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We study the amount of classical communication needed for distributed quantum-information processing. In
particular, we introduce the concept of “remote preparation” of a quantum state. Given an ensemble of states,
Alice’s task is to help Bob in a distant laboratory to prepare a state of her choice. We find several examples of
an ensemble with an entrofwhere the remote preparation can be done with a communication cost lower
than the amount (8) required by standard teleportation. We conjecture that, foarhitrary N-dimensional
purestate, its remote preparation requires 2Mgits of classical communication, as in standard teleportation.

PACS numbe(s): 03.67.Hk

I. INTRODUCTION AND MOTIVATION classical-communication cost is an important subject in the-
oretical computer science. It is given the name “communi-
There are two main motivations for studying the classical-cation complexity.” For example, two or more parties with
communication cost in quantum-information processingdistributed private inputs, ,i,, ...,y would like to coop-
(CCCIQIP. The first motivation is to better understand the erate to compute a functiof(iy,i,, ... ,iy). (For instance,
fundamental laws of quantum-information processing. Than an appointment scheduling problem, two distant parties
second is the fact that CCCIQIP can be regarded as a naturgby|d like to find a date when both are fre@hey do so by
generalization of quantum-communication complexity, asending classical bits to each other. The goal of communica-
subject of much recent interest. tion complexity is to study the number of classical bits of
communication needed. Of particular interest is the limiting
case when the problem “size” is bigFor instance, in the
Quantum-information theory—the synthesis of quantumappointment scheduling problem, the number of dates under
mechanics with information theory—has been a subject otonsideration is large Classical-communication complexity
much recent interest. It is now known that novel phenomengan be regarded as the study of classical-communication re-
including teleportatiof1] and dense codin{2] can occur source(classical bitsin a classical problem.
when the laws of quantum mechanics are invoked in infor- Recently, there has been much interest in usjogntum

mation proce_ss_in_g. To better und_erstand these diverse exofigsoyrces, namely, prior entanglement, to reduce the commu-
phenomena, it is important to derive the fundamental laws Ofication complexity of a classical function. While for some

qu%ntqlm—mforrlnat!on processing. . he classical problems this is now known to allow a huge reduction, prob-
ntil recently, it was customary to ignore the classical-|o g gy ch as the inner product function have been shown to
communication cost in quantum-information processing. Th%rbid any saving. Quantum-communication complexay

motivation was that classical communication is ‘“cheap”
S can, therefore, be regarded as the study of entanglement-
whereas quantum communication and entanglement are ex-

pensive. However, as emphasized3i, in applications such enhanced communicatipn complexi.ty otlassicalfunctign. .
as dense codinfR], classical-communication cost is of pri- _In quantgm-lnformatlon processing, a hew compl_lcatlon
mary interest and it would be totally inconsistent to ignore it.211S€S: the input and output states may be nonclassical. The
In summary, it is important to take full consideration of SIMplest example is an entangled stéfemore subtle form
classical-communication cost in the study of quantum-°f nonlocality without entanglement also exig®]) The
information processing. study of classical-communication cost in quantum-
Some examples of CCCIQIRfor example, “remote information processing can, thus, be regarded as a natural
preparation” to be introduced in this paperan also be re- generalization of quantum-communication complexity by al-
garded as a refinement of Schumacher’s coding the¢4ém lowing the inputs and outputs to lfpossibly nonseparable
in which information is decomposed into two parts) a  quantum states, rather than classical ones.
quantum piecéprior entanglementand (b) a classical piece
(subsequent classical communicajion contrast, in the
standard Schumacher coding theorem, quantum information
is transmitted directly via quantum biqubits.

A. First motivation

C. Prior work

There are a number of prior works. The first paper on the
subject of CCCIQIP is probably the seminal teleportation
paper[1], in which it is shown that an arbitrary unknown

In contrast to the lack of interest in classical- state (possibly entangled with an external sysjein an
communication cost shown in the quantum community,N-dimensional Hilbert space can be transmitted by the dual

B. Second motivation
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usage of prior entanglement and 2JNgclassical bits of ~processing, in which the cost of one type of resouiee-

communicatiort. tanglement or classical communicatiaa often ignored.
Notice that, in the classical case, if the value of the input
(i,j) and the deterministic outpd{i,j) are fixed and given E. Main result

beforehand, the classical-communication complexity is trivi-  Qur main results are as follows. First of all, as first
ally zero. The quantum cas€CCIQIP is strikingly differ-  pointed out by Gottesmafi3], the usual teleportatiofil]
ent. Even if Alice and Bob know exactly their fixed inpiit  can be decomposed into a two-stage process. Starting with a
and outputd states, the manipulation of a bipartite stdte pure statea|0)+b|1) on Alice’s side and an Einstein-
into another bipartiteD state may still require a nontrivial Podolsky-RoseflEPR) pair shared between Alice and Bob,
amount of classical communicatidiThe intuitive reason be- the first stage will lead to an entangled stat@®0) +b|11)
hind this result is that a quantum state is generally entangleghared between Alice and Bob. The second stage will lead to
Since it cannot be written as a direct product of pure states, # statea|0)+ b|1) fully in Bob’s hand. Moreover, each stage
cannot be prepared by bilocal operations. See [@$o requires a single bit of classical communicati6Fhis works
Interestingly, in some situations the classical-not only for a pure initial state, but also for a qubit that is
communication cost can be made to vanish in the asymptotigntangled with an ancilla.
limit [3]. Consider the situation of entanglement dilut[@ Second, we give a simple procedure that halves the
two distance observers Alice and Bob who share a largamount of classical-communication cost in entanglement di-
number NS of singlets (i.e., maximally entangled states |ution compared to even the improved schemg3ih This is
would like to dilute them intdN pairs of the nonmaximally done by noting that only the first stage of teleportation is
entangled statea|00)+b|11) whose entropy of entangle- needed for entanglement dilutioffhe second step can sim-
ment, —|a|?log,|al’>—|b|2log,|bl, is equal toS The standard ply be skipped.
schemd8] involves a teleportation step and, thus, has a clas- Third, we move on to consider the following general
sical communication cost proportional & Nevertheless, it problem, which we shall call “remote preparation,” follow-
was subsequently shown {i8] that entanglement dilution ing Popescu14]. Suppose Alice and Bob initially share
can be done in the asymptotic limit with a vanishing amountsome entanglement. We only allow Alice to send classical
of classical communication. As a consequence, entanglemebits to Bob. Alice’s goal is to help Bob to prepare some pure
is, indeed, a fungible resource. That is to say that the samstate chosen from some specific preagreed distribution. The
amount of two-party pure state entanglement in differenkey difference between remote preparation and the usual
forms or concentrations can truly be regarded as equivalengleporation is that, unlike teleportation, we assume in re-
because they are interconvertible into each ofBérwith a  mote preparation that Alice knows the precise state of the
negligible amount of classical-communication cost betweermbject that she is trying to help Bob to prepaf@utting it
the two parties3]. A key point of their argument is that differently, Alice is given an infinite number of copies of the
there is a huge degree of degeneracy in the Schmidt coeffpure state and is required to transmit only one to Bdib.
cients[9] of the relevant bipartite state. addition, the preagreed distribution may not be totally ran-
Recently, important discussions on the classical commueom. We have some theorems and a conjecture. With some
nication cost of entanglement manipulations has also beeappropriate constraints on the distribution, one can use our

presented by Nielsef10,11]. theorems to reduce the classical communication cost below
what is required in teleportation even in the asymptotic case.
D. Related work In other words, remote preparation of constrained states in

CCCIQIP is also related to other subjects. For instance;OMe Cases offers a discount rate compared to full-blown

. . teleportation of an ensemble with the same amount of en-
D e st a0 1 o, T 5 i 8 srprsin resul We conjecture
other related subject is quantum nonlocality without en-S.UCh a reduction in cl_a35|cal-commun|cat|0n cost is impos-
) . . sible for an unconstrained state.
tanglemen{6]. This concerns the opposite question, namely,
the crucial role of quantum entanglement in a rather novel

context. CCCIQIP and many other studies can be regarded as Il. TWO-STAGE TELEPORTATION

the investigations of limiting cases of quantum-information Suppose Alice would like to transmit an unknown qubit
a|0>q+ b|1)q to Bob. Instead of sending it directly to Bob
via a quantum-communication channel, Alice can achieve
IThe amount of classical communication, 2 JNgpits, needed is the same goal by using a classical channel, provided that
optimal. This follows from dense codifg]. If transmission of an  Alice and Bob initially share some entanglement. This pro-
arbitrary (possibly entangledN-dimensional state could be done cess is called teleportatidii]. Transmission of each qubit
with fewer than 2 logN bits of classical communication, then requires two classical bits of communicatiofit can be
causality would be violated. shown that teleportation works not only for pure states, but
2This result is not difficult to prove, using the idea of the proof in @lso for states that are entangled with ancijlés.what fol-
[7] that entanglement manipulation strategies with one-way comlows, the well-known teleportation process will be decom-
munication are generally more powerful than those with no com{osed into two steps. The following result was pointed out
munication. by Gottesmar13].
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Theorem 1: Two-stage teleportatioBuppose Alice and tains 1 as the outcome, Bob then ta@€)g—b|1)g which
Bob share an EPR pair and that Alice is given an unknowrtan now be converted &0)g+ b|1)g by applying the Pauli
qubit a|0)4+b[1), in her hand. There exists a two-stage operatoro,. Q.E.D.
process for transmitting the unknown qubit to Bob such that, For experts in stabilizer codes, the above result is rather
on completion of the first step, Alice shares with Bob antrivial. However, theorem 1 has a simple application on en-
entangled stata|00) g+ b|11) o5 and, on completion of the tanglement dilution.
second step, the stagg0)z+b|1)g is fully in Bob’s hand. Corollary. One can halve the amount of classical commu-
Furthermore, each step requires a single bit of classical conmication needed for entanglement dilution.
munication. Proof. For entanglement dilution, the desired output state
Remark A.Essentially the same procedure works for anof Bob is entangled with Alice. Therefore, all that is required
initial state that is entangled with an ancilla. is the first step of the two-step teleportation procedure. By
Remark B. An analogous procedure works for an skipping the second step, one saves half of the classical-
N-dimensional state with lofjl classical bits of communica- communication cost.
tion needed for each step. Remark C.The above corollary 2 applies not only to a
Proof. Step 1Alice applies an exclusive ORXOR) be-  naive entanglement dilution scheme, but also to the advanced
tween the unknown qubij and her membeA of the EPR  scheme proposed ir8], which requires a vanishing amount
pair that she shares with Bob, with the unknown qubit as thef classical communication in the asymptotic limit.
target qubit. Since

X)) a—[X)4|0) A, Ill. REMOTE PREPARATION
| >q| )a= >q| I (1) OF CONSTRAINED STATES

|X>q|1>A—’|X+1>q|1>A’ So far our discussion has been restricted to teleportation.
It turns out that the idea of decomposing the transmission

one gets . S
process of quantum information into two parts, as employed
a|0)q+b[1)q(|00)as+|11)ag) —[0)¢(@]00) ap+Db|11) o) in Theorem 1, is useful in a more general context. In this
section, we illustrate this point by considering a similar but
+1)4(b|00) pp more general procedure for transmitting quantum informa-
a tion, which has been called “remote preparation” by Pope-
+al11)p). scu [14]. Suppose Alice and Bob initially share some en-

(2) tanglement and subsequently Alice can send only classical
bits to Bob. The goal of remote preparation is for Alice to

Now, Alice measures the quiitand sends the outcome, pa1n Bop to prepare some pure state chosen from some spe-
a single bit, via a classical-communication channel to Bob. If,

; ; cific preagreed distribution. The big difference between re-
the outcome is 0, Alice and Bob shaaf00)ag+b|1)ag a5 mote preparation and the usual teleporation is that, unlike
required. If the outcome is 1, they shark|00)ag teleportation, in remote preparation, Alice knows the precise
+a|11)g . Alice and Bob can now apply a bilocal unitary re state of the object that she is trying to help Bob to
transformation/0) —[1) to obtain the desired stat®00)ag  prepare.(Equivalently, Alice is given an infinite number of
+b[11)zp- ) ) i copies of the pure state and is required to transmit only one

Step 2.Alice applies a Hadamard transformation on herig Bop) Another difference is that, in general, the preagreed
member of the shared pair. She then measures it and senggtribution does not need to be random. We have the fol-
the outcome to Bob. On receiving Alice’s outcome, Bob ap-lowing asymptoticlargeN) result.
plies a unitary transformation on his member of the shared Theorem 2Suppose Alice and Bob are given the values
pair to recover the unknown qubit. Mathematically, the Had-o¢ 5 andb and that they satisfja|2+|b|2=1. Suppose fur-

amard transform is, up to an overall normalization, ther that Alice and Bob sharBlS e-bits of entanglement
10y 400 +]1) (defined in[15]), where S= —|a|?log,|a|*>—|b[%log,|b?> for
A A As largeN. Alice would like to help Bob to remotely prepaké

(3) objects, each of the forra|0)+be'%|1). Here thed,’s are
known to Alice only. We claim thatNS bits of classical
communication is sufficient.

|1>A—>|0>A_ | 1>A-

Therefore, _ .
Proof. By entanglement(concentration and dilution
al00) pg+b|11) ag—a(|0)a+]1)4)|0)s [8,3], Alice and Bob can convert thd S e-bits of entangle-
ment intoN pairs ofa|00)+ b|11) with a very high fidelity
+b([0)a— (1)) 1)s (and with an asymptotically vanishing amount of classical

—~0)a(al0)g+b|1)g) communication[3]). Now, consider a two-stage remote
A B B preparation process in complete analogy with two-stage tele-
+[1)a(al0)g—b[1)g). (4)  poration (i.e., from al0),+be?%|1), to al00)as
+bé€%|11),5 and thena|0)z+be'%|1)g). Since Alice and
Now Alice measure\. If she obtains 0 as the outcome, then Bob already shara|00)+ b|11), they now have a short-cut
Bob hasa|0)g+b|1)g as required. Similarly, if Alice ob- to step 1. Indeed, they can conveat00)+b|11) into
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a|00)+be‘ %11), for eachi, with no communication at all: semble. What is actually needed is some constraint on those
Using her knowledge of;, this can be done by Alice’s COefficients. _ o

rotating the phase of1) under her control, i.e.|1) Theorem 3.Suppose Alice and Bob initially share en-
e %|1). Now each of Alice and Bob then performs quan- tanglement and only a classical communication channel. Al-
tum data compressiof#] on his/her system, compressing it €€ would like to help Bob to prepare a se_thnormaIlzed

into N'S qubits.(Notice thatSis the von Neumann entropy of States, where each state, say ftie one, is of the form
Alice/Bob’s system. Alice and Bob then perform the second i/0) +bil1)+¢i[2) +di[3) with

step of the two-step teleportation process—more precisely, |2+ |by|2= 262 ®)

its higher dimensional generalization as noted in Remark ! !
B—on the typical space, which has a dimensi&#"®. This
requiresN S classical bits and zero e-bits. Bob can now per-
form quantum date dilution to recover the system. Q.E.D.

for all i's. Here, e is known in advance to both Alice and
Bob whereas only Alice knows the individual coefficients

R K DAs f lassical cati o a;, bj, ¢;, andd; of each state. We claim that only(1
emark DAS 1ar as classical-communication costis €on- gy piis of classical communication will be sufficient for

cerned, our result is optimal. That is to say the§ bits are ¢\, remote preparation, wher=—2{e?log,e*+(0.5
necessary for the remote preparation of the above ensemb g'ez)[log (0.5 ez)]}=1+H,(2e2)>1 [here er define
The reason is the followingS is the von Neumann entropy H(d) = —2d log,d— (1—d)log,(1—d)] is the entryopy of the en-
of Alice’s ensembild(i.e., a random ensemble of pure statessemble 2 2

” ,
of the forma|0)g+be'|1)s). By Holevo's theoren{16], Remark F.Note that the standard teleportation scheme

the quantum signals can be used to tranduSiclassical bits would require 'S bits of classical communication. Since

to Bob. So, if there were a way to transmit the quantum 2 :
X ! ) ; : . > =
signals to Bob with fewer thalNS classical bits, causality S>1 (except fore®=0 or 1/2), remote preparation always

; provides some saving in classical-communication cost over
would be violated. . standard teleportation.
Remark EIhe special case w_heta|=|b| has also been Proof. Our proof is analogous to that of Theorem 2. Let
proved by various peop!e including Popesad]. . us divide the remote preparation process into two steps.
So far, our discussion has focused on the classical

icati ¢ What about th  of " Starting froma;|0)+b;|1)+c;|2)+d;|3) in Alice’s hand,
communication cost. at about the amount of quantum rég, . goal of the first step is to obtain an entangled state shared
source(entanglementfor remote preparation? We have the

following conjecture. between Alice and Bobga;|00)+b;|11) +c;|22) + d;|33).

Conjecture 1.For any remote preparation procedure thatihcﬂz%ia:i&f) itrr:eBoSt()e’gor?adn dstep s 10 obtaig0)+bil1)
uses onlyNS bits, NS e-bits is the minimal amount of en- : : .

tanglement needed for any remote preparation procedure f% Step 1.Starting with theirNS ebits, by using entangle-
the N signals of the forma|0>+bei‘9i|1) wherea andb are ent(concentration anddilution and their common knowl-

known to Alice and Bob and th#;’s are known to Alice edge ofe, Alice and Bob can, with a high fidelity, share
> > 12 5 objects of the form

only, andS= —|a|*log,|al*—|b|*log,|b|*.

We remark that the proviso—that uses ol bits—is y=e|00)pg+e|1D) g+ f|2Das+ |35, (6)
necessary. Without such a proviso, fewer e-bits can be used
at the expense of a large number of bits. For example, Alicgvheref2+e?=0.5, with an asymptotically vanishing amount
can divide the latitude into two semicircular segments, Oof classical communicatiofi3,8]. In what follows, we de-
<f<m and m<0<2m. Now, she encodes a state by two scribe a procedure that allows Alice and Bob to manipulate
pieces, one classical and one quantum. For a state in the firgt into a;|00) x5+ b;|11) ag+ Ci|22) ag+di|33) a5 UsING ONly
segment, she encodes it by a classical bit 0, together with thg single classical bit of communication.
state as it is. For a state in the second segment, she encodesFirst of all, Alice prepares a two-state ancilla in the initial
it by a classical bit 1 together with the rotatew]0)  state|0),. She then couples it with her systékrand evolves
+be%~™|1), which is a state in the first segment. Notice it with a unitary transformation:
that the quantum states, now all being in the same segment,

have a smaller entropy thaxS e-bits. A similar reasoning €|0),]0)a—(a;|0)5+bi[1),)|0) A,
can be used to reduce the e-bit cost in remote preparation
even further at the expense of increasing classical bit cost. €]0)a]1)a— (bi|0)a+a;|1))[1) A,

fl0)al2)a—(Ci|0)at+di[1)2)[2) A,
IV. FURTHER EXAMPLES OF REMOTE PREPARATION fl0).13 4104 cl1 3
—(d . )
In Theorem 2, the moduk and b of the coefficients of [0%al3)a= (A[0)a €i[1)2)13)a
each state are independentioOne might wonder if thisis a (It is easy to check that the transformation can be made uni-
necessary condition for the reduction in classical-tary. Also, with her knowledge o, b;, ¢;, andd;, Alice
communication cost. The answer is no. Indeed, in the followcan indeed implement such a unitary transformation.
ing theorem, Theorem 3, we give an example in which re- Now, starting with
duction of classical-communication cost happens even when
the moduli of the coefficients vary for the states in the en- |0)a(€|00) ag+ €| 1) ag+ F|22) g+ F|33) aR), (8)
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the unitary transformation gives Step 1By entanglementconcentration anddilution, Al-
ice and Bob can manipulate their initially shared entangle-
0)a(@i|00) ag+ bi| 11 ap+ Ci[22) ap+ di|33) ) ment intoN copies of the form
+[1)a(bi|00) ap+ &i|11) g+ di| 22) g+ Ci[33) aB) - a|00)+ a|11) + 8|22+ B|33) + 3|44, (12)
€)

where 2a|?=c, and 3B|?>=c,. For each quantum signal,
Now Alice measures the state of the ancdland sends the Alice now prepares an ancilla of dimensiord
one-bit outcome to Bob. If the outcome is 0, the first step of=Icm(|14,|1,|, ... |Iy]) in the state|0),. In the current
remote preparation is already done. If the outcome is 1 inspecial cased=Icm(2,3)=6. She now couples the ancilla
stead, Alice and Bob can simply apply a bilocal unitarywith each(say theith) quantum signal. In the current special
transformation to obtain what is desired. Since each of\the case, she now evolves her combined system of ancilla and
signals requires one classical bi,classical bits are sent in theith quantum signal with the following unitary transfor-

the first step. mation:
Step 2.As in Theorem 2, Alice applies quantum data
compression to thél quantum signals, compressing them 10)al0)a— (10) +[1) +2)) (agi|0) + @41/ 1))[0) o,

into NS qubits. She can then proceed with the second step of

the remote preparation in the same way as the second step of  |0)4|1)a—(|0)+]1)+]2))(a3;|0) +ag|1))[1)a,

the two-stage teleportation, thus sending B¥B classical

bits. Adding the classical communication cost in the two |0)4]2)a— (a5]0) +azi| 1) + a4 2))(|0)+|1))[2)a, (13)
steps, we geN+NS=N(1+S) bits. Q.E.D.

In Theorem 3, the four coefficients, b;, ¢;, andd; are |0)a]3)a— (azi|0) +aui| 1) +ay]2)) (|0) +[1))[3)a,
partitioned into two sets witlequal numbers of elements,
{a;,b;} and{c;,d;} and the constraint Eq5) lies in the sum |0)al4) a— (24i|0) +ayi| 1) +a5|2)) (|0) + 1)) [4)a -
of moduli squared of each s¢Compare the degeneracy in
Schmidt decomposition ofy=e|00) s+ |11 ap+f|22) ag Here, the ancilla is further divided into two subsystems,

+f|33) a5 in Eq. (6).] One might wonder if a partition into on the right hand side of the equations. From the proof of
sets with equal numbers of elements is a necessary conditioheorem 3, it is not too hard to see that, (y Alice mea-
for reducing classical communication cost. The answer is ngsuring the ancilla and sending the outcomes to Bob, (@nd
thanks to the following lemma. Alice and Bob performing a bilocal unitary transformation,
Lemma 1.Suppose that Alice and Bob share initial en- Alice and Bob can achieve the first step of remote prepara-
tanglement and a classical communication channel. Let théon, i.e., prepare an entangled state of the fa@g00) g
[I)’s be an orthonormal basis of some Hilbert spatelet  +ay|11)ap+a,|22 ap+a3i|22 ap+asi|44)ag. For each
I=1,Ul,U---Uly be a partition of the set of indices, i.e., signal, the first step requires lghbits of classical commu-
I’'s. Suppose Alice would like to help Bob to prepafeob-  nication.
jects, each of which, say tti¢h one, Here we sketch the proof for the general case. Since, for
eachm, |1 | dividesd, the dimension of the ancilla that Alice
has prepared, she can divide the ancilla into two subsystems
‘/’i:Z aill), 10 of dimensiong | | andd/|l |, respectively. Call them sys-
tems anf and an§', respectively. Equivalently, for each,
is a pure state if{ and that, for each sehe{1,2--,M},  she can label her ancilla basis vectors by a double index. We
the sum of moduli squared of its elements satisfies emphasize thatnlike the simple case presented ahowve
the general case, this double index iseal labeling depend-
> . ing onm. Denote|l,| by Randd/|l,| by T. Let us use the
& |2l *=cm (1D double index{s,t} to label a basis for the decomposition
" locally. Let alsol ,={k; ,k,, . .. kg}. For I<r<R, the uni-
for all the states in the ensemble. Here, the sétsand the tary transformation maps the initial state
valuesc, are known to Alice and Bob in advance while only
Alice knows the individual coefficients;; . We claim that [0)alkr)a (14)
the remote preparation can be done witd[ (log,d)

+S] bits of classical communication, whered Into

=lem(|14],|15], . .. |Im]) and S'is the maximal entropy of 1

the ensemble consisting of states satisfying the form Eqg. il

1o, g fying g 2 oo |s>ana;)<2 ﬁlt>amgw>|kr>A, (15)

Proof. To illustrate the idea of the proof, it suffices to
consider a simple example where=1,Ul,, |1;/=2, and where the ancilla is locally decomposed into two subsystems
[I,]=3. (In this particular example, the scheme requires @and' and an§' and its state is labeled by a double index
larger amount of classical-comunication cost than direct tele¢s,t). Suppose Alice measures the ancilla and sends her out-
portation and is, therefore, not very useful. come to Bob. The outcome can be written, locally for each
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m, as a pais andt. s contains the information needed for the  In summary, the above grouping generally leads to a par-
completion of the first step of remote preparation because fition on the set of basis vectois=1,Ul,U---Uly , where
tells Alice and Bob which bilocal unitary transformation to ; ) 0o 1(1=]c|?-9)

apply to their states in the subspace spanned|kyalk; the size ofl;, denoted by, is between 2 and
€l m}. On the other hand,is unimportant.

Step 2As in the proof of Theorem 3, Alice applies quan- )
tum data compression to hé¢ signals, compressing them =lcm([l4],[15], ... [Iu]) is also of order Yit-Ici+o),
into NS qubits. She then performs the second step of teleQ-E.D.
portation, thus sendinly S classical bits to Bob. By combin-
ing the two steps, a total dfi[ (log,d)+S] classical bits are
used. Q.E.D. V. CONCLUDING REMARKS

Theorem 4Suppose that Alice and Bob share initial en- ) ] ) o
tanglement and a classical-communication channel. Alice N this paper, we studied the classical-communication cost

would like to help Bob to prepard\,, objects, each of in quar_wtum-information processing. One motivation of our
which, say theith one, is of the forma;|0)+b;|1)  Study is to better understand the fundamental laws of
+cée%|2), wherec is known to Alice and Bob in advance, guantum-information processing. Another motivation is the
buta;, b;, and 6, are known to Alice only. We claim that fact that CCCIQIP can be regarded as a generalization of
Nioi(S+ 1—|c|?) classical bits will be sufficient for such re- gquantum-communication complexity, a subject of much re-
mote preparation. HereS= —[2d?log,d’+c?log,c?] with cent interest. Our results are as follows. First, we decom-

d?=(1—c?)/2. posed the usual teleportation process into a two-step process,
Proof. a result pointed out by Gottesman. This led us immediately
We set Nio,;=NN; where bothN and N; are large to a simple way to reduce by half the classical-
and apply Lemma 1 to prove Theorem 4. To do so, itcommunication cost in entanglement dilution compared to
suffices to show that, in thiypical space ofN; signals, the the earlier schemg3]. After that, we considered the more
expression d in Lemma 1 is given by logl general question of “remote preparation,” a phrase coined

2N1(1-11+9) and the weight in each induced subspace satis-
fies Eq.(11). Since|l;| here is always a power of 24

=logflem(|14],|12], . .. [lm[)]=Ni(1—|c[?). The details by Popescu. Just as in teleportation, Alice and Bob here
are as follows. share prior entanglement and also a classical-communication
The Hilbert space ofN; signals is spanned by the basis channel. Alice’s goal is to help Bob to prepare some state. Its
vectors|xy Xz, . .. Xy ). A normalized basis of theypical  main difference from the usual teleportation is that we allow
space(the|l)’s in Lemma 1 is given by vectors of the form  Alice to know exactly the pure state that she is trying to help
[X1,Xo, ... Xy, ), Where betweem;(|c|?— &) andN;(|c|>*  Bob to prepare. The question is whether Alice can somehow
+ 8) of thex;’s take the value of 2, for some small Letus  reduce the amount of classical communication using her
group thosgx; X5, . .. ,le> with the same number and lo- knowledge of the state. It is shown here that, if there are

cations of 2’s together. Within the same group, each of thé0me appropriate constraints on the ensemble of the states

x;’s that are not equal to 2 can take a value of either 0 and 1that Alice is trying to send, Alice will be able to reduce the
Consequently, there are betweenN1@-1c>~9  and classical-communication cost below that of teleportation. We

_ . . suspect that some constraints on the ensemble are necessar
oNi1-1e?+9) hasis vectors in each group. Furthermore, the - y

weight (i.e., the sum of the modulus squared of the Wav:for saving classical-communication cost. Therefore, we have

function) of the subspace corresponding to each group iéhecfollpwl[ng cgnljjecture. i " f |
known in advance to Alice and Bob as required in EdL). onjecture 2(Does remote preparation of a general pure

The above discussion is rather abstract and can be magi2te of @ qubit require two classical bits of communication?
clear by a simple example. Consider the chise=3 andc? Supp_ose Alice ar_1d _Bob share prior entanglement qnd a
—1/2. Atypical space is spanned by basis vectorsx, xg)  classical-communication channel only. Suppose that Alice is
where one or two of thex;’s take the value of 2, i.e., asked to help Bob to prepafé pure qubit statesy=
12;.J2), |i1.202), |iiJ2,2) as well as2,2jy), [2j1,2),  ©¥2@ @Yy, where §;=2]0) tbi[1) is an arbitrary
and|j;,2,2), wherej; takes the value of 0 or 1. Therefore, Pure state of a qubit. Here, tlze andb; are known to Alice
by fixing the number and locations of the 2’s, we have parbut not Bob. We conjecture that such remote preparation
titioned the typical space into six subspaces. Furthermorg€quires N bits of classical communication.
the weight of each subspace is fixed in advance and is known Remark G.The main differences of the scenario in the
to both Alice and Bob. For instance, if;=a;|0)+b;|1)  above conjecture from that of the usual teleportation are that
+cé€?]2), then on expanding;® ,® i3, we find that the here we allow only pure states but not entangled states, and

projection onto the Subspace Spanned by, $|?&J| ,j2>} is that Alice aCtuaIIy knows the state that she is miSSing.
simply To put things in perspective, only a few examples of re-

mote preparation have been studied in this paper. It would
ce'?1)2)(a,|0) +b,|1))(ag|0) + bs|1)). (16)  thus be interesting to consider more general examples and to
attempt to derive a general principle for the classical-
Its weight is, therefore, simplg?(1—c?)?, independent of communication cost of remote preparation. In a more general
the values ofy; andb; . [Cf. Eq. (11).] context, the issue of classical-communication cost of other
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processegsuch as entanglement manipulatiof&7], en-  yet unknown fundamental laws of quantum-information pro-
tanglement purificatiorf18]) in quantum-information pro- cessing.

cessing deserves careful investigation. Let us conclude by
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