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Density functionals for the strong-interaction limit
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The strong-interaction limit of density-functionéDF) theory is simple and provides information required
for an accurate resummation of DF perturbation theory. Here we derive the point-charge-plus-coiB@ium
model for that limit, and its gradient expansion. The exchange-correl@tmrenergyE, ] p]= fsdaW,[p]
follows from the xc potential energie&/, at different interaction strengthg=0 [but at fixed density(r)].

For smalla~0, the integrandV, is obtained accurately from perturbation theory, but the perturbation expan-
sion requires resummation for moderate and larg&or that purpose, we present density functionals for the
coefficients in the asymptotic expansig,—W..+W.a 2 for a— in the PC modelW~C arises from
strict correlation, andW.”C from zero-point vibration of the electrons around their strictly correlated distribu-
tions. The PC values faW,. andW., agree with those from a self-correlation-free meta-generalized gradient
approximation, both for atoms and for atomization energies of molecules. Wéinkscplain the difference
between the PC cell and the exchange-correlation KibJggresent a density-functional measure of correlation
strength iii) describe the electron localization and spin polarization energy in a highly stretchmdleicule,
and(iv) discuss the soft-plasmon instability of the low-density uniform electron gas.

PACS numbse(s): 31.15.Ew, 31.25:v, 71.15.Mb

[. INTRODUCTION is scaled by a factof‘coupling constant’) =0, but which
has the same ground-state dengify) as the real system

energy of a system of interacting electrons is presented as ith a=1. In general, ¥,[p] is that antisymmetrized

functional of the ground-state density distributiefr) of the -eIectAron vyave function which m|n|m|z§s the expectf’;ltlon
electrons, value(T+ aVee and, at the same time, yields the dengity

If ¥, [p] is the true ground state of a Hamiltonian with
Elp]=Tdp]+ f rp(Nven(n) +U[p]+Edp]. (1) MeracionaVee,

In density-functional theoryDFT) [1], the ground-state

a

T p] is the kinetic energy of a system of noninteracting Ho=T+ aVee+Vext, ©)
electrons with ground-state densjty The second contribu-

Ulp]l=3Sd3 [d3 p(r) p(r')|r—r'| is the classical ~ o . _
Hartree-Coulomb energy. The exchange-correlation energby the operatoV¢,, in Eq. (3), is completely determined by

E,J p] accounts for all the complexity of the quantum many-Pﬁe density p [1]. Note that W,—i[p]=Ex[p]-Tdlp].
body problem ignored by the continuum functiodlp]. It

also includes the interaction contributidg=(T)— T to the Waldl 26 Tl
kinetic energy. [hartree] ‘ S i S
This important functional is exactly represented by the R T T
coupling-constant integrgR,3], -8 N
. 32 \‘\\ Wésl ]
E,dpl= f daW,[p], 34 Wo+ W) (Be atom)
0 -3.6
. ) o8
Wolp]=(¥u[p]llVedValp])—Ulp]. et e
The integrandV [ p] (which is plotted approximately in Fig.
1) has only potential-energy contributions, including the ex- 0 ! z 8 4 8 & a7

pectation value of the Coulomb two-particle repulsion opera- FIG. 1. The ISI model29) for the coupling-constant integrand

o N
tor Vee= Zi<jlri=rj| " in the ground staté¥ ,[p] of a hy- ot gq. (2) in the case of the beryllium atofsolid curve; in hartree
pothetical system where the repulsion between the electroq;*nits)_ The coefficientsiVy, W, WES, andW.PC are taken from
Table Ill, usingD =D, for the latter one. The size of the shaded
area, which indicates a contribution to the integ@l is the pre-
*Present address: Institute of Theoretical Physics, University ofilicted correlation energ.>'[ p]=—0.100 hartree of the Be atom

Regensburg, D-93040 Regensburg, Germany. (exact value:—0.096 hartree The expansions oV'>' both for a
"Present address: Department of Theoretical Physics I, Lund Uni->0 and for — are displayed in short dashes. The horizontal
versity, Sdvegatan 14 A, S-22362 Lund, Sweden. dashed line marks the asymptotic linit; .
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The limit «#—0 of weak interaction in the integrand

rI
W, [ p] of Eq. (2) is well understood¥V ,_g[ p] is the Slater vgxt(r)=v§xt(r)+aj d3r’ ol ,) +5—E‘;C[p];
determinant of the occupied Kohn-Sh&Ks) single-particle [r=r’| dp(r)
orbitals {¢i(r,o)}i—1 ... n. CorrespondinglyW,_o[p] is 1D

the DFT exchange energy, here,E[ p]=f2da’W,,.[ p]— aW,, for a—, which fol-

N lows from the asymptotic behavi@®).
> > J d3r d3r’ Unlike the realistic situation ate=1, this strong-
hj=1 o interaction limita— o is also simple, but in a different way

. . , than the familiar limita— 0 of weak interaction. Agx— oo,

i (r,0) ¢i'(r',0) ¢i(r', o) ¢j(r,0) @ the electrons become strongly correlated. This situation is

N| -

Wolp]=Exp]=-

lr—r'| ' modeled by the concept of “strictly correlated electrons”
(SCB [6,8,9 which is solved exactly for one-dimensional
The first derivative atk=0, (1D) systems and, in particular, for any 3D two-electron sys-
tem with a spherical density distributiga(r). In the latter
W[ p]=(dW,[pl/da),—o=2ES [ p], (5  cas€6,8], the two electrons always stay on opposite sides of

the spherical center. The radial distanigeof the first elec-
is, like Ey, also knowr[4] in terms of the KS orbitals as we tron strictly dictates that of the second electrop=f(r,),
shall see in the next paragraph. by virtue of an exact “correlation” functiorf(r). As a so-

In Gorling-Levy (GL) perturbation theory4], the corre-  |ution  of the differential  equation f'(r)=
lation energyE [ p\]=Exd pr]—Exlp)] for the scaled den-  —r2,(r)/f(r)2p(f(r)), f is unambiguously determined by
sity py(r)=\°p(\r) is expanded around the high-density the densityp [6,8]. (Apart from the minus sign and the ap-
limit A—o or @—0 (with a=1/\), pearance of only one functiom instead of two, this differ-
ential equation coincidentally resembles that of a local scal-

o0

_ GLn n—2 ing transformatiori54].) In terms of this functiorf(r), SCE
Ec[”lfa]‘n; Ec™lpla (a=0). ©) provides the functiondl6,8]
A hypothetic system where the elec-tronic repulsm is WSCE[p] o f dr pf( ) —U[p], (12)
scaled by the factow has the correlation enerd$] r+f(r)
Ellp]=a’E pjal. (7)  which is probably identical with the unknown exatt.[ p]
for spherical two-electron systems.
Thus, Ep]l=2/_ 2EGLn[p]a' Since EZ=[gda’ (W, In the present paper we give the complete derivation of

~W,), we have W,[p]=Wy+37_ 2EGL "p]na(™ V. the point-charge-plus-continuu®C) model[6,10] which is
Therefore, GL perturbation theory is equivalent to the Tayloran approximation to the SCE concept but, in contrast to the
expansion ofW,[p] around the weak-interaction limi ~ latter, is straightforwardly applicable to any three-
=0, which implies Eqs(4) and (5). For an explicit expres- dimensional(3D) N-electron densityp(r). The PC model

sion of EC2[ ], see Ref[4]. provides the simple explicit density functionat [ p] and
It has been shown recenf,7] that the weak-interaction W."“[p], see Eqs(23) and(24) below, for the coefficients
limit, in Eq. (9). It generalizes the standard spherical-cell model
[11,12 of the Wigner crystal, and has a simple density-
W [p]l—=Wolp]+Wi[p]la (a—0), (8) gradient expansion(A constrained search for the strong-

_ N _ _ ~interaction limit has been discussed by Valdig]. Some
along with some additional information on the opposite limitformal properties of this limit have been discussed by Levy
a—», where W [p] approaches asymptotically a finite and Perdevw14].)

valueW..[p] (see Fig. ], In Sec. Il we derive the functionaV” [ p], while in Ap-
, 1 pendix A we explain the difference between the PC cell and
Wolp]=W.[p]+W.[p] a (a—0), (9 the strong-interaction limit of the exchange-correlatian)

hole. In Sec. Il we consider the situation of large finite
E:Za)n be sufficient for an accurate evaluation of the |ntegrah>1 and we derive in Appendix C the functionat."[p]
for the next coefficient in the asymptotic expansi@® We
As a—, the external potentiabe,(r) that holds the 54 giscuss approximate self-interaction correctii€’s)
density fixed becomes strongly attractive. In fact to the gradient expansiow’P[p]. Using these functionals,
N , we apply in Sec. IV the interaction-strength interpolation
Vexdr) _ _f a3 p(r’) S % W,[p], (10 (SD W!'S'p] of Ref.[7] between the weak-interaction limit
[r—r’] ~ op(r) (8) and the strong-interaction limi©©). We obtain accurate
correlation energies for those atoms where the coeffithnt
since the Kohn-Sham potential which yields the dengsty) is known with reliable accuracy. The same method predicts
for noninteracting electrons is in Ref.[7] remarkably accurate atomization energies for a set

a—®
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of 18 small molecules; a statistical summary is given in Secthis can be achieved by discrete negative point charges.
V, where we also discuss the strong-interaction limit for theTherefore, in a typical distribution set the hypothetical sys-
atomization energy. We summarize our conclusions in Sedem can be divided up intbl neutral cells, one around each
VI. electron atr; and with zero or weak lower electric multipole
The « dependence oW,[p] for specific finite or ex- moments, so that the interaction between different cells may
tended systems has been the subject of several recent invd® neglected. Consequently, the total electrostatic energy of
tigations within density-functiondlLl5—-18 or wave-function  the systemgSY p], is approximately the sum of the energies
[19-22 theories. Exact information aboWMY,[p], e.9.,W;  of theseN individual cells.
or Wy and W(, has been used to boost the accuracy of In the following we present a model for the cell around an
density-functional calculationd6—18 along the general di- electron at positiom in the densityp. This model cell has the
rection suggested by Beck@3]. Unlike those approaches, energy Eq([p];r). The sum=N E.i([p];r;) for a set
which make use of density functionals far~1, we make {r;} of electron positions becomes in the ensemble average
use of them fora— oo. an integral which is an approximation to the electrostatic
A density-functional measure of the correlation strengthenergy(14) in the limit a—oe,
of the physical ¢=1) wave function is

Wo W, W.Ip1=ESTpl~ [ o p(r) Ecur(lplin). (19
Wo— W, (13
We call this the PC model because Ef5) treats one elec-
This measure varies between 0 for independent electrons afihn as a point charge at position and the remaining

1 for strictly correlated ones. For other measures, see ReN—1 electrons as a continuous fluid of negative charge

[9]. which perfectly neutralizes the positive background every-
where except for the region inside the cell around the point
IIl. POINT-CHARGE-PLUS-CONTINUUM (PC) MODEL electron whose position is averaged over the system. Despite
FOR W..[p] some similarities, the PC cell isot a model for the strong-

interaction limit of the exchange-correlation hole; see Ap-
The integrandW,[ p] in Eq. (2) is identical to the total pendix A. By coincidence, the label PC is sometimes used to
electrostatic potential energgxpectation valueESTp] ofa  mean “perfect correlation’24], the very situation for which
fictitious system where discrete point electrons with the aneur PC model is an approximation.

tisymmetrized and correlated wave functitn,[p] are em- The key idea is that the electron atplus its PC cell
bedded in a rigid continuous background of positive chargeshould have zero monopole and dipole electrostatic mo-

with densityp . (r)=p(r), since ments. In the local-density approximati@oDA ), where the
densityp is assumed to be constant in the vicinity of each

EYp]1=(V [ p]|Ved W lp])—2U[ p]+U[p]=W,[p]. electron, the model cell around an electrorr & a concen-

(14)  tric sphere with local radius(r)=(3/4m)3s(r) 13 The
electrostatic energy of this cell,

The three terms of Eq.14) are, respectively, the electron-
electron, electron-background, and background-background LDA 9 4
interactions. (It does not matter here whethel [p] — Eceir ([plin) == 757N ", (16)
which is defined in Eq(2) above — is the ground state of
this fictitious system or not. The positive background isjs the Se|f-energy§rs—1 of the spherical piece of uniform
merely an artifice invoked for the evaluation\df,[p], and  positive background inside the cell plus its interaction
should not otherwise be taken seriously. The mock electro-- 2y 1 with the central point electron.
static energy of Eq(14) provides a more convincing way o Beyond the LDA is the gradient expansion approximation
derive the PC model. _ (GEA), in which the energy is expanded to second order in

Repeated simultaneous measurements oftleectronic  the density gradient. We assume the dengity+s) in the
positions in the statel,[p] would yield distribution sets yicinity of an electron at to have a constant gradiefit
{ritiz1, ... n of N points which, in the ensemble average, =y (r),
represent the continuous density clopfr). The classical
electrostatic energy of the neutral system composed dfithe p(r+s)=po+T-s, 17
negative point charges of each set and the continuous posi-
tive background yields in the ensemble average the quantitwhere po=p(r) is the density at the position of the point
ESTp]. In the limit «—o, where the electrons repel each electron. If the gradienk is not too strong,y=Ir/py<1
other strongly, the points, in each set of the ensemble are where r =[(47/3)po] %3, the cell is still approximately
distributed as uniformly as possible over the dengify) spherical. To have zero electric dipole moment, however, a
without any accidental clusteringFluctuations of particle positive spherical cell with a density gradient has its center
number in any finite volume fragment are strongly sup-shifted away from the negative point electron by a small
pressed9] as a—=.) In other words, at larger, the con-  displacementd (with magnituded) into the direction of
tinuous positive background is locally neutralized as well as—TI'" (see Fig. 2 Still normalized to unity, the cell has now a

012502-3



MICHAEL SEIDL, JOHN P. PERDEW, AND STEFAN KURTH

FIG. 2. In a constant densityI'&0), the PC cell around an
electron atr is a concentric sphere with radiug, represented by

PHYSICAL REVIEW A2 012502

3 1(IR\?
EcGeEnA([P];r):{g‘F g(z) }R_l
1 3 d? +1Fd 5 3d2 1
12\7 R?) 10p. |7 TR2 '
(21)

Using T'd/p.=%y?+0O(y* and the expansion§l9), we
find, in generalization of Eq.16),

ESEN(plir)=

9 3
T ﬁ)f) ro(r) "1+ 0(y%.
(22)

Applying the model(15) and neglecting contributions of or-
der y*, we obtain the PC GEA

the dashed large circle in the figure. In the presence of a density

gradientI’, however, the centayl of the cell is shifted away from
the electron by a small displacement vectbin the direction of

—1I'. To have zero monopole and dipole moments, the shifted cell

(solid large circle in the figupehas a different radiuR>r.

radiusR>r, fixed by (4m/3)R3p.=1, wherep.=po—I'd
=po(1—yd/rg) is the density at the center of the cell.

In a coordinate system which has its origis=0 at the
center of the cell and itsi; axis in the direction ofl", the
electron is ai= —d=(0,0,+d); see Fig. 2. The condition of
zero dipole moment is [Rsdus[ m(R?—u3)(pc+T'us)
—6(uz—d)Juz=0. This and the normalization condition
(4713)R3p.=1 can be written as

d -2/3
and R2=r§(l—y—) ,
rS

2=5r,—(1 —
R s ’yrs
(18

respectively. Expandingd=d;y+d,y?+--- in each of
these equations and comparing coefficients, we find

d(r)=ry(s y+ 15 ¥*) +O(y°),
(19
R(r)=rg(1+ 15 ¥*)+O(y%),

wherer ¢= (3/4m) Y3p(r) "2 and y=r4(r) [Vp(r)|/p(r) de-

V 2
AP(r)4/3+B—| p(pr()rA)/L ] (23)

Wepl- [ ar

for the unknown functionaWW,.[ p]. The coefficients aré
= —(9/10)(4m/3)*=—-1.451 and B=(3/350)(3/4r)'?
=5.317x 10 3. The functional(23) has the correct scaling
behavior, W[ p, 1= AW~ [ p], as predicted in Eq(31).

The standard local-density approximation &g is not
accurate in the limita—o, because of a serious self-
correlation error which develops in that limit. As a result,
this approximatiofas well as the generalized gradient ap-
proximation (GGA)] cannot properly describe the Wigner
crystallization of the low-density uniform electron g&5].
The strongly interacting limit of the PBE GGA is essentially
local and spin independent, as shown by the flathess of the
r<=o enhancement factors in Fig. 1 of Ref26]:
WS p,p 1~ WS p; ,p 1~ 2E;"*[p]. (Although LDA
and GGAexchangeenergies suffer a self-interaction error,
this error is typically small and does not changeVdag p]
approaches the strong-interaction limit. The LDA and GGA
correlation energies suffer a self-interaction error which
grows alarmingly towards this limijt.

However, we can test the accuracy of the functidi28)
against the meta-generalized gradient approximation
(MGGA) for the correlation energy27], which is con-
structed from first principles without adjusting any param-
eters to experimentally known data. MGGA yields accurate

pend on the position of the point electron. The two quan- energies for very different kinds of electronic systems such
tities (19) determine both position and size of the sphericalyg atoms, molecules, solids, and surfaces. Due to its exact

PC cell, depending on the positionof the point electron.
Again, as in the LDA(16), the energy of the PC cell with
constant gradient is the self-energy,,, of the piece of posi-

self-correlation correctioriSIC), MGGA should work par-
ticularly well in the strong-interaction limit, where LDA and
GGA do not. MGGA has an extra ingredient: not only the

point electron,
Ecair([plin =Ucen— ®yu==d(r)). (20

@), (u) is the electrostatic potential at of the positive
background, withu=0 at the center of the cell. Using for
Ucen and @), (u) the expressionéB6) and (B4) from Ap-
pendix B, with (47/3)R%p.=1, we obtain

energy density.

For a set of 12 atoms, Table | gives a comparison of
WP p] with the functionaW™CEC4 p] which is the model
for W,.[ p] as extractedAppendix D from the MGGA func-
tional. The good agreement of the results from the PC model
with the ones from the MGGA functional in Table | is par-
ticularly encouraging, since two completely independent ap-
proaches to the strong-interaction limit are compared here.

012502-4



DENSITY FUNCTIONALS FOR THE STRONG. . . PHYSICAL REVIEW A 62 012502

TABLE I. Values forW.[p] (in units of 1 hartree= 27.21 eV} the ordera [8]. We therefore expect that the strongly corre-
for atoms, obtained for exchange-only Krieger, Li, and lafrate|ated motion of the electrons at large>1 can be under-
(KLI) [50] densities from the LSD, GGA, and MGGA functionals stood in terms of a slow strictly correlated motion, superim-
(Appendix D and from the PC model. posed by fast small-amplitude collective oscillations.
Correspondingly, as in the Born-Oppenheimer treatment of

Atom WESP weeh wiiees Wi the nuclear motion in molecules, we take the strictly corre-
H —0.421 —0.417 ~0.308 —0.313 lated motion as infinitely slow and consider oscillations in an
He ~1.720 —1.689 ~1.502 —1.463 otherwise static array of electrons.

Li 2058 —2.904 2575 2557 If all the electrons are strictly correlated, then the net
Be 4504 _4.424 _ 3955 3947 force on one electron at[due to the otheN—1 electrons

N ~11.176 ~11.048 10,043 10.187 and the external potentialg,(r)] vanishes to ordetr, and

Ne 01469  -21294  -19.752  —2001g this remains true when the electron moves tes. But sup-

Na 24848 24652 22916 23961 pose that 'ghe othe¥ — 1 elect_rons do not follow. Then there
Mg _28.435 _28.924 _96.298 96.702 is a restoring force WhICh dnvgs the electron back to _

P _40.298 40055 _37504 _38.101 _ We demonstfat_e in Appendix C how t_he PC approxima-
Ar _54.240 _53.046 _50.831 _£1562 t|pn (15) for_the I|m.|t a— can be generqllged to the present
Kr 172467 —172.002 —165355 —167334 situation with oscillations at large but fmne»l_. W, [p]

Xe _33 1' 981 —3 31'355 _321'204 _324'524 can still be evaluated exactly as the electrostatic enerdy

with a positive background. The restoring force mentioned in
the preceding paragraph, however, is not affected by this
positive background which is entirely fictitious. This force is
due only to the repulsion by the othBr—1 electrons plus

(e3

the unknown external potentialg,(r). In Appendix C we

The true functionaW,[ p] is known exactly in two par-
ticular cases: For one-electron systeftilse the H atom in
Tabli I),_Z\{Va[p]=—U[p],_for5aE a=0. For the H atom, present the PC model for Vug,(r) and the restoring force
p(r)=e /7 and—U[p]=— 5= —0.3125 which is repro- he elect Then. with tﬁé modified ch distributi
duced almost perfectly by the PC model and, as a result o the electron. ' dried charge LSC“ ution
the self-correlation correction, accurately by the MGGA ap—Of ar,lpgsc'llath,% electron, Eq15) yields Wﬂf[f’ ]%\{\{jwc L]
proach. For spherical two-electron systefiile the He atom  +W ocpgp] a "% (a>1), where the coefficientv'.."[p],
in Table |), the strong-interaction limit is probably exactly like W.."[p]in Eq.(23), is obtained as a gradient expansion,
solved by the concept of strictly correlated electr¢é8€E)
[6,8] which by Eq.(12) predictsW.,[ pye]= —1.500 for the |Vp(r)|?
He density used in Table I. WO'CPC[P]:J d’ri Cp(N¥*+D——. (24

In density-functional theory, gradient expansions like Eq. p(r)
(23) are usually constructed to be exact to orffép|? for
slowly varying densities, and often fdilinless suitably gen- This is thePC GEA for the coefficienW_[p] in Eq. (9).
eralized[28]) for realistic densities. However, because our The LDA coefficient in Eq.(24) is C=3(3w7)Y?=1.535,
Eqg. (23) is derived differently, it need not share any of thesein agreement with the spherical-cell treatment of the zero-
features with traditional gradient expansions. In particularpoint vibration in a Wigner-crystal in Ref12]. To provide
the PC cell to orde|Vp|? is properly normalized, EqA2)  an approximate self-interaction correctid8IC) for one-
of Appendix A, while the exchange-correlation hole to orderelectron densities for which the true functional,[p] is
|[Vp|? is not[28]. Thus, we do not necessarily interpret the exactly zero, the gradient correction in E84) should have
coefficient B of Eq. (23) as the low-density limit of the a sign opposite to that of the LDA term. Our derivation in
second-order gradient coefficient &, p] for a slowly  Appendix C, however, yields the small but positive number
varying densityp. The high-density limit of this coefficient D= 7(3/47)Y6=0.0197 for the coefficierd. Unless there
is believed to be 1.85410 3=-2.381x10 3+4.235 is a mistake in Appendix C, the effective PC gradient coef-
x 1073, where the first term is from exchan§29] and the ficientD for small density gradients is positive, while that for
second from correlatiofB0—32. In Appendix E we use Eq. typical gradients is negatives estimated in the next para-
(23 to investigate the soft-plasmon instability of the low- graph.
density uniform electron gas against the formation of static Formally, however, the function&24) has the corredis]
charge-density waves. scaling behavior of the true functionsV.[p], W.Pp,]
=\¥W'P p]. Therefore, we can keep ER4) and deter-
mine a more realistic value for the coefficiebt from a
physically motivated condition. If we put, e.gD=D;

Strongly interacting electrons at large Hinite «>1 are = —0.030676, expressio(R4) is identically zero for any
expected to exhibit a zero-point vibration around theirexponential(i.e., hydrogenit one-electron spherical density
strictly correlated distribution ate=cc [8]. While strictly ~ p(r)=\%"?"/7 (\>0). In Table Il we compare the val-
correlated electrons atv=o are moving on a constant uesw;PC[p] with the corresponding values of the functional
potential-energy surface, the zero-point vibration at finite W.M®®4 p] which is extracted(Appendix D from the
>1 is driven by a strong oscillator-type effective potential of MGGA exchange-correlation functional of R¢R7]. In all

lll. MODELS FOR THE COEFFICIENT W/_][p]
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TABLE II. Values forW.[p] (in units of 1 hartree= 27.21 eV  The closeness of the energies for the Wigner crystal and for
for atoms, obtained from the LSD, GGA, and MGGA functionals the uniform gas ag.—« has been observed elsewhere
(Appendix D and from the PC model. The local term in the LSD, [36,37).

GGA, and MGGA has been slightly mOdlfled here to agree with the The accuracy of gradient_corrected functionals can some-
local term in the PC model. See the caption of Table I. times be improved by using the separate up- and down-spin
densities instead of the total density, but this is not the case

Atom W-SP Weeh W MEEA W;"C for our Egs.(24) and (23), which assume that two electrons

H 0.257 0.243 0.000 0.043 cannot be found together at the same point in space. The

He 1.553 1516 0.728 0.729 functionals W.[p] and W/[p] are in fact the same for

Li 3.252 3.176 1.532 1.623 bosons as for fermions.

Be 5.561 5.448 2.723 2.919

N 16.512 16.344 0642 10176 IV. CORRELATION ENERGIES OF ATOMS

Ne 35.483 35.283 23.886 24.425 We can use the results from Tables | and Il to evaluate the

Na 42.966 42.745 29.586 30.115  “jnteraction strength interpolation’(ISI) functional for the

Mg 51.115 50.886 35.867 36.352  correlation energy of Ref7], EXS[p]=E\S[p]—E,[p], us-

P 79.473 79.202 58.244 58.378  ing information only on the relatively simple extreme limits

Ar 114301 114082 86761 86179 4 .0 andasc,

Kr 463.955 463.481 390.997 381.015

Xe 1042900 1042223 914250 886290 .5, . .. 2X " (1+Y)**+2
Exc[P]_Woo+7 (1+Y) —1-ZIn T ,

(27)
tables, we have pud =D,= —0.025 58, which is chosen so
that W.P[p] and W.MCCA p] agree for the two-electron Where the coefficients require information only on the weak-
density of the He atom. and strong-interaction limits,
Functionals of the form{23) and (24) are at least poten-

tially exact for the electron gas of uniform density. While we xy* x%y? Xy’
have no exact solution for the strong-interaction or low- X[p]_?' Y[p]_?’ Z[p]_? 1 (29
density limit, the SCE energy should be close to that of a bcc
Wigner crystal[33-35, with x=—-2Wg[p], y=W_[p], and z=Wy[p]—W.[p].
Table 1l summarizes the results for some cases in which the
w 0.89593 1.325 coefficientW{[ p] is known with reliable accuracypl]. (For
xe o r—+ 3z T (25 the atoms not shown in Table Ill, the core-core contribution
S s to W[ p] is not accurately knowi.

o o Equation(27) is obtained in Ref|7] by analytical integra-
This is not far from the prediction of Eq&2), (9), (23), and  {ion, according to Eq(2), of the I1SI model for the integrand
(24) for the uniform gas as;— , W, [p],

0.90000 1.500 si XLp]
R (26) WS p1=W,[p]+
S

rs Vi+Y[pla+2zp]

TABLE lIl. Increasingly accurate approximations to the correlation enérgynits of 1 hartree= 27.21
eV) of atoms with KLI [50] densities and the two-electron system with exponential densfty)
=2 exp(2r)/7 (labeled as Exp, using information only on the extreme limita—0 and a—oc.
EC2[ p]=3Wj[p] is the second-order correlation energglculated with GGA densitigsn Gorling-Levy
perturbation theory[51] and, for Exp., Ref[21]; for He, the valuew([p]=—0.048 is obtained if a KLI
density is used52]). EI*"Yp] is the correlation energy of Ref6], which includes information on the
strong-interaction limite—, provided by the PC modaN.[p]. In further improvement of these results
toward the exacES*?°[p], we also list the vaIueE,':S'[p], obtained with the present exchange-correlation
functional, Eq.(27), which in addition includes the information provided by the asymptotic coefficient

WP p]. WL p1=[(Wo—W..)%/(—2W()]Y? is the estimate of Ref6] for W.[p].

(29

System W, Wy ESU=gwg  WEC ESY We) WIS ES ESe
He -1.025 -0.101 -0.050  —1.463 —0.041 0.647 0.729 —0.041 —0.042
Exp. -0.625 -0.093 -0.047  -0.886 -0.035 0.309 0.345 —0.034 -0.037
Be -2674 —-0250 -0.125  -3943 -0.105 2022 2919 -0.100 -0.096
Ne -12.084 -0.938 —0.469 —20.018 -0.420 16.323 24.425-0.405 —0.394
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This analytic function is plotted in Fig. 1. The choi(28) of TABLE IV. Signed mean errorssme and mean absolute errors
the coefficients guarantees that the ma@®) has the exact (mae in kcal/mole of the atomization energies of the 18 small
asymptotic propertiet8) and(9). molecules studied in Ref7] (and listed explicitly in Tables V and

Note that x,y,z=0, and that dWS'/da<0 and VD in LSD, GGA, meta-GGA, unrestricted Hartree-FoKF),
] H ] o

d2W'Sda?>0 for a=0. Note also thatV'S' remains second-order Gdjng_-l__evy pertu_rbation FheorfGLZ), and the ISI
finiteaeveC; WherW’i—oo a LP] model. For the traditional density-functional methddSD, GGA,
0 ]

meta-GGA, the energies were taken from the work of RE26,27
W W and[42]. For the exact-exchange methadt, GL2, IS)), the HF
lim WlﬂSlzwoc_'_ 0 ® . (30) and GL2 input was taken from R€flL7], and the ISI energies from

, Wo— W, Ref.[7]. (1 kcal/mole=0.0434 e\=1.594 millihartree.
1
W, LSD GGA MGGA HF GL2 ISI
the interpolation(29) does not break down completely even sme 31.2 8.3 1.6 -657 743 1.9
for metals, although it is more appropriate to finite systemsnae 31.2 9.7 41 66.1 743 43

or to insulators wher#&\V is finite. Equationg29) and (28)

genera}llze Eqs(7) and(8) of Ref.[6], in whichZ[p]=0 0 5 mization energy. This accuracy is even more remarkable for
that W..[ p] cannot be chosen independently but is fixed byihe fact that it was achieved without the typical cancellation
WL p]={(Wo—W..)%(—2Wp)}'/% see Fig. 4 of Ref[8]. of errors between the exchange and the correlation energies
Our functionals(23) and (24) have the scaling behavior  exhibited by density functionals like LSD or GGA, because
the ISI model makes use of the exact exchange energy. In
W p 1= AWE p], WP py 1= MWL p], Ref. [42] we found a similar interpolation error for the ISI
(31 model when all the input quantities were calculated within
the meta-GGA.
where the scaled densify (r)=\3p(\r) is generated from For the 18 molecules studied in RT], Table IV com-
a given densityp(r) by a scaling factorn>0. Since pares thegsigned mean and mean absolute errors of the at-
Wolpr]=AW[p] and W[ py]1=Wg[p], the relations(31)  omization energies in LSD, GGA, meta-GGA, HEnre-

guarantee that our model integra(9) fulfills stricted Hartree-Fook second-order Gting-Levy (GL2),
and ISI. While HF underbinds severely and GL2 overbinds
WS pl=a WS oy — 1], (32)  severely, ISl is rather realistic.

For this work we have studied the change upon atomiza-
which is a key property5] of the unknown exact integrand tion of W, and W., within the different density-functional
W,[p]. Equation(32) shows in particular how the strong- approximations. The results are shown in Tables V and VI,
interaction limit («—) is related to the low-density limit respectively. Similar to the results for atoms, the meta-GGA
(A—0). A graphical illustration of the integran@>'[p]  typically gives a much closer agreement fo¥V,. with the
with its integral is displayed in Fig. 1, for which the four PC model than both LSD and GGivhich yield results very
functionals W[ p], Wi[p], WL [p], and W.[p] have  similar to one another This is probably due to the fact that
been evaluated with an accurate ground-state depgitpf  the meta-GGA is self-correlation-free while LSD and GGA

the beryllium atom. are not. It should be kept in mind, however, that the meta-
An important property of the exa&,J p] is its size con- GGA exchange is not exactly self-interaction free.
sistency: E,d p1+p2]=Exd p1]+Exd p2] for two well- For the change upon atomization\af, , we find that for

separated densities; and p,. Because our input8Vy[ p], most cases meta-GGA gives the best agreement with the PC
Wqlpl, W.[p], and W_[p] are size consistent, so is our model. Although the agreement is not quite as good as for
W'as'[p] in the weak- and strong-interaction limits. But, be- the changes o¥., upon atomization, it is still satisfactory

cause Egs(29) and (27) are nonlinear, ouELy[p] is not ~ considering the fact that the meta-GGA was not constructed

generally size consisterfalthough it behaves properly for With the strong-interaction limit in mind. Again, LSD and
p1=p,). This failure could be mild, since it arises from the GGA give results which are rather close to one another.

uncertainty in our interpolation formula of Eq29). To As is evident from Fig. 1, the total exchange-correlation
achieve full size consistency, we could make our interpola€n€rgyEy. of an atom is close to its weak-interaction limit
tion not g|oba”y but at each poimt of Space_ EX and far from its Strong-intel’action |ImWoo . But the at-

omization energy of a molecule is closeneitherlimit. For

the 18 molecules in Tables V and VI, the weak-interaction

limit (exactE, and no correlationunderbinds by an average

66 kcal/mole=0.11 hartree or 44%, while the strong-

interaction limit WF°) overbinds by an average 336 kcal/
We have calculated atomization energies for 18 smalmole=0.54 hartree or 222% of the mean experimental atomi-

molecules within the ISI model of Eq27) in Ref.[7]. The  zation energy.

model accurately reproduces the experimental atomization For most electronic systems, strong interaction is of inter-

energies with a mean absolute error of only about 4 kcalést only as a limit. The heavier and more classical ions in a

mole=0.006 hartree or 2.8% of the mean experimental atiow-temperature plasma or liquid metal come much closer to

V. ATOMIZATION ENERGIES
IN THE INTERACTION STRENGTH INTERPOLATION
AND IN THE STRONG-INTERACTION LIMIT
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TABLE V. Changes upon atomization, AW, TABLE VL. Changes upon  atomization, AW,
=W.,.(separated atoms)W..(molecule) (in units of 1 hartree =W_,(separated atoms)W. (molecule) (in units of 1 hartree
=27.21 eV, of the exchange-correlation functional in the strongly =27.21 eV}, in LSD, GGA, and meta-GGAAppendix D and
interacting limit in LSD, GGA, and meta-GGMppendix D and  within the PC model. See the caption of Table V.
within the PC model. The functionals were evaluated with self-
consistent GGA densities at experimental geometries. The calculadolecule —AW'-SP —AW/CCA  _AW/MCGGA  _ A\PC
tions were performed using a modified version of ta®pPAc pro-

gram([53). H, 0.276 0.281 0.367 0.270
LiH 0.183 0.193 0.237 0.197
Molecule AWLSD  AWGGA  AWMBGA  ApPC Li, 0.055 0.062 0.077 0.086
LiF 0.497 0.528 0.723 0.692
L om o oomooomooomow om wm o o o
, CH, 1.223 1.282 1.950 1.683
Li, 0.078 0.078 0.097 0111 N, 1.083 1.130 1.739 1.485
LiF 0.533 0.536 0.570 0616 o 0.413 0.430 0771 0.570
Be, 0.078 0.083 0.095 0122 o 0.849 0.884 1.539 1.182
CH, 1.252 1.247 1.556 1536 0.502 0.523 0.874 0.705
NH, 1.065 1.062 1.329 1293 o 0.928 0.957 0515 0.465
OH 0.391 0.389 0.521 0473 o 0.691 0.735 1.058 1.089
H,0 0.801 0.795 1.042 0973 (g 0.828 0.870 1.369 1.238
HF 0.454 0.450 0.570 0551 0.908 0.949 P 1200
B, 0.266 e 0.360 0375 No 0.731 0.767 1.209 1.127
CN 0.664 0.679 0.773 0806 0.585 0.620 1240 1003
co 0.743 0.748 0.895 0gol 0.918 0.976 1980 1639
N, 0.808 0.818 0.918 0842 0.903 0.316 0.509 0561
NO 0.659 0.666 0.798 0.801
0, 0.536 0.540 0.722 0.689
O, 0.857 0.860 1.163 1.142

describe real strongly correlated systems like transition-
metal oxides, one needs a self-interaction corredt@®} or
HubbardU [40].
o ] o However, we have found good agreement in this limit
this limit. However, the spin-polarization energy of the hy- petween the meta-generalized gradient expansion of Ref.
drogen atom provides an example of strong electronic corrg27] which is exactly self-correlation free, and our PC gra-
Iat|o_n. For a fully spin-polarized hydrogen atom, the_exactdient expansions of Eq$23) and (24), which are approxi-
W, is —0.3125 hartree for alie=0, an uncorrelated situa- mately self-correlation-free. Thus, we suspect that the low-
tion that can be described accurately by our ISI of &9).  gensity limit is under control, and that it should be possible
An unpolarized hydrogen atom can be regarded as half of g ;se’the meta-GGA to study, for example, the Wigner crys-
length; its exactW,, is —0.15625 hartree forw=0, but The agreement between the PC gradient expansion and
—0.3125 hartree for any>0, since any positivex will  the meta-GGA in the strong-interaction limit is remarkable,
switch the stretched-Hwave function¥, from Hartree-  as these are very different approximations derived in differ-
FOCk to He|t|er'|_0nd0n forn(the Iatter with Ioca“Zed elec- ent Ways and from different ingredientsl The agreement
trons and zero probability for finding both electrons on thefound here for atoms and molecules cannot persist for very
same ator and this strong-correlation situationnistaccu-  rapidly varying densities, such as those of narrow quantum
rately approximated by our ISI of E29). (Note that itis  ells [41], where large reduced density gradients can make
the ISI and not the PC model that fails herélhile the true WP improperly positive and\V.PC improperly negative.
_spin-polarization energy is_ zero, the ISI places the_ unpolar- oyr Egs.(23) and (24) can be used along with GL2 per-
ized atom 1.3 eV higher in energy than the polarized oneypation theory in the “interaction strength interpolation”
Thls is a remarkably .per3|stent error: 1.0 eV in LSD_, 1.2 eVt Egs. (27) and (29). Accurate correlation energies are
in GGA, and 1.0 eV in meta-GGA. For an explanation howfq,nd poth for atomsthis work and moleculegRef. [7]).
spurious spin polarization can mimic strong correlation, see\g explained in Ref[7], the ISI correlation energy func-
Ref. [38]. tional is compatible with exact exchange, in a way that stan-
dard density functionals are not. The ISI of HQ7) also
V1. CONCLUSIONS prowdes an 'estlmaté7] for .the radius of convergence Qf
density-functional perturbation theory. The ISI interpolation
Standard density functionals for the exchange-correlatioerror has been estimat¢d?2] to be 0.1% for the exchange-
energy(the local density approximation and the generalizedcorrelation energy of an atom and 4 kcal/me®17 eV for
gradient approximatiorfail in the strong-interaction or low- the atomization energy of a molecule, via tests made within
density limit as a result of self-interaction erf@5]. Thus, to  the meta-generalized gradient approximation. For the uni-

F, 0.272 0.269 0.340 0.384
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nxc(r r')

finite but (except at low densitigsinaccurate[42]. For a Eyc ]
[r—r

uniform gas with an artificially imposed energy gg48], it

becomes increasingly accurate as the gap increases. ,
We have further explained the point-charge-plus- :f d3r p(r)f d3r Npc(r,r')

continuum(PC model which is the basis for Eq&3) and [r—r’]

(24). The mock electrostatic energy of Ed.4) is evaluated

in the strongly interacting limit by dividing the system up N 1f e J' 3 f 5. Npc(r,ry) Npc(r,ra)

) . . . 5 ro(r)| d°rq | d°ry

into nonoverlapping, neutral, weakly interacting cells. De- [ri—ry

spite some similarities, the PC cell it the strongly inter- (A3)

acting limit of the exchange-correlation halappendix A),

because the exchange-correlation holes overlap even in thithus the PC cell isiot a model for the strong-interaction

limit. The relatively short range of the PC cell helps to ex-limit of the exchange-correlation hole; it arises from a dif-

plain the accuracy of a second-order gradient expansion iferent way of dividing up the charge around an electron.

the strongly interacting limit. For the uniform electron gas in the strong-interaction

limit, the exchange-correlation energy per electron is

form electron gas, ISI predicts a correlation energy which is f
3 p( r)f dér'———=

=- (Ad)
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y g P These are significantly different, although both approaches

give the same energy.
APPENDIX A: EXCHANGE-CORRELATION HOLE For any one-electron system, the exagy(r,r') and the
VERSUS PC CELL exactnpc(r,r") (but not their gradient expansiorsre equal
to one another and te p(r’), so in this limit the two forms
The densityn,(r,r") atr’ of the exchange-correlation of Eq. (A3) are manifestly identical.

hole [3] around an electron at is defined such thab(r’)

=[p(r')+ny(r,r')] is the effective charge density, seen by APPENDIX B: ELECTROSTATIC POTENTIAL
the electron due to thé&—1 other electrons. “Effective AND ENERGY OF A CHARGED SPHERE
charge density” means that the two contributions to the en- WITH A CONSTANT DENSITY GRADIENT

ergy functional(1) that describe the electron-electron inter-

action can be written in the Hartree form The sphere of radiui has the charge density

peen(U)=(pc+I'-u) O(R—u), (BY)
p(r)+ny(rr)] whereu=|u| and@®(t) is the step functionp, is the density
U[p]+Exc[p]: %f d3r P(r)J d3r |r—r’| at the centeu=0 of the Sphere'
(A1) To calculate the electrostatic potentiafb e (u)

= [d3r peen(r) Ju—r| ™1 of this charge distribution at some
position u inside the sphere, we choose theaxis in the
Note, however, thai(r') also accounts for the kinetic- dirliactiqn OfU-( -ghg‘n, thtex arthlg E[EVTSH?”"'{IF&,XJF?)V
energy contributionT [ p]=(T)— T4 p] in E,d p]. +1521In peei(r) do not contribute to the integrab e (U).
Hgsle we discuss ctrf)e rélazionssh{;) betwiecepn the exchang&onseauently, in spherical coordinatgsd, 6} for r (with
correlation holen,(r,r') and the density shifnpa(r,r’) 2~ ' €0S6),
that arises at’ due to the creation of a PC cell around an

R T
electron atr. Both are normalized te-1, <bce||(u)=27rfo drr? fo désinf[p.+1'3r cosd]
© |
r.<
J d3r’ nxc(r,r’)=j d3r ' npe(r,r’)=—1, (A2) X|—Eo r,—+1|:’|(00549)- (B2)
- >

We here have used the multipole expansiorjwfr|~ ! in
and for strong interaction both tend top(r) asr’—r. Both  the usual notation of Ref44], wherer . =min{r,u} andr-
give E,. in the strongly interacting limit(where E,J p] =maxr,u}. Substituting = cosé, the term in square brackets
=W,_[p]), but notin the same way, can be written agp.Pq(t) +I'srP4(t)], since the Legendre
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polynomials arePy(t)=1, P4(t)=t, etc. Due to the or-
thogonality relation fl_ldt Pm(t) Pa(t)=26mn/(2m+1),
only thel=0 andl=1 terms contribute to thé integral of

Eq. (B2),
R
j dr
0

I'5 is the component of in the direction ofu. We choose
the u; axis in the direction of" so thatl'3;=T"uz/u. Ther
integrations in(B3) yield

R 2

r 4
Dee(u)=4mp. | dr—+
o [I>

ERE

rér_
r2

(B3)

2T

2_ 192
l51“u3(5R 3u?)

2 ’ o
Dee(u)= ?PC(B’R —uc)+

(U<R). (B4)

In the same way, the potential outside the cell is obtained,

'R?

5

4
_ "3
3R

us

u3

Pc

q)cell(u) u

(u=R). (B5)

® . (u) is that solution of the Poisson equatiGif® .o,
= —47p.e that approaches zero as—»«.

The electrostatic self-energy Ucell
=11d3%u @ o (U) peen(u) of the sphere with charge density
(B1) is easily evaluated in spherical coordinates whese
=U CO0S¥,

o 347 s 2R71+ L (47 g ?[TR ZRfl
cell=g| 37 N Pe 35| 3 " Pe z .
(B6)
APPENDIX C:

THE PC MODEL FOR THE COEFFICIENT W_[p]

PHYSICAL REVIEW A2 012502

repulsive electrons. In the limi&k— oo when the kinetic en-
ergy becomes negligible, we expect that the strictly corre-
lated electrons are moving on a constant potential-energy
surface. For spherical two-electron systems, this can be
achieved 8] by

Ve —aw(r) (a—), (CY)
wherew(r) is a smooth finite function which is entirely de-
termined by the density(r).

In the PC model for the strictly correlated limit— 0, the
repulsive force, exerted on the point electron at positidy
the otherN—1 other electrons, is due to a distribution of
continuousnegativecharge with density(r’) outside the
PC cell. This force can obviously be canceled exactly by an
external forceFL5(r) which is chosen as though it was due
to an equivalent distribution of continuoymsitive charge
with the same density outside the cell. The foF&&(r) is a
model for the gradient- Vw(r). If it is a conservative force,
we can writeF5 5(r) = — Vwpc(r) wherewpc(r) is the PC
model forw(r). At least for densities that vary only in the
radial orz directions, the construction afip(r) is always
possible.

To simplify our language, we denote in the following
paragraphs by C(x)” the spherical region inside the PC
cell of a point electron at=x in the strictly correlated limit
a— 0,

In the PC model for strictly correlated motion in the limit
a—», the electron carries its PC cell along as it is moving
fromr to a close-by positiom+s. Correspondingly, the ex-
ternal forceFLS(r+s) at the new positiom + s must be cal-
culated from a different distribution of positive charge which
is now outside thanewPC cellC(r+s). As in the work of
Harbola and Sahni45], we have a position-dependent
“hole” from which we calculate the electrostatic force at
each electron position.

At finite «, in contrast, when the strictly correlated mo-

We consider oscillations of electrons around a static SCkjon is taken to be infinitely slow, there is static PC cell

set of positiongr;}i—y . n in a given densityp(r), as ex-

.....

C(r) around aroscillating electron. Therefore, as this oscil-

plained in the opening paragraph of Sec. lll. If we ignore thejating electron has moved from its equilibrium positioro
collective character of the oscillations as in the Einsteinhe close-by position +s, the external forceeES(r+9) at

ext

model for phonons, each electron is oscillating indepen; ;5 gye to positive charge outsi@r + ), doesnot cancel

dently around an equilibrium position. Since the amplitudey,q repulsive force due to the otHér- 1 electrons which are
of these oscillations asymptotically approaches zeraas gy oytside thestaticPC cellC(r); see Fig. 3. Consequently,
— 00, the PC model still applies. Now, in evaluating the elec-ihqre is a restoring net ford&!)(s). This force can be de-
trostatic energy of the PC cell in EGLS) we must merely oy electrostatically from a net charge densitf)(s)
replace the strictly localized point electron by the smooth, .1 is zero everywhere outside the finite region
charge distribution of an oscillating one. The restoring forceC(r)UC(rJrs) covered by these two cells. It is the same as
on this oscillating electron is the repulsidacaled by the a positive char,ge distribution with densMr") inside Q(r),

factor o) by the otherN—1 electrons, distributed continu- . P . N
ously outside a static PC cell, plus the force due to the unplus a negative charge distribution with dengify ') inside

+59).
known external potentiabg,(r). Although the positive cr+s)

. ; In the constant-gradient model7), p((s) is the charge
background, mtrod_uced with qu.d')' can be ‘%Se‘?' to evalu- giguripution of two oppositely charged overlapping spheres
ate the electrostatic energ¥5), it is entirely fictitious and,

; h ff h g f h _IC(r) andC(r +s) with a constant charge-density gradid&nt
Of COUrse, has no € ect_on t. e restorlng orce on the oscl (Fig. 3). The net force exerted by this charge distribution on
lating electron. To obtain this restoring force, we need

%he oscillating electron at+s is
model for the true external potentiaf,(r). g
Atlarge a>1, vg,(r) must become strongly attractive to  F{2(s)=[V, @ (u)uzs- gy~ [ V@
maintain a given density distributiop(r) of the strongly

(r+s)

cell (W ]u=—d(r+s -
(C2
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FIG. 3. An electron ar +s, oscillating around its equilibrium
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The probability distribution or charge density of an elec-
tron performing zero-point oscillations in the potenti@i3)
is

1/2 1/4

péﬁc(s>= expl — [k A(s2+s%) +ky*s3]}. (CH)

Using this charge distribution in evaluating the electrostatic
energy(15), we now have instead of EGR0)

Eceira([p1iN =Ucen~ f d°s @2 (s—d(r) pfld9).
(o)

To evaluate thes integral here, we put the; axis in the

position r, feels a restoring force which is due to a continuousdirection of I' so that d={0,0,—d}. Setting u=s—d(r)

negative charge distribution with densjiyr’) outside its static PC

cell C(r) plus a continuous positive charge distribution with the

same density(r’) outside the PC celC(r +s). These two differ-
ent cells are centered at+-d(r) and at ¢+9)+d(r+s), respec-
tively.
Here,®{Y,(u) denotes the electrostatic potentialuatiue to
a spherical piece of positive charge with dengity) inside
the PC cellC(x) of an electron with equilibrium positior.
The coordinatau is chosen so that the origim=0 is at the
center of the spher€(x) andu; is the component of the
vectoru in the direction of the constant gradiehit In this
coordinate system, the poimtis at u=d(x) I'/'=—d(x)
={0,0d(x)}, with d(r) from Eq.(19) (cf. Fig. 2. ®),(u)
is explicitly given by Eq.(B4) in Appendix B if we there
identify R=R(x), with R(r) from Eqg. (19), p.=p(X)
—I'd(x), andI'=|Vp(x)|.

As expected, the forc€C2) is zero at the equilibrium
positions 0. In a uniform systemI{=0), whered=0 and

eII(u) is spherically symmetric around=0, the second
term in (C2) is zero andF{)(s)=V P (s). This means

that the present approach yields for uniform systems the
same zero-point energy as the treatment of zero-point oscil-
lations in a Wigner crystal with a positive background by

Ref.[12].
Using expressioriB4) from Appendix B, Eq(C2) can be

evaluated explicitly. Expanding the result to linear ordes in
yields F) (s) = — V@ {2 (s), where the oscillator-type effec-

tive potential,

) o k()

v (s )— ($2+s >S5 (C3
hasr-dependent spring constants
ky(r)=arg(r)~3(1- % ¥ +0(¥",
(C4)

ka(r)=ary(r)*(1= 3 ¥*)+ O(¥*).

Here s; is the Cartesian component sfin the direction of
Vp(r), r4(r) 3= (4m/3)p(r), and y=|Vp(r)| rs(r)/p(r).

={s;1,55,53+d} in Eq. (B4) yields

W (s—d(r)=(% + & YR 1+ Dyuq(9)
, Si+s)
YY) -

N[

+

&leo

(

2

S3|
+(%+§’—072)§ R™1+0(y%. (C?)

Here, ®,q44(S) summarizes the terms containing odd powers
of s1, S5, Or s; which do not contribute to the integral in Eq.
(C6), since p(r)C(S) is an even function of thes;. Since
fd3s pgs)c(s) 1, the first(constant term of Eq.(C7) repro-
duces in Eqg. (C6) exactly the expression(21) for
ESEA([plir). For the contrlbutlonaEfeE,(fa([p];r) of the
quadratic term to the integral in E¢C6) we note that

K 42 1
f d3s & pll(s)= 1/2f ds s?e (i) = =
i
(C8)
lTherefore,
SESS([p1iN=(5 + % V)5 maant (34 %7
1
4
XM—FO(Y ) (Cg)

Sincek; andk; from Eq. (C4) are proportional tox, this
contribution is of the order™ 2, as expected. Using the
expansiong19), we obtain from Eq(C4)

=(1- £ ) 1N Pa V21 0(yY),

R3ki/2
(C10

= (1= & ¥2) 1) " 2a V24 0.

RB k%/ 2

Then, expansion of EqC9) yields
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GEA oy — EGEATT 7. 3,1 .2 1[4\ 12
Ecell,a([p],r) Ecell ([p],r)+(4 + a0 ) Wc:oLSD[PT ’Pi]: E(?) J d3r dl(g(r))p(r)3/2_
Xry(r) 2o~ Y2+ 0(y%. (C11) (D5)

Averaging this energy over the densjifr) correspondingly  For the coefficientsl, andd, in Eq. (D4) we use the low-
to Eqg. (15), we obtain the full asymptotict®d) of W,[p] i density limit of the parametrization af"(r,¢) suggested

the PC modelW,[p]~WETp]+W' 2 pla™ ¥ (a>1), by Perdew and Wanf87]. d,.(¢) is then given by Eq(28)
where the coefficients are given by the GEA equati@8 of Ref.[37] andd, by

and (24).
While we have not proved that the densjigr) is unaf- 3 (9| 43 u
fected by the oscillations, we suspect that it is. Clearly do(Q)=dx({) — @(T) [(1+ )"+ (1~
(D6)
3 r ’ _ ’
J A" p(r) poddr' =1 =p(r") €12 one finds thatl,({) is very close to 0.9, the value for the
PC model, and almost independent of the spin polarization
whenp(r)=p(r')+Vp(r')-(r—r"). (see Table IV of Ref[37]). On the other hand, the coefficient
d, obtained from the Perdew-Wang parametrization varies as
APPENDIX D: EXPRESSIONS FOR W..[p] AND W.[p] a function of ¢ from dy({=0)=1.4408 to di({=1)
IN LSD, GGA, AND META-GGA =1.7697. However, just as fad,., we expect the exact

) ) ) coefficientd; to be independent of, because in a low-
For a given approximate exchange-correlation energyjensity electron gas any two electrons will avoid one an-
functional EZET p]=E"p]+ECT p], the corresponding other, no matter how their spins are aligned relative to one
coupling-constant integran?/5" p] can be found by the another. In Eq(D5) and the corresponding expressions for
following formula[4]: GGA and MGGA[Egs.(D14) and(D16)], we will therefore
g use the spin-independent coefficient from the PC madiel,
a _ca 2a =1.5, which we believe to be more correct. Thus, in Tables
W e P =B e 1+ da'® S VERTRIRTA I-VI, all our functionals forw,, and W_, will agree closely
(D1) for a uniform density.
In the GGA of Perdew, Burke, and Ernzerhof, the corre-
wherep,, 1,(r)=a 3p,(r/a) is the spin density scaled uni- |ation energy functional is given by Eq), (7), and(8) of

formly with a parameteh =1/a. Ref.[26]. Under uniform scaling to the low-density limit, the
In LSD the correlation energy is written as function A given by Eq.(8) of Ref.[26] scales to
LSDy _ 3 unif a—e
Ec [PT,PL]—J d I’P(I’)Sc (rs(r),é’(r)), (D2) A(ars,g) _ Bl(rs,é’)a-f-Bz(rs,g)allz-l—O(aO),( )
D7

Wheree‘C’””(rS,{) is the correlation energy per electron of

the uniform electron gas with parameters=(3/4mp)¥3 ~ With
(p=p1+p)), and{=(p;—p)/(p;+p,). We are interested B
in the strictly correlated¢— o) limit of LSD. Sincepy, is Bi(rs,{)=——()%s (D8)
a low density in this limit, we can use the low-density, ( do(£)
—o0) expansion ot " and
: T do(9) | da()
unif 0 1 _2 d
— ——+ ——+ . D B (0
fe el = T TH gy TOLD. (B3 Balrs, )= P (09
0

Using this expression for thgocal) scaled density parameter Here, B=0.066 725 is the coefficient of the second-order

l/a _ . . . .
re"(r)=ar(r/a) and inserting into Eq(D1), one obtains  gragient expansion of the correlation energy of a slowly
the functionals for the strong-interaction liristee Eq(9)] in varying electron gasg(Z)=[(1+ )%+ (1—9)?3)/2, and

LSD do andd; are the coefficients of the low-density expansion
of "(rg,2).
WOLCSD[pT ’Pi]:E?D[PT o1 f d3r p(r)do(Z(r))rg(r) In the same low-density limit, the functidt given by Eq.
(7) of Ref.[26] scales as
A 1/3
:_(?) J' dardxc(g(r))l)(r)‘ug (D4) 1 a—e 1 _an
Hlars,¢,a) — Hy(rs, ¢ +Ha(rg, D

and +0(a™?), (D10)
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where t=|Vpl|/[2¢({)ksp] is a reduced density gradient

with ke= \4kg /7 andkg= (372p) Y. The functionsH, and
H, are defined by

B,t?

_ 3.2
Hy(rs, 4, B</)(§)t—l+Blt2+B§t4 (D11)
and
Ha(rs,0,t) = — BA(£)°B1Byt° 2+ Byt”
Ao U= PO BB g e By
(D12)

Insertion into Eq(D1) then yields

PHYSICAL REVIEW A 62 012502

do(¢(r))
rs(r)

W oy 1=ES py ooy 1+ f d3r P(U( -

+H1(I’S(I’),§(r),t(r))>, (D13)
1 d1(4(r))
W;GGA[P%PL]:EJ d’r P(f)(%

THa(rg(r),4(r),t(r))|. (D14

Equations(D10)—(D12) can also be used to calculate the
low-density limit of the correlation energy in meta-GGA
[Eq. (15) of Ref.[27]]. The results are

2

do(¢(1)) ki
0 o
WL\CAGGA[PTvP1]=EyGGA[P11P1]+f d3r p(r)<—r(—r)+H1(rs(r),§(r),t(r))) 1+C
) 27,
W\ 2
To dO(l)
~1+0)X pgm(T—) (—r (r)+H1(rs,g(r>.1,tg<r)>) (D15)
o o S,o
and
2
da(¢(r)) 2
! 1 (o
W, MCCA pr p 1= f d’r p(r)( +H2(rs<r>,§<r>,t<r>>) 1+C
rs(r) S,
W\ 2
To dl(l)
~(1+0)X p[,(r><T—) (r (r)‘f'Hz(rs,a(r),l,tg(r))) (D16)
[oa o S,o
|
Here APPENDIX E: SOFT-PLASMON INSTABILITY
OF THE LOW-DENSITY UNIFORM ELECTRON GAS
2
TWZE Vel (D17) The low-density uniform electron gaseutralized by a
7 8 pg rigid uniform backgroungis unstable against the formation
. . o ) of a body-centered-cubitco Wigner crystal, or equiva-
is the Weizseker kinetic energy density, lently against the formation of a charge-density wave of
occup wave vectoQ~1.14(Xk;) (the smallest nonzero reciprocal-
, :} S |Vel2 (D18) lattice vector of the bcc crystalwhere p=k2/372 is the
72 5 $io uniform density. Perdew and Dat{d6] have shown that,

is the kinetic energy density of the Kohn-Sham orbita|gs,
C=0.53 is a constant parameter, and, andt, are con-
structed liker ¢ andt, but usingp,, instead ofp.

starting from the uniform phase, the density variation

8p(2)=p AcogQ2) (E1)
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of small amplitudeA produces an energy change per electrortion to E,.=W.,, . Equation(E3) is always positive but has a
minimum very close to zero at~1 or Q~2kg. Thus our
ﬁ =e(kg,Q)A2+ O(AY), (E2) PC graqlient _e_xpansion a_lmost predicts the correct low-
N density instability of the uniform electron gas.
This instability can also be regarded as a “soft plasmon’:

where the coefficieng is given by their Eq(43). e<0 indi-
cates instability against the formation of a charge-densit;}rhe pl_asmon frequencyw;(Q)  decreases  fromw,(0)

wave of infinitesimal amplitude. =+4mp asQ increases, and goes to zero aroupe 2k .
Within the PC model, the low-density limit for the plasmon
dispersion iswp(Q) = wp(0)(1— 1.9652+ 1.241x*) Y2, con-
sistent with Fig. 2 of Refl47]. Figure 5 of Ref[48] suggests

In the Iimit;—>0, in which the wave functiot [ p] for
all >0 is correlated as in the strong-interaction limit (
—), Eg.(2) implies thatE,.=W.,. Using our PC expres-

sion (23) for W,,, Eq. (43) of Ref.[46] becomes that the plasmon dispersion changes sign arayrdLO, al-
though the soft-plasmon instability appears arouge 65
Ke [49].
e= 127-rx2[1_1'965(2+ 1.24%%, (E3) If the electron-electron interaction were attractive, the

Hartree term in Eq(E3) would be negative. Then E#3) of

wherex=Q/2kg. The first term of Eq(E3) arises from the Ref.[46] shows that the uniform phase fany p would be
Hartree electrostatic energy, the second from the local part ainstable against long-wavelengt® 0 or x—0) charge-
E,c, and the third from the second-order gradient contribu-density waves.
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