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Teleportation and secret sharing with pure entangled states

Somshubhro Bandyopadhyay*
Department of Physics, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Calcutta 700009, India
~Received 5 November 1999; revised manuscript received 11 February 2000; published 15 June 2000!

We present two optimal methods of teleporting an unknown qubit using any pure entangled state. We also
discuss how such methods can also have successful application in quantum secret sharing with pure multipar-
tite entangled states.

PACS number~s!: 03.67.Hk, 03.65.Bz
th

le

om
t

tie
ex

er
pe
w
lie
to

d
e

io
th

re
e

m
t
s
t
e-
os
tio
e
n

in
th
i
n

that
as-
is-
er-
is

en-

bit
she
ob
re-
m-
if
cal
any
ible
he
ar-
n
n-

nd

ted
ve
it-
the

ary
ol.
are
er
n
ous
hat
ri-
lso
ow
en-
as

we
ras-

red
ate.
I. INTRODUCTION

In recent years quantum entanglement@1# has found many
exciting applications that have considerable bearing on
emerging fields of quantum information@2# and quantum
computing@3#. Two such key applications are quantum te
portation@4# and quantum secret sharing@9#. Quantum tele-
portation involves secure transfer of an unknown qubit fr
one place to another and in quantum secret sharing, quan
information encoded in a qubit is split among several par
such that only one of them is able to recover the qubit
actly provided all the other parties agree to cooperate.

In quantum teleportation two parties~Alice and Bob! ini-
tially share a maximally entangled state~for example, an
EPR pair!. Alice also holds another qubit unknown to h
that she wants to teleport to Bob. For this purpose she
forms a certain joint two particle measurement on her t
qubits and communicates her result to Bob. Bob now app
appropriate unitary transformations on his qubit to bring it
the desired state. However faithful teleportation@4# ~and also
secure key distribution@5#! is not possible if the entangle
state used as the quantum channel is not maximally
tangled. In fact staying within the standard teleportat
scheme it is no longer possible for Bob to reconstruct
unknown qubit exactly, with a nonzero~however small!
probability. Recently, the issue of teleportation with pu
entangled states has been considered by Mor and Horod
@6# ~originally in an earlier work of Tal Mor@7#! where they
observed that teleportation can also be understood fro
more general approach based on ‘‘generatingr-ensembles a
space-time separation’’ by exploiting the Hughston, Joz
and Wooters~HJW! result @8#. They introduced the concep
of ‘‘conclusive’’ teleportation and showed how perfect tel
portation having a finite probability of success is made p
sible with pure entangled states. By conclusive teleporta
it is meant that for certain conclusive outcomes of some g
eralized measurement, perfect teleportation with fidelity o
is achieved. Of course this cannot take place with certa
unless the state is maximally entangled. We note that
success probability of conclusive teleportation, which
twice the modulus square of the smaller Schmidt coefficie
as obtained by Mor and Horodecki~henceforth MH! is also
optimal.

Quantum secret sharing@9# protocol allows for splitting
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the quantum information among several parties such
any one can recover the information but not without the
sistance of the remaining parties. For simplicity all the d
cussions will be with three partite systems, although gen
alization to four or more parties is always possible. In th
case three parties~say, Alice, Bob, and Charlie! initially
share a maximally entangled state, for example, a Gre
berger, Horne, Zeilinger~GHZ! state@11#. Besides Alice also
holds another qubit carrying some information~in quantum
information we know that a message is encoded in a qu!
and by performing a Bell measurement on her two qubits
succeeds in splitting the quantum information among B
and Charlie. Observe that neither Bob nor Charlie can
cover the qubit in its exact form only by themselves perfor
ing whatever local operations they wish to. If and only
they agree to act in concert, then performing certain lo
measurements and communicating among themselves,
one of them can recover the desired state. It is not poss
for both to get hold of the state as it is forbidden by t
no-cloning theorem. We note that the protocol of secret sh
ing is very similar to that of teleportation and in a situatio
where Alice, Bob, and Charlie share a nonmaximal e
tangled state, the protocol as it is will not be successful.

In this paper we consider the issue of teleportation a
secret sharing with a pure entangled state~a pure entangled
state will always be taken to be nonmaximal unless sta
otherwise!. We suggest two more methods for conclusi
teleportation that are optimal. We refer to them as qub
assisted conclusive teleportation processes, since in both
methods either Alice or Bob needs to prepare an ancill
qubit in some specified state for carrying out the protoc
The motivation behind suggesting two more methods
twofold. First, one is to obtain a possible improvement ov
MH’s suggestion from an operational point of view with a
eye towards future experiments. Second, exploring vari
explicit local strategies can also provide some insight t
can be fruitful, considering their possible application in va
ous other manipulations of quantum entanglement. We a
show using the methods developed for teleportation h
successful secret sharing can be implemented using pure
tangled states. We will refer to this type of secret sharing
conclusive secret sharing.

The present paper is organized as follows. In Sec. II,
discuss the standard teleportation scheme of Bennett, B
sard, Crepeau, Jozsa, Peres and Wootters@~BBCJPW! proto-
col# @4# and see why it is not successful when the sha
quantum channel is a nonmaximally entangled pure st
©2000 The American Physical Society08-1
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Section III introduces the concept of conclusive teleportat
and the protocol of MH@6# is discussed in some detail. I
Sec. IV we present two new proposals of conclusive telep
tation and discuss relative merits of the suggested and
existing ones. In Sec. V we describe the quantum secret s
ing protocol@9#. In Sec. VI we discuss what we call conclu
sive secret sharing, i.e., quantum secret sharing with p
entangled states. There we show how the methods devel
in the preceding sections in the context of quantum tele
ration have applications in quantum secret sharing. Finall
Sec. VII we summarize and conclude.

II. QUANTUM TELEPORTATION: BBCJPW PROTOCOL

Quantum teleportation@4# allows for sending quantum in
formation encoded in a qubit~a spin-1/2 particle or any
quantum two-level system! from one place to another with
out any material transfer of the particle itself. The two part
involved in this process initially share a maximally entang
state. The protocol is carried out only using local measu
ments~Bell measurement! and classical communication.

Let us suppose that Alice and Bob share a maxima
entangled state, say,

uc&AB5
1

&
~ u00&AB1u11&AB) ~1!

and the state of the unknown qubit that Alice is supposed
send to Bob is

uf&15au0&1bu1&5S a
bD

1
. ~2!

The combined state of the three qubits can be written as

uF&1AB5
1

2 F uF1&1AS a
bD

B

1uF2&1AS a
2bD

B

1uC1&1AS b
aD

B

1uC2&1AS b
2aD

B
G ~3!

where the states,uF6&,uC6& are defined by

uF6&5
1

&
~ u00&6u11&);uC6&5

1

&
~ u01&6u10&)

and form a basis~Bell basis! in the composite Hilbert spac
of Alice’s two qubits.

At this stage Alice performs a measurement in the B
basis on her two qubits and therefore obtains any one of
four Bell states randomly and with equal probability. S
then communicates her result to Bob~which requires two
classical bits!, who in turn rotates his quibit accordingly t
reconstruct the unknown state in its exact form.

However, in a situation where Alice and Bob share a n
maximal but pure entangled state of the form, say,

uc&AB5au00&AB1bu11&AB& ~4!
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~where,a21b251, and we assume without any loss of ge
erality thata, b is real witha>b) and following the stan-
dard method for teleportation, Bob ends up with the st
(bb

aa), which cannot be rotated back to the desired stateb
a)

without having any knowledge of the state parametersa and
b. Since the state that is teleported is supposed to be
known, the Bennett protocol fails to reproduce the state
actly on Bob’s side.

III. CONCLUSIVE TELEPORTATION: PROPOSAL
OF MOR AND HORODECKI

Quite recently in a very interesting paper, Mor and Hor
decki @6# suggested a protocol for teleportation when Ali
and Bob share a nonmaximal pure entangled state. They
tained the optimal probability for successful teleportatio
which is given by twice the modulus square of the sma
Schmidt coefficient of the state in question. The method s
ceeds sometimes and when it succeeds the fidelity is
implying that the unknown state is exactly reproduced
Bob’s side. Following Mor and Horodecki we will continu
to refer to teleportation with pure entangled states as con
sive teleportation.

We begin with the fact that Alice and Bob share the pu
entangled state~4! and the unknown state that Alice wishe
to send to Bob is given by~2!. The central feature of the
scheme is to write down the combined three qubit state in
following way:

uC&5uf&uc&5
1

2 F (au00&1bu11&)AS a
bD

B

1(au00&2bu11&)AS a
2bD

B

1(bu01&1au10AS b
aD

B

1(bu01&2au10AS 2b
a D

B
G . ~5!

Now measurement on Alice’s side takes place in two ste
The first measurement projects the state onto either of
subspaces spanned by$u00&, u11&% or $u01&, u10&%. Thus this
measurement has two possible outcomes that occur
equal probability. Suppose the result is the subspace spa
by $u00&, u11&%. Alice now performs an optimal positive op
erator value measure@10# ~POVM! that distinguishes conclu
sively between the two nonorthogonal states (b

a) $00,11% and
(2b

a ) $00,11% . The probability of obtaining a conclusive resu
is 2b2 ~b is the smaller of the Schmidt coefficients!. Thus
this is the probability of successful teleportation with fideli
one. The number of classical bits required in the abo
method is three. One bit is required for Alice to inform Bo
whether she is successful in discriminating between the n
orthogonal states and two more bits are required so that
performs the required rotations to reconstruct the unkno
state. Note that the above proposal cannot succeed alw
This is because there is always a possibility of an inconc
sive result in the state discrimination procedure. But whe
succeeds, the probability of success being 2b2, the fidelity
of teleportation is one. Also note that forb51/&, which
8-2
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corresponds to a maximally entangled state, the propos
always successful with certainty as there need not be
inconclusive result since in this case one discriminates
tween two orthogonal states.

IV. QUBIT-ASSISTED CONCLUSIVE TELEPORTATION

We now discuss two methods for conclusive teleportat
that are optimal. We will see that both these methods
appropriately be referred to as qubit-assisted processes,
in both schemes either Alice or Bob are required to prepa
qubit in some specified state to implement the respec
protocol. Since the process of teleportation involves two p
ties, modifications, as far as measurement and other op
tions are concerned, may be suggested for any one of
parties without introducing any new operations for the ot
side. By this we mean that we can either modify the m
surement part of Alice keeping the Bob part the same, i.e.
only has to do the standard rotations~proposal 1! or we can
also suggest some further operations to be carried out by
once the original protocol of teleportation gets comple
~proposal 2!, which implies the measurement part of Alic
remains unchanged.

A. Proposal I

The basic idea is as follows. Alice first prepares an anc
qubit in a state, sayux&, besides her usual possession of tw
qubits. She now performs a certain joint three particle m
surement on her three qubits. It will be shown that for so
of her results, Bob needs to perform only the standard r
tions (sz ,sx ,szsx) to exactly reconstruct the unknow
state, after he gets some information from Alice. Howev
for any of the remaining possible set of outcomes,
method works exactly the same way as that of Mor a
Horodecki, discussed in the previous section. The met
that we propose fails sometimes, but when successful,
fidelity of teleportation is one.
Suppose Alice and Bob share a pure entangled state give
~4! and the state that Alice wants to teleport to Bob is giv
by ~2!.
Alice now prepares an ancilla qubit in the state,

ux&25au0&1bu1&5S a
b D

2
. ~6!

Observe that the state parameters of this ancillary qubit
Alice prepares are the Schmidt coefficients of the pure
tangled state.

Now, the combined state of the four qubits is given by

uC&12AB5uf&1^ ux&2^ uc&AB

5S a
bD

1
^ S a

b D
2

^ ~au00&1bu11&)AB ~7!

and we observe that the stateuC&12AB can also be written as
~we omit the tensor product sign henceforth!
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uC&12AB5
Aa41b4

2 F S a8uF1&12A1b8uF2&12A)S a
bD

B

1~a8uF1&12A2b8uF2&12AD S a
2bD

B

1~b8uF3&12A1a8uF4&12AD S b
aD

B

1~b8uF3&12A2a8uF4&12A)S 2b
a D

B

1
ab

hJ
F uF5&12AS a

bD
B

1uF6&12AS a
2bD

B

1uF7&12AS b
aD

B

1uF8&12AS 2b
a D

B
G , ~8!

wherea85a2/Aa41b4 andb85b2/Aa41b4.
The important thing to note from Eq.~8! is that we have

succeeded in writing down the combined state in a way s
that one part clearly resembles the one in the BBCJPW p
tocol ~see Sec. I!, whereas the other part resembles that
Mor and Horodeckis’~see Sec. II!. This is turn implies that
for a suitable measurement by Alice, there are some o
comes where only standard rotations by Bob are sufficien
construct the unknown state after he receives the resu
Alice’s measurement. If this is not the case then, of cour
one has to resort to the POVM for state discrimination. T
task is now to specify the kind of measurement that Al
should perform on her three qubits.

Observe that the following set$F i%, i 51,2, . . . ,8,forms
a complete orthonormal basis of the combined Hilbert sp
of the three spin-1/2 particles~or two-level systems! that
Alice holds and is defined by

uF1&5u000&, uF2&5u111&, uF3&5u011&,

uF4&5u100&,
~9!

uF5&5
1

&
@ u010&1u101&], uF6&5

1

&
@ u010&2u101&],

uF7&5
1

&
@ u001&1u110&], uF8&5

1

&
@ u001&2u110&].

We now consider the following set of projection operato
$P1 ,P2 ,P3 ,P4 ,P5 ,P6% defined by

P15P@F1#1P@F2#, P25P@F3#1P@F4#,
~10!

P35P@F5#; P45P@F6#, P55P@F7#; P65P@F8#.

In principle, the measurement of an observableO is al-
ways possible whose corresponding operator is represe
by
8-3
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O5(
i 51

6

pi Pi , ~11!

where Eq.~11! is the spectral decomposition of the opera
O. The projectors involved in this spectral decomposition
not of the same nature. One essentially has in the set
types of projectors, both one-dimensional and tw
dimensional ones.P1 and P2 are the two-dimensional pro
jectors that project a state onto the subspaces spanne
$F1 ,F2% and$F3 ,F4%, respectively, whereas the rest are
one-dimensional projectors.

Alice can now perform a joint three particle measurem
in accordance with Eq.~11!. The possible outcomes ca
broadly be divided into two types.

Type a: If she obtains any one of the states belonging
the set$uF5&,uF6&,uF7&,uF8&%, each of which occurs with
probability a2b2/2, the state of Bob’s particle is projecte
onto one of the following states, (b

a),(2b
a ),(a

b),(a
2b). Qualita-

tively this set of outcomes resembles what we have see
the standard teleportation scheme. So, Alice now infor
Bob of the outcome of her measurement and that requ
two classical bits. Thereafter Bob can appropriately rotate
qubit to bring it to the desired state.

Type b: But Alice’s measurement may also project t
state onto either of the subspaces spanned by$F1 ,F2% and
$F3 ,F4%, and each such result occurs with probability (a4

1b4)/2. Suppose the result is the subspace spanned
$F1 ,F2%. From ~8! it follows that after such an outcome
obtained, the combined four qubit state is given by

uC&12AB5~a8uF1&12A1b8uF2&12A)S a
bD

B

1~a8uF1&12A2b8uF2&12A]) S a
2bD

B

. ~12!

At this stage she performs an optimal POVM to conclusiv

distinguish between the two states, (b8
a8) $F1 ;F2% and

(2b8
a8 ) $F1 ;F2% @the scalar product of these two nonorthogon

states is (a822b82)#. The respective positive operators th
form an optimal POVM in this subspace are

A15
1

2a82 S b82 a8b8

a8b8 a82 D ; A2S b82 2a8b8

2a8b8 a82 D ;

A35S 12
b82

a82 0

0 0
D . ~13!

The optimal probability of obtaining a conclusive result fro
such a generalized measurement~POVM! is 2b82

52b4/(a41b4).
Suppose Alice obtains a conclusive result and there

concludes that the joint state of her two qubit is no

(b8
a8) $F1 ;F2% . She now informs Bob that she had been s

cessful in state discrimination and this requires one class
01230
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bit. Clearly this information alone is not sufficient for Bo
because he does not have the information about the phas
Alice needs to send two more classical bits of information
enable Bob to apply the necessary unitary transformation
his qubit. Thus a conclusive result followed by three bits
classical information results in perfect teleportation of t
unknown qubit.

So, given our scheme what is the probability of success
teleportation with fidelity one? It is easy to obtain that t
probability p of having perfect teleportation is

p52b412a2b252b2. ~14!

As noted earlier this probability is the optimal probability
perfect teleportation with a pure entangled state. We wo
like to mention that the number of classical bits required
this method depends on the outcome of Alice’s measu
ment. If her result falls in the set when no POVM is require
then the number of classical bits required is two and if it
not, the number of classical bits required is three.

Although the above scheme may appear to be more c
plicated involving joint three particle measurement, still
simplifies the matter in other ways. For example, we ha
shown that there are possibilities when no POVM is requi
and for those outcomes the protocol runs exactly the sa
way as for a maximally entangled state. By introducing
extra qubit this partial dependence on POVM is achiev
albeit at the cost of a joint three particle measurement. I
now clear that an outcome falling in the set ‘‘typea’’ greatly
simplifies the remaining operations to be performed. But
probability of obtaining an outcome of ‘‘typea’’ being
2a2b2 is always less thana41b4, the probability that an
outcome of ‘‘typeb’’ has been realized. This implies that i
more occasions Alice needs to undergo the state discrim
tion measurement to achieve perfect teleportation altho
realization of a ‘‘typea’’ result would have simplified her
task considerably.

B. Proposal II

So far we have seen that the suggested methods act
modify the measurement part on Alice’s side. But we c
also think of local operations that may be carried out by B
after Alice performs a Bell measurement on her two qub
and communicates her result, following the standard telep
tation protocol@4#. This is what we do now. This proposal
carried out in two steps. In the first step the standard telep
tation scheme is followed so that the state of Bob’s qubi
the end of this is given by (bb

aa). The second step involve
certain local operations to be performed by Bob.

We first briefly discuss theCNOT operation, which will be
in use to carry out the protocol. A controlled-NOT gate ~or
quantumXOR! flips the second spin if and only if the firs
spin is ‘‘up’’ i.e., it changes the second bit if and only if th
first bit is ‘‘1.’’ 1 It is a unitary transformation, denoted b

1In our notationu↑&5u1& and u↓&5u0&.
8-4
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UXOR, acting on pairs of spin-1/2 and defined by the follo
ing transformation rules:

u00&→u00&;u01&→u01&; u10&→u11&;u11&→u10&,
~15!

or when written in matrix form

UXOR5S 1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

D . ~16!

Note that theCNOT gate cannot be decomposed into a ten
product of two single bit transformation. The method that
propose now is as follows: Recall that following the Benn
protocol when Alice and Bob share a pure entangled st
Bob ends up with a state given by (bb

aa). Till this stage the
number of classical bits required is two and no more bits w
be required because all operations will now be carried ou
Bob and there is no need to communicate any further w
Alice.

We start from this stage when the state of Bob’s qubit~we
refer this qubit as ‘‘qubit 1’’ for convenience! is given by
(bb

aa)1 and suggest the following local operations. Bob p
pares an ancilla qubit~qubit 2! in a stateu0&2 . Thus the
combined state of the two qubits that Bob holds is now giv
by

uC&125aau00&121bbu10&12. ~17!

Bob now performs aCNOT operation on his two qubit state
thus transforming it into the state

uC&125aau00&121bbu11&12. ~18!

Thus the two particles become entangled and this is a
lutely necessary. The whole idea is to entangle the part
with an ancilla and then perform some measurement
serves the purpose. Now observe that the state given by~18!
can also be written as,

uC&125
1

2 F (au0&1bu1&)1S a
bD

2
1(au0&2bu1&)1S a

2bD
2
G

~19!

From ~19! it is clear that a state discrimination measureme
which can conclusively distinguish between the two non
thogonal statesau0&1bu1& and au0&2bu1&, will give the
desired result.

In the last subsection we have discussed in some detai
formalism and the respective operators involved in suc
measurement. So we do not give the explicit representa
here. Now, this optimal state discrimination measureme
which is an optimal POVM, can be carried out on any one
the two qubits that Bob holds and let us assume that i
qubit 1 on which such a measurement is performed. As
have seen earlier the optimal probability of a conclusive
sult is 2b2. It is clear that this is also the probability o
perfect teleportation with fidelity one, because a conclus
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outcome implies that the state of qubit 2 is now given
either (b

a) or (2b
a ) depending on the state of qubit 1. Fo

example, suppose Bob concludes that the state of qub
after his POVM is (b

a), then with certainty he also conclude
that the state of qubit 2 is now what he desired. Thus t
method also produces the optimal probability of succes
teleportation.

V. QUANTUM SECRET SHARING

In quantum secret sharing@9# a person splits quantum
information~encoded in qubits! among several other person
such that no individual can recover the whole informati
unless properly aided by the rest. This is another useful
plication of quantum entanglement and can play import
roles in various diverse practical scenarios~see Ref.@9#!. For
simplicity we will be explicit only in three partite system
but the methods can nevertheless be generalized to any n
ber of parties.

The protocol of quantum secret sharing is as follow
Three parties, say, Alice, Bob, and Charlie, initially share
maximally entangled state, for example, a GHZ state@11#,

uc&ABC5
1

&
~ u000&ABC1bu111&ABC). ~20!

Alice also possesses another qubit, say, (b
a). Alice performs a

Bell measurement on her two qubits and communicates
result to Bob and Charlie, who in turn can perform approp
ate rotations on their respective qubits so that the pure
tangled state that they now share can be written as

uC&BC5au00&BC1bu11&BC . ~21!

Since information can be encoded in the state of a qubit
performing the Bell measurement Alice actually splits t
information that is now shared via the pure entangled s
~21! between Bob and Charlie. The important thing to note
that neither Bob nor Charlie can recover the state (b

a) by any
general operations on their respective sides without com
nicating among themselves. They individually do not ha
any useful information whatsoever. Though they have
amplitude information, that is not sufficient since inform
tion about the phase is not available. So, in this situation o
one of the parties~either Bob or Charlie! will be able to
reconstruct the state, provided the other party agrees to
operate. Assuming that they do agree to work in tandem
they also agree on the person~let us assume it is Charlie!
who will have the state, the remaining part of the protoc
now goes like this. First we rewrite the state given by~21! in
the following way:

uC&BC5
1

&
F 1

&
~ u0&1u1&!BS a

bD
C

1
1

&
(u0&2u 1&)BS a

2bD
C
G . ~22!
8-5
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Bob performs a measurement on his qubit in thex basis
where thex eigenstates are defined by

ux6&5
1

&
~ u0&6u1&) ~23!

and communicates his outcome to Charlie. This requires o
one bit of information. Charlie now can appropriately rota
his qubit to reconstruct the unknown state. Note that
protocol is very similar to that of teleportation. Now, it
easy to see that instead of sharing a GHZ state, if Alice, B
and Charlie initially shared a nonmaximally entangled st
of the form

uc&ABC5au000&ABC1bu111&ABC , ~24!

then following the protocol as it is Charlie ends up with t
state (bb

aa). But this is not the state that Charlie wishes
have. Recall that we faced a similar situation in the case
quantum teleportation and the similarity between the na
of these two processes indicates the possibility of succes
application of the methods developed for teleportation in t
scenario. Indeed we will see that the methods discusse
the previous sections can be suitably applied so that se
sharing becomes ultimately successful with a nonzero p
ability. As we shall also see in this case the probability
successful secret sharing will turn out to be 2b2 and is con-
jectured to be optimal. This is the subject of the next sect

VI. QUANTUM SECRET SHARING WITH PURE
ENTANGLED STATES: CONCLUSIVE QUANTUM

SECRET SHARING

Note that we can broadly view the information splittin
process as a method carried out in three stages.

First stage: Measurement by Alice and communication
her outcome to Bob and Charlie. Bob and Charlie rotate th
respective qubits so that their state is given by~21!.

Second stage: Measurement by Bob and communica
of his result to Charlie.

Final stage: Charlie performs some unitary transformat
on his qubit if necessary.

Since our goal is to implement secret sharing successf
with nonmaximal entangled states, we can suggest modi
tions at any one such stage. We propose three exp
schemes for this purpose. To be explicit, the first sche
changes the type of measurement by Alice only, keeping
remaining part of the original protocol intact. The seco
one keeps the measurement part of Alice intact but mod
that of Bob and the last method keeps the whole proto
intact till Charlie’s end and suggests further local operatio
to be carried out by him. We will not describe the first a
the last scheme in detail because the methods that have
developed~including that of Mor and Horodecki! will be
used and there is no qualitative difference with teleportat
as far as their application is concerned. The second prop
will be described in detail. As we shall see later, we c
appropriately call such quantum secret sharing conclu
quantum secret sharing because the success of the pro
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depends on conclusive outcomes of some generalized m
surements. We begin with the fact that Alice, Bob, and Ch
lie share a pure entangled state of the form~24!.

A. Proposal I

The goal of this proposal is to modify the measurem
part of Alice so that after Alice carries out her specific me
surement and communicates her result, the state of Bob
Charlie will be given by~21!. If this is achieved, then the
remaining part goes exactly as in the original protocol
Hillary et al. @9#. To achieve this purpose we note that tw
methods that have already been suggested for teleporta
with pure entangled states may turn out to be useful. Inde
when Alice performs a measurement on her qubits eit
following the MH protocol~Sec. II! or Proposal I of qubit-
assisted conclusive teleportation~QACT! scheme, in either
case after she communicates her outcome to Bob and C
lie, the state shared by Bob and Charlie is given by~21!,
which is precisely what we intended to achieve. It is easy
see that the probability of such conclusive secret sharin
2b2.

B. Proposal II

The previous proposal suggested changes in the typ
measurement by Alice. In this proposal we keep that part
same as that in@9#, i.e., Alice first performs a Bell measure
ment on her two qubits and so on. Since now Alice, Bob, a
Charlie initially shared a pure entangled state~24!, then after
completion of the first stage of the protocol@9#, the entangled
state shared by Bob and Charlie will be

uC&BC5aau00&BC1bbu11&BC ~25!

instead of~21!.
This state~25! can also be written as,

uC&BC5
1

2 F (au0&1bu1&)BS a
bD

C

1(au0&2bu1&)BS a
2bD

C
G .

~26!

Now, a conclusive result of a POVM~discussed in Sec
IV A, for details see@10#! by Bob to discriminate between
the two nonorthogonal statesau0&1bu1& andau0&2bu1& is
sufficient. It is clear from~26! that when Bob concludes tha
the state of his qubit isau0&1bu1& ~or au0&2bu1&), the
state of Charlie’s qubit is projected ontoau0&1bu1& ~or
au0&2bu1&). But for Charlie to have this information Bob
needs to communicate with him and he needs to do
twice. First he informs if he is successful~requires one clas-
sical bit! and if he is, then he notifies his result~requiring 1
classical bit! so that Charlie can perform an appropriate r
tation if necessary.

The probability of this being successful is nothing but t
probability of obtaining a conclusive result from the sta
discrimination measurement. So the probability of being s
cessful is 2b2.
8-6



co
t i
rd
th
sa

fu

fo
e
ie
ec
e’
b
h

m
t

gy
cal
n-

for
an-
re a
call

por-
e-
ring.
ring
midt
ion
l.

oy
or

TELEPORTATION AND SECRET SHARING WITH PURE . . . PHYSICAL REVIEW A 62 012308
C. Proposal III

This proposal follows the original secret sharing proto
to its fullest so that at the end the state of Charlie’s qubi
aau0&1bbu1&. In fact in teleportation when the standa
scheme was followed, the state of Bob’s qubit resulted in
same state. So we can successfully apply here the propo
of QACT to recover the desired state, which is discussed
detail in Sec. IV B. Again the probability of being success
is 2b2.

VII. SUMMARY AND CONCLUSION

In summary, we have described two optimal methods
teleporting an unknown quantum state using any pure
tangled state. A positive implication of one of our strateg
is in its partial dependence on POVM to achieve perf
teleportation where we have seen that for some of Alic
outcomes, only standard rotations are to be performed
Bob to get the unknown state. Nevertheless the cost one
to pay for it is a joint three particle measurement. The nu
ber of classical bits required is three if it is necessary
.

nt
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perform a POVM, otherwise it is two. The second strate
reduces the number of classical bits to two, since the lo
operations are carried out by Bob after following the sta
dard teleportation scheme.

We have also discussed how the methods developed
conclusive teleportation can be successfully applied in qu
tum secret sharing in a situation where the parties sha
pure nonmaximal entangled state among themselves. We
it conclusive secret sharing analogous to conclusive tele
tation. Here we have exploited the qualitative similarity b
tween the two processes of teleportation and secret sha
The success probability of such conclusive secret sha
also happens to be twice the square of the smaller Sch
coefficient~the three partite entangled state in considerat
is Schmidt decomposable! and is conjectured to be optima
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