesting effects we can project R—e
from GMQDT, with the exception of the frame transforma- (2.9
tion effects associated with degenerate channel states. These 12 —1p2
effects contribute to, and will be illustrated with, the sevenWhere Ji—ki “sinkR—ml/2) and N;—k; "“coskR
channelF=1, p=—1 case listed in Table(ty). —w[/2) con'form to the usual spherical Bessel functions as-
The complete physics of the scattering problem is alreadyociated with the nuclear angular momentlifor the open
dictated by the interaction matriw; ;(R) that is used in channelsi=1, No in Eq. (2.3 (see Appendix C of Ref.
solving the close-coupled equations. We presuppose that thé 7). Note that[Jo(e,R) +No(e,R)Koo(E)] represents
finite set of molecular channel statg$ (j=1,N) that has the asymptotic form for a particular set bl soluqon; to
been included in the CC expansion of the total continuunfd- (2.2. We can always chose any linear combinations of
wave function(2.1) is sufficiently complete to span the space these to define a variety of equally exact well-behaved solu-
of all coordinatestwith the obvious exclusion of the radial tions. The matrixA5o(E) in Eq. (2.5) is used to impose the
interatomic coordinateR), or at least complete enough to usual incoming plane-wave scattering boundary conditions
describe all inelastic processes of importance at the preon the wave functions?;” in Eq. (2.1). Given Koo we
scribed total energf. The Nx N matrix of radial functions chooseAdq(E)=[1—iKoo(E)] *, and obtain the associ-
F(E,R) are obtained from a numerical solution of the fol- ated scattering matriSyo(E) which defines the dynamic
lowing close-coupled equatiofg0], properties of the system:
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Soo(E)=[1+iKoo(E)[1-iKoo(E)]™L. (2.6 spin angular momenta, ang and i, are the nuclear-spin
_ . angular momentéfor >>Na, s,=s,=1% andi,=i,=2),
Making the reasonable assumption that the molecular hyper-

fine Hamiltonian can be adequately represented by a unitary IF,M,p;1,f,S1)

frame transformation of the asymptotic atomic hyperfine

Hamiltonians, the accuracy of the interaction mati; is “E J2S+1)(21+1)(2f,+1)(2fp+ 1)
basically limited by the accuracy of the molecular interac- fafp

tions we incorporate in our CC scattering codes. To perform

the dynamic calculations, we require four accurate molecular Sa la fa
potentialsVs (R): one defined by the ground 'S, " state X4{ Sy ip fpp|F,M,p;lf,f.f). (2.8
with S=0 and with molecule-fixed spin projectiafl=0; S | f

and three defined by the lowest®> " state withS=1 and
spin projectiong)=0,+ 1. These potentials take the follow- In this representatiofi4] two adiabatic Born-Oppenheimer

ing asymptotic formg4,18]: potentials, uniquely identified by the quantum numb8&rs
R I I » =0 (from X '3,") andS=1 (froma °=,"), appear on the
Vo R)~—Cey R+ (CeR™°+CgR™ 3+ Cy R™1), diagonal of the Hamiltonian matrix. The hyperfine interac-

(278 {ions can introduce a simultaneous changé amd S. How-
_ _aR PN _g -1 ever, these couplings are constrained to subblocks which in-
VidR)~+Cex T (CeR™+CgR™4+ CiR ) sure thatf=1+S is conserved, and we find bothand |

T aZR*3+V39 (R) (2.7b remain perfectly good quantum numbers at all distances. Of
SO course, at small distances, where the exchange splitting be-
V.. (R)~+C..e 3R+ (C.R 6+ CR 8+C, R 1 tween the molecular potentials is large compared to the hy-
11(R) exc® (Co 8 1R perfine splittings, even this coupling is negligible. However,
—1/2°R73+VE2 . ,(R). (2.79  as we shall see, at distances of the oier(20— 40}, the

hyperfine interaction becomes important and theS cou-
The knowledge of these potentials is adequate to completelyling drives the system back into the asymptotically diagonal
describe the ultracold collision dynamics of all the alkali basis of channel statés,M,p;l,f,f,,fy).
atoms that have been studied to date. The terms proportional
to «?R™3 in Egs.(2.7b and(2.79 are the so-called relativ- IIl. SUMMARY OF MQDT THEORY
istic spin-spin(S9 or dipole-dipole interactionf19] which UTILIZING MILNE FUNCTIONS
are second order in the fine-structure constasts>. The
role of these terms in inducing spin depolarization has been TheNgXNg matrix of radial functions=o(E,R) in Eq.
elegantly treated in a series of papers by the Verhaar grou-d is obtained from a numerical solution of the CC equa-
[3]. The short-range second-order spin-ofSi©) terms play  tions, and yields the associated scattering m&8gy(E) in
a similar role, and in fact dominate over the SS terms, for thd=d. (2.6), which fully defines the dynamic properties of the
heavier alkali§4,5], but are negligible for Na. As discussed system. The goal of GMQDT is to represent theaeneex-
above, the very long-range nature of the SS terms has @ct solutions to thesameset of close-coupled scattering
profound effect on the threshold laws, and perturbative cor€quations in a form that is an analytic function of the total
rections, given by Eqs(1.7) and (1.8), must be applied to €nergyE, especially as we cross thresholds. The final result
certain of the GMQDT matrix elements in E¢L.5. This  achieved is given in Eq1.5).
and several other aspects of the long-range interactions are \We begin bychoosinga set of reference potential§(R)
discussed in detail in Sec. IVC. that we will associate with each of the= 1,N channel states

Two colliding ground-state alkali-metal atoms (ins) or- |j) that have been included in the close-coupled expansion of
bitals, have, to good order, zero total electroaibital an- the total continuum wave function. As summarized in Table
gu|ar momentuni. = (La+ Lb)mo As a consequence, in the Il of Appendix A, each reference potential defines a pair of
absence of the long-range SS or short-range SO interaction€ference radial functionf(e; ,R) andg;(e;,R) analyticin
the molecular Hamiltonian implies thatand f are good the asymptotic kinetic energy,=E—V;(=) prescribed by
quantum numbers. The physical reason is that fet0 there  E. This allows us to represent the exact close-coupled solu-
are no electrostatic interactions that cause a locking of th&ons to Eq.(2.2) in the following matrix form[20].
electron-spin angular momentum of the system to the inter-
nuclear axis. Ultimately, the weak SS and SO interactions FE.R)=[f(e,R+9(e.RY(ERIAER). (€.
cause the total electronic spB=(s,+s,) to couple to the
axis, and lead to small energetic splittings betwé€kmpro-
jections represented in E@2.7). If we ignore these latter
interactions the() projections are perfectly degenerate, and
we can easily transform the asymptotic channel state
|F,M,p;l,f,f,,fp) into a basis defined by the total electron-
spin angular momentur8 (S=s,+%,) and the total nuclear F(E,R) ~ [f(e,R)+g(e,RY(E)JA(E). (3.2
spinl (I=iy+ip), wheres, ands, are the atomic electron- R—oo

Assuming that each reference potential has been chosen to
have the exact asymptotic behavior prescribed by the exact
interaction matrixW in Eq. (2.3, the matricesY(E,R)
—Y(E) and A(E,R)—A(E) will approach constants at
Somefinite distance, and the asymptotic solutions approach
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If we choose a reasonable set of reference potendéiR) the analytic properties of the reference functions we can now
={Vi(R) & ;} to define the associated sets of independenévaluate the closed channel compondfgg(E,R) at small
reference functionsf(e,R)={f;(¢;,R)&,;} and g(e,R) R, and explicitly enumerate the resonance contribution as in
={0i(¢;,R) &, ;} which are properly analytic ift, we can  Ed. (1.4).
insure that the matrixy (E) is also analytic, and can be  Although we have employed the notation and analysis of
safely extrapolated across thresholds as various channdRefs. [8], [9], several other comparable studies have been
open and close. The dynamics prescribed by the scatterirggvoted to a generalization of QDT to non-Coulomb poten-
matrix in EqQ.(1.5) is completely determined by the real sym- tials [10-12,21, and more explicitly to long-rangB™® ref-
metric analytic matrixY (E), and of course the asymptotic erence potentialf22—-24. Recently a very ingenious set of
properties of the analytic reference functions. An example oftandardized long-rangeeferences functions were defined
this behavior has already been given in Fig. 1, where th®y Burke, Greene, and BoHd2], which have the virtue of
various matrix element¥ for this six-channel CC calcula- offering a compact representation of multichannel cold-atom
tion are seen to be essentially constant across three thregynamics which is easily converted to observables. However
olds. GivenY, the detailed resonant and threshold structuréhe present analysis relies on using the Milne solutions in
exhibited in Fig. 1 is given by the properties we extract fromAppendix A to generate exact reference functions for any
the reference function§ and g. Note that the nonanalytic prescribed/(R), and is committed to choosirfde,R) to be
matrix A(E) remains at our disposal, and can be used tovell behaved aR— 0. One very useful feature of this choice
asymptotically normalize the radial solutioR6E,R) to con- is that Y(E,R), which begins at zero &=0, can be fol-
form to Eqs.(2.4—(2.6). An explicit evaluation ofA(E) is lowed as a function oR, and allows us to pinpoint exactly
only required to describdalf-collision processes such as where and between what channels the close coupling is oc-
photodissociatio[{ZG], where the short-range properties of curring. This feature is demonstrated in Sec. IV. Furthermore
the energy-normalized continuum wave functions are rethe resultantY(E) should be less energy dependent since
quired. f(e,R), and its associated phase shift, already incorporates
The relationship between GMQDT and conventional scatthe energy variation of the short-range potential. Finally, an
tering theory becomes quite apparent when comparing Eqénportant virtue is thaff(¢,R) can often be used to obtain
(3.2) and(2.5). The usual ansatz in CC scattering theory is toreliable perturbative estimates of ti§ E) matrix elements
asymptotically match the exact or numerically derived scat{25,26, or explicitly used in DWA expressions such as Eq.
tering wave functiorFqq in Eq. (2.5 directly with the well-  (1.8).
defined spherical Bessel functiodge;,R) and N(¢;,R). It cannot be emphasised too strongly that the quality of
This yields, by definition, the reactance matky and the  the calculations is independent of our choice of reference
scattering matrixSy that are needed to calculate observablepotential V(R). In principle, the wisdom of our choice of
cross sections. This procedure relies on @), and recog-  V(R) is irrelevant since the dynamics has already been pre-
nizes that eactopenchannel is associated, at least asymp-scribed for us by whatever interaction matvi(R) has been
totically, with some well-defined partial wave with an angu- used to solve the coupled equatiai@s2) for F. Again this
lar momentum quantum number and a concomitant feature is shown in Fig. 1, where close-coupled and GMQDT
centrifugal potential proportional tb(I+1)/R?. Since the calculations are seen to give identical results.
Bessel functions represent exact solutions to the centrifugal Two rather obvious choices of reference potentials can be
portion of Eq.(2.3), we merely need integrafe,o(E,R) out ~ made. The first we call the diabatic basis where we take
to some very large but finite distance where all residual inVj(R) =W; ;(R). Alternatively we often use the adiabatic
teraction matrix elements become small compared Rf,1/ basis[8-10,17 obtained by diagonalizing the exact close-
and whereF¢ can be made to exponentially vanish. In this coupled interaction matridV=MV °M. Of course, since in
case the resultant numerical multichaniebo(E) is ex-  our scheme we obtailv (E) from an exact solution of the
tremely energy dependent, and implicitly incorporates all thecoupled equations, using the exact interaction matvixit
resonant and threshold behavior inherent in the dynamicdoes not really matter which basis we use—the combination
involving both open and closed channels. As already impliedf Y (E) and the associated channel parameters together are
in Egs.(1.39—(1.6), we will find that the bulk of this energy guaranteed to always give the ex&gjo(E). However, two
dependence is introduced by the higher-order terms assoaionsiderations may help in choosing the basis. If one wants
ated with thediagonalelements in Eq(2.3). to explore close coupling over an extensive range of ener-
In the GMQDT expressioli3.2) we go one step further, gies, then we would like a basis which yields the most
and substitute a different but equally valid independent paiglowly varyingY (E). If one wishes to develop perturbative
of analytic reference functions(e,R) and g(e,R) with  approximations[25,26, then the basis with the smallest
which to fit the exact solution vectors. These are defined by (E) elements would be preferable. Of the two, we gener-
whatever particular set of diagonal reference potenfiéls ally find the adiabatic basis to be the most useful. However,
={Vid;;} we have decided will most effectively summarize in the present case, because of the marked differences be-
the dynamics. Certainly we expée¢t to incorporate the lead- tween the strongly coupled short-range exchange interaction
ing asymptotic c;R™® dependence implied in Eqg2.3), and the weakly coupled long-range SS interaction, we have
which means we can terminate the integratiofr(,R) ata  found it most instructive to use a mixed basis.
much smaller distance where the exact(e,R) andg(e,R) We choose taeparatelydiagonalize the individual blocks
basis now replaces the Bessel functions. Furthermore, giveof channels with equivalent, and use these diagonalized
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1000 the blocksOO or CC. Since thegcYco component in the
= 0 first Ng columns of solution vectors is always exponentially
IE _';%: rising, none of the solutions are physically meaningful.

L —3000 Although only two independent reference solutions can
& _i0004 exist for each channel, the pair ahalytic functionsf(e,R)
>6 -5000 andg(e,R) can be used to define a variety of special solu-
—6000 tions, as in Table Il of Appendix A, which satisfy various
—7000 interesting boundary conditionsAll these solutions are
3 uniquely specified by the single amplitudd e,R) and the
associated phase(e,R) which we obtain from solution of
the Milne equation with the analytic WKB-like boundary
< conditions imposed on(e,R,) anda’(e,R,) at the equilib-
£ rium distanceR, associated with the reference potential.
—_ As discussed in Appendix A, for closed channels
E both f—sinvAe KR4-cosyBe MR and g— cosvAetkR
> —sinvBe kR are exponentially divergent &— . It is one
® of the major chores of GMQDT to find the particular linear
_20050 0 5 6 0 80 9% 10 combination of channel reference functions which decays as-
Rau.) ymptotically whenever a channel is closed. This is desig-

nated by the functiorb(e,R) in Table I, i.e., fore <0, and
FIG. 2. (A) Reference potentials for tHe=0, p=+1 channel R—%:

statese=1-6. Subblocks of channels with a given nuclear angular
momental are diagonalized separately. At short distancesl|the qs(glR):[f(g’R)Cos,,(g)_g(g,R)Sinv(s)]_,Be—lklR_
=0 channelae=1 and thel =2 channelae=2 adiabatically corre- (3.9
late with theX 1Eg+ state. All the remaining channels adiabatically
correlate with thea 33" state.(B) Asymptotic correlations of the
F=0,p=+1 solid (=0), dashedl(=2), and dottedl(=4) chan-
nels. See Table | for a description of asymptotic propertigs:
=85.024 mK.

This combination is defined by what we often call tieund-
state phaser(e) in Eqg. (A5), which is analytic throughout
£<0, in contrast to the scattering phase sljit) which is
analytic throughoute>0, and might well be called the

elements as our reference potentials. In this Wagrsists in ~ continuum-statghase.
remaining a well-defined quantum number throughout the Choosing Aoo=Boo and  Aco=—(tanic
analysis, and the coupling between differehtocks remains  +Ycc) ~*YcoBoo in Eq. (3.3) we obtain a new set dfio
diabatic and amenable to perturbation theory. For exampleolutions,
the threel=2 channels in thé&==0 case in Table(h) are
strongly coupled by the exchange interaction, and when di- Foo=(fo+9oY00)Boo (3.53
agonalized yields the reference potentials 2, 3, and 5 in
Fig. 2, where, at smalR, and out to where the exchange o
interaction termC,, in Eq. (2.7) remains dominante=2 __ ¢ -1
correlates withX '=,", and «=3 and 5 correlate with €0 COSVc(tanVC+YCC) VeoBoo, (35D
a33,". As seen in Fig. 2, the diagonalization of the two
=0 channel interactions yield the reference potentiall ~ whereF.q is well behaved and vanishes asymptotically as
which correlates wittX 'S " and thea=4 potential which  required in Eq.(2.4). Since we can never choose aAyc
correlates witha 33 ,* . The singld =4 channel, designated andAc coefficients which will avoid the divergences in the
«=6, corresponds to a pure triplet state, and only couples t6losed channels, we conclude, as in E2j4), that we must
the other channels by SS coupling. The basis we have choségject the remaining set & solution vectors as physically
for F=1 consists of two separate adiabatic blockslferl ~ meaningless.
and 3, each of which contains a single channel which corre- The open-channel block of radial solution vectdis
lates with X 12;, with the remainder correlating with +ggYgo in Eg. (3.58 now involves the transforme¥ o
ads,’. matrix defined in Eq.(1.4), which is seen to embody the
Returning to Eq(3.2), we block theNx N matrix of so- resonant coupling to the closed channels through the reso-
lutions vectorsF into open and closed subsets, designated byiance sensitive denominator (testYcc). In previous
sub O and subC indices[20]; studies[8—11] we have very carefully considered the effects
of closing various subsets of channels. This gives rise to a
fotdoYoo  YoYoc resonance structure that manifests itself as predissociation in
- JcYco fetrgeYee atom-atom scattering processes, and as autoionization in
electron-ion scattering. This effect, particularly its threshold
The single indexO or C on the reference functiorfsandg  behavior, will be demonstrated in detail in a subsequent
are meant to indicate diagonal matrices which contribute tgaper.

AOO AOC

(3.3
Aco Acc
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To finally extract the scattering matrix we need to know TABLE Il. Threshold laws for MQDT parameters fo&f~R™*
the asymptotic properties of the open-channel bldgk reference potentials.

+9oYoo in Eg. (3.53, which requires knowing the

asymptotic properties of the open, channel reference fund? &e) —— (=AY 2+1<(s-2)*
tions fo andgg. As seen in Table lll, the pair of analytic o0 .
functions f(¢,R) and g(e,R) are expressed in terms of a é(e) —— k*° 21+1>(s—2)
second pair of independent functiosandc: s—0"
2 1/IC%(s) —— (By|k|)?'*1 all |
f(e,R)=asinB=Cs(¢,R), (3.6a e—0"
) 1
g(e,R)=acosp=C 'c(e,R) — (tan\)C?s(,R)], tanh(e) — ta””°>‘0(—c4<s>)
(3.6b =0
4) (-1
which have the well-defined asymptotic boundary conditions cot(e) 40,’ cotu(0)+ C3(e)
that we require, ©) tan(0) tanu(0)= — 1
S(SaR)RN (cos§)J(e,R)+(siné)N(e,R) %Except fors=3, =0, which approachekin(k) [36,37.
—KY2sin(kR— 71/2+ £) (3.79 The threshold laws obeyed by the four QDT parameters
’ ' are summarized in Table Il, and are a sensitive function of
i the asymptotic power dependenie ® associated with the
C(s’R)RHw( sing)J(e,R)+(cose)N(e,R) reference potential defined by Eg.3). We see no necessity
to present a very lengthy and tedious analysis based on the
—k'?cogkR—ml/2+ ), (3.7b  analytic properties of the spherical bessel functions that lead

to Table Il. Certainly the threshold behavior for the phase

whereJ(e,R) andN(e,R) conform to the spherical Bessel shift is well documented in the scattering literature. It is suf-
functions in Eq.(2.5). Note thats(e,R), which is well be- ficient to note that the remaining threshold laws in Table Il
haved atR=0, is the usual energy-normalizable continuumhave been thoroughly and completely confirmed by numeri-
wave function defined by the prescribed reference potentiatal results obtained from the Milne analysis in Appendix A.
at any energy above threshaid>0. To make Eq(3.5) con-  We shall see examples with=6 and 3. A detailed discus-
sistent with Eg. (2.5, we must set Boo=[1o sion of the analytic properties of various quantum defect pa-
—(tan)\o)voo]*lcgl[lo—iﬁoo]*le"go. Multiplying (fo ramlftersE u]sinngost 1Eun]ctigns E, given by Greenedapd go-

v ; _ V. 1-1c-1 workers[21] and Rau[27], but the parameters are define
+gO.YOO) from the ”.ght—by[lo . (tanko)Yoo] "Co " we somewhat differently than here, and the threshold behavior is
obtainso+coRoo, W'thBOO defAmed by Eq(1.6). Further not made as explicit as in Table Il. The consequences of
multiplication by [15—iRoo] "€'‘0 then leads to expres- these various dependences are discussed and demonstrated
sion (1.5 for Spo. detail in Sec. IV.

Well above threshold, a€(E)—1 and tar\(¢)—0, the

asymptotic behavior of the analytic functions is exactly  |v. COMPARISON TO EXACT CLOSE-COUPLING
given by Eq.(3.7), andRgo— Yoo . Viewed in reverse we RESULTS
see that the usual energy-normalizable continuum wave
functionss(e,R) andc(e,R),

n

A. Exchange and short-range coupling

At short range there is a strong coupling between certain
s(e,R)=C Y(&)f(e,R), (3.839 channels which is associated with the exchange terms
Cex€ 2Rin Eq. (2.7). This exchange couplinglwayscon-
c(e,R)=C(e){g(e,R)+[tan\(e)]f(e,R)}, (3.8  serves the channel quantum numbeid); and occurs for
example between channels 1 and 4, and between channels 2,
only conform to the analytic reference functions at energies, and 5 in Table (B). This short-range behavior is nicely
sufficiently removed from threshold, whe@(e)—1 and demonstrated in Fig. 3¢ (E,R) begins to deviate from zero
tan\(¢)—0. These conditions imply that the WKB approx- in the vicinity of R=18a.u., where the exchange splitting
mation gives a valid description of the wave functions frombetween theX 'S " anda 33 ," state potentials\(o, and
R=R. where we set the boundary conditions on the analytio/, ) becomes comparable to the atomic hyperfine level
functionsf andg, out to infinity where the boundary condi- splitting. For these particular channef{E,R)— Y (E) al-
tions for thes andc functions are obtained. However, as ready approaches its asymptotic limit by abéut 35a.u.,
— 07", fandg begin to lose the asymptotic phase relationshipwhere the exchange splitting becomes completely negligible.
implied by Eq.(3.7), and their asymptotic behavior requires As expected, only elements conforming to the constraint
the introduction of the two additional MCQDT parameters(f,|)=const have any significant magnitude. Note that the
C(e) and tan\(g), which appear in Eq(3.6) and markedly abrupt behavior of the adiabatl¢ matrix elements in the
influence the threshold energy dependenc&%f. vicinity of R=23 a.u. is simply due to a nearly diabatic curve
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FIG. 4. Exchange-dominatedff-diagonal |T;;|> elements for
the six-channel £=0, p=+1) case in Table(h). ¢ is measured
relative to thef,=2, f,=2 threshold, where all channels are open.
The analytic GMQDT resultécircles compare perfectly with the
exact CC resultgsolid line). | T,4? exhibits thek dependence ex-
pected for a closing=0 channel, whilg T,52 and| T35 conform
— diagonal | to the k® threshold law expected for a closing=2 channel. CC
— —- off diagonal T-matrix elements were evaluatedR,,,>70 000 a.u.

Y matrix elements

--1.210 2'0 3'0 20 perfect agreement between the CC and GMQDT results, con-
R(a.u) firming that our GMQDT results are not dependent on the
o choice of reference potentials.

FIG. 3. Rvariation of theY (E,R) matrix elementgsix-channel Using Eq. (1.5 the transition matrixT oo can be repre-
case,F=0, even parity. Only the off-diagonal matrix elements sented as o 00

induced by short-range exchange interactions are plottgd) has
been evaluated &=0.2 cm *, when all channels are open. In this Too=(1-So0)
example completely adiabatic reference potentials were used.
=(1—e'%%0) - 2ie'oRyo(1—iRpp) ~le'éo,

crossing of channel 4 with channels 2 and 3, which are
coupled by the weak SS interaction. This behavior becomes (4.1a
even more apparent in Sec. IV B.

In Fig. 1 we demonstrated the perfect agreement that is 0
obtained between the CC and adiabatic GMQDT results for
the six-channel caseFEO0, p=+1). Note, however, that 1
we have only presented the results for channels 1 and 4, and
for channels 2, 3, and 5 which are strongly coupled by the o
short-range exchange interactions. In the top panel we can
see that the energy variation of the adiabatiomatrix is o
negligible throughout the region from the threshold for the £
(fa,fp)=(1,1) channels atE/Eye=0 to beyond the
(fa,fp)=(2,2) threshold aE/Ey=2. Y(E) is computed at
Ro=35a.u., at which point exchange interactions become
negligible. This result suggests that we can numerically
evaluateY (E) at two energies of our choidg,,;, and E 4y,
and then use a linear interpolation of tNéE) matrix for
energies in between. The GMQDT calculations shown in 02 10  1© ©v 1 ©
Fig. 1 actually correspond to¥a matrix linearly interpolated &(uk)

betweenk ;= —0.2 andEy,=+0.2cm L _ FIG. 5. Diagonal|T;|> elements for the six-channeF &0, p

~ The log-log plot in Fig. 4 shows the exchange dominated- 1) case, same conditions as in Fig. 4. Dashed curves with open
inelastic transition matrix elements in the vicinity of the cjrcles are the GMQDT results. Solid curves with solid dots are the
(fa,fp)=(2,2) threshold. The diagonal elements are preCC results. Belows =10 K the element$T 2, |Tsg? and|Ted?
sented in Fig. 5. In this case we have used the mixed basis ghow thek?® expected for a long-rangB~° potential. At higher
reference potentials discussed in Sec. Ill. Again, the energgnergies both elemen|$s4? and|T¢¢? switch to ak® dependence
variation of theY matrix is negligible, and we again obtain associated with aR™® potential.

@2

F=0p=+1
threshod (f °=2,fb=2)
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which is equivalent to the following: T, i:(1_ei2§i)_2icr2ei2§i[\76(l)_(tam\OHCE)Z)]ﬂl,
(4.2
—(1— al2f0)_2iC = 1aié
Too=(1-e"**0)—2iCq e 0 Both these parameters in turn are defined by the well-
behaved analytic reference functidife,R)— C(E)s(e,R)
associated with channei), since the asymptotic form of
s(e,R) yields the phase shift. As seen in Table II, for low
Because of theCi‘l(E) and Cj—l(E) parameters which pa_rtlal waves the thre.sholqzbe_hawor for the sZICf'itenng phase
— shift &(e) exactly mimicsC™<, i.e., é—(—Ak) . How-
ever, depending on the leading povr* of the long-range

X[Yob—(tanko+iCg2)] tColeléo. (4.1b

bracket the elememR,; ;(E) in Eq. (1.6), the threshold energy
B B 2 . . .
dependence of thimelastic|T; ;(E)| element, withi |, as otential in Eq.(2.3), the higher partial waves will begin to

channeli approaches threshold, is determined by the energy, . - 2 A s—2
eviate from theC™ < behavior, i.e. Ak , Whenever
variation ofCi_z(E). For those channels with>0 we ex- (21+1)>(s—2) = (Ak)

pect a WKB-like behavior which defines;=1. However, Examples of these various dependences for the diagonal
for closing channels this parameter has the limiting form, iy elementsT, |2 are given in Fig. 5 foi =0, 2, and 4
c Y(e)—(Bik)' "2 as 82_>0+’ gnd2|y+|(lelds the expected channels. Channels 1, 2, and 3 are strongly open, and these
Wigner threshold lawT; ;|*=|T; i[®ecki™ ™. _ elements remain essentially constant in the vicinity of the 2
The element|Ty|? in Fig. 4 exhibits the prescribed 42 threshold. ThéT,,? element rises liké?, as expected
dependence for a closirig-0 channel, while théT,4” and  for an incidentl =0 channel. Both théT.J? element with
| T35/2 elements show the expectkddependence for closing =2 and the|Teg? element withl =4 are very small, and
I=2 channels. Actually, in cases involving shape resoshow the appropriat&? at threshold due to long-range
nances, as seen in the vicinity of the channel 3 threshold g, /R3 contributions in their reference potentials. As we see
Fig. 1, which involves a=2 incident partial wave, there j, Eq. (1.7), the next leading term in the asymptotic refer-
can also be a substantialcreasein Ci_z, indicating an en-  ence potentia|s varies as Rf/ Note that at aboutE
hanced tunneling of amplitude across the centrifugal barrier=100,K the | Tsg? element switches to &® dependence,
This interesting behavior will be explored in more detail in aindicating that thes=6 dependence adds to the phase shift
subsequent paper devoted to threshold resonance phenoghd now dominates over the=3 contribution. The| Tgg?
ena. However, even in this case, if we approach close enou®)ement exhibits the same phenomenB atl000uK, but in
to threshold, the predicted threshold laws will eventually prethis case there is a distructive interference between the two
vail, and indeed we find that th&,3* matrix element ulti-  contributions and the element dips toward zero in this region.
mately approaches the expectetdependence for a closing This behavior is consistent with the relative signs of G

I =2 channel. . . ~ andCq coefficients in Eq(2.7) for these two channels.
To understand the origin of th@ ! behavior and its in- For single-channels-wave scattering, wheret(s)—
fluence orRg, recall that bothf (e,R) ands(e,R) are well ~ —Agk in Table Il, the parameted, is the scattering length

behaved atR=0, but the second boundary condition for defined by the chosen reference potential. The sign and mag-
f(e,R) has been set &=R,, to insure that this function is nitude ofA, is a sensitive function of the position of the last
analytic across the threshada= 0, whiles(e,R) has been set bound state supported by the reference potential. This is, of
at infinity to give the usual energy normalizable boundarycourse, given by the condition(e,) =ns. In fact, an ana-
condition, i.e.(s(e)|s(e"))=(mh?/2u) (s —¢'). The ini- lytic relationship exists between tisavave scattering length

tial condition for the Milne functiona(R) which definesf A, and Milne bound-state phas€0) evaluated at threshold

=a sinB has been set to the usual WKB conditiafiR,,,) [4],

=1K(Ry) atR,=Re, whereK’(R,) =0. Well away from

threshold we can expect the Milne function to follow this v T
behavior to infinity «(R)~ 1/VK(R)— 1/yk, and C~1—1. Ao=—7¢ 52 +eotr(0), (43

However, as we approach threshdld !(¢) begins to de-
crease and ultimately exhibits the limiting behavior in Table,\hare o= — h?k2/2u. The parametes in cot(m/(s—2)) is

Il. Viewed from an asymptotic perspective, the normalizabledeﬁned by the leading asymptotic power I&y/R® for the
functions(e,R) begins to experience a partial reflection due

he | i d has difficulty i -~ potential. This expression has been uféfdto derive some
to the long-range potential, and has difficulty In penetratingyonea| relations between the position of bound states pre-
to short distances. As a consequence the amplitiude of t

ted b - d the scattering length. If a bound
function in the vicinity of R.. is diminished tos(s,R.) e Y ¥(eg)=nar and the scattering length. If a boun

state e,= —h?«2/2u lies just below threshold, thenw(0
—[C YJK(Ry)1sinB(R,). Presumably the amplitude of En ol ekt J v(0)

. ; ~nmw—(dvld and Aqg— 1/k,,. However if v(0)~n
the channel is already diminished in the vicinity where the+(£jm(’<)]}? K)tﬁ“en we c(:)z:n irlr:;ginevg \g)sreLIJdg(-bgund?state
n»

close coupling has generated the quarittoo—tanol *  existing at a positive energg,= +h%x2/2u just above
in Eq. (1.6) and the matrixRqq is reduced accordingly. threshold, andd\g— — 1/, .

From Eq.(4.1b we find that the energy dependence of the ~ Since the quantity —dv/d«x|,..o is basically an
elasticscattering elements; ; depends both o, and on  asymptotic property that only depends on the asymptotic
the scattering phase shit for the closing channel, form of the reference potenti@l,/R®, and is independent of
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any variations in the shorter-range terms in E217), it can
be shown to scale ags=(2u|C4/A2)Y6~2) All ground-
state alkali-metal-atom interactions are dominated by the
Ce/R® in Eq. (2.7) with both thea 3%, and theX 'S+
potentials having the sam@g, and we have cptr/(s—2)]
=1. The authors of Ref.12] found that for such potentials
—dvldk—0.4778g, which agrees perfectly with our calcu-
lations for both?Na and 8’Rb collisions. An expression
completely analogous to E¢4.3) was first derived by Grib-
akin and Flambaumi23] using a semiclassical expression to
define the phase(0). This semiclassical approach was fur-
ther refined in Ref[24] to obtain the effective range behav-
ior, and applied to cold atom scattering. Based on(E@). in
Ref. [24], we can replace their semiclassical phabe
—/2(s—2) with »(0)+ 7/2, and retrieve Eq(4.3), with
—dvldk being defined analytically as follows:

0.68 -

IT"I2 matrix element

5_3) 0.58

r ( > -0.15 0.00 0.15

_@:Sm( T )(3_2)2,(32)5_5133. 4.4 (E-2E,,) (mK)

K F(S;) FIG. 6. Six-channelE=0, p=+1) case. There is a cusp be-

s—2 havior in |T4)? for channel 1 (=0) at the opening of channel 4

(I=0). Very close to threshold the open channeld 5%) and 6

Fors=6, this predicts- dv/dx—0.4783, and confirms our (1=2) are effectively treated as closed. This is because the classi-
numerical results. The same behavior is predicted in(8)x. cally accessible regions beyond the centrifugal barrier occur well
of Ref.[22], with K?_,(0)=tar{ »(0)+ m/2]. Theswave co-  P€YONdRna=70000a.u.
efficent C~2— — Byk obeys a similar threshold dependence
asé(e)— — Aok, and we can use the expressions in Table lIThese limiting forms, combined with the threshold constraint

to derive an analogous relationship B, tan\(O)tan»(0)=—1, allow us to easily evaluate the cusp
behavior.
Cc? Jv L, Jdv s
T_’BOZ T ok Osm v(0)= P OCOS A (0), C. Perturbative corrections for weak long-range
K— K—

(4.5 spin-spin couplings
The terms proportional ta?R ™2 in Egs.(2.7b and(2.79

which again is well confirmed by our numerical calculations.are the so-called spin-spi89 interactiong 3,19], which are
second order in the fine-structure constanBecause the SS
terms persist to such large distances, we can expect a slower
convergence of th& matrix elements associated with such

A simple example of threshold and cusp effectslfet0  couplings. As we shall see shortly, higher-order long-range
channels is demonstrated by thB;y|?, [T14? and|T4®  SS interactions dominate the coupling when channel 6 is
elements associated with=0, p=+1 case in Table().  open. Such long-range behavior is especially evident in the
These two channels with f) = (0,0) are strongly coupled at Y ¢ element in Fig. 7, which, even well above threshold, is
short range by exchange interactions, and, as expected for @@t yet converged at 200 a.u. Examining Tabla) ve see
|=0 channel, the elemefiT %<k, and|T 4%k} as chan-  thatYs ¢ involves coupling between a pair of asymptotically
nel 4 closes aE/E=2. This was already demonstrated in degeneratehannels with orbital angular momeritdiffering
Figs. 4 and 5. Furthermore we see in Fig. 1 that as channeldy 2. In the Born approximation we can expect these weakly
closes a cusp appears in tfi,|?> matrix element. This is coupled elements to be proportional toY;
shown in more detail in Fig. 6, and again we find that this«(j,(kR)|a®?R™3|j,,»(kR)), which is a very slowly con-
behavior is reproduced perfectly by the GMQDT analysis.verging integral and leads to this boring behavior. Further-
An analysis of a two-channel cusp was given in Appendix Amore, as the energy is lowered the Bessel functions in the
of Ref. [9]. We only expect a pronounced cusp behaviorintegrand penetrate more deeply into nonclassical regions,
when the closing channel, such as channel 4 in this casend we must be on guard for significant energy variation in
corresponds to ais-wave channel with=0. It is simply  these particular long-rangé matrix elements.
related to the energy variation of the four GMQDT param- In Eq. (1.7) we designate the scattering matrix elements
eters¢, tank, C~2, andv, as given in Table II. The approach generated by the short-rangé matrix in Eq. (1.5) as
of |Ty4? to threshold from below ag—0~ depends on Syo(Y), and use the distorted-wave approximati@WA)
dvalde, which we can obtain from Eq4.4), while from in Eq. (1.8 to apply a perturbative long-range correction

aboves—0" it depends on bothi\,/de and 9C, %/ de. PA=—2mi(&|C; jIR%|e;) to these elements, where the

B. Cusp behavior at channel closings
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FIG. 8. T;;| elements for the six-channeF &0, p=+1) case.
¢ is measured relative to thi,=1, f,=1 threshold, where only
a=1 and 2 channels are open. Solid curves indicate CC results.
Dashed curves with solid dots show the excellent agreement when
the perturbative SS correctid®(Y) + S°WA in Eq. (1.7) is applied
. . . to | T15%. The dashed curve with open circles shows [fRg(Y)|?
en_ergy-normallz_ed continuum states are glve_n by the aSYMRement by itself, which appropriately varieskdsbut is negligible
totically defined reference functions, |e;) compared tdToWA|2,
= (2ulmh?)Y%s(e; ,R) in Eq. (3.7a, obtained in the mixed ©
representation using adiabatic reference potentials defined ta/ ) ) ) )
each subset off,l) channels. This integral can be evaluatedBY €valuating Eq.(4.63 and adding this t5,(Y) in Eq.
numerically, and has been found to yield excellent results(1-7), We obtain perfect agreement with the close-coupled

However, for degenerate channels, wheath reference results, as seen in Fig. 8. o _
functions approach the Bessel functigfe; ,R) —J;(¢:,R) _ For some of_ the very small spin-spin mamx ele_mer_lts we
ok msin(IqR— #/2), we retrieve the simple Born approxi- find an interesting second-order approximation which is very

. . . . . 2
mation which can be evaluated analytically. Forlanl+2  Precise. This is shown in Fig. 9 for the elemefisg|®,
transition we obitain yucaly | Tsel?, and|T,¢? that open at thef(=2, f,=2) threshold.

The close-coupled results for bo}fi,5? and|Tsg? are in
STA(1=0)— ~i7.63209/s;(uK)C; ; a.u., (4.63

FIG. 7. Rdependence of spin-spin-couplégi(R), Y3¢(R), and
Ys¢(R) elements for the six-channeFE&O0, p=+1) case. Solid
curves are for a kinetic energy=0.0818 cm® above thef,=2,
f,=2 threshold. Dashed curves are for0.00181 cm™.

DWA (| — —j ) . F=0p=-+1
S (I=1)——i0.84826%/¢;(uK)C;; a.u., (4.6b thre%ohold(fc:szz)

STYA(1=2)— —10.424084/5;(uK)C; ; a.u., (4.69

“B=aoX5E)/4

This implies auniversal ¥ threshold dependence for all o
|Tij |2 elements involving degenerate channels that are domi- EGLY
nated by long-range spin-spin couplings.

Confirmation of this behavior can be seen in Fig. 8, where
we plot the only three matrix element$,,?, T, and
|T,,? that are open at thef{=1, f,=1) threshold. The
diagonal elements are given perfectly by the pure MQDT
scattering matrixSoo(Y) in Eq. (1.7). The |T44|? element

has thek?® dependence we expect for awave channel, on o1 ! 10 100 1000
while |T,,? begins ask? because of the long-range 3 (i)
dependence of the reference potential for thisave chan- FIG. 9. |T,,|2 elements for the six-channeF&0, p=+1) case.

ngl, but Ehgn SW't‘?heS over to thﬁ dependence .assomated e is measured relative to thfg=2, f,,=2 threshold where all chan-
with a R~ potential Zcomblned_ with ah=2 partial wave. pneis are open. The solid curves indicate CC results. The dashed
However, thgT;,(Y)| element in Fig. 8 exhibits the typical ¢yrve with solid dot shows results usiggY) + WA in Eq. (1.7),

k® dependence predicted by E@..6) for ans- to d-wave  and the second-order correction in B4.7) is used to evaluate
transition if the interaction matrix elemeM,, were short |T,d2, |Ts42 and|T,42 The dashed curve with open circles shows
ranged, and is much too small compared to the close-couplatle|T,(Y)|? element by itself, which appropriately varieskisbut

results which give th&? dependence predicted by H¢.6a.  is negligible compared thT50"A|2.
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FIG. 10. |T;;|* elements for the six-channeFE0, p=+1) . )
cases is measured relative to tHg=2, f,=2 threshold where all FIG. 11. Asymptotic correlation of thé~=1, p=—1) channels
channels are open. The solid curves indicate CC results. The dash&d 2 3, 4, and 5 which dissociate to the=1, f,=2 threshold at

curves with solid dot shows result using 8€r) + S°VA correction ~ E=0. Channel 4 adiabatically correlates with #e>.;* potential
in Eq. (1.7 and the second-order correction in E4.8). The ele-  at short distances, while the remaining three channels all adiabati-

ment|T,4? has ak® dependence consistent with a third-order pro- cally correlate witha °%,* at smallR.
cess, and is well represented by the approximation
| T1s(sequencef=|T14|?| Tss|*| Tsq */16. 1—4—6 predicted by Eq(4.9). In this case théT,/? ele-

. ] o ment is due to exchange coupling and is given by the short-
excellent agreement with the first-order predictions of Eqsyange|T,,(Y}|2, which varies ak. Since|T 4?2 is already
(4.63 and (4.60, respectively. However, since the angular shown to follow the sequence-45—6 we see thatT,g>
momentl for channels 4 and 6 differ by 4, there is no direct — |1, 12|T,J?|T,J%16, and the inelastic transition from

spin-spin coupling between these states. However, they c&hanne| 1 to channel 6 follows the third-order pathway 1
be coupled by the sequence-6— 6, and we predict /NS

ITRA(—1+4) 2= TPYA (1 — +2)[2
D. Frame transformation analysis of|-degenerate

DWA 2
X|TJ'J< (|+2_>|+4)| /4. (4.7 channel couplings

This expression can be derived from the half-collision am-  So far all the long-range SS couplings we have considered
plitude theory[28] we developed based essentially on GM-in the F=0, p=+1 block of channel states in Tabléal
QDT. The exquisite agreement between this expression argave involved channels which differ in both their channel
the exact close coupling is demonstrated in Fig. 9. Sincgpin state quantum numbérand in their nuclear angular
|T4s? and|Tsg? each vary ak? we find that the overall momentum staté. However, in collisions involving hyper-
threshold dependence of thig,¢? element isk?, as implied ~ fine transitions, we often encounter SS coupling between as-
by the product in Eq(4.7). This expression isotdependent ymptotically degenerate channel states which differ by the
on perturbation theory, but rather relies on the fact that thehannel state quantum numideibut which have identical
sequence of transitions occur in different regions of internu£xamining the block of channel states in Tablb) Ifor F
clear separation. It is a special application of the more gen=1 andp=—1 we see this situation occurs between chan-
eral result. nels 2 and 3 witd =1 and between channels 4 and 5 with
I=3. All four channels asymptotically correlate with the
(fa=1, f,=2) threshold, and the long-range portion of the

If there are competing pathways there are complicated inteIj_’_eference potentials we will use for these channels are shown

ferences that must be introduced, but for present applicatiorfg_':ig' 11 _These _reference_potentiéﬂ? correspond to the
Eq. (4.7) is quite adequate. mixed basis we discussed in Sec. lll, where the foarl

A final demonstration of Eq4.7) is observed in the ele- cha_mnels and the thrdaec(_% channels in Table(b) are (_jiago—
ment|T,¢? in Fig. 10, where the sequence of half-collision nal:\fed(R)sepOarately, using an orthogona.l maFM(R)
amplitude transitions is actually carried to third order. First=[o' " M,_y(R)]» Which preserves the indentity of the
we note that|T,d? and |Ts¢? vary ask?, in quantitative angular momentum quantum numbefhe comparable ma-
agreement with the DBA predictions in EG.6). Further-  trix for the F=0, p=+1 channels approaches the unit ma-
more|T .42 varies ak®, and equals the second-order expres-trix as R—, and the associated reference potentials pre-
sion | T,4?| Ts¢/%/4 given by Eq.(4.7). Finally we find that serve the asymptotic identity of the channel spin stdtes
| T1d?=|T14?|T4g%/4 varies ak®, and follows the sequence However, because SS coupling between thdegenerate

| T; «(sequencd?=|T; ;(innen|?| T (outen|*/4. (4.8)

012708-13



FREDERICK H. MIES AND MAURICE RAOULT PHYSICAL REVIEW A62 012708

channel states in the=1, p=—1 block persists out to in-
finity, the orthogonal matrixM () #1 is no longer a unit
matrix and the reference potentials correlate wittatedsets

of the channel states. We will show how the asymptotic ma-
trix M (=) defines a simple frame transformation that we can
use, in combination with our MQDT theory, to obtain an
accurate reproduction of the close-coupled results.

The scattering matriXS, ,, we require to describe the
cross sections and rate for the hyperfine transitions for
Na+Na must be constructed in an asymptotic basis using the
well-defined channel quantum statg¢sI,f,f,,f, in EqQ.
(2.1) and Table I. We often refer to these as the case e basis, 10""1;

because of their analogy to the Hund'’s céeangular mo- o] f;lsosﬁ;é (=1, «

mentum coupling scheme used in diatomic spectroscopy e — B
[29], and we will specify the particular interaction matrix in 0 100 1000
Egs.(2.2) and(2.3) asW(case & and we specify the result- &(uk)

ant scattering matrix in Eq2.6) as S(case &

In performing the CC calculations faf=1 andp=—-1
we have two equally valid options. First we can integrate Eq
(2.1) explicitly using W(case ¢ to obtainK(case ¢ in Eq.
(2.5), and thus directly evaluat®(case ¢ using Eq.(2.6). Of
course in this basis thé-degenerate channels hawdf-

FIG. 12.|T;;|* elements for the seven-chann&<1, p=—1)
case in Table(b). ¢ is measured relative to tHg=1, f,=2 thresh-
old, where five channels are open. As seen in Fig. 11, channels 2
and 3 withl =1 are degenerate, and channels 4 and 5 IwtB are
degenerate. The circles and dots indicate the exact CC results. The

) - : C S curves indicate the excellent results obtained by applying the frame
iagonal R "3 lings which persist in contributin h —
diagona coupiings ch persist in contributing to the ransformationS(case ey M(«)S(rot)M(«) to the rotatated scat-

scattering out tq extr_emely large dlstgnces. To achieve .Coriering matrix S(rot) obtained with the GMQDT method. The ele-
vergence on spin-spin elements we find we must often inte-

. ments shown in this figure are only those that are strongly coupled
grate_ out toR>_10_ 000 a.u. or morgsee Ref[30] for a dlss— by the exchange interaction.
cussion of similar long-range concerns for the

polarization potential in F+F collisiong. This is no prob- fully to treat spin-exchange collisions involved(2s)

lem if one uses amplitude following algorithms, such as the 2 -
) ) P +B(“s) atoms. For example, the frame transformation ma-
Gordon method31], but it does restrict the numerical op- (s) P

tions at one’s disposal trix M(e) consists of two X2 orthogonal matrices
. cos¢l sin ¢l .
An alternative close-coupled approaghhich we find is L= ] that are described by two separktiependent

singl  cosgl
critical to use in our MQDT analysjss to perform the cal- rg}?t'og anglesel. If we l,OOk at, say, the 22 bIQCk
culations in a rotated basis of channel states, which removds, , s, Of S(rov, that will undergo thepl =3 rotation,
the asymptotic R couplings, and use the following rotated we see it is dominated by the diagonal elemetss e'2é,
interaction matrix in the close-coupled equatig@sl): and the resultant off-diagonal case e element essentially
_ equals
W (rot,R) =M (x)W(case eR)M(x), 4.9
T, 5(case g=Ccosgs Sin g4 e 28400 — gl 2500,
Note that the off-diagonal element, 5(rot) and W, 5(rot) (4.1
now vanish aR~®, while the diagonal elements still vanish
asR™3 and we achieve convergence of tB&ot) matrix  Recall from Fig. 11 thatw=4 correlates with thex 12;
elements at much shorter distances. Thus if we use the mixeglate at short distances, while=5 correlates with the
reference potentials to obtain the correspondiifgot,E,R) a33," state, and we see that EGt.11) depends on the
in Eq. (3.1), we can expect it will convergence at a conve- difference between the elastic-scattering scattering phase
niently small distance?, and we can use Ed1.5) to ob-  ghifts for the triplet and singlet molecular potentials. Thus
tained a good representation of the close-coupled scatteringq. (4.11) is identical to the well-known spin-exchange ex-
matrix S(rot). Numerically we find that theY,s(rot) and  pression, which also involves such a differerj&g]. The
Y 5(rot) elements, and their associated diagonal elements, af@sult for this one special element is consistent with our pre-
fully converged byR=40a.u. GivenS(rot) we can then re-  vyijous study of the loss rates in coffRb+8'Rb collisions
trieve S(case ¢ by a simple frame transformation at the con-[4], where we found extremely small loss rates because the

clusion of the calculation, scattering lengths, and hence the phase shifts for the Rb
5 triplet and singlet potentials were almost identical. Equation
S(case ¢=M(©)S(rot)M (). (4.10 (4.1)) is good confirmation of that effect.
The excellent agreement between the close-coupled and V. DISCUSSION AND CONCLUSIONS

MQDT results is illustrated in Fig. 12.
Note that Eq(4.10 is a generalized version of the frame  We have presented an analysis of threshold effects based
transformation theory32] that has been applied so success-on GMQDT, which gives an exact analytic representation of
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the multichannel threshold laws, and yields results which areneans of isolating the effects of shape resonances in a mul-
numerically equivalent to the close-coupled results for thosgichannel problem. Close to threshold an interesting “multi-
channels that are strongly coupled at short range. The veighannel” shape resonance effect is introduced by the energy
long-range spin-spin interactions are analyzed using th®ariation of tal\g that appears in the denominator of £6).
distorted-wave approximation in Eq1.7), and the result In addition, the behavior o ~*(E) for I =0 at threshold is
gives us a complete quantitative description of all thresholdlirectly related to what have been called “zero-energy”
laws associated with the hyperfine transitions in ultracold€Sonance$13]. These shape resonance phenomena will be
atomic collisions. presented in a subsequent resonance paper.

In general the scattering matrS,o(E) and the associ- The second effect, which is the primary concern of this

ated transition matrixToo(E)=1—Soo(E) vary rapidly paper, is associated with the threshold behaviors just above

with energy. Thus direct numerical integration of the close—and just below a channel closing. This is related to the en-

coupled equation$2.2), while always giving exact results, ergy dependence of the four MQDT parametgrs, \, and

: . C, which are defined for each channel. Their threshold de-
must be performed over a narrow grid of energies and ex:

_ : . endences are summarized in Table Il. Except at energies
pensive searches must be performed, especially if unan

. o Ist abovea threshold, the two phaséé) and v(e) are in
lyzed resonance structure is preseftis is demonstrated tact gufficient to perform a rather complete and rigorous

by the CC data points in Fig. )lIFurthermore, brute force GMQDT analysis of close-coupled wave functions, includ-
integration does not offer any |ns_|ght into the threshold bejng, for example, many manifestations of overlapping and
havior of the resultant cross sections and rates. However, {on-Lorentzian resonant structure. Below threshold we can
the coupling in our system occurs predominantly in classialways rely on Eq(1.3 to be valid, even as—0~ from
cally accessible regions where the diagonal elementg of pelow. However, ag—0" from above the analytic refer-
—W(R)>0 are positive, it is preferable to use the GMQDT ence functionsf and g begin to loss the asymptotic phase
expansion of the CC wave function in E(B.1). With a  relationship implied by Eq93.7), and their asymptotic be-
careful choice of a diagonal set of reference potentigR) havior requires the introduction of the two additional QDT
which reflect the long-range properties of the interaction maparametersC(e) and tar(e) in Eq. (3.6) These appear in
trix in Eq. (2.3), we expect that, except near threshold, thethe analytic expressiofi.4) which describes the scattering.
dominant energy variations B, can be associated with the For short-range interaptions, this arjalysis leads to the thresh—
diagonal set of phase shift(E) for open channels, and the ©0ld laws summarized in Table Il which are well substantiated

bound-state phase shifig:(E) for closed channels defined Py the many comparisons made in Sec. IV.
by V(R). Once again, it must be emphasized that the complete

As we approach threshold from above two additional paphysics of the scattering problem is already dictated by the

rametersCo(E) and \o(E) come into play, and dominate N XN interaction mqtrixW(R)_ that is used_ in _so!ving the
the threshold behavior. The associated ma¥{E) varies close-coupled equations. by itself has no intrinsic mean-

. . ._ing, but rather is dictated by ouwhoiceof reference poten-
almost monotonically with energy, and we can substanually{ials V,(R). What GMQDT offers is an alternative set of

and ls%met:mels_profoundly reducfe the n(l;mbe_[) of CI(_)Seéxactsolutions to thesameset of close-coupled scattering
coupled calculations we must perform to describe a givenyqations which are constructed to be an analytic function of
process. Essentially we use reference potentials which effegrg totq energ)E. It converts the raw numerical output of

tively go well beyond the leading asymptotic term providedihe close-coupled scattering equations into a form which
by I(1+1)/R? and can do a good job of describing the gives physical insight into the multichannel dynamics, espe-
“elastic” scattering in each channel. ¥f is almost constant cjally in the presence of closed-channel resonances, or when
the systematics of the energy structure is simply related tenultichannel Wigner threshold laws are of concern.
the single-channel parameters that occur in analytic expres- For those spin depolarization cross sections which are
sion (1.5) for Spo. dominated by very weak long-range’R™ 2 couplings we

In addition to the obvious, but rather mundane, economiaenust apply the Born ag)proximation correction in £4.6),
advantage of the GMQDT analysis in performing close-and we find a universd threshold dependence for 1aTlij|2
coupling calculations even when all channels are open, thelements associated with such transitions. In addition we
theory becomes truly interesting as we approach threshold3ave found that many transition matrix elements are quanta-
where various channels begin to close. In this region twdively represented as sequencef first-order transitions, as
very important and closely related energy-dependent effectgxpressed in Eqs4.7) and(4.8), and this is seen to persist
become significant. First, whenever<0 and a channel be- €ven to third _order. F_mally, for spin-spin-coupled degenerate
comes completely closed, both reference functijrandg, ~ channels which havedentical nuclear angular momenta
become asymptotically divergent, and the well-behaved linW& have introduced a simple frame transformation in Eq.
ear combination given in Eq3.4 manifests inself as a (4-10 which removes the asymptotic coupling, and allows us
closed-channel resonance. Resonances are approximately f8-Use short-range GMQDT expressions to obtain accurate
cated at the poles of the matfixanve(E)+Ycc] * where  results.
the zeros of the bound-state phase igit)=0 locate the
bound-state eigenvalues in the closed channels,Yardin-
troduces shifts in the resonance positions induced by the
close coupling. Note tha@(E) is extremely sensitive to tun- The relationships between the various reference functions
neling through the rotational barriers, and gives a powerfulre summarized in Table Ill. The analytic $&t) is adapted

APPENDIX A: MILNE ANALYSIS OF GMQDT
REFERENCE FUNCTIONS AND PARAMETERS
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TABLE llIl. Milne-based definition of various specialized reference functidiiéa,b)=ab’—a'b.

Analytic reference functions analytic ine across thresholdN(g,f)=1

f(e,R)=asin =Cs(&,R) —0 R—0
g(e,R)=acosB =[C lc(e,R)— (tan\)C(e)s(e,R)] o0 R—0
Continuum functions: ¢>0, W(c,s)=1

S(S,R)zcilf(S,R) :%Sinﬂ H(COS&)J"‘(S"‘I&)N R— 0
¢(e,R)=Clg(e,R)+ (tan)f(eR)] =g oo-COSB+)) —(sin§)J+(cosoN R
Asymptotically well-behaved closed-channel functioft <0

é(e,R)=[f(e,R) cosv—g(e,R)sinv] =asin(B—v) —exp(—|kR) R— o0

- 5 v(e)—nmT as e—e,

V(8)=f0 dR/ a“(e,R)

WKB limit : if e>0, C(g)—1, tan\(¢)—0

f(e,R)=C9e,R) —9(g,R) &>
d(e,R)=[C—1c(e,R)(tan\)Cqe,R)] —c(e,R) e>

% (a,R) is generally divergent aB— 0. True bound states occur whenevér)=nrr.

to the short-range portion of the reference potential, withwhich then insures thdt(e,R) =« sin3 is well behaved as
boundary conditions set in the classically allowed regionsR— 0. At this point the pair of boundary conditions we must
This insures that these functions are analytic in energy acrogsescribe fora(e,r) are still completely at our disposal, and
threshold. The close-coupled wave function is analyzed wittwill be chosen below to insure proper analytic behavior with
this set and the analyti¥¢(E) matrix is obtained. e, especially as we cross thresholds.

In place of our previous analydi8] of the reference func- In the vicinity just above a dissociation threshold we in-
tions in GMQDT, we shall use the more versatile Milne con-troduce a second set of reference functi¢gas) which is
struction[10-17 to define the analytic reference functions, specifically adapted to describe the asymptotic scattering

properties ofopen channels, using the usual asymptotic

f(R)=a(R)sinB(R), (A1) poundary conditions given in E¢3.7). In this appendix we
explain the numerical procedures used to determine the con-
9(R)=a(R)cosB(R). (A2)  nection between these two sets of reference functions. This

connection is characterized by the three MQDT parameters
¢, C, and tan\ which appear in Eq(3.8).

Except at specific eigenvalues, the analytic functioesd
g for closed channels both contain an exponentially rising
term asR—x, i.e., f=(sinv)Ae"R+(cosy)Be R, and g
= (cosv)Ae" R—(sinvy)Be “R. Our chore is to find the par-
ticular phaser(e) in Eq. (3.4) which insures that the well-
behaved functiong(e,R) =« sin(B—wv) decays asymptoti-
%ally. The bound states associated with the reference
potential are defined by the condition sifz,)=0, which in-

Note thatf(e,R) plays a central role in GMQDT, since it is
uniquely defined to be thatarticular solution of the homo-
geneous second-order equatipd?/dR?+K?(&,R)]f(g,R)
=0, which iswell behavedas R—0. This equation is pre-
scribed by the reference potentM(R) we choose to asso-
ciate with the given channel such th&?(e,R)=2u[E
—V(R))/h%2—2uelh?—k2. The irregular functiorg(e,R)

is also a solution to this equation, and together they form
particular pair ofindependensolutions at asymptotic kinetic

energye with a Wrons.klan_ prescnbed_ to beg—g'f=1. sures that the reference functidte, ,R) is well behaved at

The independent solutiog, is always divergent aR—0. bothR=0 andR=«. We will define the modulat bound-
Although only two independent solutions can exist, thesestate phase such thate ) =n is a measure of the number

can be used to define an infinite variety of special solution%f nodes in the functior?(s R)

which satisfy useful boundary conditions, such as those de- Given any initial valuesnf,orc;(s R.) and its derivative

fined in Table ”l'Al.l such solutions are uniqugly specified a'(g,Ry), we can always obtain a’n emxact numerical solution

by the single amplitudex(e,R) and the associated phase to the Milne equatiorfA3), and the resultant reference func-

A(2.R) defined by the inhomogeneous Milne equation: tions are completely defined. Further, this formulation has

[d2/dR2+K2(E,R)]a(e,R)=a 3(¢,R). (A3) the im_portant fgature thainy particular solution to the Milne
equation will give an energy-dependent bound-state phase

By definition the phase8(e,R) is related to the amplitude integral
a(e,R) as follows,dB/dR=1/a?. The constant of integra-

tion is chosen such that V(s):f dR/a?(s.R) (A5)
0

R
,R)=| dR/a?,R"), A4 ) . . :
Ale.R) fo o(e.R") A4 which insures that the solutiong(e,R)=a sin(B—v)
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=asin [gdR/a?(e,R)]—0 is well behaved aR—x. For  (from R, to R, propagations are performed to obtain the
energiese <0, the conditionv(e,) =nm is only satisfied at amplitudea(e,R) at all R. The accumulated phag#(e,R)
discrete eigenenergies=e, where the solutiorf(e,R) is  in Eq. (A4) is then obtained by numerical integration. As
equivalent to the solutiorb(e,R). At such energies both  shown in Eq.(A5) the critical GMQDT parameter for closed
and ¢ are well behaved at botR=0 andr=c, and repre- channels(e) is nothing else thanB(e, ). However, in
sent a single normalizable bound-state solution, or eigenevaluating the other GMQDT parameters one must be careful
function, of [d?/dR?+K?(e,,R)] f(e,,R)=0. All the ir-  in using the Milne method for very low asymptotic energies
regular character has been isolated in the single, unphysic@lhere centrifugal barriers associated with 0 potentials
solutiong, which can then be rejected. must be penetrated. Under these conditions Lee and Light
As discussed by Pan and Mi¢83] we usually set our [34] showed thaspuriousoscillations ofa(e,R) can occur
initial boundary conditions on(z,Ry,) anda’(s,Rm) atthe  at distancesR>Ry,, beyond the centrifugal barrier peak at
equilbrium distancdR,=R, defined by the minimum in the R=Ry,. To bypass this difficulty Lee and Light split the
reference potential wheV/(R)/dR|g_=0, and choose them  space into two regions, to the left and right of the barrier.

to have the following WKB-like initial values. The functionsf andg at R<R,, are determined exactly as
described above. FdR>R,, an intermediate pair of refer-
a(e,Re)~1K(e,Re), (AGa) ence functions.,= «,.sin 8,, andg..= «,.c0Sf3,, are obtained
by propagatingnward from some large distand®,,, using
a'(g,Re)~0,. (A6b) a second solutionr.,(R) to the Milne equation defined by
the asymptotic boundary condition
SinceK(g,Re) is analytic inE throughout the rang¥(R,) o (Ro) = INK(R) 1K, (A7)

<E<, the functionsz(e,R) andB(e,R) and the resultant
reference function§(e,R) andg(e,R) are analytic irE over in place of Eq.(A6), and
this range as well, and especially across the important thresh- ' ’

old region. To have EqA1) perfectly consistent with WKB- R - ,
like behavior in the vicinity ofR~R,, the Milne equation Bx(&,R)= fR dR'/a%(&,R") (A8)
(A3) implies thatK?a>a" at R,. A more self-consistent top

scheme we have often used is to choBggto coincide with iy place of Eq.(A4). This insures thaf.. andg.. are well

the conditiond’[K™*4E,R)J/dR?|z_=0, and then set the pehaved at long range, and can be asymptotically matched to
initial condition «'(&,Ry)~d[K~Y4E,R)]/dR|r . Thisis  spherical Bessel functions

a very useful choice for electronic reference functions which

are often not very WKB-like. Fortunately, for the heavy f(2,R) ~ (cosd.)J(z,R)+(sind.)N(e,R),

R

masses encountered in atomic scattering theory it is usually (A93)
quite adequate to choos$g, at the equilibrium positiorR,
defined by the attractive potentisl( R), and set the bound- g.(g,R) ~ —(sinéd..)J(e,R)+(coss..)N(&,R).
ary conditions using EqgA6). R
The boundary conditions in EqgA6) yield our previous (A9b)

expressions [8] for tanv=K(t—)/(ty+K?), cotA=K(y
—u)/(uy+K?, and C 2=(s’K+s'?/K) evaluated atR
=R., wheres and s’ and the log derivativey=f'/f, t
=¢'l ¢, andu=c’/c are obtained from the direct numerical

By imposing continuity on both sets of functions and their
derivatives aR=Ry,,, we can obtain a numerically reliable
representation of the analytic reference functions Rr

integration of the homogeniodsl?/dR?+ K2(&,R)J¢(&,R) > Rigp!

=0. Since at threshold =0 the asymptotic boundary con- f(e,R)=af.(e,R)+bg.(e,R), R=Ry,, (A108)
dition for bothu andt exactly equal zera(0,R) andu(O,R) o

are equivalent aR=R,, and we obtain the required thresh- g(e,R)=cf.(e,R)+dg.(e,R), R=Ryp,

old constraint tain(0)=—cot(0). Alternatively we can in- (A10b)

tegrate the nonlinear Milne equatidA3) and numerically
evaluate Eq(A5). Both methods give identical results, and, and easily obtain the required GMQDT parameters. For in-
by definition, »(e,)=nm will alwaysyield exact eigenval- stance, matching EqA10a) to Egs.(3.63 and (3.7a, we
ues. However, of even more importance, the resultant boundind C(E)= Ja?+b? and taré=(asind.—bcosds.)/
state phase(e) in Eq. (A5) is a very monotonic, smoothly (acosé,.—bsind,). GivenC and£ it is then an easy matter
varying function ofe that can be easily interpolated over to match Eq.(A10b) to Egs.(3.6b and (3.7), and obtain
wide excursions in energy. tan\=(aC 2—d)/b. It should be pointed out that even for
The numerical procedure we use with the Milne equatiors-wave scattering some caution must be taken at threshold to
is as follows. First thé andg functions are evaluated using avoid spurious oscillations inx(e,R) at large distances.
a(&,R) obtained from integrating EGA3). The propagation Again we can chose an arbitraR,, for 1=0, using, for
is generally started at the minimuRy, of the potential well, ~example, the samB,, defined by the correspondirig=1
where the WKB-like initial conditions in EqA6) are well  reference potential, and perform the same matching in Egs.
satisfied. Separate inwardrom R, to R,,,) and outward (A10).
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APPENDIX B: NUMERICAL ANALYSIS OF Y (R,E)

In this appendix we describe how tiyematrix and itsR

variation is obtained in both diabatic and adiabatic represe

tations. In both cases the set of close-coupled equatihés

are propagated in the diabatic representation using a varian
of the renormalized NumerofdRN) method implemented by tri

Johnson35]. As explained by Johnson, the ratio matRx

which is propagated in the RN method can be replaced by
log-derivative matrixL. Again the diabatic log-derivative

matrix L is obtained. Let us first explain how the diabatic
matrix Y4 is extracted from the close coupling. For a given

energyE the diabatic close-coupled wave functiBgis ana-

n
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except it is performed at eadR value using the diabatic

reference functionsy and g4 in place of the asymptotic
Bessel functions andN, and more fundamentally the com-
plete NXN matricesF4(R) and Y4(R) are obtained using
bpth open and closed channels.

Let us now explain how the adiabatic log-derivative ma-
X L, can be derived fromh 4. As described in Ref8], we
gnroduce the adiabatic wave functioR,=M (R)F4(R),

which can be shown to have the structure

(B4a)
(B4b)

M(R)Fq(R)=[fa(R)~ga(R)Ya(R)JAa(R),

M(R)F4(R)=[f2(R)—ga(R)Ya(R)JA4(R),

lyzed with the diabatic reference functions defined by the

diagonal interaction matrix elemeni;; (R),
Fa(R)=[f4(R)—g4(R)Y4(R)JA4(R),
Fa(R)=[f4(R) = g4(R)Y4(R)JA4(R),

whereFy, Y4, andAy are fullNX N square matrices, arfg
andgy are diagonal matrices. Since, by definition,

(Bla)
(B1b)

La(R)=F4(R)IF4(R) 1, (B2)
we find

Ya(R) =[L4(R)ga(R)— g4l [La(RIfa(R) —fg].
(B3)

where M(R) is the orthogonal matrix which either com-
pletely or partially diagonalizes the diabatic interaction ma-
trix W(R) =M (R)VO(R)M(R), and produces the matrix®
whose diagonal elements define the adiabatic reference func-
tions f, andg,. Using Eqg.(B4) we can construct an adia-
batic log-derivative as follows:
La(R)=M(RIL4(RIM(R) (B5a)

=[f4(R) +g4(R)Ya(R)I[fa(R)+ga(R) Ya(R)] ™.
(B5b)

Thus, givenL 4(R) obtained from the CC calculation at each
R, we can extract the adiabalfit,(R) matrix as follows:

This analysis is qualitatively similar to the one made in stan- Y,(R)=[L4(R)ga(R)—g4(R)]1 Y La(R)fa(R)—fL(R)].

dard scattering theory to extract tlike,o collision matrix,

(B6)
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