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Classical-communication cost in distributed quantum-information processing: A generalization of
quantum-communication complexity
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We study the amount of classical communication needed for distributed quantum-information processing. In
particular, we introduce the concept of ‘‘remote preparation’’ of a quantum state. Given an ensemble of states,
Alice’s task is to help Bob in a distant laboratory to prepare a state of her choice. We find several examples of
an ensemble with an entropyS where the remote preparation can be done with a communication cost lower
than the amount (2S) required by standard teleportation. We conjecture that, for anarbitrary N-dimensional
purestate, its remote preparation requires 2 log2N bits of classical communication, as in standard teleportation.

PACS number~s!: 03.67.Hk
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I. INTRODUCTION AND MOTIVATION

There are two main motivations for studying the classic
communication cost in quantum-information process
~CCCIQIP!. The first motivation is to better understand t
fundamental laws of quantum-information processing. T
second is the fact that CCCIQIP can be regarded as a na
generalization of quantum-communication complexity,
subject of much recent interest.

A. First motivation

Quantum-information theory—the synthesis of quant
mechanics with information theory—has been a subjec
much recent interest. It is now known that novel phenom
including teleportation@1# and dense coding@2# can occur
when the laws of quantum mechanics are invoked in inf
mation processing. To better understand these diverse e
phenomena, it is important to derive the fundamental laws
quantum-information processing.

Until recently, it was customary to ignore the classic
communication cost in quantum-information processing. T
motivation was that classical communication is ‘‘chea
whereas quantum communication and entanglement are
pensive. However, as emphasized in@3#, in applications such
as dense coding@2#, classical-communication cost is of pr
mary interest and it would be totally inconsistent to ignore
In summary, it is important to take full consideration
classical-communication cost in the study of quantu
information processing.

Some examples of CCCIQIP~for example, ‘‘remote
preparation’’ to be introduced in this paper! can also be re-
garded as a refinement of Schumacher’s coding theorem@4#
in which information is decomposed into two parts:~a! a
quantum piece~prior entanglement! and~b! a classical piece
~subsequent classical communication!. In contrast, in the
standard Schumacher coding theorem, quantum informa
is transmitted directly via quantum bits~qubits!.

B. Second motivation

In contrast to the lack of interest in classica
communication cost shown in the quantum commun
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classical-communication cost is an important subject in t
oretical computer science. It is given the name ‘‘commu
cation complexity.’’ For example, two or more parties wi
distributed private inputsi 1 ,i 2 , . . . ,i N would like to coop-
erate to compute a functionf ( i 1 ,i 2 , . . . ,i N). ~For instance,
in an appointment scheduling problem, two distant part
would like to find a date when both are free.! They do so by
sending classical bits to each other. The goal of commun
tion complexity is to study the number of classical bits
communication needed. Of particular interest is the limiti
case when the problem ‘‘size’’ is big.~For instance, in the
appointment scheduling problem, the number of dates un
consideration is large.! Classical-communication complexit
can be regarded as the study of classical-communication
source~classical bits! in a classical problem.

Recently, there has been much interest in usingquantum
resources, namely, prior entanglement, to reduce the com
nication complexity of a classical function. While for som
problems this is now known to allow a huge reduction, pro
lems such as the inner product function have been show
forbid any saving. Quantum-communication complexity@5#
can, therefore, be regarded as the study of entanglem
enhanced communication complexity of aclassicalfunction.

In quantum-information processing, a new complicati
arises: the input and output states may be nonclassical.
simplest example is an entangled state.~A more subtle form
of nonlocality without entanglement also exists@6#.! The
study of classical-communication cost in quantu
information processing can, thus, be regarded as a na
generalization of quantum-communication complexity by
lowing the inputs and outputs to be~possibly nonseparable!
quantum states, rather than classical ones.

C. Prior work

There are a number of prior works. The first paper on
subject of CCCIQIP is probably the seminal teleportati
paper@1#, in which it is shown that an arbitrary unknow
state ~possibly entangled with an external system! in an
N-dimensional Hilbert space can be transmitted by the d
©2000 The American Physical Society13-1
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usage of prior entanglement and 2 log2N classical bits of
communication.1

Notice that, in the classical case, if the value of the in
( i , j ) and the deterministic outputf ( i , j ) are fixed and given
beforehand, the classical-communication complexity is tr
ally zero. The quantum case~CCCIQIP! is strikingly differ-
ent. Even if Alice and Bob know exactly their fixed inputC
and outputF states, the manipulation of a bipartite stateC
into another bipartiteF state may still require a nontrivia
amount of classical communication.2 The intuitive reason be
hind this result is that a quantum state is generally entang
Since it cannot be written as a direct product of pure state
cannot be prepared by bilocal operations. See also@6#.

Interestingly, in some situations the classic
communication cost can be made to vanish in the asymp
limit @3#. Consider the situation of entanglement dilution@8#:
two distance observers Alice and Bob who share a la
number NS of singlets ~i.e., maximally entangled states!
would like to dilute them intoN pairs of the nonmaximally
entangled stateau00&1bu11& whose entropy of entangle
ment,2uau2log2uau22ubu2log2ubu2, is equal toS. The standard
scheme@8# involves a teleportation step and, thus, has a c
sical communication cost proportional toN. Nevertheless, it
was subsequently shown in@3# that entanglement dilution
can be done in the asymptotic limit with a vanishing amo
of classical communication. As a consequence, entanglem
is, indeed, a fungible resource. That is to say that the s
amount of two-party pure state entanglement in differ
forms or concentrations can truly be regarded as equiva
because they are interconvertible into each other@8#, with a
negligible amount of classical-communication cost betwe
the two parties@3#. A key point of their argument is tha
there is a huge degree of degeneracy in the Schmidt co
cients@9# of the relevant bipartite state.

Recently, important discussions on the classical comm
nication cost of entanglement manipulations has also b
presented by Nielsen@10,11#.

D. Related work

CCCIQIP is also related to other subjects. For instan
Brassard, Cleve, and Tapp@12# have studied the issue o
simulating entanglement with classical communication. A
other related subject is quantum nonlocality without e
tanglement@6#. This concerns the opposite question, name
the crucial role of quantum entanglement in a rather no
context. CCCIQIP and many other studies can be regarde
the investigations of limiting cases of quantum-informati

1The amount of classical communication, 2 log2N bits, needed is
optimal. This follows from dense coding@2#. If transmission of an
arbitrary ~possibly entangled! N-dimensional state could be don
with fewer than 2 log2N bits of classical communication, the
causality would be violated.

2This result is not difficult to prove, using the idea of the proof
@7# that entanglement manipulation strategies with one-way c
munication are generally more powerful than those with no co
munication.
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processing, in which the cost of one type of resource~en-
tanglement or classical communication! is often ignored.

E. Main result

Our main results are as follows. First of all, as fir
pointed out by Gottesman@13#, the usual teleportation@1#
can be decomposed into a two-stage process. Starting w
pure stateau0&1bu1& on Alice’s side and an Einstein
Podolsky-Rosen~EPR! pair shared between Alice and Bob
the first stage will lead to an entangled stateau00&1bu11&
shared between Alice and Bob. The second stage will lea
a stateau0&1bu1& fully in Bob’s hand. Moreover, each stag
requires a single bit of classical communication.~This works
not only for a pure initial state, but also for a qubit that
entangled with an ancilla.!

Second, we give a simple procedure that halves
amount of classical-communication cost in entanglement
lution compared to even the improved scheme in@3#. This is
done by noting that only the first stage of teleportation
needed for entanglement dilution.~The second step can sim
ply be skipped.!

Third, we move on to consider the following gener
problem, which we shall call ‘‘remote preparation,’’ follow
ing Popescu@14#. Suppose Alice and Bob initially shar
some entanglement. We only allow Alice to send classi
bits to Bob. Alice’s goal is to help Bob to prepare some pu
state chosen from some specific preagreed distribution.
key difference between remote preparation and the u
teleporation is that, unlike teleportation, we assume in
mote preparation that Alice knows the precise state of
object that she is trying to help Bob to prepare.~Putting it
differently, Alice is given an infinite number of copies of th
pure state and is required to transmit only one to Bob.! In
addition, the preagreed distribution may not be totally ra
dom. We have some theorems and a conjecture. With s
appropriate constraints on the distribution, one can use
theorems to reduce the classical communication cost be
what is required in teleportation even in the asymptotic ca
In other words, remote preparation of constrained state
some cases offers a discount rate compared to full-blo
teleportation of an ensemble with the same amount of
tropy. This isa priori a surprising result. We conjecture th
such a reduction in classical-communication cost is imp
sible for an unconstrained state.

II. TWO-STAGE TELEPORTATION

Suppose Alice would like to transmit an unknown qub
au0&q1bu1&q to Bob. Instead of sending it directly to Bo
via a quantum-communication channel, Alice can achie
the same goal by using a classical channel, provided
Alice and Bob initially share some entanglement. This p
cess is called teleportation@1#. Transmission of each qubi
requires two classical bits of communication.~It can be
shown that teleportation works not only for pure states,
also for states that are entangled with ancillas.! In what fol-
lows, the well-known teleportation process will be deco
posed into two steps. The following result was pointed o
by Gottesman@13#.

-
-

3-2



w
e
a

an

om

an

n
-

th

,
.

y

e
e
p
re
d

en

her
n-

u-

ate
ed
By
ical-

a
ced
t

ion.
ion
ed

his
ut
a-
e-
n-
ical
to
spe-
re-
like
ise
to
f
one
ed
fol-

es

t

cal
te
ele-

t

CLASSICAL-COMMUNICATION COST IN DISTRIBUTED . . . PHYSICAL REVIEW A62 012313
Theorem 1: Two-stage teleportation.Suppose Alice and
Bob share an EPR pair and that Alice is given an unkno
qubit au0&q1bu1&q in her hand. There exists a two-stag
process for transmitting the unknown qubit to Bob such th
on completion of the first step, Alice shares with Bob
entangled stateau00&AB1bu11&AB and, on completion of the
second step, the stateau0&B1bu1&B is fully in Bob’s hand.
Furthermore, each step requires a single bit of classical c
munication.

Remark A.Essentially the same procedure works for
initial state that is entangled with an ancilla.

Remark B. An analogous procedure works for a
N-dimensional state with log2N classical bits of communica
tion needed for each step.

Proof. Step 1.Alice applies an exclusive OR~XOR! be-
tween the unknown qubitq and her memberA of the EPR
pair that she shares with Bob, with the unknown qubit as
target qubit. Since

ux&qu0&A→ux&qu0&A ,
~1!

ux&qu1&A→ux11&qu1&A ,

one gets

au0&q1bu1&q~ u00&AB1u11&AB)→u0&q~au00&AB1bu11&AB)

1u1&q~bu00&AB

1au11&AB).

~2!

Now, Alice measures the qubitq and sends the outcome
a single bit, via a classical-communication channel to Bob
the outcome is 0, Alice and Bob shareau00&AB1bu11&AB as
required. If the outcome is 1, they sharebu00&AB
1au11&AB . Alice and Bob can now apply a bilocal unitar
transformationu0&→u1& to obtain the desired stateau00&AB
1bu11&AB .

Step 2.Alice applies a Hadamard transformation on h
member of the shared pair. She then measures it and s
the outcome to Bob. On receiving Alice’s outcome, Bob a
plies a unitary transformation on his member of the sha
pair to recover the unknown qubit. Mathematically, the Ha
amard transform is, up to an overall normalization,

u0&A→u0&A1u1&A ,
~3!

u1&A→u0&A2u1&A .

Therefore,

au00&AB1bu11&AB→a~ u0&A1u1&A)u0&B

1b~ u0&A2u1&A)u1&B

5u0&A~au0&B1bu1&B)

1u1&A~au0&B2bu1&B). ~4!

Now Alice measuresA. If she obtains 0 as the outcome, th
Bob hasau0&B1bu1&B as required. Similarly, if Alice ob-
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tains 1 as the outcome, Bob then hasau0&B2bu1&B which
can now be converted toau0&B1bu1&B by applying the Pauli
operatorsz . Q.E.D.

For experts in stabilizer codes, the above result is rat
trivial. However, theorem 1 has a simple application on e
tanglement dilution.

Corollary. One can halve the amount of classical comm
nication needed for entanglement dilution.

Proof. For entanglement dilution, the desired output st
of Bob is entangled with Alice. Therefore, all that is requir
is the first step of the two-step teleportation procedure.
skipping the second step, one saves half of the class
communication cost.

Remark C.The above corollary 2 applies not only to
naive entanglement dilution scheme, but also to the advan
scheme proposed in@3#, which requires a vanishing amoun
of classical communication in the asymptotic limit.

III. REMOTE PREPARATION
OF CONSTRAINED STATES

So far our discussion has been restricted to teleportat
It turns out that the idea of decomposing the transmiss
process of quantum information into two parts, as employ
in Theorem 1, is useful in a more general context. In t
section, we illustrate this point by considering a similar b
more general procedure for transmitting quantum inform
tion, which has been called ‘‘remote preparation’’ by Pop
scu @14#. Suppose Alice and Bob initially share some e
tanglement and subsequently Alice can send only class
bits to Bob. The goal of remote preparation is for Alice
help Bob to prepare some pure state chosen from some
cific preagreed distribution. The big difference between
mote preparation and the usual teleporation is that, un
teleportation, in remote preparation, Alice knows the prec
pure state of the object that she is trying to help Bob
prepare.~Equivalently, Alice is given an infinite number o
copies of the pure state and is required to transmit only
to Bob.! Another difference is that, in general, the preagre
distribution does not need to be random. We have the
lowing asymptotic~large-N! result.

Theorem 2.Suppose Alice and Bob are given the valu
of a andb and that they satisfyuau21ubu251. Suppose fur-
ther that Alice and Bob shareNS e-bits of entanglemen
~defined in @15#!, where S52uau2log2uau22ubu2log2ubu2 for
largeN. Alice would like to help Bob to remotely prepareN
objects, each of the formau0&1beiu iu1&. Here theu i ’s are
known to Alice only. We claim thatNS bits of classical
communication is sufficient.

Proof. By entanglement~concentration and! dilution
@8,3#, Alice and Bob can convert theNS e-bits of entangle-
ment intoN pairs ofau00&1bu11& with a very high fidelity
~and with an asymptotically vanishing amount of classi
communication @3#!. Now, consider a two-stage remo
preparation process in complete analogy with two-stage t
poration ~i.e., from au0&a1beiu iu1&a to au00&AB
1beiu iu11&AB and thenau0&B1beiu iu1&B). Since Alice and
Bob already shareau00&1bu11&, they now have a short-cu
to step 1. Indeed, they can convertau00&1bu11& into
3-3
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au00&1beiu iu11&, for eachi, with no communication at all:
Using her knowledge ofu i , this can be done by Alice’s
rotating the phase ofu1& under her control, i.e.,u1&
→eiu iu1&. Now each of Alice and Bob then performs qua
tum data compression@4# on his/her system, compressing
into NSqubits.~Notice thatS is the von Neumann entropy o
Alice/Bob’s system.! Alice and Bob then perform the secon
step of the two-step teleportation process—more precis
its higher dimensional generalization as noted in Rem
B—on the typical space, which has a dimension 2O(NS). This
requiresNS classical bits and zero e-bits. Bob can now p
form quantum date dilution to recover the system. Q.E.D

Remark D.As far as classical-communication cost is co
cerned, our result is optimal. That is to say thatNS bits are
necessary for the remote preparation of the above ensem
The reason is the following.S is the von Neumann entrop
of Alice’s ensemble~i.e., a random ensemble of pure stat
of the form au0&B1beiu iu1&B). By Holevo’s theorem@16#,
the quantum signals can be used to transmitNSclassical bits
to Bob. So, if there were a way to transmit the quant
signals to Bob with fewer thanNS classical bits, causality
would be violated.

Remark E.The special case whereuau5ubu has also been
proved by various people including Popescu@17#.

So far, our discussion has focused on the classi
communication cost. What about the amount of quantum
source~entanglement! for remote preparation? We have th
following conjecture.

Conjecture 1.For any remote preparation procedure th
uses onlyNS bits, NS e-bits is the minimal amount of en
tanglement needed for any remote preparation procedure
the N signals of the formau0&1beiu iu1& wherea andb are
known to Alice and Bob and theu i ’s are known to Alice
only, andS52uau2log2uau22ubu2log2ubu2.

We remark that the proviso—that uses onlyNS bits—is
necessary. Without such a proviso, fewer e-bits can be u
at the expense of a large number of bits. For example, A
can divide the latitude into two semicircular segments
<u<p and p<u<2p. Now, she encodes a state by tw
pieces, one classical and one quantum. For a state in the
segment, she encodes it by a classical bit 0, together with
state as it is. For a state in the second segment, she enc
it by a classical bit 1 together with the rotatedau0&
1bei (u i2p)u1&, which is a state in the first segment. Noti
that the quantum states, now all being in the same segm
have a smaller entropy thanNS e-bits. A similar reasoning
can be used to reduce the e-bit cost in remote prepara
even further at the expense of increasing classical bit co

IV. FURTHER EXAMPLES OF REMOTE PREPARATION

In Theorem 2, the modulia and b of the coefficients of
each state are independent ofi. One might wonder if this is a
necessary condition for the reduction in classic
communication cost. The answer is no. Indeed, in the follo
ing theorem, Theorem 3, we give an example in which
duction of classical-communication cost happens even w
the moduli of the coefficients vary for the states in the e
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semble. What is actually needed is some constraint on th
coefficients.

Theorem 3.Suppose Alice and Bob initially share en
tanglement and only a classical communication channel.
ice would like to help Bob to prepare a set ofN normalized
states, where each state, say thei th one, is of the form
ai u0&1bi u1&1ci u2&1di u3& with

uai u21ubi u252e2 ~5!

for all i ’s. Here,e is known in advance to both Alice an
Bob whereas only Alice knows the individual coefficien
ai , bi , ci , and di of each state. We claim that onlyN(1
1S) bits of classical communication will be sufficient fo
such remote preparation, whereS522$e2 log2e

21(0.5
2e2)@ log2(0.52e2)#%511H(2e2)>1 @here, we define
H(d)52d log2d2(12d)log2(12d)# is the entropy of the en-
semble.

Remark F.Note that the standard teleportation sche
would require 2NS bits of classical communication. Sinc
S.1 ~except fore250 or 1/2), remote preparation alway
provides some saving in classical-communication cost o
standard teleportation.

Proof. Our proof is analogous to that of Theorem 2. L
us divide the remote preparation process into two ste
Starting from ai u0&1bi u1&1ci u2&1di u3& in Alice’s hand,
the goal of the first step is to obtain an entangled state sh
between Alice and Bob,ai u00&1bi u11&1ci u22&1di u33&.
The goal of the second step is to obtainai u0&1bi u1&
1ci u2&1di u3& in Bob’s hand.

Step 1.Starting with theirNS ebits, by using entangle
ment ~concentration and! dilution and their common knowl-
edge ofe, Alice and Bob can, with a high fidelity, shareN
objects of the form

c5eu00&AB1eu11&AB1 f u22&AB1 f u33&AB , ~6!

wheref 21e250.5, with an asymptotically vanishing amou
of classical communication@3,8#. In what follows, we de-
scribe a procedure that allows Alice and Bob to manipul
c into ai u00&AB1bi u11&AB1ci u22&AB1di u33&AB using only
a single classical bit of communication.

First of all, Alice prepares a two-state ancilla in the initi
stateu0&a . She then couples it with her systemA and evolves
it with a unitary transformation:

eu0&au0&A→~ai u0&a1bi u1&a)u0&A ,

eu0&au1&A→~bi u0&a1ai u1&a)u1&A ,
~7!

f u0&au2&A→~ci u0&a1di u1&a)u2&A ,

f u0&au3&A→~di u0&a1ci u1&a)u3&A .

~It is easy to check that the transformation can be made
tary. Also, with her knowledge ofai , bi , ci , anddi , Alice
can indeed implement such a unitary transformation.!

Now, starting with

u0&a~eu00&AB1eu11&AB1 f u22&AB1 f u33&AB), ~8!
3-4
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the unitary transformation gives

u0&a~ai u00&AB1bi u11&AB1ci u22&AB1di u33&AB)

1u1&a~bi u00&AB1ai u11&AB1di u22&AB1ci u33&AB).

~9!

Now Alice measures the state of the ancillaa and sends the
one-bit outcome to Bob. If the outcome is 0, the first step
remote preparation is already done. If the outcome is 1
stead, Alice and Bob can simply apply a bilocal unita
transformation to obtain what is desired. Since each of thN
signals requires one classical bit,N classical bits are sent in
the first step.

Step 2.As in Theorem 2, Alice applies quantum da
compression to theN quantum signals, compressing the
into NSqubits. She can then proceed with the second ste
the remote preparation in the same way as the second st
the two-stage teleportation, thus sending BobNS classical
bits. Adding the classical communication cost in the tw
steps, we getN1NS5N(11S) bits. Q.E.D.

In Theorem 3, the four coefficientsai , bi , ci , anddi are
partitioned into two sets withequal numbers of elements
$ai ,bi% and$ci ,di% and the constraint Eq.~5! lies in the sum
of moduli squared of each set.@Compare the degeneracy
Schmidt decomposition ofc5eu00&AB1eu11&AB1 f u22&AB
1 f u33&AB in Eq. ~6!.# One might wonder if a partition into
sets with equal numbers of elements is a necessary cond
for reducing classical communication cost. The answer is
thanks to the following lemma.

Lemma 1.Suppose that Alice and Bob share initial e
tanglement and a classical communication channel. Let
u l & ’s be an orthonormal basis of some Hilbert spaceH. Let
I 5I 1øI 2ø•••øI M be a partition of the set of indices, i.e
l ’s. Suppose Alice would like to help Bob to prepareN ob-
jects, each of which, say thei th one,

c i5(
l

ali u l &, ~10!

is a pure state inH and that, for each setmP$1,2,•••,M %,
the sum of moduli squared of its elements satisfies

(
kPI m

uakiu25cm ~11!

for all the statesi in the ensemble. Here, the setsI m and the
valuescm are known to Alice and Bob in advance while on
Alice knows the individual coefficientsali . We claim that
the remote preparation can be done withN@(log2d)
1S# bits of classical communication, whered
5 lcm(uI 1u,uI 2u, . . . ,uI Mu) and S is the maximal entropy of
the ensemble consisting of states satisfying the form
~11!.

Proof. To illustrate the idea of the proof, it suffices t
consider a simple example whereI 5I 1øI 2 , uI 1u52, and
uI 2u53. ~In this particular example, the scheme require
larger amount of classical-comunication cost than direct t
portation and is, therefore, not very useful.!
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Step 1.By entanglement~concentration and! dilution, Al-
ice and Bob can manipulate their initially shared entang
ment intoN copies of the form

au00&1au11&1bu22&1bu33&1bu44&, ~12!

where 2uau25c1 and 3ubu25c2. For each quantum signa
Alice now prepares an ancilla of dimensiond
5 lcm(uI 1u,uI 2u, . . . ,uI Mu) in the stateu0&a . In the current
special case,d5 lcm(2,3)56. She now couples the ancill
with each~say thei th! quantum signal. In the current speci
case, she now evolves her combined system of ancilla
the i th quantum signal with the following unitary transfo
mation:

u0&au0&A→~ u0&1u1&1u2&)~a0i u0&1a1i u1&)u0&A ,

u0&au1&A→~ u0&1u1&1u2&)~a1i u0&1a0i u1&)u1&A ,

u0&au2&A→~a2i u0&1a3i u1&1a4i u2&)~ u0&1u1&)u2&A , ~13!

u0&au3&A→~a3i u0&1a4i u1&1a2i u2&)~ u0&1u1&)u3&A ,

u0&au4&A→~a4i u0&1a2i u1&1a3i u2&)~ u0&1u1&)u4&A .

Here, the ancilla is further divided into two subsystem
on the right hand side of the equations. From the proof
Theorem 3, it is not too hard to see that, by~i! Alice mea-
suring the ancilla and sending the outcomes to Bob, and~ii !
Alice and Bob performing a bilocal unitary transformatio
Alice and Bob can achieve the first step of remote prepa
tion, i.e., prepare an entangled state of the forma0i u00&AB
1a1i u11&AB1a2i u22&AB1a3i u22&AB1a4i u44&AB . For each
signal, the first step requires log2d bits of classical commu-
nication.

Here we sketch the proof for the general case. Since,
eachm, uI mu dividesd, the dimension of the ancilla that Alice
has prepared, she can divide the ancilla into two subsyst
of dimensionsuI mu and d/uI mu, respectively. Call them sys
tems anc1

m and anc2
m , respectively. Equivalently, for eachm,

she can label her ancilla basis vectors by a double index.
emphasize that,unlike the simple case presented above, in
the general case, this double index is alocal labeling depend-
ing on m. DenoteuI mu by R andd/uI mu by T. Let us use the
double index$s,t% to label a basis for the decompositio
locally. Let alsoI m5$k1 ,k2 , . . . ,kR%. For 1<r<R, the uni-
tary transformation maps the initial state

u0&aukr&A ~14!

into

S (
s

akr 1s modR
us&anc

1
mD S (

t

1

AT
ut&anc

2
mD ukr&A , ~15!

where the ancilla is locally decomposed into two subsyste
anc1

m and anc2
m and its state is labeled by a double ind

(s,t). Suppose Alice measures the ancilla and sends her
come to Bob. The outcome can be written, locally for ea
3-5
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m, as a pairs andt. s contains the information needed for th
completion of the first step of remote preparation becaus
tells Alice and Bob which bilocal unitary transformation
apply to their states in the subspace spanned by$ukr&Aukr
PI m%. On the other hand,t is unimportant.

Step 2.As in the proof of Theorem 3, Alice applies qua
tum data compression to herN signals, compressing them
into NS qubits. She then performs the second step of te
portation, thus sendingNS classical bits to Bob. By combin
ing the two steps, a total ofN@(log2d)1S# classical bits are
used. Q.E.D.

Theorem 4.Suppose that Alice and Bob share initial e
tanglement and a classical-communication channel. A
would like to help Bob to prepareNtot objects, each of
which, say the i th one, is of the form ai u0&1bi u1&
1ceiu iu2&, wherec is known to Alice and Bob in advance
but ai , bi , andu i are known to Alice only. We claim tha
Ntot(S112ucu2) classical bits will be sufficient for such re
mote preparation. Here,S52@2d2log2d

21c2log2c
2# with

d25(12c2)/2.
Proof.
We set Ntot5NN1 where both N and N1 are large

and apply Lemma 1 to prove Theorem 4. To do so,
suffices to show that, in thetypical space ofN1 signals, the
expression d in Lemma 1 is given by log2d
5log2@lcm(uI 1u,uI 2u, . . . ,uI Mu)#5N1(12ucu2). The details
are as follows.

The Hilbert space ofN1 signals is spanned by the bas
vectorsux1 ,x2 , . . . ,xN1

&. A normalized basis of thetypical

space~the u l & ’s in Lemma 1! is given by vectors of the form
ux1 ,x2 , . . . ,xN1

&, where betweenN1(ucu22d) and N1(ucu2

1d) of thexi ’s take the value of 2, for some smalld. Let us
group thoseux1 ,x2 , . . . ,xN1

& with the same number and lo

cations of 2’s together. Within the same group, each of
xi ’s that are not equal to 2 can take a value of either 0 an
Consequently, there are between 2N1(12ucu22d) and
2N1(12ucu21d) basis vectors in each group. Furthermore,
weight ~i.e., the sum of the modulus squared of the wa
function! of the subspace corresponding to each group
known in advance to Alice and Bob as required in Eq.~11!.

The above discussion is rather abstract and can be m
clear by a simple example. Consider the caseN153 andc2

51/2. A typical space is spanned by basis vectorsux1 ,x2 ,x3&
where one or two of thexi ’s take the value of 2, i.e.
u2,j i , j 2&, u j 1 ,2,j 2&, u j i , j 2 ,2& as well asu2,2,j 1&, u2,j 1 ,2&,
and u j 1 ,2,2&, where j i takes the value of 0 or 1. Therefor
by fixing the number and locations of the 2’s, we have p
titioned the typical space into six subspaces. Furtherm
the weight of each subspace is fixed in advance and is kn
to both Alice and Bob. For instance, ifc i5ai u0&1bi u1&
1ceiu iu2&, then on expandingc1^ c2^ c3, we find that the
projection onto the subspace spanned by, say,$u2,j i , j 2&% is
simply

ceiu1u2&~a2u0&1b2u1&)~a3u0&1b3u1&). ~16!

Its weight is, therefore, simplyc2(12c2)2, independent of
the values ofai andbi . @Cf. Eq. ~11!.#
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In summary, the above grouping generally leads to a p
tition on the set of basis vectors,I 5I 1øI 2ø•••øI M , where

the size ofI i , denoted byuI i u, is between 2N1(12ucu22d) and

2N1(12ucu21d) and the weight in each induced subspace sa
fies Eq. ~11!. Since uI i u here is always a power of 2,d

5 lcm(uI 1u,uI 2u, . . . ,uI Mu) is also of order 2N1(12ucu21d).
Q.E.D.

V. CONCLUDING REMARKS

In this paper, we studied the classical-communication c
in quantum-information processing. One motivation of o
study is to better understand the fundamental laws
quantum-information processing. Another motivation is t
fact that CCCIQIP can be regarded as a generalization
quantum-communication complexity, a subject of much
cent interest. Our results are as follows. First, we deco
posed the usual teleportation process into a two-step proc
a result pointed out by Gottesman. This led us immediat
to a simple way to reduce by half the classica
communication cost in entanglement dilution compared
the earlier scheme@3#. After that, we considered the mor
general question of ‘‘remote preparation,’’ a phrase coin
by Popescu. Just as in teleportation, Alice and Bob h
share prior entanglement and also a classical-communica
channel. Alice’s goal is to help Bob to prepare some state
main difference from the usual teleportation is that we all
Alice to know exactly the pure state that she is trying to h
Bob to prepare. The question is whether Alice can someh
reduce the amount of classical communication using
knowledge of the state. It is shown here that, if there
some appropriate constraints on the ensemble of the s
that Alice is trying to send, Alice will be able to reduce th
classical-communication cost below that of teleportation. W
suspect that some constraints on the ensemble are nece
for saving classical-communication cost. Therefore, we h
the following conjecture.

Conjecture 2.~Does remote preparation of a general pu
state of a qubit require two classical bits of communicatio!
Suppose Alice and Bob share prior entanglement an
classical-communication channel only. Suppose that Alic
asked to help Bob to prepareN pure qubit statesc5c1

^ c2^ •••^ cN , where c i5ai u0&1bi u1& is an arbitrary
pure state of a qubit. Here, theai andbi are known to Alice
but not Bob. We conjecture that such remote prepara
requires 2N bits of classical communication.

Remark G.The main differences of the scenario in th
above conjecture from that of the usual teleportation are
here we allow only pure states but not entangled states,
that Alice actually knows the state that she is missing.

To put things in perspective, only a few examples of
mote preparation have been studied in this paper. It wo
thus be interesting to consider more general examples an
attempt to derive a general principle for the classic
communication cost of remote preparation. In a more gen
context, the issue of classical-communication cost of ot
3-6



ev
in
m

us
bi
tin
th
m
rc
e

ro-

ry
ase
h-
de
.
wl-
ork
ies,

CLASSICAL-COMMUNICATION COST IN DISTRIBUTED . . . PHYSICAL REVIEW A62 012313
processes~such as entanglement manipulations@8,7#, en-
tanglement purification@18#! in quantum-information pro-
cessing deserves careful investigation. Let us conclude
saying that classical-communication cost is only one of s
eral types of resources in quantum-information process
Ultimately, we expect that the fundamental laws of quantu
information processing will take full account of the vario
types of resources. A study of the trade-off between qu
and classical-communication cost would be an interes
subject. Let us conclude by saying that it is our hope that
study of classical-communication cost in quantu
information processing in combination with other resea
avenues including@6,12# will lead us one step closer to th
m

sa

01231
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yet unknown fundamental laws of quantum-information p
cessing.
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