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Local environment can enhance fidelity of quantum teleportation
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We show how an interaction with the environment can enhance fidelity of quantum teleportation. To this
end, we present examples of states which cannot be made useful for teleportation by any local unitary trans-
formations; nevertheless, after being subjected to a dissipative interaction with the local environment, the states
allow for teleportation with genuinely quantum fidelity. The surprising fact here is that the necessary interac-
tion does not require any intelligent action from the parties sharing the states. In passing, we produce some
general results regarding optimization of teleportation fidelity by local action. We show that bistochastic
processes cannot improve fidelity of two-qubit states. We also show that in order to have their fidelity improv-
able by a local process, the bipartite states must violate the so-called reduction criterion of separability.

PACS number~s!: 03.67.Hk
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I. INTRODUCTION

Quantum teleportation@1# is fundamentally important a
an operational test of the presence and the strength of
tanglement. Moreover, a recent series of beautiful exp
ments@2#, which realized teleportation in practice, opened
window for a wide range of its possible technological app
cations.

In this paper, teleportation is understood as any strat
which uses local quantum operations and classical com
nication ~LOCC! @3# to transmit an unknown state via
shared pair of particles. In an ideal teleportation scheme,
electron pair is in a pure, maximally entangled bipartite sta

c25
1

A2
~ u01&2u10&). ~1!

The state is shared by a sender~Alice! and a receiver~Bob!.
By use ofc2 with Alice, Bob can produce anexactreplica
of another~input! state originally held by Alice. In reality
however, interactions with the environment and imperf
tions of preparation result in Alice and Bob sharing a st
which is always mixed. Consequently, at Bob’s end, the te
ported state can only be a distorted copy of the input initia
held by Alice. Moreover, if the bipartite state is mixed to
much, it will not provide for any better transmission fideli
than that of an ordinary classical communication channel@4#.
To do better than a classical channel, the shared quan
state must be entangled. A natural question then is@4#: can
any entangled state provide better than classical fidelity
teleportation?

Early attempts to answer this question concentrated on
characterization of the states which can offer nonclass
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fidelity within the original teleportation scheme suppl
mented by local unitary rotations. Henceforth we will ca
such a scheme thestandard teleportation scheme~STS!. Fi-
delity of teleportation achievable in STS is uniquely det
mined by the bipartite state’sfully entangled fraction. It was
defined in Ref.@5# as

f ~% !5max
c

^cu%uc&. ~2!

In the definition, the maximum is taken over all maximal
entangled statesc, i.e., overc5U1^ U2c1 , where

c15
1

Ad
(
i 51

d

u i &u i &; ~3!

U1 andU2 are unitary transformations. Later, it was show
that in order to be useful for STS, the states acting o
Hilbert spaceCd

^ Cd must havef .1/d @6,7#. Moreover, it
was shown that nobound entangledstate~see Ref.@8#! can
offer better fidelity than classical communication@9,7#.
Somewhat earlier, in Refs.@10# and@11#, the authors identi-
fied a class of states which do not permit any increase of,
neither by any trace preserving~TP! LOCC nor even by
some less restricted non-TP LOCC actions. Mixtures o
maximally mixed state andc1 @4,12# belong, among others
to this class.

One could then be tempted to speculate thatf could not be
increased by any TP LOCC operations. If so, then S
would be a unique teleportation scheme in the sense tha
other scheme would provide better fidelity than STS. On
other hand, one could still suspect that by some intellige
sophisticated LOCC operation, Alice and Bob would be a
to increasef for some states anyway. An important questi
was then to be answered:Is it possible to design a telepor
tation scheme, for which at least some states with f<1/d
would give nonclassical fidelity?
©2000 The American Physical Society11-1
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In this paper, we answer this question by presentin
class of two-qubit states withf <1/2, which can, neverthe
less, be used for teleportation with nonclassical fidelity. F
that, however, one has to allow for somedissipativeinterac-
tion between the states and their local environment first. T
means that dissipation, which is usually associated with
coherence and destruction of teleportation, increasesf of
some initially nonteleporting states to above 1/2. In oth
words, some states can produce nonclassical fidelity wi
the original teleportation scheme but only after being ‘‘co
rupted’’ by the environment!

To our knowledge, this is a previously unknown effect.
particular, it is different than that used in the so calledfilter-
ing method of improving some of the states’ paramet
@13,14#. Filtering includes aselectionprocess based on
readoutof measurement outcomes. In our examples, on
other hand, Alice and Bob do not need to know the outcom
at all. Hence, in particular, unlike filtering, the actions in o
examples are entirely trace preserving.

We begin our presentation by recalling some of the g
eral results on optimal teleportation fidelity in Sec. II~cf.
Ref. @7#!. This allows us to conclude that an optimal telepo
tation scheme should include maximization off by means of
TP LOCC operations. Then, in Sec. III we put the problem
the context of increasingf by the maps of the formI ^ L. We
can limit the possible successful maps by showing that, e
for two qubits, the bistochastic processes cannot do the
We also show that the states withf improvable by I ^ L
action must violate the so-calledreduction criterion. Subse-
quently, in Sec. IV we present the examples of states,
which f can be nontrivially increased by TP LOCC oper
tions. The paper ends with the summary of the results
the conclusions in Sec. V.

II. OPTIMAL FIDELITY IN A GENERAL
TELEPORTATION SCHEME

Let Alice and Bob share a pair of particles in a given st
% acting on a Hilbert spaceHA^ HB5Cd

^ Cd. Additionally,
let Alice have a third particle in an unknown pure statec
PHC5Cd to be teleported. In the most general teleportat
scheme, Bob and Alice apply some trace preserving~TP!
~hence without selection of the ensemble! LOCC operationT
to the particles which they share and to the third~Alice’s!
particle. After the operation is completed, the final state
Bob’s particle~from the pair! is

%Bob
c 5TrA,C@T~ uc&^cu ^ % !#. ~4!

The resulting mapping of the input state~the state of the third
particle! onto%Bob(c) establishes ateleportation channelL
~it depends on both,T and%):

L~ uc&^cu!5%Bob~c!. ~5!

The aim of teleportation is to obtain%Bob(c) as close to
uc&^cu as possible. A useful measure of the quality of te
portation is then provided by teleportation’sfidelity @4#

F5^cu%Bob~c!uc&. ~6!
01231
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Fidelity is a function of mapL and, likeL, it depends on
both, teleporting state% and the strategy of teleportationT.
One can show@7# that in the standard teleportation schem
the maximal fidelity achievable from a given bipartite state%
is

F5
f d11

d11
, ~7!

wheref is the fully entangled fraction ofr given by formula
~2!. To achieve this fidelity, Alice and Bob have to rota
their respective parts of the teleporting stater so that the
maximum of formula~2! is attained on singletc2 . The
original teleportation scheme applied with the rotated bip
tite stater will now produce the maximal fidelity~7!.

If, on the other hand, Alice and Bob do not share a
quantum state, then their best strategy is@4#: ~i! Alice per-
forms an optimal measurement of the system to be telepo
and sends the outcome to Bob~classically!. ~ii ! On the basis
of her results, Bob tries to reconstruct the state.

The optimal teleportation fidelity for this strategy is equ
to the optimal fidelity of the state estimation for a sing
system. It is given by@15,7#

Fcl5
2

11d
. ~8!

One can easily see now that, in order to perform better t
classical communication, STS needs bipartite states witf
.1/d. With f <1/d, Alice and Bob can just as well discar
their bipartite state and rise classical communication alon

There is no reason why STS should represent the m
efficient teleportation scheme using states withf .1/d. One
can show, however, that the optimal teleportation sche
~OTS! is a generalization of STS@7#. OTS consists of two
steps:~i! Alice and Bob try to maximizef by applying TP
LOCC ~not necessarily unitary! operations to the origina
state%. ~ii ! They apply STS using the transformed state.

Let then f max(%) denote the maximalf attainable from%
by means of TP LOCC operations. The maximal telepor
tion fidelity from state% is then given by@7#

Fmax5
f maxd11

d11
. ~9!

Thus, to find the optimal teleportation fidelity for a give
bipartite stater, one must findf max. In other words, the
fidelity of STS can be improved if:~i! f can be increased by
LOCC, ~ii ! The finalf is in quantum region, i.e., it is greate
than 1/d.

Henceforth, when referring to a process of increasingf,
we will understand it as increasing so that the final value
above 1/d ~within the rangef <1/d, the fully entangled frac-
tion can be increased relatively easily. This, however, d
not produce any better fidelity thanFcl).
1-2
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LOCAL ENVIRONMENT CAN ENHANCE FIDELITY OF . . . PHYSICAL REVIEW A 62 012311
III. SOME GENERAL RESULTS ON IMPROVING F BY
LOCAL INTERACTIONS

A. Simplified formula for maximal f attainable by local
interaction

When local TP transformations are used to increasef of a
general bipartite state%PCd

^ Cd, then the best attainabl
result is

f A5max
L

Tr@~L ^ I !%P1#. ~10!

The maximum is here taken over all TP completely posit
~CP! mapsL andP15uc1&^c1u, with c1 given by Eq.~3!.
Stinespring decomposition ofL gives @16#

L~• !5(
i

Vi~• !Vi
† ~11!

with ( iVi
†Vi5I . Moreover, we can utilize the fact thatA

^ Ic15I ^ ATc1 @17# ~superscriptT denotes transposition
in basis$u i &%) and rewrite formula~10! as

f A5max
G

Tr@%~ I ^ G!P1#, ~12!

with

G~• !5(
i

Wi~• !Wi
† ~13!

and Wi5Vi* ~the star denotes complex conjugation!. Natu-
rally, like L,G is trace preserving, too.

We can now recall that there is an isomorphism betw
the TP CP maps and the bipartite states with one subsy
maximally mixed. The isomorphism is given by

%85~ I ^ L!P1 . ~14!

Thus, for any TP CP map, the corresponding state ha
maximally mixed subsystemA and for any state with a maxi
mally mixed subsystemA, there exists a map that realizes
via the above formula. Consequently, we can obtain the
lowing form for f A :

f A~% !5max
%8

Tr~%%8!, ~15!

where the maximum is taken over all states%8 with maxi-
mally mixed subsystemA. An analogous formula holds fo
f B . In general, the valuesf A and f B are likely to be different
from one another.

Formula ~15! allows for identification of those map
which definitely cannot improvef. Take, for instance, the
maps describing the action of random external fields@18#.
They are of the form

L~• !5(
i

piUi~• !Ui
† , ~16!
01231
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with Ui denoting unitary transformations occurring wi
probability pi . The corresponding%85(I ^ L)P1 is a mix-
ture of maximally entangled vectors. Consequently, Tr(%%8)
cannot exceedf (%) which is equal to the maximal overlap o
% with one maximally entangled vector.

In addition to preserving trace, maps~16! preserve the
identity, i.e., L(I )5I . Maps preserving both the trace an
the identity are called bistochastic. In general, the class
bistochastic maps can be wider than the class specified
Eq. ~16!. For two qubits, however, the two classes coincid
To see this, one can note that, in general, the set of st
corresponding to the set of bistochastic maps via the isom
phism consists of the states withbothsubsystems maximally
mixed. For two-qubit systems such states are mixtures
maximally entangled vectors@19#. Each such vector can b
written asI ^ Uc1 for some unitaryU. Hence the maps cor
responding to mixtures of such vectors are mixtures of u
tary maps. Thus for two qubits the bistochastic maps can
increasef. One may conjecture that this should be the case
higher dimensions, too.

B. Increasing f by local actions and the reduction criterion for
separability

Let us now derive some constraints for the states witf
improvable by local interaction. A state suitable for a te
portation channel must be entangled, i.e., it must be imp
sible to represent it by a mixture of product states@12#:

%Þ(
i

pi% i ^ %̃ i . ~17!

Such states violate different separability criteria. Here,
consider the so-calledreduction criterionfor separability. It
is given by the following conditions satisfied by all separab
states@20,21#:

%A^ I 2%>0, I ^ %B2%>0. ~18!

The inequalities mean that the operators on the left-h
sides must bepositive, i.e., they must have non-negative e
genvalues only. In a two-qubit case, the reduction criterion
equivalent to separability~hence it is also a sufficient cond
tion for separability!, while it becomes a weaker ‘‘detector’
of entanglement in higher dimensions. In other words, th
exist nonseparable~entangled! states in higher dimension
which do not violate the reduction criterion.

Suppose now that for some state% one has f A(%)
. f (%), i.e., f can be improved by a local TP operation o
subsystemA. Naturally, we require that the improvement
nontrivial, i.e., f A.1/d. We will show now that this condi-
tion implies violation of the reduction criterion. Indeed, sin
f A.1/d, then there exists a state%8 whose one subsystem
~say,%A8 ) has maximal entropy and

Tr~%%8!.1/d. ~19!

Maximum entropy means that%A85I /d. This implies
Tr@(%A^ I )%8#5Tr(%A%A8 )51/d. By putting this into in-
equality ~19!, we obtain
1-3
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BADZIA̧ G, HORODECKI, HORODECKI, AND HORODECKI PHYSICAL REVIEW A62 012311
Tr@~%A^ I 2% !%8#,0. ~20!

The trace of a composition of two positive operators is n
negative. Operator%8 is positive. Consequently, in order t
satisfy the last inequality, the operator%A^ I 2% cannot be
positive.

Since all the entangled two-qubit states violate the red
tion criterion, the condition for improvability off derived
above, does not put any new restrictions on the class of s
with improvablef here @10,11#. Nevertheless, the conditio
should be useful while investigating bipartite states in hig
dimensions. This is because not all the entangled states
violate the reduction criterion.

IV. BEATING THE STANDARD TELEPORTATION
SCHEME

Before showing how to do better than STS, we will st
need to introduce some methods of dealing with the fu
entangled fraction of two-qubit states.

A. Fully entangled fraction in the Hilbert-Schmidt
representation

An arbitrary state of a two-qubit system can be rep
sented as

%5
1

4 S I ^ I 1r"s^ I 1I ^ s"s1 (
m,n51

3

tnmsn^ smD .

~21!

Here, I stands for the identity operator,r and s belong to
R3,$sn%n51

3 are standard Pauli matrices,r"s5( i 51
3 r is i .

Coefficients tmn5Tr(rsn^ sm) form a real 333 matrix
later denoted byT. Note thatr ands are local parameters a
they determine the reductions of%:

%1[TrH2
%5

1

2
~ I 1r"s!,

~22!

%2[TrH1
%5

1

2
~ I 1s"s!.

Matrix T, on the other hand, is responsible for the corre
tions

E~a,b![Tr~%a"s^ b"s!5~a,Tb!. ~23!

One can notice now, that for any two-qubit state%, one can
find a product unitary transformationU1^ U2 which will
transform% to a form with diagonal T. This statement fol-
lows from the fact that for any 232 unitary transformation
U, there is a unique 333 rotationO such that@22#

Un̂"sU†5~On̂!"s. ~24!

Now, if a state is subjected to aU1^ U2 transformation, the
parametersr,s andT are transformed into
01231
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r85O1r,

s85O2s, ~25!

T85O1TO2
† ,

with Oi ’s corresponding toUi ’s via formula ~24!. Thus, for
every two-qubit stater, we can always find suchU1 andU2
so that the corresponding rotations will diagonalizeT @23#.
Moreover, by selecting suitable rotations, one can maket11
andt22 nonpositive. In what follows, the states with diagon
T and t11,t22<0 will be calledcanonical.

For the states with diagonal matrixT ~hence also for the
canonical states!, the fully entangled fraction is given by~cf.
Ref. @24#!

f 5H 1
4 (11(

i
ut i i u) if detT<0

1
4 [11 max

iÞkÞ j
(ut i i u1ut j j u2utkku)] if detT.0.

~26!

One can show now@19,24# that if detT>0, thenf <1/2, i.e.,
f belongs to the classical region. Thus, while analyzingf in
the quantum region, it will be convenient to investigate
relatively simple functionN(%), instead of a more involved
matrix T. FunctionN(%) is given by

N~% !5(
i

ut i i u. ~27!

It has the following important properties:~i! f (%)
5 1

4 @11N(%)# for f > 1
2 ; ~ii ! N(%)<1 if and only if f < 1

2 . It
then contains all the information necessary to analyzef.

B. Canonical form in terms of the matrix elements

By applying the formula fort i j , one can easily show tha
diagonality ofT is equivalent to the following conditions fo
the matrix elements of% written in the standard basis (u1&
5u00&,u2&5u01&, etc.!:

%125%34, ~28!

%145%32, ~29!

%23 and %14 are real. ~30!

Moreover, sincet1152(%141%23) and t2252(%232%14),
the conditiont11,t22<0 is equivalent to

%23<0, ~31!

u%23u>u%14u . ~32!

Thus any state% can be locally rotated to a form with matri
elements satisfying the above constraints. This gives the
lowing expression forN(%):

N~% !5u122~%221%33!u22%23. ~33!
1-4
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Now, for

%221%33>
1

2
, ~34!

we havet33<0 hence detT<0. Consequently, by Eq.~26!
the fully entangled fraction is given by

f ~% !5
1

4
@11N~% !#5

1

2
~%221%3322%23!. ~35!

Then, with 22%23 large enough, one hasf >1/2 and f is
attained on singletc2 : f 5^c2u%uc2&.

C. Local action which improves f

With the canonical form of% at hand, it is not all that
difficult to eventually find examples of states with impro
able f. After some trials, we focused our attention on
simple family of states which in their canonical form ha
%245%1350:

%5F%11 0 0 %14

0 %22 2p23 0

0 2p23 %33 0

%14 0 0 %44

G . ~36!

Here p23>0 and%14 are real. We assumed also that% sat-
isfies the condition~34! and thatp23>(12%222%33)/2, so
that the state hasf 5^c2u%uc2&>1/2. Explicitly, f is given
by

f ~% !5
1

2
~%221%3312p23!. ~37!

We know~see Sec. III! that bistochastic maps cannot im
prove f. So, to improve it, we must try a nonbistochas
map. A possible simple candidate is, e.g., a map which
on Bob’s qubit and transforms it as follows:

%B→%̃B5L~% !5W0%BW0
†1W1%BW1

† , ~38!

where the operatorsWi are given by

W15F1 0

0 Ap
G , W25F0 A12p

0 0
G . ~39!

It is easy to check thatWi ’s satisfyW1
†W11W2

†W25I , hence
the operation is trace preserving. Moreover, one can no
that L can be regarded as resulting from the interaction o
two-level atom~Bob’s qubit! with electromagnetic field~an
environment!. Such an interaction produces the followin
transitions:

u0&au0&e→u0&au0&e , ~40!

u1&au0&e→Apu0&au1&e1A12pu1&au0&e , ~41!

where the subscriptsa ande denote atomic and field state
respectively. The parameterp is then interpreted as the prob
01231
ts

e
a

ability of photon emission from the atom in its upper sta
u1&a . This kind of interaction is called theamplitude damp-
ing channeland one can check@25# that, if repeatedly ap-
plied to a qubit, it produces an exponential decay charac
istic to spontaneous emission. The completely positive m
L is then obtained from the amplitude damping channel
tracing out the environment variables@16#.

Let us then putAp5sinu and apply transformation~38!
to Bob’s part of the total~two-qubit! system. The two-qubit
operator corresponding toWi is Ai[I ^ Wi and, conse-
quently, we obtain

%→%85A1%A1
†1A2%A2

† ~42!

with

A15F 1 0 0 0

0 cosu 0 0

0 0 1 0

0 0 0 cosu

G ~43!

and

A25F 0 sinu 0 0

0 0 0 0

0 0 0 sinu

0 0 0 0

G . ~44!

Note that like the original state%, the new state%̃ is in its
canonical form, too.

%̃5F%111%22sin2u 0 0 %14cosu

0 %22cos2u 2p23cos2u 0

0 2p23cos2u %331%44sin2u 0

%14cosu 0 0 %44cos2u

G .

~45!

The change off associated with the transformation is no
given by DB5^c2u%̃uc2&2 f (%). A simple calculation
shows that

DB5~12cosu!F11cosu

2
~%442%22!2p23G . ~46!

Here, the indexB indicates that Bob’s qubit has been tran
formed. One can check that if one transforms Alice’s qu
instead of Bob’s then the resultingDA is given by

DA5~12cosu!F11cosu

2
~%442%33!2p23G . ~47!

Finally, one can swap places of 1 and cosu on the diagonal
of the first transformation matrixA1 and adjustA2 accord-
ingly. This, translated into changes off, result in expressions
like Eq. ~46! and ~47! but with %44 substituted by%11. In
1-5
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other words, single qubit, trace preserving transformati
like that defined by Eq.~42! can improve fidelity of states in
form ~29! provided that

@max~%11,%44!2min~%22,%33!#2p23>0. ~48!

The maximal increaseD5max$DA ,DB% achievable in this
way is

D5
@max~%11,%44!2min~%22,%33!2p23#

2

2@max~%11,%44!2min~%22,%33!#
. ~49!

To obtain a more clear picture of the situation, let us wr
the diagonal elements of% as

%115
12«2g

4
%445

12«1g

4
, ~50!

%225
11«2d

4
%335

11«1d

4
. ~51!

To satisfy (%221%3312p23)>1 @so that f (%)
5^c2u%uc2&>1/2#, one needs a non-negative« and

12«

4
<p23<

1

4
A~11«!22d2 ~52!

~the upper limit forp23 guaranties positivity of%). Thus the
method improvesf on states with 0,«,1 and ugu1udu
22«.4 p23. One can easily check that in this class, t
‘‘most improvable’’ border state (4p23512«, i.e., f 51/2!
is

%5
1

2 F 0 0 0 0

0 322A2 12A2 0

0 12A2 1 0

0 0 0 2A222

G . ~53!

Since f (%)51/2 then standard teleportation scheme using%
does not offer any better fidelity than classical. On the ot
hand, if we transform% by transformation~42! with cosu
5(A221)/(4A225) ~this choice maximizesD), then the
new state still satisfies the condition~34!, and we obtain
f (%̃)'0.53.1/2. The new state can then be used for te
portation with nonclassical fidelity
, a

-

cu

r,

01231
s

r

-

F'
2.06

3
.

2

3
. ~54!

In other words, the state% gets ‘‘better’’ when corrupted by
environment. The improvement is small, nevertheless i
significant. It changes the character of the state: from n
teleporting to teleporting.

While analyzing this result, one may notice that the sta
with the fully entangled fraction improvable by the map~42!
form a rather restricted class. In particular, this map can
increase the entangled fraction of states like

%5
1

2
uc2&^c2u1

1

2
u00&^00u.

It would then be very interesting to provide a complete ch
acterization of the class of states which allow to impro
fidelity by some local process, as well as the class of lo
processes capable to improve fidelity for some states. T
task is, however, beyond the scope of this paper.

V. CONCLUSIONS

We have examined the problem of optimal teleportat
fidelity with given bipartite quantum states. To this end, w
investigated a possibility of increasing the fully entangl
fraction by means of trace preserving LOCC operations
discovered a class of LOCC operations which nontrivia
increasef on some of the two-qubit states. To a surprise,
successful operations do not represent any sophisticated
tion of Alice or Bob. Instead, they result from a commo
~dissipative! interaction between the teleporting state and
local environment. The unexpected conclusion then is th
dissipative interaction, normally associated with the destr
tion of quantum teleportation, can sometimes facilitate it.
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