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Density functionals for the strong-interaction limit

Michael Seidl,* John P. Perdew, and Stefan Kurth†
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The strong-interaction limit of density-functional~DF! theory is simple and provides information required
for an accurate resummation of DF perturbation theory. Here we derive the point-charge-plus-continuum~PC!
model for that limit, and its gradient expansion. The exchange-correlation~xc! energyExc@r#[*0

1daWa@r#
follows from the xc potential energiesWa at different interaction strengthsa>0 @but at fixed densityr(r )].
For smalla'0, the integrandWa is obtained accurately from perturbation theory, but the perturbation expan-
sion requires resummation for moderate and largea. For that purpose, we present density functionals for the
coefficients in the asymptotic expansionWa→W`1W8̀ a21/2 for a→` in the PC model.W`

PC arises from
strict correlation, andW8̀PC from zero-point vibration of the electrons around their strictly correlated distribu-
tions. The PC values forW` andW8̀ agree with those from a self-correlation-free meta-generalized gradient
approximation, both for atoms and for atomization energies of molecules. We also~i! explain the difference
between the PC cell and the exchange-correlation hole,~ii ! present a density-functional measure of correlation
strength,~iii ! describe the electron localization and spin polarization energy in a highly stretched H2 molecule,
and ~iv! discuss the soft-plasmon instability of the low-density uniform electron gas.

PACS number~s!: 31.15.Ew, 31.25.2v, 71.15.Mb
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I. INTRODUCTION

In density-functional theory~DFT! @1#, the ground-state
energy of a system of interacting electrons is presented
functional of the ground-state density distributionr(r ) of the
electrons,

E@r#5Ts@r#1E d3rr~r !vext~r !1U@r#1Exc@r#. ~1!

Ts@r# is the kinetic energy of a system of noninteracti
electrons with ground-state densityr. The second contribu
tion is the interaction with the external potentialvext(r ), and
U@r#5 1

2 *d3r *d3r 8r(r ) r(r 8)/ur2r 8u is the classical
Hartree-Coulomb energy. The exchange-correlation ene
Exc@r# accounts for all the complexity of the quantum man
body problem ignored by the continuum functionalU@r#. It
also includes the interaction contributionTc5^T̂&2Ts to the
kinetic energy.

This important functional is exactly represented by t
coupling-constant integral@2,3#,

Exc@r#5E
0

1

daWa@r#,

~2!
Wa@r#5^Ca@r#uV̂eeuCa@r#&2U@r#.

The integrandWa@r# ~which is plotted approximately in Fig
1! has only potential-energy contributions, including the e
pectation value of the Coulomb two-particle repulsion ope
tor V̂ee5( i , j u r̂ i2 r̂ j u21 in the ground stateCa@r# of a hy-
pothetical system where the repulsion between the elect
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is scaled by a factor~‘‘coupling constant’’! a>0, but which
has the same ground-state densityr(r ) as the real system
with a51. In general, Ca@r# is that antisymmetrized
N-electron wave function which minimizes the expectati
value^T̂1aV̂ee& and, at the same time, yields the densityr.
If Ca@r# is the true ground state of a Hamiltonian wi
interactionaV̂ee,

Ĥa5T̂1aV̂ee1V̂ext
a , ~3!

then thea-dependent external potentialvext
a (r ), represented

by the operatorV̂ext
a in Eq. ~3!, is completely determined by

the density r @1#. Note that Wa51@r#5Exc@r#2Tc@r#.

f

i-

FIG. 1. The ISI model~29! for the coupling-constant integran
of Eq. ~2! in the case of the beryllium atom~solid curve; in hartree
units!. The coefficientsW0 , W08 , W`

PC , andW8̀PC are taken from
Table III, usingD5D2 for the latter one. The size of the shade
area, which indicates a contribution to the integral~2!, is the pre-
dicted correlation energyEc

ISI@r#520.100 hartree of the Be atom
~exact value:20.096 hartree!. The expansions ofWa

ISI both for a
→0 and fora→` are displayed in short dashes. The horizon
dashed line marks the asymptotic limitW`

PC .
©2000 The American Physical Society02-1
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The limit a→0 of weak interaction in the integran
Wa@r# of Eq. ~2! is well understood.Ca50@r# is the Slater
determinant of the occupied Kohn-Sham~KS! single-particle
orbitals $w i(r ,s)% i 51, . . . ,N . Correspondingly,Wa50@r# is
the DFT exchange energy,

W0@r#5Ex@r#[2
1

2 (
i , j 51

N

(
s

E d3r d3r 8

3
w i* ~r ,s! w j* ~r 8,s! w i~r 8,s! w j~r ,s!

ur2r 8u
. ~4!

The first derivative ata50,

W08@r#[~dWa@r#/da!a5052Ec
GL2@r#, ~5!

is, like Ex , also known@4# in terms of the KS orbitals as w
shall see in the next paragraph.

In Görling-Levy ~GL! perturbation theory@4#, the corre-
lation energyEc@rl#[Exc@rl#2Ex@rl# for the scaled den-
sity rl(r )[l3r(lr ) is expanded around the high-dens
limit l→` or a→0 ~with a51/l),

Ec@r1/a#5 (
n52

`

Ec
GL n@r#an22 ~a→0!. ~6!

A hypothetic system where the electronic repulsionV̂ee is
scaled by the factora has the correlation energy@5#

Ec
a@r#5a2Ec@r1/a#. ~7!

Thus, Ec
a@r#5(n52

` Ec
GL n@r#an. Since Ec

a5*0
ada8(Wa8

2W0), we have Wa@r#5W01(n52
` Ec

GL n@r# na (n21).
Therefore, GL perturbation theory is equivalent to the Tay
expansion ofWa@r# around the weak-interaction limita
50, which implies Eqs.~4! and ~5!. For an explicit expres-
sion of Ec

GL2@r#, see Ref.@4#.
It has been shown recently@6,7# that the weak-interaction

limit,

Wa@r#→W0@r#1W08@r# a ~a→0!, ~8!

along with some additional information on the opposite lim
a→`, where Wa@r# approaches asymptotically a finit
valueW`@r# ~see Fig. 1!,

Wa@r#→W`@r#1W8̀ @r# a21/2 ~a→`!, ~9!

can be sufficient for an accurate evaluation of the integ
~2!.

As a→`, the external potentialvext
a (r ) that holds the

density fixed becomes strongly attractive. In fact

lim
a→`

vext
a ~r !

a
52E d3r 8

r~r 8!

ur2r 8u
2

d

dr~r !
W`@r#, ~10!

since the Kohn-Sham potential which yields the densityr(r )
for noninteracting electrons is
01250
r

t

l

vext
0 ~r !5vext

a ~r !1aE d3r 8
r~r 8!

ur2r 8u
1

d

dr~r !
Exc

a @r#;

~11!

here,Exc
a @r#[*0

ada8Wa8@r#→aW` for a→`, which fol-
lows from the asymptotic behavior~9!.

Unlike the realistic situation ata51, this strong-
interaction limita→` is also simple, but in a different way
than the familiar limita→0 of weak interaction. Asa→`,
the electrons become strongly correlated. This situation
modeled by the concept of ‘‘strictly correlated electron
~SCE! @6,8,9# which is solved exactly for one-dimension
~1D! systems and, in particular, for any 3D two-electron s
tem with a spherical density distributionr(r ). In the latter
case@6,8#, the two electrons always stay on opposite sides
the spherical center. The radial distancer 1 of the first elec-
tron strictly dictates that of the second electron,r 25 f (r 1),
by virtue of an exact ‘‘correlation’’ functionf (r ). As a so-
lution of the differential equation f 8(r )5
2r 2r(r )/ f (r )2r„f (r )…, f is unambiguously determined b
the densityr @6,8#. ~Apart from the minus sign and the ap
pearance of only one functionr instead of two, this differ-
ential equation coincidentally resembles that of a local sc
ing transformation@54#.! In terms of this functionf (r ), SCE
provides the functional@6,8#

W`
SCE@r#52pE

0

`

dr
r 2r~r !

r 1 f ~r !
2U@r#, ~12!

which is probably identical with the unknown exactW`@r#
for spherical two-electron systems.

In the present paper we give the complete derivation
the point-charge-plus-continuum~PC! model@6,10# which is
an approximation to the SCE concept but, in contrast to
latter, is straightforwardly applicable to any thre
dimensional~3D! N-electron densityr(r ). The PC model
provides the simple explicit density functionalsW`

PC@r# and
W8̀PC@r#, see Eqs.~23! and ~24! below, for the coefficients
in Eq. ~9!. It generalizes the standard spherical-cell mo
@11,12# of the Wigner crystal, and has a simple densi
gradient expansion.~A constrained search for the strong
interaction limit has been discussed by Valone@13#. Some
formal properties of this limit have been discussed by Le
and Perdew@14#.!

In Sec. II we derive the functionalW`
PC@r#, while in Ap-

pendix A we explain the difference between the PC cell a
the strong-interaction limit of the exchange-correlation~xc!
hole. In Sec. III we consider the situation of large butfinite
a@1, and we derive in Appendix C the functionalW8̀PC@r#
for the next coefficient in the asymptotic expansion~9!. We
also discuss approximate self-interaction corrections~SIC’s!
to the gradient expansionW8̀PC@r#. Using these functionals
we apply in Sec. IV the interaction-strength interpolati
~ISI! Wa

ISI@r# of Ref. @7# between the weak-interaction lim
~8! and the strong-interaction limit~9!. We obtain accurate
correlation energies for those atoms where the coefficientW08
is known with reliable accuracy. The same method pred
in Ref. @7# remarkably accurate atomization energies for a
2-2
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DENSITY FUNCTIONALS FOR THE STRONG- . . . PHYSICAL REVIEW A 62 012502
of 18 small molecules; a statistical summary is given in S
V, where we also discuss the strong-interaction limit for t
atomization energy. We summarize our conclusions in S
VI.

The a dependence ofWa@r# for specific finite or ex-
tended systems has been the subject of several recent i
tigations within density-functional@15–18# or wave-function
@19–22# theories. Exact information aboutWa@r#, e.g.,W0

or W0 and W08 , has been used to boost the accuracy
density-functional calculations@16–18# along the general di-
rection suggested by Becke@23#. Unlike those approaches
which make use of density functionals fora'1, we make
use of them fora→`.

A density-functional measure of the correlation stren
of the physical (a51) wave function is

W02W1

W02W`
. ~13!

This measure varies between 0 for independent electrons
1 for strictly correlated ones. For other measures, see
@9#.

II. POINT-CHARGE-PLUS-CONTINUUM „PC… MODEL
FOR W`†r‡

The integrandWa@r# in Eq. ~2! is identical to the total
electrostatic potential energy~expectation value! Ea

es@r# of a
fictitious system where discrete point electrons with the
tisymmetrized and correlated wave functionCa@r# are em-
bedded in a rigid continuous background of positive cha
with densityr1(r )[r(r ), since

Ea
es@r#[^Ca@r#uV̂eeuCa@r#&22U@r#1U@r#5Wa@r#.

~14!

The three terms of Eq.~14! are, respectively, the electron
electron, electron-background, and background-backgro
interactions.~It does not matter here whetherCa@r# —
which is defined in Eq.~2! above — is the ground state o
this fictitious system or not. The positive background
merely an artifice invoked for the evaluation ofWa@r#, and
should not otherwise be taken seriously. The mock elec
static energy of Eq.~14! provides a more convincing way t
derive the PC model.!

Repeated simultaneous measurements of theN electronic
positions in the stateCa@r# would yield distribution sets
$r i% i 51, . . . ,N of N points which, in the ensemble averag
represent the continuous density cloudr(r ). The classical
electrostatic energy of the neutral system composed of thN
negative point charges of each set and the continuous p
tive background yields in the ensemble average the qua
Ea

es@r#. In the limit a→`, where the electrons repel eac
other strongly, the pointsr i in each set of the ensemble a
distributed as uniformly as possible over the densityr(r )
without any accidental clustering.~Fluctuations of particle
number in any finite volume fragment are strongly su
pressed@9# as a→`.! In other words, at largea, the con-
tinuous positive background is locally neutralized as well
01250
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this can be achieved by discrete negative point charg
Therefore, in a typical distribution set the hypothetical sy
tem can be divided up intoN neutral cells, one around eac
electron atr i and with zero or weak lower electric multipol
moments, so that the interaction between different cells m
be neglected. Consequently, the total electrostatic energ
the system,E`

es@r#, is approximately the sum of the energie
of theseN individual cells.

In the following we present a model for the cell around
electron at positionr in the densityr. This model cell has the
energy Ecell(@r#;r ). The sum( i 51

N Ecell(@r#;r i) for a set
$r i% of electron positions becomes in the ensemble aver
an integral which is an approximation to the electrosta
energy~14! in the limit a→`,

W`@r#5E`
es@r#'E d3r r~r ! Ecell~@r#;r !. ~15!

We call this the PC model because Eq.~15! treats one elec-
tron as a point charge at positionr and the remaining
N21 electrons as a continuous fluid of negative cha
which perfectly neutralizes the positive background eve
where except for the region inside the cell around the po
electron whose position is averaged over the system. Des
some similarities, the PC cell isnot a model for the strong-
interaction limit of the exchange-correlation hole; see A
pendix A. By coincidence, the label PC is sometimes use
mean ‘‘perfect correlation’’@24#, the very situation for which
our PC model is an approximation.

The key idea is that the electron atr plus its PC cell
should have zero monopole and dipole electrostatic m
ments. In the local-density approximation~LDA !, where the
densityr is assumed to be constant in the vicinity of ea
electron, the model cell around an electron atr is a concen-
tric sphere with local radiusr s(r )5(3/4p)1/3r(r )21/3. The
electrostatic energy of this cell,

Ecell
LDA~@r#;r !52

9

10
r s~r !21, ~16!

is the self-energy3
5 r s

21 of the spherical piece of uniform
positive background inside the cell plus its interacti
2 3

2 r s
21 with the central point electron.

Beyond the LDA is the gradient expansion approximati
~GEA!, in which the energy is expanded to second order
the density gradient. We assume the densityr(r1s) in the
vicinity of an electron atr to have a constant gradientG
[¹r(r ),

r~r1s!5r01G•s, ~17!

where r0[r(r ) is the density at the position of the poin
electron. If the gradientG is not too strong,g[Gr s /r0!1
where r s5@(4p/3)r0#21/3, the cell is still approximately
spherical. To have zero electric dipole moment, howeve
positive spherical cell with a density gradient has its cen
shifted away from the negative point electron by a sm
displacementd ~with magnituded) into the direction of
2G ~see Fig. 2!. Still normalized to unity, the cell has now
2-3
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radiusR.r s , fixed by (4p/3)R3rc51, whererc5r02Gd
[r0(12gd/r s) is the density at the center of the cell.

In a coordinate system which has its originu50 at the
center of the cell and itsu3 axis in the direction ofG, the
electron is atu52d5(0,0,1d); see Fig. 2. The condition o
zero dipole moment is *2R

R du3@p(R22u3
2)(rc1Gu3)

2d(u32d)#u350. This and the normalization conditio
(4p/3)R3rc51 can be written as

R255r s

d

g S 12g
d

r s
D and R25r s

2S 12g
d

r s
D 22/3

,

~18!

respectively. Expandingd5d1g1d2g21••• in each of
these equations and comparing coefficients, we find

d~r !5r s~
1
5 g1 1

15 g3!1O~g5!,

~19!

R~r !5r s~11 1
15 g2!1O~g4!,

wherer s5(3/4p)1/3r(r )21/3 andg5r s(r ) u¹r(r )u/r(r ) de-
pend on the positionr of the point electron. The two quan
tities ~19! determine both position and size of the spheri
PC cell, depending on the positionr of the point electron.

Again, as in the LDA~16!, the energy of the PC cell with
constant gradient is the self-energyUcell of the piece of posi-
tive background inside the cell plus its interaction with t
point electron,

Ecell
GEA~@r#;r !5Ucell2Fcell

(r )
„u52d~r !…. ~20!

Fcell
(r ) (u) is the electrostatic potential atu of the positive

background, withu50 at the center of the cell. Using fo
Ucell andFcell

(r ) (u) the expressions~B6! and ~B4! from Ap-
pendix B, with (4p/3)R3rc51, we obtain

FIG. 2. In a constant density (G50), the PC cell around an
electron atr is a concentric sphere with radiusr s , represented by
the dashed large circle in the figure. In the presence of a den
gradientG, however, the centerM of the cell is shifted away from
the electron by a small displacement vectord in the direction of
2G. To have zero monopole and dipole moments, the shifted
~solid large circle in the figure! has a different radiusR.r s .
01250
l

Ecell
GEA~@r#;r !5F3

5
1

1

35S GR

rc
D 2GR21

2F1

2 S 32
d2

R2D 1
1

10

Gd

rc
S 523

d2

R2D GR21.

~21!

Using Gd/rc5 1
5 g21O(g4) and the expansions~19!, we

find, in generalization of Eq.~16!,

Ecell
GEA~@r#;r !5S 2

9

10
1

3

350
g2D r s~r !211O~g4!.

~22!

Applying the model~15! and neglecting contributions of or
der g4, we obtain the PC GEA

W`
PC@r#5E d3r H A r~r !4/31B

u¹r~r !u2

r~r !4/3 J , ~23!

for the unknown functionalW`@r#. The coefficients areA
52(9/10)(4p/3)1/3521.451 and B5(3/350)(3/4p)1/3

55.31731023. The functional~23! has the correct scaling
behavior,W`

PC@rl#5lW`
PC@r#, as predicted in Eq.~31!.

The standard local-density approximation forExc is not
accurate in the limita→`, because of a serious sel
correlation error which develops in that limit. As a resu
this approximation@as well as the generalized gradient a
proximation ~GGA!# cannot properly describe the Wigne
crystallization of the low-density uniform electron gas@25#.
The strongly interacting limit of the PBE GGA is essentia
local and spin independent, as shown by the flatness of
r s5` enhancement factors in Fig. 1 of Ref.@26#:
W`

GGA@r↑ ,r↓#'W`
LSD@r↑ ,r↓#'2Ex

LDA@r#. ~Although LDA
and GGAexchangeenergies suffer a self-interaction erro
this error is typically small and does not change asCa@r#
approaches the strong-interaction limit. The LDA and GG
correlation energies suffer a self-interaction error whic
grows alarmingly towards this limit.!

However, we can test the accuracy of the functional~23!
against the meta-generalized gradient approxima
~MGGA! for the correlation energy@27#, which is con-
structed from first principles without adjusting any para
eters to experimentally known data. MGGA yields accur
energies for very different kinds of electronic systems su
as atoms, molecules, solids, and surfaces. Due to its e
self-correlation correction~SIC!, MGGA should work par-
ticularly well in the strong-interaction limit, where LDA an
GGA do not. MGGA has an extra ingredient: not only th
local density and its gradient, but also the orbital kine
energy density.

For a set of 12 atoms, Table I gives a comparison
W`

PC@r# with the functionalW`
MGGA@r# which is the model

for W`@r# as extracted~Appendix D! from the MGGA func-
tional. The good agreement of the results from the PC mo
with the ones from the MGGA functional in Table I is pa
ticularly encouraging, since two completely independent
proaches to the strong-interaction limit are compared he
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The true functionalW`@r# is known exactly in two par-
ticular cases: For one-electron systems~like the H atom in
Table I!, Wa@r#[2U@r#, for all a>0. For the H atom,
r(r )5e22r /p and2U@r#52 5

16 520.3125 which is repro-
duced almost perfectly by the PC model and, as a resu
the self-correlation correction, accurately by the MGGA a
proach. For spherical two-electron systems~like the He atom
in Table I!, the strong-interaction limit is probably exact
solved by the concept of strictly correlated electrons~SCE!
@6,8# which by Eq.~12! predictsW`@rHe#521.500 for the
He density used in Table I.

In density-functional theory, gradient expansions like E
~23! are usually constructed to be exact to orderu¹ru2 for
slowly varying densities, and often fail~unless suitably gen
eralized@28#! for realistic densities. However, because o
Eq. ~23! is derived differently, it need not share any of the
features with traditional gradient expansions. In particu
the PC cell to orderu¹ru2 is properly normalized, Eq.~A2!
of Appendix A, while the exchange-correlation hole to ord
u¹ru2 is not @28#. Thus, we do not necessarily interpret t
coefficient B of Eq. ~23! as the low-density limit of the
second-order gradient coefficient ofExc@r# for a slowly
varying densityr. The high-density limit of this coefficien
is believed to be 1.85431023522.3813102314.235
31023, where the first term is from exchange@29# and the
second from correlation@30–32#. In Appendix E we use Eq
~23! to investigate the soft-plasmon instability of the low
density uniform electron gas against the formation of sta
charge-density waves.

III. MODELS FOR THE COEFFICIENT W8̀ †r‡

Strongly interacting electrons at large butfinite a@1 are
expected to exhibit a zero-point vibration around th
strictly correlated distribution ata5` @8#. While strictly
correlated electrons ata5` are moving on a constan
potential-energy surface, the zero-point vibration at finitea
@1 is driven by a strong oscillator-type effective potential

TABLE I. Values forW`@r# ~in units of 1 hartree5 27.21 eV!
for atoms, obtained for exchange-only Krieger, Li, and Iafr
~KLI ! @50# densities from the LSD, GGA, and MGGA functiona
~Appendix D! and from the PC model.

Atom W`
LSD W`

GGA W`
MGGA W`

PC

H 20.421 20.417 20.308 20.313
He 21.720 21.689 21.502 21.463
Li 22.958 22.904 22.575 22.557
Be 24.504 24.424 23.955 23.947
N 211.176 211.048 210.043 210.187
Ne 221.469 221.294 219.752 220.018
Na 224.848 224.652 222.916 223.261
Mg 228.435 228.224 226.298 226.702
P 240.298 240.055 237.524 238.101
Ar 254.240 253.946 250.831 251.562
Kr 2172.467 2172.002 2165.355 2167.334
Xe 2331.981 2331.355 2321.204 2324.524
01250
of
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r

r,

r

c

r

f

the ordera @8#. We therefore expect that the strongly corr
lated motion of the electrons at largea@1 can be under-
stood in terms of a slow strictly correlated motion, superi
posed by fast small-amplitude collective oscillation
Correspondingly, as in the Born-Oppenheimer treatmen
the nuclear motion in molecules, we take the strictly cor
lated motion as infinitely slow and consider oscillations in
otherwise static array of electrons.

If all the electrons are strictly correlated, then the n
force on one electron atr @due to the otherN21 electrons
and the external potentialvext

a (r )] vanishes to ordera, and
this remains true when the electron moves tor1s. But sup-
pose that the otherN21 electrons do not follow. Then ther
is a restoring force which drives the electron back tor .

We demonstrate in Appendix C how the PC approxim
tion ~15! for the limit a→` can be generalized to the prese
situation with oscillations at large but finitea@1. Wa@r#
can still be evaluated exactly as the electrostatic energy~14!
with a positive background. The restoring force mentioned
the preceding paragraph, however, is not affected by
positive background which is entirely fictitious. This force
due only to the repulsion by the otherN21 electrons plus
the unknown external potentialvext

a (r ). In Appendix C we
present the PC model for2¹vext

a (r ) and the restoring force
on the electron. Then, with the modified charge distribut
of an oscillating electron, Eq.~15! yields Wa@r#'W`

PC@r#
1W8`

PC@r# a21/2 (a@1), where the coefficientW8`
PC@r#,

like W`
PC@r# in Eq. ~23!, is obtained as a gradient expansio

W8̀PC@r#5E d3r H C r~r !3/21D
u¹r~r !u2

r~r !7/6 J . ~24!

This is thePC GEA for the coefficientW8̀ @r# in Eq. ~9!.
The LDA coefficient in Eq.~24! is C5 1

2 (3p)1/251.535,
in agreement with the spherical-cell treatment of the ze
point vibration in a Wigner-crystal in Ref.@12#. To provide
an approximate self-interaction correction~SIC! for one-
electron densities for which the true functionalW8̀ @r# is
exactly zero, the gradient correction in Eq.~24! should have
a sign opposite to that of the LDA term. Our derivation
Appendix C, however, yields the small but positive numb
D05 1

40 (3/4p)1/650.0197 for the coefficientD. Unless there
is a mistake in Appendix C, the effective PC gradient co
ficient D for small density gradients is positive, while that fo
typical gradients is negative~as estimated in the next para
graph!.

Formally, however, the functional~24! has the correct@8#
scaling behavior of the true functionalW8̀ @r#, W8̀PC@rl#
5l3/2W8̀PC@r#. Therefore, we can keep Eq.~24! and deter-
mine a more realistic value for the coefficientD from a
physically motivated condition. If we put, e.g.,D5D1
520.030 676, expression~24! is identically zero for any
exponential~i.e., hydrogenic! one-electron spherical densit
r(r )5l3e22lr /p (l.0). In Table II we compare the val
uesW8̀PC@r# with the corresponding values of the function
W8̀MGGA@r# which is extracted~Appendix D! from the
MGGA exchange-correlation functional of Ref.@27#. In all
2-5



o

-
e

w
bc

for
re

me-
spin
ase
s
The
r

the

ts

k-

the

on

ls
D,
th

MICHAEL SEIDL, JOHN P. PERDEW, AND STEFAN KURTH PHYSICAL REVIEW A62 012502
tables, we have putD5D2520.025 58, which is chosen s
that W8̀PC@r# and W8̀MGGA@r# agree for the two-electron
density of the He atom.

Functionals of the form~23! and ~24! are at least poten
tially exact for the electron gas of uniform density. While w
have no exact solution for the strong-interaction or lo
density limit, the SCE energy should be close to that of a
Wigner crystal@33–35#,

Exc
W52

0.89593

r s
1

1.325

r s
3/2

1•••. ~25!

This is not far from the prediction of Eqs.~2!, ~9!, ~23!, and
~24! for the uniform gas asr s→`,

Exc52
0.900 00

r s
1

1.500

r s
3/2

1•••. ~26!

TABLE II. Values forW8̀ @r# ~in units of 1 hartree5 27.21 eV!
for atoms, obtained from the LSD, GGA, and MGGA functiona
~Appendix D! and from the PC model. The local term in the LS
GGA, and MGGA has been slightly modified here to agree with
local term in the PC model. See the caption of Table I.

Atom W8̀LSD W8̀GGA W8̀MGGA W8̀PC

H 0.257 0.243 0.000 0.043
He 1.553 1.516 0.728 0.729
Li 3.252 3.176 1.532 1.623
Be 5.561 5.448 2.723 2.919
N 16.512 16.344 9.642 10.176
Ne 35.483 35.283 23.886 24.425
Na 42.966 42.745 29.586 30.115
Mg 51.115 50.886 35.867 36.352
P 79.473 79.202 58.244 58.378
Ar 114.391 114.082 86.761 86.179
Kr 463.955 463.481 390.997 381.015
Xe 1042.900 1042.223 914.250 886.290
01250
-
c

The closeness of the energies for the Wigner crystal and
the uniform gas asr s→` has been observed elsewhe
@36,37#.

The accuracy of gradient-corrected functionals can so
times be improved by using the separate up- and down-
densities instead of the total density, but this is not the c
for our Eqs.~24! and ~23!, which assume that two electron
cannot be found together at the same point in space.
functionals W`@r# and W8̀ @r# are in fact the same fo
bosons as for fermions.

IV. CORRELATION ENERGIES OF ATOMS

We can use the results from Tables I and II to evaluate
‘‘interaction strength interpolation’’~ISI! functional for the
correlation energy of Ref.@7#, Ec

ISI@r#5Exc
ISI@r#2Ex@r#, us-

ing information only on the relatively simple extreme limi
a→0 anda→`,

Exc
ISI@r#5W`1

2X

Y F ~11Y!1/2212Z lnS ~11Y!1/21Z

11Z D G ,
~27!

where the coefficients require information only on the wea
and strong-interaction limits,

X@r#5
xy2

z2
, Y@r#5

x2y2

z4
, Z@r#5

xy2

z3
21, ~28!

with x522W08@r#, y5W8̀ @r#, and z5W0@r#2W`@r#.
Table III summarizes the results for some cases in which
coefficientW08@r# is known with reliable accuracy@51#. ~For
the atoms not shown in Table III, the core-core contributi
to W08@r# is not accurately known.!

Equation~27! is obtained in Ref.@7# by analytical integra-
tion, according to Eq.~2!, of the ISI model for the integrand
Wa@r#,

Wa
ISI@r#5W`@r#1

X@r#

A11Y@r# a1Z@r#
. ~29!

e

s
ion
ient
TABLE III. Increasingly accurate approximations to the correlation energy~in units of 1 hartree5 27.21
eV! of atoms with KLI @50# densities and the two-electron system with exponential densityr(r )
52 exp(22r)/p ~labeled as Exp.!, using information only on the extreme limitsa→0 and a→`.
Ec

GL2@r#[ 1
2 W08@r# is the second-order correlation energy~calculated with GGA densities! in Görling-Levy

perturbation theory~@51# and, for Exp., Ref.@21#; for He, the valueW08@r#520.048 is obtained if a KLI
density is used@52#!. Ec

ISI,0@r# is the correlation energy of Ref.@6#, which includes information on the
strong-interaction limita→`, provided by the PC modelW`

PC@r#. In further improvement of these result
toward the exactEc

exact@r#, we also list the valuesEc
ISI@r#, obtained with the present exchange-correlat

functional, Eq.~27!, which in addition includes the information provided by the asymptotic coeffic

W8̀PC@r#. W̃8̀ @r#5@(W02W`)3/(22W08)#1/2 is the estimate of Ref.@6# for W8̀ @r#.

System W0 W08 Ec
GL2[ 1

2 W08 W`
PC Ec

ISI,0
W̃8̀ @6# W8̀PC Ec

ISI Ec
exact

He 21.025 20.101 20.050 21.463 20.041 0.647 0.729 20.041 20.042
Exp. 20.625 20.093 20.047 20.886 20.035 0.309 0.345 20.034 20.037
Be 22.674 20.250 20.125 23.943 20.105 2.022 2.919 20.100 20.096
Ne 212.084 20.938 20.469 220.018 20.420 16.323 24.425 20.405 20.394
2-6
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This analytic function is plotted in Fig. 1. The choice~28! of
the coefficients guarantees that the model~29! has the exact
asymptotic properties~8! and ~9!.

Note that x,y,z>0, and that dWa
ISI/da,0 and

d2Wa
ISI/da2.0 for a>0. Note also thatWa

ISI@r# remains
finite even whenW08→2`,

lim
W08→2`

Wa
ISI5W`1

W02W`

11
W02W`

W8̀
Aa

; ~30!

the interpolation~29! does not break down completely eve
for metals, although it is more appropriate to finite syste
or to insulators whereW08 is finite. Equations~29! and ~28!
generalize Eqs.~7! and~8! of Ref. @6#, in which Z@r#50 so
that W8̀ @r# cannot be chosen independently but is fixed
W8̀ @r#5$(W02W`)3/(22W08)%

1/2; see Fig. 4 of Ref.@8#.
Our functionals~23! and ~24! have the scaling behavior

W`
PC@rl#5lW`

PC@r#, W8̀PC@rl#5l3/2W8̀PC@r#,
~31!

where the scaled densityrl(r )[l3r(lr ) is generated from
a given densityr(r ) by a scaling factorl.0. Since
W0@rl#5lW0@r# and W08@rl#5W08@r#, the relations~31!
guarantee that our model integrand~29! fulfills

Wa
ISI@r#5a Wa51

ISI @rl51/a#, ~32!

which is a key property@5# of the unknown exact integran
Wa@r#. Equation~32! shows in particular how the strong
interaction limit (a→`) is related to the low-density limi
(l→0). A graphical illustration of the integrandWa

ISI@r#
with its integral is displayed in Fig. 1, for which the fou
functionals W0@r#, W08@r#, W8̀PC@r#, and W`

PC@r# have
been evaluated with an accurate ground-state densityrBe of
the beryllium atom.

An important property of the exactExc@r# is its size con-
sistency: Exc@r11r2#5Exc@r1#1Exc@r2# for two well-
separated densitiesr1 and r2. Because our inputsW0@r#,
W08@r#, W`@r#, and W8̀ @r# are size consistent, so is ou
Wa

ISI@r# in the weak- and strong-interaction limits. But, b
cause Eqs.~29! and ~27! are nonlinear, ourExc

ISI@r# is not
generally size consistent~although it behaves properly fo
r15r2). This failure could be mild, since it arises from th
uncertainty in our interpolation formula of Eq.~29!. To
achieve full size consistency, we could make our interpo
tion not globally but at each pointr of space.

V. ATOMIZATION ENERGIES
IN THE INTERACTION STRENGTH INTERPOLATION

AND IN THE STRONG-INTERACTION LIMIT

We have calculated atomization energies for 18 sm
molecules within the ISI model of Eq.~27! in Ref. @7#. The
model accurately reproduces the experimental atomiza
energies with a mean absolute error of only about 4 k
mole50.006 hartree or 2.8% of the mean experimental
01250
s

y

-

ll

n
l/
t-

omization energy. This accuracy is even more remarkable
the fact that it was achieved without the typical cancellat
of errors between the exchange and the correlation ener
exhibited by density functionals like LSD or GGA, becau
the ISI model makes use of the exact exchange energy
Ref. @42# we found a similar interpolation error for the IS
model when all the input quantities were calculated with
the meta-GGA.

For the 18 molecules studied in Ref.@7#, Table IV com-
pares the~signed! mean and mean absolute errors of the
omization energies in LSD, GGA, meta-GGA, HF~unre-
stricted Hartree-Fock!, second-order Go¨rling-Levy ~GL2!,
and ISI. While HF underbinds severely and GL2 overbin
severely, ISI is rather realistic.

For this work we have studied the change upon atom
tion of W` and W8̀ within the different density-functiona
approximations. The results are shown in Tables V and
respectively. Similar to the results for atoms, the meta-G
typically gives a much closer agreement forDW` with the
PC model than both LSD and GGA~which yield results very
similar to one another!. This is probably due to the fact tha
the meta-GGA is self-correlation-free while LSD and GG
are not. It should be kept in mind, however, that the me
GGA exchange is not exactly self-interaction free.

For the change upon atomization ofW8̀ , we find that for
most cases meta-GGA gives the best agreement with the
model. Although the agreement is not quite as good as
the changes ofW` upon atomization, it is still satisfactory
considering the fact that the meta-GGA was not construc
with the strong-interaction limit in mind. Again, LSD an
GGA give results which are rather close to one another.

As is evident from Fig. 1, the total exchange-correlati
energyExc of an atom is close to its weak-interaction lim
Ex and far from its strong-interaction limitW` . But the at-
omization energy of a molecule is close toneither limit. For
the 18 molecules in Tables V and VI, the weak-interacti
limit ~exactEx and no correlation! underbinds by an averag
66 kcal/mole50.11 hartree or 44%, while the strong
interaction limit (W`

PC) overbinds by an average 336 kca
mole50.54 hartree or 222% of the mean experimental ato
zation energy.

For most electronic systems, strong interaction is of int
est only as a limit. The heavier and more classical ions i
low-temperature plasma or liquid metal come much close

TABLE IV. Signed mean errors~sme! and mean absolute error
~mae! in kcal/mole of the atomization energies of the 18 sm
molecules studied in Ref.@7# ~and listed explicitly in Tables V and
VI ! in LSD, GGA, meta-GGA, unrestricted Hartree-Fock~HF!,
second-order Go¨rling-Levy perturbation theory~GL2!, and the ISI
model. For the traditional density-functional methods~LSD, GGA,
meta-GGA!, the energies were taken from the work of Refs.@26,27#
and @42#. For the exact-exchange methods~HF, GL2, ISI!, the HF
and GL2 input was taken from Ref.@17#, and the ISI energies from
Ref. @7#. ~1 kcal/mole50.0434 eV51.594 millihartree.!

LSD GGA MGGA HF GL2 ISI

sme 31.2 8.3 1.6 265.7 74.3 1.9
mae 31.2 9.7 4.1 66.1 74.3 4.3
2-7
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this limit. However, the spin-polarization energy of the h
drogen atom provides an example of strong electronic co
lation. For a fully spin-polarized hydrogen atom, the ex
Wa is 20.3125 hartree for alla>0, an uncorrelated situa
tion that can be described accurately by our ISI of Eq.~29!.
An unpolarized hydrogen atom can be regarded as half
ground-state H2 molecule with a highly stretched bon
length; its exactWa is 20.156 25 hartree fora50, but
20.3125 hartree for anya.0, since any positivea will
switch the stretched-H2 wave functionCa from Hartree-
Fock to Heitler-London form~the latter with localized elec
trons and zero probability for finding both electrons on t
same atom!, and this strong-correlation situation isnot accu-
rately approximated by our ISI of Eq.~29!. ~Note that it is
the ISI and not the PC model that fails here.! While the true
spin-polarization energy is zero, the ISI places the unpo
ized atom 1.3 eV higher in energy than the polarized o
This is a remarkably persistent error: 1.0 eV in LSD, 1.2
in GGA, and 1.0 eV in meta-GGA. For an explanation ho
spurious spin polarization can mimic strong correlation,
Ref. @38#.

VI. CONCLUSIONS

Standard density functionals for the exchange-correla
energy~the local density approximation and the generaliz
gradient approximation! fail in the strong-interaction or low-
density limit as a result of self-interaction error@25#. Thus, to

TABLE V. Changes upon atomization, DW`

5W`(separated atoms)2W`(molecule) ~in units of 1 hartree
527.21 eV!, of the exchange-correlation functional in the strong
interacting limit in LSD, GGA, and meta-GGA~Appendix D! and
within the PC model. The functionals were evaluated with se
consistent GGA densities at experimental geometries. The calc
tions were performed using a modified version of theCADPAC pro-
gram @53#.

Molecule DW`
LSD DW`

GGA DW`
MGGA DW`

PC

H2 0.273 0.260 0.352 0.313
LiH 0.224 0.219 0.264 0.258
Li2 0.078 0.078 0.097 0.111
LiF 0.533 0.536 0.570 0.616
Be2 0.078 0.083 0.095 0.122
CH4 1.252 1.247 1.556 1.536
NH3 1.065 1.062 1.329 1.293
OH 0.391 0.389 0.521 0.473
H2O 0.801 0.795 1.042 0.973
HF 0.454 0.450 0.570 0.551
B2 0.266 0.277 0.360 0.375
CN 0.664 0.679 0.773 0.806
CO 0.743 0.748 0.895 0.891
N2 0.808 0.818 0.918 0.942
NO 0.659 0.666 0.798 0.801
O2 0.536 0.540 0.722 0.689
O3 0.857 0.860 1.163 1.142
F2 0.272 0.269 0.340 0.384
01250
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describe real strongly correlated systems like transiti
metal oxides, one needs a self-interaction correction@39# or
HubbardU @40#.

However, we have found good agreement in this lim
between the meta-generalized gradient expansion of
@27#, which is exactly self-correlation free, and our PC gr
dient expansions of Eqs.~23! and ~24!, which are approxi-
mately self-correlation-free. Thus, we suspect that the lo
density limit is under control, and that it should be possib
to use the meta-GGA to study, for example, the Wigner cr
tallization of the uniform electron gas.

The agreement between the PC gradient expansion
the meta-GGA in the strong-interaction limit is remarkab
as these are very different approximations derived in diff
ent ways and from different ingredients. The agreem
found here for atoms and molecules cannot persist for v
rapidly varying densities, such as those of narrow quant
wells @41#, where large reduced density gradients can m
W`

PC improperly positive andW8̀PC improperly negative.
Our Eqs.~23! and ~24! can be used along with GL2 per

turbation theory in the ‘‘interaction strength interpolation
of Eqs. ~27! and ~29!. Accurate correlation energies ar
found both for atoms~this work! and molecules~Ref. @7#!.
As explained in Ref.@7#, the ISI correlation energy func
tional is compatible with exact exchange, in a way that st
dard density functionals are not. The ISI of Eq.~27! also
provides an estimate@7# for the radius of convergence o
density-functional perturbation theory. The ISI interpolati
error has been estimated@42# to be 0.1% for the exchange
correlation energy of an atom and 4 kcal/mole50.17 eV for
the atomization energy of a molecule, via tests made wit
the meta-generalized gradient approximation. For the u

-
la-

TABLE VI. Changes upon atomization, DW8̀
5W8̀ (separated atoms)2W8̀ (molecule) ~in units of 1 hartree
527.21 eV!, in LSD, GGA, and meta-GGA~Appendix D! and
within the PC model. See the caption of Table V.

Molecule 2DW8̀LSD 2DW8̀GGA 2DW8̀MGGA 2DW8̀PC

H2 0.276 0.281 0.367 0.270
LiH 0.183 0.193 0.237 0.197
Li2 0.055 0.062 0.077 0.086
LiF 0.497 0.528 0.723 0.692
Be2 0.044 0.053 0.116 0.120
CH4 1.223 1.282 1.950 1.683
NH3 1.083 1.130 1.739 1.485
OH 0.413 0.430 0.771 0.570
H2O 0.849 0.884 1.539 1.182
HF 0.502 0.523 0.874 0.705
B2 0.228 0.257 0.515 0.465
CN 0.691 0.735 1.058 1.089
CO 0.828 0.870 1.369 1.238
N2 0.908 0.949 1.254 1.290
NO 0.731 0.767 1.209 1.127
O2 0.585 0.620 1.240 1.003
O3 0.918 0.976 1.980 1.639
F2 0.293 0.316 0.599 0.551
2-8
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form electron gas, ISI predicts a correlation energy which
finite but ~except at low densities! inaccurate@42#. For a
uniform gas with an artificially imposed energy gap@43#, it
becomes increasingly accurate as the gap increases.

We have further explained the point-charge-plu
continuum~PC! model which is the basis for Eqs.~23! and
~24!. The mock electrostatic energy of Eq.~14! is evaluated
in the strongly interacting limit by dividing the system u
into nonoverlapping, neutral, weakly interacting cells. D
spite some similarities, the PC cell isnot the strongly inter-
acting limit of the exchange-correlation hole~Appendix A!,
because the exchange-correlation holes overlap even in
limit. The relatively short range of the PC cell helps to e
plain the accuracy of a second-order gradient expansio
the strongly interacting limit.
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APPENDIX A: EXCHANGE-CORRELATION HOLE
VERSUS PC CELL

The densitynxc(r ,r 8) at r 8 of the exchange-correlation

hole @3# around an electron atr is defined such thatr̃(r 8)
[@r(r 8)1nxc(r ,r 8)# is the effective charge density, seen
the electron due to theN21 other electrons. ‘‘Effective
charge density’’ means that the two contributions to the
ergy functional~1! that describe the electron-electron inte
action can be written in the Hartree form

U@r#1Exc@r#5 1
2 E d3r r~r !E d3r 8

@r~r 8!1nxc~r ,r 8!#

ur2r 8u
.

~A1!

Note, however, thatr̃(r 8) also accounts for the kinetic
energy contributionTc@r#5^T̂&2Ts@r# in Exc@r#.

Here we discuss the relationship between the excha
correlation holenxc(r ,r 8) and the density shiftnPC(r ,r 8)
that arises atr 8 due to the creation of a PC cell around
electron atr . Both are normalized to21,

E d3r 8 nxc~r ,r 8!5E d3r 8 nPC~r ,r 8!521, ~A2!

and for strong interaction both tend to2r(r ) asr 8→r . Both
give Exc in the strongly interacting limit~where Exc@r#
5W`@r#), but not in the same way,
01250
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Exc5
1
2 E d3r r~r !E d3r 8

nxc~r ,r 8!

ur2r 8u

5E d3r r~r !E d3r 8
nPC~r ,r 8!

ur2r 8u

1 1
2 E d3r r~r !E d3r 1E d3r 2

nPC~r ,r1! nPC~r ,r2!

ur12r2u
.

~A3!

Thus the PC cell isnot a model for the strong-interactio
limit of the exchange-correlation hole; it arises from a d
ferent way of dividing up the charge around an electron.

For the uniform electron gas in the strong-interacti
limit, the exchange-correlation energy per electron is

1
2 E d3r 8

nxc~r ,r 8!

ur2r 8u
52

9

10r s
, ~A4!

while

1
2 E d3r 8

nPC~r ,r 8!

ur2r 8u
52

3

4r s
. ~A5!

These are significantly different, although both approac
give the same energy.

For any one-electron system, the exactnxc(r ,r 8) and the
exactnPC(r ,r 8) ~but not their gradient expansions! are equal
to one another and to2r(r 8), so in this limit the two forms
of Eq. ~A3! are manifestly identical.

APPENDIX B: ELECTROSTATIC POTENTIAL
AND ENERGY OF A CHARGED SPHERE

WITH A CONSTANT DENSITY GRADIENT

The sphere of radiusR has the charge density

rcell~u!5~rc1G•u! Q~R2u!, ~B1!

whereu5uuu andQ(t) is the step function.rc is the density
at the centeru50 of the sphere.

To calculate the electrostatic potentialFcell(u)
5*d3r rcell(r ) uu2r u21 of this charge distribution at som
position u inside the sphere, we choose thez axis in the
direction of u. Then, thex and y terms ofG•r5G1x1G2y
1G3z in rcell(r ) do not contribute to the integralFcell(u).
Consequently, in spherical coordinates$r ,f,u% for r ~with
z5r cosu),

Fcell~u!52pE
0

R

dr r 2 E
0

p

du sinu @rc1G3r cosu#

3(
l 50

` r ,
l

r .
l 11

Pl~cosu!. ~B2!

We here have used the multipole expansion ofuu2r u21 in
the usual notation of Ref.@44#, wherer ,5min$r,u% and r .

5max$r,u%. Substitutingt5cosu, the term in square bracket
can be written as@rcP0(t)1G3rP1(t)#, since the Legendre
2-9
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polynomials areP0(t)[1, P1(t)[t, etc. Due to the or-
thogonality relation *21

1 dt Pm(t) Pn(t)52dm,n /(2m11),
only the l 50 andl 51 terms contribute to theu integral of
Eq. ~B2!,

Fcell~u!54prcE
0

R

dr
r 2

r .
1

4p

3
G3E

0

R

dr
r 3r ,

r .
2

. ~B3!

G3 is the component ofG in the direction ofu. We choose
the u3 axis in the direction ofG so thatG35Gu3 /u. The r
integrations in~B3! yield

Fcell~u!5
2p

3
rc~3R22u2!1

2p

15
Gu3~5R223u2!

~u<R!. ~B4!

In the same way, the potential outside the cell is obtaine

Fcell~u!5
4p

3
R3S rc

u
1

GR2

5

u3

u3D ~u>R!. ~B5!

Fcell(u) is that solution of the Poisson equation¹2Fcell
524prcell that approaches zero asu→`.

The electrostatic self-energy Ucell
5 1

2 *d3u Fcell(u) rcell(u) of the sphere with charge densi
~B1! is easily evaluated in spherical coordinates whereu3
5u cosu,

Ucell5
3

5 S 4p

3
R3rcD 2

R211
1

35S 4p

3
R3rcD 2S GR

rc
D 2

R21.

~B6!

APPENDIX C:
THE PC MODEL FOR THE COEFFICIENT W8̀ †r‡

We consider oscillations of electrons around a static S
set of positions$r i% i 51, . . . ,N in a given densityr(r ), as ex-
plained in the opening paragraph of Sec. III. If we ignore
collective character of the oscillations as in the Einst
model for phonons, each electron is oscillating indep
dently around an equilibrium position. Since the amplitu
of these oscillations asymptotically approaches zero aa
→`, the PC model still applies. Now, in evaluating the ele
trostatic energy of the PC cell in Eq.~15! we must merely
replace the strictly localized point electron by the smo
charge distribution of an oscillating one. The restoring fo
on this oscillating electron is the repulsion~scaled by the
factor a) by the otherN21 electrons, distributed continu
ously outside a static PC cell, plus the force due to the
known external potentialvext

a (r ). Although the positive
background, introduced with Eq.~14!, can be used to evalu
ate the electrostatic energy~15!, it is entirely fictitious and,
of course, has no effect on the restoring force on the os
lating electron. To obtain this restoring force, we need
model for the true external potentialvext

a (r ).
At largea@1, vext

a (r ) must become strongly attractive t
maintain a given density distributionr(r ) of the strongly
01250
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repulsive electrons. In the limita→` when the kinetic en-
ergy becomes negligible, we expect that the strictly cor
lated electrons are moving on a constant potential-ene
surface. For spherical two-electron systems, this can
achieved@8# by

vext
a ~r !→a w~r ! ~a→`!, ~C1!

wherew(r ) is a smooth finite function which is entirely de
termined by the densityr(r ).

In the PC model for the strictly correlated limita→`, the
repulsive force, exerted on the point electron at positionr by
the otherN21 other electrons, is due to a distribution
continuousnegativecharge with densityr(r 8) outside the
PC cell. This force can obviously be canceled exactly by
external forceFext

PC(r ) which is chosen as though it was du
to an equivalent distribution of continuouspositive charge
with the same density outside the cell. The forceFext

PC(r ) is a
model for the gradient2“w(r ). If it is a conservative force,
we can writeFext

PC(r )52“wPC(r ) wherewPC(r ) is the PC
model for w(r ). At least for densities that vary only in th
radial or z directions, the construction ofwPC(r ) is always
possible.

To simplify our language, we denote in the followin
paragraphs by ‘‘C(x)’’ the spherical region inside the PC
cell of a point electron atr5x in the strictly correlated limit
a→`.

In the PC model for strictly correlated motion in the lim
a→`, the electron carries its PC cell along as it is movi
from r to a close-by positionr1s. Correspondingly, the ex
ternal forceFext

PC(r1s) at the new positionr1s must be cal-
culated from a different distribution of positive charge whi
is now outside thenewPC cellC(r1s). As in the work of
Harbola and Sahni@45#, we have a position-dependen
‘‘hole’’ from which we calculate the electrostatic force a
each electron position.

At finite a, in contrast, when the strictly correlated m
tion is taken to be infinitely slow, there is astatic PC cell
C(r ) around anoscillating electron. Therefore, as this osci
lating electron has moved from its equilibrium positionr to
the close-by positionr1s, the external forceFext

PC(r1s) at
r1s, due to positive charge outsideC(r1s), doesnot cancel
the repulsive force due to the otherN21 electrons which are
still outside thestaticPC cellC(r ); see Fig. 3. Consequently
there is a restoring net forceFosc

(r ) (s). This force can be de-
rived electrostatically from a net charge densityr (r )(s)
which is zero everywhere outside the finite regi
C(r )øC(r1s), covered by these two cells. It is the same
a positive charge distribution with densityr(r 8) inside C(r ),
plus a negative charge distribution with densityr(r 8) inside
C(r1s).

In the constant-gradient model~17!, r (r )(s) is the charge
distribution of two oppositely charged overlapping sphe
C(r ) andC(r1s) with a constant charge-density gradientG
~Fig. 3!. The net force exerted by this charge distribution
the oscillating electron atr1s is

Fosc
(r ) ~s!5@“uFcell

(r ) ~u!#u5s2d(r )2@“uFcell
(r1s)~u!#u52d(r1s) .

~C2!
2-10
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Here,Fcell
(x) (u) denotes the electrostatic potential atu due to

a spherical piece of positive charge with density~17! inside
the PC cellC(x) of an electron with equilibrium positionx.
The coordinateu is chosen so that the originu50 is at the
center of the sphereC(x) and u3 is the component of the
vector u in the direction of the constant gradientG. In this
coordinate system, the pointx is at u5d(x) G/G[2d(x)
5$0,0,d(x)%, with d(r ) from Eq. ~19! ~cf. Fig. 2!. Fcell

(x) (u)
is explicitly given by Eq.~B4! in Appendix B if we there
identify R5R(x), with R(r ) from Eq. ~19!, rc5r(x)
2Gd(x), andG5u¹r(x)u.

As expected, the force~C2! is zero at the equilibrium
positions50. In a uniform system (G50), whered[0 and
Fcell

(x) (u) is spherically symmetric aroundu50, the second
term in ~C2! is zero andFosc

(r ) (s)5¹sFcell(s). This means
that the present approach yields for uniform systems
same zero-point energy as the treatment of zero-point o
lations in a Wigner crystal with a positive background
Ref. @12#.

Using expression~B4! from Appendix B, Eq.~C2! can be
evaluated explicitly. Expanding the result to linear order is
yieldsFosc

(r ) (s)52¹svosc
(r ) (s), where the oscillator-type effec

tive potential,

vosc
(r ) ~s!5

k1~r !

2
~s1

21s2
2!1

k3~r !

2
s3

2 , ~C3!

hasr -dependent spring constants

k1~r !5ar s~r !23~12 2
25 g2!1O~g4!,

~C4!

k3~r !5ar s~r !23~12 1
25 g2!1O~g4!.

Here s3 is the Cartesian component ofs in the direction of
“r(r ), r s(r )235(4p/3)r(r ), andg5u“r(r )u r s(r )/r(r ).

FIG. 3. An electron atr1s, oscillating around its equilibrium
position r , feels a restoring force which is due to a continuo
negative charge distribution with densityr(r 8) outside its static PC
cell C(r ) plus a continuous positive charge distribution with t
same densityr(r 8) outside the PC cellC(r1s). These two differ-
ent cells are centered atr1d(r ) and at (r1s)1d(r1s), respec-
tively.
01250
e
il-

The probability distribution or charge density of an ele
tron performing zero-point oscillations in the potential~C3!
is

rosc
(r ) ~s!5

k1
1/2k3

1/4

p3/2
exp$2@k1

1/2~s1
21s2

2!1k3
1/2s3

2#%. ~C5!

Using this charge distribution in evaluating the electrosta
energy~15!, we now have instead of Eq.~20!

Ecell,a
GEA ~@r#;r !5Ucell2E d3s Fcell

(r )
„s2d~r !… rosc

(r ) ~s!.

~C6!

To evaluate thes integral here, we put thes3 axis in the
direction of G so that d5$0,0,2d%. Setting u5s2d(r )
5$s1 ,s2 ,s31d% in Eq. ~B4! yields

Fcell
(r )

„s2d~r !…5~ 3
2 1 4

50 g2!R211Fodd~s!

2F ~ 1
2 1 3

50 g2!
s1

21s2
2

R2

1~ 1
2 1 9

50 g2!
s3

2

R2GR211O~g4!. ~C7!

Here,Fodd(s) summarizes the terms containing odd powe
of s1 , s2, or s3 which do not contribute to the integral in Eq
~C6!, since rosc

(r ) (s) is an even function of thesi . Since
*d3s rosc

(r ) (s)51, the first~constant! term of Eq.~C7! repro-
duces in Eq. ~C6! exactly the expression~21! for
Ecell

GEA(@r#;r ). For the contributiondEcell,a
GEA (@r#;r ) of the

quadratic term to the integral in Eq.~C6! we note that

E d3s si
2 rosc

(r ) ~s!5
ki

1/4

p1/2E2`

`

dsi si
2 e2(ki

1/4si )
2
5

1

2ki
1/2

.

~C8!

Therefore,

dEcell,a
GEA ~@r#;r !5~ 1

2 1 3
50 g2!

2

2R3k1
1/2

1~ 1
2 1 9

50 g2!

3
1

2R3k3
1/2

1O~g4!. ~C9!

Since k1 and k3 from Eq. ~C4! are proportional toa, this
contribution is of the ordera21/2, as expected. Using th
expansions~19!, we obtain from Eq.~C4!

1

R3k1
1/2

5~12 4
25 g2! r s~r !23/2a21/21O~g4!,

~C10!
1

R3k3
1/2

5~12 9
50 g2! r s~r !23/2a21/21O~g4!.

Then, expansion of Eq.~C9! yields
2-11
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Ecell,a
GEA ~@r#;r !5Ecell

GEA~@r#;r !1~ 3
4 1 1

40 g2!

3r s~r !23/2a21/21O~g4!. ~C11!

Averaging this energy over the densityr(r ) correspondingly
to Eq. ~15!, we obtain the full asymptotics~9! of Wa@r# in
the PC model,Wa@r#'W`

PC@r#1W8`
PC@r# a21/2 (a@1),

where the coefficients are given by the GEA equations~23!
and ~24!.

While we have not proved that the densityr(r ) is unaf-
fected by the oscillations, we suspect that it is. Clearly

E d3r r~r ! rosc
(r ) ~r 82r !5r~r 8! ~C12!

whenr(r )5r(r 8)1“r(r 8)•(r2r 8).

APPENDIX D: EXPRESSIONS FOR W`†r‡ AND W8̀ †r‡
IN LSD, GGA, AND META-GGA

For a given approximate exchange-correlation ene
functional Exc

app@r#5Ex
app@r#1Ec

app@r#, the corresponding
coupling-constant integrandWa

app@r# can be found by the
following formula @4#:

Wa
app@r↑ ,r↓#5Ex

app@r↑ ,r↓#1
d

da
~a2Ec

app@r↑,1/a ,r↓,1/a#!,

~D1!

wherers,1/a(r )5a23rs(r /a) is the spin density scaled un
formly with a parameterl51/a.

In LSD the correlation energy is written as

Ec
LSD@r↑ ,r↓#5E d3r r~r !«c

uni f
„r s~r !,z~r !…, ~D2!

where«c
uni f(r s ,z) is the correlation energy per electron

the uniform electron gas with parametersr s5(3/4pr)1/3,
(r5r↑1r↓), andz5(r↑2r↓)/(r↑1r↓). We are interested
in the strictly correlated (a→`) limit of LSD. Sincer1/a is
a low density in this limit, we can use the low-density (r s

→`) expansion of«c
uni f :

«c
uni f~r s ,z! →

r s→`

2
d0~z!

r s
1

d1~z!

r s
3/2

1O~r s
22!. ~D3!

Using this expression for the~local! scaled density paramete
r s

1/a(r )5ar s(r /a) and inserting into Eq.~D1!, one obtains
the functionals for the strong-interaction limit@see Eq.~9!# in
LSD

W`
LSD@r↑ ,r↓#5Ex

LSD@r↑ ,r↓#2E d3r r~r !d0„z~r !…/r s~r !

52S 4p

3 D 1/3E d3r dxc„z~r !…r~r !4/3 ~D4!

and
01250
y

W8̀ LSD@r↑ ,r↓#5
1

2 S 4p

3 D 1/2E d3r d1„z~r !…r~r !3/2.

~D5!

For the coefficientsd0 anddxc in Eq. ~D4! we use the low-
density limit of the parametrization of«c

uni f(r s ,z) suggested
by Perdew and Wang@37#. dxc(z) is then given by Eq.~28!
of Ref. @37# andd0 by

d0~z!5dxc~z!2
3

8p S 9p

4 D 1/3

@~11z!4/31~12z!4/3#.

~D6!

One finds thatdxc(z) is very close to 0.9, the value for th
PC model, and almost independent of the spin polariza
~see Table IV of Ref.@37#!. On the other hand, the coefficien
d1 obtained from the Perdew-Wang parametrization varies
a function of z from d1(z50)51.4408 to d1(z51)
51.7697. However, just as fordxc , we expect the exac
coefficient d1 to be independent ofz, because in a low-
density electron gas any two electrons will avoid one a
other, no matter how their spins are aligned relative to o
another. In Eq.~D5! and the corresponding expressions f
GGA and MGGA@Eqs.~D14! and~D16!#, we will therefore
use the spin-independent coefficient from the PC model,d1
51.5, which we believe to be more correct. Thus, in Tab
I–VI, all our functionals forW` andW8̀ will agree closely
for a uniform density.

In the GGA of Perdew, Burke, and Ernzerhof, the cor
lation energy functional is given by Eqs.~3!, ~7!, and~8! of
Ref. @26#. Under uniform scaling to the low-density limit, th
function A given by Eq.~8! of Ref. @26# scales to

A~ar s ,z! →
a→`

B1~r s ,z!a1B2~r s ,z!a1/21O~a0!,
~D7!

with

B1~r s ,z!5
b

d0~z!
f~z!3r s ~D8!

and

B2~r s ,z!5
b d1~z!

d0~z!2
f~z!3 r s

1/2. ~D9!

Here, b50.066 725 is the coefficient of the second-ord
gradient expansion of the correlation energy of a slow
varying electron gas,f(z)5@(11z)2/31(12z)2/3#/2, and
d0 and d1 are the coefficients of the low-density expansi
of «c

uni f(r s ,z).
In the same low-density limit, the functionH given by Eq.

~7! of Ref. @26# scales as

H~ar s ,z,a1/2t ! →
a→`

H1~r s ,z,t !a211H2~r s ,z,t !a23/2

1O~a22!, ~D10!
2-12
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where t5u¹ru/@2f(z)ksr# is a reduced density gradien
with ks5A4kF /p andkF5(3p2r)1/3. The functionsH1 and
H2 are defined by

H1~r s ,z,t !5bf~z!3t2
11B1t2

11B1t21B1
2t4

~D11!

and

H2~r s ,z,t !52bf~z!3B1B2t6
21B1t2

~11B1t21B1
2t4!2

.

~D12!

Insertion into Eq.~D1! then yields
01250
W`
GGA@r↑ ,r↓#5Ex

GGA@r↑ ,r↓#1E d3r r~r !S 2
d0„z~r !…

r s~r !

1H1„r s~r !,z~r !,t~r !…D , ~D13!

W8̀ GGA@r↑ ,r↓#5
1

2E d3r r~r !S d1~z„r !…

r s~r !3/2

1H2„r s~r !,z~r !,t~r !…D . ~D14!

Equations~D10!–~D12! can also be used to calculate th
low-density limit of the correlation energy in meta-GG
@Eq. ~15! of Ref. @27##. The results are
W`
MGGA@r↑ ,r↓#5Ex

MGGA@r↑ ,r↓#1E d3r H r~r !S 2
d0„z~r !…

r s~r !
1H1„r s~r !,z~r !,t~r !…DF 11CS (

s
ts

W

(
s

ts

D 2G
2~11C!(

s
rs~r ! S ts

W

ts
D 2S 2

d0~1!

r s,s~r !
1H1„r s,s~r !,1,ts~r !…D J ~D15!

and

W8̀ MGGA@r↑ ,r↓#5 1
2 E d3r H r~r !S d1„z~r !…

r s~r !
1H2„r s~r !,z~r !,t~r !…DF 11CS (

s
ts

W

(
s

ts

D 2G
2~11C!(

s
rs~r ! S ts

W

ts
D 2S d1~1!

r s,s~r !
1H2„r s,s~r !,1,ts~r !…D J . ~D16!
n

of
l-
Here

ts
W5

1

8

u¹rsu2

rs
~D17!

is the Weizsa¨cker kinetic energy density,

ts5
1

2 (
i

occup

u¹w isu2 ~D18!

is the kinetic energy density of the Kohn-Sham orbitalsw is ,
C50.53 is a constant parameter, andr s,s and ts are con-
structed liker s and t, but usingrs instead ofr.
APPENDIX E: SOFT-PLASMON INSTABILITY
OF THE LOW-DENSITY UNIFORM ELECTRON GAS

The low-density uniform electron gas~neutralized by a
rigid uniform background! is unstable against the formatio
of a body-centered-cubic~bcc! Wigner crystal, or equiva-
lently against the formation of a charge-density wave
wave vectorQ'1.14(2kF) ~the smallest nonzero reciproca
lattice vector of the bcc crystal!, where r̄5kF

3/3p2 is the
uniform density. Perdew and Datta@46# have shown that,
starting from the uniform phase, the density variation

dr~z!5 r̄ A cos~Qz! ~E1!
2-13
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of small amplitudeA produces an energy change per elect

dE

N
5e~kF ,Q!A21O~A4!, ~E2!

where the coefficiente is given by their Eq.~43!. e,0 indi-
cates instability against the formation of a charge-den
wave of infinitesimal amplitude.

In the limit r̄→0, in which the wave functionCa@r# for
all a.0 is correlated as in the strong-interaction limit (a
→`), Eq. ~2! implies thatExc5W` . Using our PC expres
sion ~23! for W` , Eq. ~43! of Ref. @46# becomes

e5
kF

12px2
@121.965x211.241x4#, ~E3!

wherex5Q/2kF . The first term of Eq.~E3! arises from the
Hartree electrostatic energy, the second from the local pa
Exc , and the third from the second-order gradient contrib
s

tu

um

et

d

01250
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tion to Exc5W` . Equation~E3! is always positive but has a
minimum very close to zero atx'1 or Q'2kF . Thus our
PC gradient expansion almost predicts the correct lo
density instability of the uniform electron gas.

This instability can also be regarded as a ‘‘soft plasmon
The plasmon frequencyvp(Q) decreases fromvp(0)

5A4pr̄ asQ increases, and goes to zero aroundQ52kF .
Within the PC model, the low-density limit for the plasmo
dispersion isvP(Q)5vP(0)(121.965x211.241x4)1/2, con-
sistent with Fig. 2 of Ref.@47#. Figure 5 of Ref.@48# suggests
that the plasmon dispersion changes sign aroundr s510, al-
though the soft-plasmon instability appears aroundr s565
@49#.

If the electron-electron interaction were attractive, t
Hartree term in Eq.~E3! would be negative. Then Eq.~43! of

Ref. @46# shows that the uniform phase forany r̄ would be
unstable against long-wavelength (Q→0 or x→0) charge-
density waves.
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@40# M. T. Czyżyk and G. A. Sawatzky, Phys. Rev. B49, 14 211

~1994!.
@41# L. Pollack and J. P. Perdew, J. Phys.: Condens. Matter12,

1239 ~2000!.
@42# J. P. Perdew, S. Kurth, and M. Seidl, inAdvances in Quantum

Many-Body Theory, edited by R. F. Bishop, K. A. Gernoth, N
2-14



.
m-

E.
D.

s

DENSITY FUNCTIONALS FOR THE STRONG- . . . PHYSICAL REVIEW A 62 012502
R. Walet, and Y. Xian~World Scientific, Singapore, in press!,
Vol. 3.

@43# J. Rey and A. Savin, Int. J. Quantum Chem.69, 581 ~1998!.
@44# J. D. Jackson,Classical Electrodynamics, 2nd ed.~Wiley, New

York, 1975!.
@45# M. K. Harbola and V. Sahni, Phys. Rev. Lett.62, 489 ~1989!.
@46# J. P. Perdew and T. Datta, Phys. Status Solidi B102, 283

~1980!.
@47# K. S. Singwi, M. P. Tosi, R. H. Land, and A. Sjo¨lander, Phys.

Rev.176, 589 ~1968!.
@48# P. Vashishta and K. S. Singwi, Phys. Rev. B6, 875 ~1972!.
@49# G. Ortiz, M. Harris, and P. Ballone, Phys. Rev. Lett.82, 5317

~1999!.
01250
@50# J. B. Krieger, Y. Li, and G. J. Iafrate, Phys. Rev. A45, 101
~1992!.

@51# M. Ernzerhof~private communication! ~method of Ref.@17#!.
@52# E. Engel and R. M. Dreizler, J. Comput. Chem.20, 31 ~1999!.
@53# R. D. Amos, I. L. Alberts, J. S. Andrews, S. M. Colwell, N. C

Handy, D. Jayatilaka, P. J. Knowles, R. Kobayashi, G. J. La
ing, A. M. Lee, P. E. Maslen, C. W. Murray, P. Palmieri, J.
Rice, J. Sanz, E. D. Simandiras, A. J. Stone, M.-D. Su, and
J. Tozer, CADPAC6: The Cambridge Analytical Derivative
Package Issue 6.0 Cambridge, 1995.

@54# E. S. Kryachko and E. V. Luden˜a, Energy Density Functional
Theory of Many-Electron Systems~Kluwer, Dordrecht, 1990!.
2-15


