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Local environment can enhance fidelity of quantum teleportation
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We show how an interaction with the environment can enhance fidelity of quantum teleportation. To this
end, we present examples of states which cannot be made useful for teleportation by any local unitary trans-
formations; nevertheless, after being subjected to a dissipative interaction with the local environment, the states
allow for teleportation with genuinely quantum fidelity. The surprising fact here is that the necessary interac-
tion does not require any intelligent action from the parties sharing the states. In passing, we produce some
general results regarding optimization of teleportation fidelity by local action. We show that bistochastic
processes cannot improve fidelity of two-qubit states. We also show that in order to have their fidelity improv-
able by a local process, the bipartite states must violate the so-called reduction criterion of separability.

PACS numbgs): 03.67.Hk

[. INTRODUCTION fidelity within the original teleportation scheme supple-
mented by local unitary rotations. Henceforth we will call
Quantum teleportatiofil] is fundamentally important as such a scheme thetandard teleportation schent8TS. Fi-
an operational test of the presence and the strength of enelity of teleportation achievable in STS is uniquely deter-
tanglement. Moreover, a recent series of beautiful experimined by the bipartite statefsilly entangled fractionlt was
ments[2], which realized teleportation in practice, opened adefined in Ref[5] as
window for a wide range of its possible technological appli-
cations.
In this paper, teleportation is understood as any strategy fe)=maxyle|y). (2)
which uses local quantum operations and classical commu- v
nication (LOCC) [3] to transmit an unknown state via a
shared pair of particles. In an ideal teleportation scheme, thin the definition, the maximum is taken over all maximally
electron pair is in a pure, maximally entangled bipartite stateentangled stateg, i.e., overgy=U,;®U,¢, , where

1 d
- =—=(|01)—[10)). 1) _1 TV
2 m—ﬁ;lww, )

The state is shared by a sendAlice) and a receive(Bob).
By use ofy_ with Alice, Bob can produce aexactreplica  U; andU, are unitary transformations. Later, it was shown
of another(input) state originally held by Alice. In reality, that in order to be useful for STS, the states acting on a
however, interactions with the environment and imperfecHilbert spaceC% C% must havef >1/d [6,7]. Moreover, it
tions of preparation result in Alice and Bob sharing a statevas shown that nbound entangledtate(see Ref[8]) can
which is always mixed. Consequently, at Bob’s end, the teleoffer better fidelity than classical communicatid®,7].
ported state can only be a distorted copy of the input initiallySomewhat earlier, in Ref§10] and[11], the authors identi-
held by Alice. Moreover, if the bipartite state is mixed too fied a class of states which do not permit any increasg of
much, it will not provide for any better transmission fidelity neither by any trace preservindP) LOCC nor even by
than that of an ordinary classical communication chapdel some less restricted non-TP LOCC actions. Mixtures of a
To do better than a classical channel, the shared quantumaximally mixed state ang -, [4,12] belong, among others,
state must be entangled. A natural question thedfiscan  to this class.
any entangled state provide better than classical fidelity of One could then be tempted to speculate fratuld not be
teleportation? increased by any TP LOCC operations. If so, then STS
Early attempts to answer this question concentrated on th&ould be a unique teleportation scheme in the sense that no
characterization of the states which can offer nonclassicabther scheme would provide better fidelity than STS. On the
other hand, one could still suspect that by some intelligent,
sophisticated LOCC operation, Alice and Bob would be able

*Electronic address: piotr.badziag@mdh.se to increasd for some states anyway. An important question
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*Electronic address: pawel@mifgate.mif.pg.gda.pl tation scheme, for which at least some states withlid
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In this paper, we answer this question by presenting &idelity is a function of mapA and, like A, it depends on
class of two-qubit states with<1/2, which can, neverthe- both, teleporting state and the strategy of teleportatiah
less, be used for teleportation with nonclassical fidelity. FolOne can shov7] that in the standard teleportation scheme,
that, however, one has to allow for somlissipativeinterac-  the maximal fidelity achievable from a given bipartite state
tion between the states and their local environment first. Thigs
means that dissipation, which is usually associated with de-
coherence and destruction of teleportation, incredse$

- : fd+1
some initially nonteleporting states to above 1/2. In other F= ' 7)
words, some states can produce nonclassical fidelity within d+1
the original teleportation scheme but only after being “cor-
rupted” by the environment!

To our knowledge, this is a previously unknown effect. In
particular, it is different than that used in the so calfitter-
ing method of improving some of the states’ parameter
[13,14). Filtering includes aselectionprocess based on a original teleportation scheme applied with the rotated bipar-
readoutof megsurement outcomes. In our examples, on th(?ite statep will now produce the maximal fidelity7).
other hand, Alice and Bob do not need to know the outcomes If, on the other hand, Alice and Bob do not share any

at all. I-I|ence, in Q{grtllmilar, unlike filtering, the actions in OUT yuantum state, then their best strategy4s (i) Alice per-
examples are entirely trace préserving. forms an optimal measurement of the system to be teleported

\lNe beﬁ]m our p:.eselnia:lon tlyt.recaflll:jngllltso.rnesof thgf 9€8N3nd sends the outcome to Badassically. (i) On the basis
eral results on optimal teleportation fidelity in Sec. (¢f. of her results, Bob tries to reconstruct the state.

Ref. [7]). This allows us to conclude that an optimal telepor- The optimal teleportation fidelity for this strategy is equal

tation scheme should include maximizationfdfy means of . o L :
. : . to the optimal fidelity of the state estimation for a single
TP LOCC operations. Then, in Sec. Il we put the problem 'nsystem. It is given by15.7]

the context of increasinfjby the maps of the form® A. We
can limit the possible successful maps by showing that, e.g.,

for two qubits, the bistochastic processes cannot do the job. 2
We also show that the states withimprovable byl® A 2 a1 g
action must violate the so-calleéduction criterion Subse-

quently, in Sec. IV we present the examples of states, for ) ]
which f can be nontrivially increased by TP LOCC opera- One can easily see now that, in order to perform better than

tions. The paper ends with the summary of the results an@lassical communication, STS needs bipartite states fvith
the conclusions in Sec. V. >1/d. With f<1/d, Alice and Bob can just as well discard

their bipartite state and rise classical communication alone.
There is no reason why STS should represent the most

efficient teleportation scheme using states with1l/d. One

can show, however, that the optimal teleportation scheme
Let Alice and Bob share a pair of particles in a given state(OTS) is a generalization of STE/]. OTS consists of two

o acting on a Hilbert spack,® Hg=C% CY. Additionally,  steps:(i) Alice and Bob try to maximizd by applying TP

let Alice have a third particle in an unknown pure stgte LOCC (not necessarily unitajyoperations to the original

e Hc=C to be teleported. In the most general teleportationstateg. (ii) They apply STS using the transformed state.

scheme, Bob and Alice apply some trace presen(nig) Let thenf (@) denote the maximdl attainable fromp

(hence without selection of the ensemHl©CC operatiorf by means of TP LOCC operations. The maximal teleporta-

to the particles which they share and to the thifdice’s)  tion fidelity from stateg is then given by{7]

particle. After the operation is completed, the final state of

Bob’s particle(from the paiy is

0bon=Tracl T ) ¢l®0e)]. (4)

The resulting mapping of the input stdthe state of the third
particle) onto oo #) establishes geleportation channel

wheref is the fully entangled fraction g8 given by formula
(2). To achieve this fidelity, Alice and Bob have to rotate
their respective parts of the teleporting stateso that the
Smaximum of formula(2) is attained on singleiy_. The

®

II. OPTIMAL FIDELITY IN A GENERAL
TELEPORTATION SCHEME

fnadt1

Fmax="g1

(€)

Thus, to find the optimal teleportation fidelity for a given

(it depends on both7 and ¢): bipartite statep, one must findf ... In other words, the

fidelity of STS can be improved ifi) f can be increased by
A W){(])=0gon(¥). (5) LhOCC,d(ii) The finalf is in quantum region, i.e., it is greater

than 14.

The aim of teleportation is to obtaipg.,(#/) as close to Henceforth, when referring to a process of increading

|4){ | as possible. A useful measure of the quality of tele-we will understand it as increasing so that the final value is

portation is then provided by teleportatiorfidelity [4] above 14 (within the rangef <1/d, the fully entangled frac-
tion can be increased relatively easily. This, however, does

F={|logon( )| ). (6)  not produce any better fidelity thaf)).
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ll. SOME GENERAL RESULTS ON IMPROVING F BY with U; denoting unitary transformations occurring with
LOCAL INTERACTIONS probability p;. The corresponding’=(I®A)P. is a mix-
ture of maximally entangled vectors. Consequently gtr()

A. Simplified formula for maximal f attainable by local o ;
cannot exceedl(o) which is equal to the maximal overlap of

interaction . -
) ) ¢ with one maximally entangled vector.

When local TP transfomJang]s are used to incréaxfea In addition to preserving trace, may$6) preserve the
general bipartite state e C"'®C®, then the best attainable jdentity, i.e., A(1)=1. Maps preserving both the trace and
result is the identity are called bistochastic. In general, the class of

_ bistochastic maps can be wider than the class specified by
fA—mAaxTr[(A®I)QP+]. (10 Eq. (16). For two qubits, however, the two classes coincide.

To see this, one can note that, in general, the set of states

The maximum is here taken over all TP completely po’,Sitivecorresponding to the set of bistochastic maps via the isomor-

CP A andP. = “with iven by Eq.(3).  Phism consists of the states witloth subsystems maximally
(Stin)er:;)irlia:g daencom+po.|°,;fig|>q< lg{ L:]iyels[llpg] gvenbyEQd).  ied. For two-qubit systems such states are mixtures of

maximally entangled vectofd9]. Each such vector can be

written asl ® U ¢, for some unitaryd. Hence the maps cor-

A(-)=E Vi(-)ViJr (11 responding to mixtures of such vectors are mixtures of uni-
‘ tary maps. Thus for two qubits the bistochastic maps cannot

, + . increasd. One may conjecture that this should be the case in
with =;V;V;=1. Moreover, we can utilize the fact tha higher dimensions, too.

@y, =1oATy, [17] (superscriptT denotes transposition

in bas's{|'>}) and rewrite formula10) as B. Increasing f by local actions and the reduction criterion for

fa=maxTrle(I®)P. ], (12) separability
r

Let us now derive some constraints for the states With
improvable by local interaction. A state suitable for a tele-
with portation channel must be entangled, i.e., it must be impos-
sible to represent it by a mixture of product staft&g]:

> W)W (13) -
! Q?&zi Pioi®Q;. (17)

and W, =V} (the star denotes complex conjugajioNatu-
rally, like A,I' is trace preserving, too.

We can now recall that there is an isomorphism betwee
the TP CP maps and the bipartite states with one subsyste
maximally mixed. The isomorphism is given by

INED)

Such states violate different separability criteria. Here, we
Igonsider the so-callegeduction criterionfor separability. It
'ﬁ]given by the following conditions satisfied by all separable
stateq 20,21]:

Q’:(|®A)P+. (14) QA®I_Q>01 I®QB_QBO' (18)

] The inequalities mean that the operators on the left-hand
Thus, for any TP CP map, the corresponding state has §des must bgositive i.e., they must have non-negative ei-
maximally mixed subsyster and for any state with a maxi- - genvalues only. In a two-qubit case, the reduction criterion is
mally mixed subsystem, there exists a map that realizes it gqujvalent to separabilitthence it is also a sufficient condi-
via the above formula. Consequently, we can obtain the folyjgp for separability, while it becomes a weaker “detector”

lowing form for f»: of entanglement in higher dimensions. In other words, there
exist nonseparabléentangledl states in higher dimensions
fale)=maxTr(ge"), (19  which do not violate the reduction criterion.
e’ Suppose now that for some state one hasf(o)

>f(p), i.e.,f can be improved by a local TP operation on
subsystenA. Naturally, we require that the improvement is
nontrivial, i.e.,f,>1/d. We will show now that this condi-
tion implies violation of the reduction criterion. Indeed, since
fao>1/d, then there exists a statg’ whose one subsystem
(say,o,) has maximal entropy and

where the maximum is taken over all stags with maxi-
mally mixed subsystemd. An analogous formula holds for
fg. In general, the value, andfg are likely to be different
from one another.

Formula (15) allows for identification of those maps
which definitely cannot imprové. Take, for instance, the
maps describing the action of random external fidltig]. Tree')>1/d. (19)
They are of the form

Maximum entropy means thap,=1/d. This implies

A('):Z pUi(HUT, (16) Tr[(Q_A®I)Q ]=Tr(gAQA)=1/d. By putting this into in-
i equality (19), we obtain
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Trl(oa®l—p)0']<0. (20 r'=0qr,
The trace of a composition of two positive operators is non- s'=0,s, (25
negative. Operatop’ is positive. Consequently, in order to
satisfy the last inequality, the operatop®1— o cannot be T'=0,TO},

positive.

Since all the entangled two-qubit states violate the reducwith O;’s corresponding tdJ;’s via formula(24). Thus, for
tion criterion, the condition for improvability of derived  €every two-qubit statg, we can always find suctd; andU,
above, does not put any new restrictions on the class of stat& that the corresponding rotations will diagonaliz¢23].
with improvablef here[10,11]. Nevertheless, the condition Moreover, by selecting suitable rotations, one can ntake
should be useful while investigating bipartite states in highendt,, nonpositive. In what follows, the states with diagonal
dimensions. This is because not all the entangled states thefeandty;,t,,<0 will be calledcanonical.
violate the reduction criterion. For the states with diagonal matrix (hence also for the

canonical statesthe fully entangled fraction is given Hgf.

IV. BEATING THE STANDARD TELEPORTATION Ref. [24])

SCHEME
l i i ~
Before showing how to do better than STS, we will still “(l+§i: [tl) if detT=<0
need to introduce some methods of dealing with the fully . .
entangled fraction of two-qubit states. a[1+ max (|t +[t;| = taf)] if detT>0.

i#k#]j
(26)
A. Fully entangled fraction in the Hilbert-Schmidt
representation One can show noWl19,24 that if detT=0, thenf<1/2, i.e.,
f belongs to the classical region. Thus, while analyZing

An arbitrary state of a two-qubit system can be repre—the guantum region, it will be convenient to investigate a

sented as relatively simple functiorN(g), instead of a more involved
1 3 matrix T. FunctionN(p) is given by
e=z|1®l+rosl +I®S-0'+m;:1 thmOn® O |-
(21) N(e)=20 [til. 27)

nge,l 3stands for the identity pperatgr,ands bgelong 0t has the following important propertiesti) f(o)
R ’{¢n}n:1 are standard Pauli matrlceS’,O':Ei:lriO'i.. :}T[l"_ N(Q)] for fZ%, (") N(Q)gl if and Only Iffgl It
Coefficients ty,=Tr(po,® o) form a real 3X3 matrix  then contains all the information necessary to anafyze
later denoted byl. Note thatr ands are local parameters as

they determine the reductions et B. Canonical form in terms of the matrix elements

1 By applying the formula fot;; , one can easily show that
01=Tn,e=5(l+r0), diagonality of T is equivalent to the following conditions for
22) the matrix elements op written in the standard basi$1()
1 =100),|2)=1|01), etc):
=Try e0=5(l+s0).
Q2 ng 2( 0-) 01,= 034, (28)
Matrix T, on the other hand, is responsible for the correla- 014= 032, (29
tions
0,3 and o4, arereal (30

E(ab)=Tr(pa-o®b-0)=(a,Th). (23
Moreover, sincet;;=2(014+ 022 and ty=2(023—014),

One can notice now, that for any two-qubit stateone can  the conditiont;;,t;,<0 is equivalent to
find a product unitary transformatiod,;®U, which will

transforme to a form withdiagonal T This statement fol- 023=<0, (31)
lows from the fact that for any 2 unitary transformation
U, there is a unigue 8 3 rotationO such thaf22] |02d=[e1d - (32)
. R Thus any stat@ can be locally rotated to a form with matrix
Un-eU'=(0n)-o. (24 elements satisfying the above constraints. This gives the fol-
lowing expression foN(g):
Now, if a state is subjected told; ® U, transformation, the
parameters,s and T are transformed into N(0)=|1—2(Qs+ 033)| —2023. (33

012311-4
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Now, for

1
Q22+ Q33 5, (34
we havetz3<0 hence det<0. Consequently, by Eq26)
the fully entangled fraction is given by

1 1
f(e) Z[1+N(9)]:5(922‘1“933_2923)- (39
Then, with —2p,5 large enough, one has=1/2 andf is
attained on singlety_ :f=(¢_|o|¥_).

C. Local action which improvesf

With the canonical form ofp at hand, it is not all that
difficult to eventually find examples of states with improv-
able f. After some trials, we focused our attention on a
simple family of states which in their canonical form have

024=013=0:

211 O 0 Q14
0 @22 —P23
= (36)
¢ 0 —p2s @03 O
Q14 0 0 Qg

Here p,3=0 andg,, are real. We assumed also tlatsat-
isfies the condition34) and thatp,s=(1— 05— 033)/2, SO
that the state hab=(y_|o|¢_)=1/2. Explicitly, f is given

by
1
f(g)=5(922+g33+2p23). (37)

We know(see Sec. Il that bistochastic maps cannot im-
prove f. So, to improve it, we must try a nonbistochastic

map. A possible simple candidate is, e.g., a map which acts

on Bob’s qubit and transforms it as follows:

08— 05=A(0)=Wo0sWo+W,0eWi,  (39)

where the operatord/; are given by
w=lt Ol w 1P 39
=lo wlr WeTlo o | @9

It is easy to check thaw;'s satisfy Wi W, + WhW,=1, hence

PHYSICAL REVIEW A 62 012311

ability of photon emission from the atom in its upper state
|1),. This kind of interaction is called themplitude damp-
ing channeland one can check5] that, if repeatedly ap-
plied to a qubit, it produces an exponential decay character-
istic to spontaneous emission. The completely positive map
A is then obtained from the amplitude damping channel by
tracing out the environment variablgks].

Let us then put/p=siné and apply transformatiof88)
to Bob’s part of the totaltwo-qubi) system. The two-qubit
operator corresponding toV; is A;=I®W,; and, conse-
quently, we obtain

0—0'=A0Al+A0A] (42)
with
1 0 0
A 0 cosf O 43
Yo o0 1 (43)
0 0 0 co¥
and
0 sing O 0
0O O O oO
A=lo 0 0 singl (44
0 0 0 0

Note that like the original state, the new state is in its
canonical form, too.

011+ 08I0 0 0 01406
- 0 00,0080  —P,COoSH 0
e= 0 —PgCOS O 033+ 04SIFH O
014C0S6 0 0 044C05 0
(45

The change of associated with the transformation is now
given by Ag=(y_|e|y_)—f(g). A simple calculation
shows that

1+ cosé
5 (Qaa— 022 — P23

. (46

Ag=(1—cos0)

the operation is trace preserving. Moreover, one can noﬂcﬁere, the indexB indicates that Bob’s qubit has been trans-
that A can be regarded as resulting from the interaction of 3ormed. One can check that if one transforms Alice’s qubit

two-level atom(Bob’s qubiy with electromagnetic fieldan
environmenkt Such an interaction produces the following
transitions:

|0>a|0>eﬂ|0>a|o>ev (40

|1)al0)e—VPI0)a| et V1—Pp|1)4|0)e,

where the subscripta and e denote atomic and field states,
respectively. The parametpiis then interpreted as the prob-

(41)

01231

instead of Bob’s then the resulting, is given by

1+co
2

s
Ap=(1—cosh)

(0aa—Q33) —Pa3|- (47

Finally, one can swap places of 1 and éasn the diagonal
of the first transformation matri&; and adjustA, accord-
ingly. This, translated into changesfofresult in expressions
like Eq. (46) and (47) but with g,, substituted byo;;. In

1-5
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other words, single qubit, trace preserving transformations 2.06

like that defined by Eq42) can improve fidelity of states in F=—5>3 (54)
form (29) provided that

[max 011,044 —MiN(Q22,0391—P23=0.  (48)  In other words, the state gets “better” when corrupted by

) ) ) ) ) environment. The improvement is small, nevertheless it is
The maximal increase\ =maxAn,Ag} achievable in this  gjgnificant. It changes the character of the state: from non-
way Is teleporting to teleporting.

o B 2 While analyzing this result, one may notice that the states

_ [max(eq,049 mln(sz,Qgg) Paa] . (49  with the fully entangled fraction improvable by the mg2)
2[max(@11,044) —MiN(Q22,033)] form a rather restricted class. In particular, this map cannot
increase the entangled fraction of states like

To obtain a more clear picture of the situation, let us write
the diagonal elements a@f as

1 1
l-e—vy l1-e+y o= 5l )u-|+5|00(00.
eu=—""4 Qaa=—7 (50
14e—o 14e+68 It would then be very interesting to provide a complete char-
QZZ:T 933=T. (52 acterization of the class of states which allow to improve

fidelity by some local process, as well as the class of local
f(0) processes capable to improve fidelity for some states. This

i + 033t =
To salisty gt 0st2ppg=1 [s0  that task is, however, beyond the scope of this paper.

=(y_|e|¥_)=1/2], one needs a non-negatigeand

1
b AT V. CONCLUSIONS
SP2s< 7 (l+e)°—o (52

We have examined the problem of optimal teleportation
(the upper limit forp,3 guaranties positivity op). Thus the  fidelity with given bipartite quantum states. To this end, we
method improvesf on states with &e<1 and|y|+|5] investigated a possibility of increasing the fully entangled
—2&>4p,3. One can easily check that in this class, thefraction by means of trace preserving LOCC operations and
“most improvable” border state (f3=1—¢, i.e., f=1/2) discovered a class of LOCC operations  which nontrivially

1-¢
4

is increasd on some of the two-qubit states. To a surprise, the
successful operations do not represent any sophisticated ac-
0 0 0 0 tion of Alice or Bob. Instead, they result from a common
110 3-2y2 1-\2 0 (dissipative interaction between the teleporting state and the
e=5|, 12 1 0 (53) local environment. The unexpected conclusion then is that a
- dissipative interaction, normally associated with the destruc-
0 0 0 2\2-2 tion of quantum teleportation, can sometimes facilitate it.

Sincef (o) =1/2 then standard teleportation scheme uging

does not offer any better fidelity than classical. On the other ACKNOWLEDGMENTS
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