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Teleportation and secret sharing with pure entangled states

Somshubhro Bandyopadhyay
Department of Physics, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Calcutta 700009, India
(Received 5 November 1999; revised manuscript received 11 February 2000; published 15 Jyne 2000

We present two optimal methods of teleporting an unknown qubit using any pure entangled state. We also
discuss how such methods can also have successful application in quantum secret sharing with pure multipar-
tite entangled states.

PACS numbd(s): 03.67.Hk, 03.65.Bz

[. INTRODUCTION the quantum information among several parties such that
any one can recover the information but not without the as-
In recent years quantum entanglemierthas found many sistance of the remaining parties. For simplicity all the dis-
exciting applications that have considerable bearing on theussions will be with three partite systems, although gener-
emerging fields of quantum informatidr2] and quantum alization to four or more parties is always possible. In this
computing[3]. Two such key applications are quantum tele-case three partiegsay, Alice, Bob, and Charljeinitially
portation[4] and quantum secret sharifg@]. Quantum tele- share a maximally entangled state, for example, a Green-
portation involves secure transfer of an unknown qubit fromberger, Horne, ZeilingeiGHZ) state[11]. Besides Alice also
one place to another and in quantum secret sharing, quantuholds another qubit carrying some informatiéin quantum
information encoded in a qubit is split among several partie$nformation we know that a message is encoded in a jubit
such that only one of them is able to recover the qubit exand by performing a Bell measurement on her two qubits she
actly provided all the other parties agree to cooperate. succeeds in splitting the quantum information among Bob
In quantum teleportation two parti¢alice and Bob ini- and Charlie. Observe that neither Bob nor Charlie can re-
tially share a maximally entangled staffor example, an cover the qubit in its exact form only by themselves perform-
EPR paij. Alice also holds another qubit unknown to her ing whatever local operations they wish to. If and only if
that she wants to teleport to Bob. For this purpose she pethey agree to act in concert, then performing certain local
forms a certain joint two particle measurement on her twomeasurements and communicating among themselves, any
qubits and communicates her result to Bob. Bob now appliesne of them can recover the desired state. It is not possible
appropriate unitary transformations on his qubit to bring it tofor both to get hold of the state as it is forbidden by the
the desired state. However faithful teleportatidh(and also  no-cloning theorem. We note that the protocol of secret shar-
secure key distributiofi5]) is not possible if the entangled ing is very similar to that of teleportation and in a situation
state used as the quantum channel is not maximally envhere Alice, Bob, and Charlie share a nonmaximal en-
tangled. In fact staying within the standard teleportationtangled state, the protocol as it is will not be successful.
scheme it is no longer possible for Bob to reconstruct the In this paper we consider the issue of teleportation and
unknown qubit exactly, with a nonzerthowever sma)l  secret sharing with a pure entangled si@eure entangled
probability. Recently, the issue of teleportation with purestate will always be taken to be nonmaximal unless stated
entangled states has been considered by Mor and Horodeakiherwisg. We suggest two more methods for conclusive
[6] (originally in an earlier work of Tal Mof7]) where they teleportation that are optimal. We refer to them as qubit-
observed that teleportation can also be understood from assisted conclusive teleportation processes, since in both the
more general approach based on “generatirensembles at methods either Alice or Bob needs to prepare an ancillary
space-time separation” by exploiting the Hughston, Jozsagubit in some specified state for carrying out the protocol.
and WooterdHJW) result[8]. They introduced the concept The motivation behind suggesting two more methods are
of “conclusive” teleportation and showed how perfect tele- twofold. First, one is to obtain a possible improvement over
portation having a finite probability of success is made posMH'’s suggestion from an operational point of view with an
sible with pure entangled states. By conclusive teleportatiomye towards future experiments. Second, exploring various
it is meant that for certain conclusive outcomes of some genexplicit local strategies can also provide some insight that
eralized measurement, perfect teleportation with fidelity onecan be fruitful, considering their possible application in vari-
is achieved. Of course this cannot take place with certaintpus other manipulations of quantum entanglement. We also
unless the state is maximally entangled. We note that thehow using the methods developed for teleportation how
success probability of conclusive teleportation, which issuccessful secret sharing can be implemented using pure en-
twice the modulus square of the smaller Schmidt coefficienttangled states. We will refer to this type of secret sharing as
as obtained by Mor and Horodecttienceforth MH is also  conclusive secret sharing.
optimal. The present paper is organized as follows. In Sec. I, we
Quantum secret sharirl@] protocol allows for splitting  discuss the standard teleportation scheme of Bennett, Bras-
sard, Crepeau, Jozsa, Peres and Woot8BCJIPW proto-
col] [4] and see why it is not successful when the shared
*Electronic address: dhom@bosemain.boseinst.ernet.in quantum channel is a nonmaximally entangled pure state.
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Section Ill introduces the concept of conclusive teleportationwhere,?+ 82=1, and we assume without any loss of gen-
and the protocol of MH6] is discussed in some detail. In erality thata, 3 is real witha=g) and following the stan-
Sec. IV we present two new proposals of conclusive teleporelard method for teleportation, Bob ends up with the state
tation and discuss relative merits of the suggested and thg2), which cannot be rotated back to the desired stgfe (
existing ones. In Sec. V we describe the quantum secret shamhout having any knowledge of the state parameteasid

ing protocol[9]. In Sec. VI we discuss what we call conclu- b. Since the state that is teleported is supposed to be un-
sive secret sharing, i.e., quantum secret sharing with purgnown, the Bennett protocol fails to reproduce the state ex-
entangled states. There we show how the methods developedtly on Bob’s side.

in the preceding sections in the context of quantum telepo-

ration have applications in quantum secret sharing. Finally in |, coNCLUSIVE TELEPORTATION: PROPOSAL
Sec. VIl we summarize and conclude. OF MOR AND HORODECK]
Il. QUANTUM TELEPORTATION: BBCJPW PROTOCOL Quite recently in a very interesting paper, Mor and Horo-

decki[6] suggested a protocol for teleportation when Alice
Quantum teleportatiof#] allows for sending quantum in- and Bob share a nonmaximal pure entangled state. They ob-
formation encoded in a qubita spin-1/2 particle or any tained the optimal probability for successful teleportation,
quantum two-level systenfrom one place to another with- which is given by twice the modulus square of the smaller
out any material transfer of the particle itself. The two partiesSchmidt coefficient of the state in question. The method suc-
involved in this process initially share a maximally entangledceeds sometimes and when it succeeds the fidelity is one,
state. The protocol is carried out only using local measureimplying that the unknown state is exactly reproduced on

ments(Bell measuremeptand classical communication. Bob’s side. Following Mor and Horodecki we will continue
Let us suppose that Alice and Bob share a maximallyto refer to teleportation with pure entangled states as conclu-
entangled state, say, sive teleportation.

We begin with the fact that Alice and Bob share the pure
1 entangled staté4) and the unknown state that Alice wishes
|¢>AB:5(|00>AB+|11>AB) (D to send to Bob is given by2). The central feature of the
scheme is to write down the combined three qubit state in the

and the state of the unknown qubit that Alice is supposed téollowmg way:

send to Bob is

1 a
. ¥)=19)1)= 5 (al00)+ p111), 5|
B
9):=al0) +bl1)=| ] @ b
1
(alo0)-pl114{ 5| +(slo+ alzod;
The combined state of the three qubits can be written as
-b
1 a _ a b +(B|01) — | 104 ) (5)
|®)1a=5| [P )1a HO ) al ) HIP 1A a/g
2 b b a
B B
Now measurement on Alice’s side takes place in two steps.
+|¥ ) 1a (3)  The first measurement projects the state onto either of the
~a/g subspaces spanned K90y, |11)} or {|01), |10)}. Thus this

. . _ measurement has two possible outcomes that occur with
where the stateg®™~),[¥~) are defined by equal probability. Suppose the result is the subspace spanned
by {|00), |11)}. Alice now performs an optimal positive op-
erator value measufd0] (POVM) that distinguishes conclu-
sively between the two nonorthogonal state$d, 13 and
(¢ ﬁ){OO 13- The probability of obtaining a conclusive result
and form a basi¢Bell basi$ in the composite Hilbert space is 287 (8 is the smaller of the Schmidt coefficientdhus
of Alice’s two qubits. this is the probability of successful teleportation with fidelity

At this stage Alice performs a measurement in the Bellone. The number of classical bits required in the above
basis on her two qubits and therefore obtains any one of th@ethod is three. One bit is required for Alice to inform Bob
four Bell states randomly and with equal probability. Shewhether she is successful in discriminating between the non-
then communicates her result to Bélhich requires two orthogonal states and two more bits are required so that Bob
classical bits who in turn rotates his quibit accordingly to performs the required rotations to reconstruct the unknown

o L o 1) [Ty = L 101+
| >—ﬁ(|00>—|11>),|‘1’ ) ﬁ(|01>—|10>)

reconstruct the unknown state in its exact form. state. Note that the above proposal cannot succeed always.
However, in a situation where Alice and Bob share a non-This is because there is always a possibility of an inconclu-
maximal but pure entangled state of the form, say, sive result in the state discrimination procedure. But when it
succeeds, the probability of success beirgf 2the fidelity
| ) ag= |00 a5+ B|11) aR) (4)  of teleportation is one. Also note that fgt=1//2, which
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corresponds to a maximally entangled state, the proposal is
always successful with certainty as there need not be any
inconclusive result since in this case one discriminates be-
tween two orthogonal states.

IV. QUBIT-ASSISTED CONCLUSIVE TELEPORTATION

We now discuss two methods for conclusive teleportation
that are optimal. We will see that both these methods can
appropriately be referred to as qubit-assisted processes, since
in both schemes either Alice or Bob are required to prepare a

T
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2

(a’|q)1>12A+/3'|¢2>12A)(2)B

+(01'|CD1>12A_,3'|‘I)2>12A) ( _ab)

B

+(B'|Pg)roat @' | Py)1on a

B
—b

+(B'|P3)1oa— ' |Pg)12n) a

qubit in some specified state to implement the respective

protocol. Since the process of teleportation involves two par- aB a a

ties, modifications, as far as measurement and other opera- + —[|®5>12A(b) +|Dg)1oa —b)

tions are concerned, may be suggested for any one of the hJ B B
parties without introducing any new operations for the other b —b

side. By this we mean that we can either modify the mea- +|CI>7)12A(a) +|Dg)ion al | (8
surement part of Alice keeping the Bob part the same, i.e., he B B

only has to do the standard rotatiofsoposal 1 or we can

also suggest some further operations to be carried out by Bokherea’ = a?/\Ja*+ p* and B’ = g% Ja*+ B*.

once the original protocol of teleportation gets completed The important thing to note from Eg8) is that we have
(proposal 2, which implies the measurement part of Alice succeeded in writing down the combined state in a way such
remains unchanged. that one part clearly resembles the one in the BBCJPW pro-

tocol (see Sec.)| whereas the other part resembles that of

Mor and Horodeckis(see Sec. )l This is turn implies that

for a suitable measurement by Alice, there are some out-
The basic idea is as follows. Alice first prepares an ancillacomes where only standard rotations by Bob are sufficient to

qubit in a state, sajy), besides her usual possession of twoconstruct the unknown state after he receives the result of

qubits. She now performs a certain joint three particle meaAlice’s measurement. If this is not the case then, of course,

surement on her three qubits. It will be shown that for somepne has to resort to the POVM for state discrimination. The

of her results, Bob needs to perform only the standard rotatask is now to specify the kind of measurement that Alice

tions (0,,04,0,04) to exactly reconstruct the unknown should perform on her three qubits.

state, after he gets some information from Alice. However, Observe that the following s¢tb;}, i=1,2,...,8,forms

for any of the remaining possible set of outcomes, thea complete orthonormal basis of the combined Hilbert space

method works exactly the same way as that of Mor andf the three spin-1/2 particler two-level systemsthat

Horodecki, discussed in the previous section. The methodlice holds and is defined by

that we propose fails sometimes, but when successful, the

fidelity of teleportation is one. |®,)=]000), |D,)=|111), |P3)=|011),

Suppose Alice and Bob share a pure entangled state given by

(4) and the state that Alice wants to teleport to Bob is given |®,)=]100),

by (2). 9)

Alice now prepares an ancilla qubit in the state,

A. Proposal |

1 1
. D)= —[|010+|10D], |Pe)=—[|010—|101)],
|X>z=a|0>+ﬁ|l>=<ﬁ)2- ) V2 V2

1 1
Observe that the state parameters of this ancillary qubit that |®7)= EHOOI}HH@]’ |®g)= EHOOD_'nO)]'
Alice prepares are the Schmidt coefficients of the pure en-

tangled state. We now consider the following set of projection operators
Now, the combined state of the four qubits is given by {P;,P,,P3,P,,Ps,Pg} defined %y Prel P

(V) 12a8=1)1®[X)2® ) a6 P1=P[®]+P[D;], Py=P[®3]+P[D,4],
(10
:(g> ®(;) ®(a[00)+ B|11)) ap (7 Ps=P[®s5]; P;=P[®g], Ps=P[®7]; Ps=P[Dg].
1 2
In principle, the measurement of an observaBlés al-

and we observe that the stat),,,5 can also be written as ways possible whose corresponding operator is represented
(we omit the tensor product sign henceforth by
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6 bit. Clearly this information alone is not sufficient for Bob
Ozz piPi, (11)  because he does not have the information about the phase. So
=1 Alice needs to send two more classical bits of information to

: . enable Bob to apply the necessary unitary transformation on

vovh_?_[]ee E?(.)('le%:)ttl)srsﬂi]r?vz?veecér?r: g}?;gmggfgl'%Zé’;;heogiﬂirnag;his qubit. Thus a conclusive result followed by three bits of
: Proj pec mp classical information results in perfect teleportation of the

not of the same nature. One essentially has in the set tWBnknown qubit

g?neesnsic())fnalpi)orﬁ(s:g)rsa’m dbgthargrlﬁédlt:/nvﬁ-n;Irzre]zilsioarlwgclj rt(\;\io' So, given our scheme what is the probability of successful

jectors that proje(.:tla staté onto the subspaces sparl?ned e}}eportation with fidelity one? It is easy to obtain that the

. obability p of having perfect teleportation is
{®,,P,} and{P3,D,}, respectively, whereas the rest are all yp gp P

one-dimensional projectors.

Alice can now perform a joint three particle measurement p=2pB*+2a°pg*=2p" (14
in accordance with Eq(11). The possible outcomes can
broadly be divided into two types. As noted earlier this probability is the optimal probability of

Type a If she obtains any one of the states belonging toperfect teleportation with a pure entangled state. We would
the set{|®s),|®¢),|P7),[Pg)}, each of which occurs with jike to mention that the number of classical bits required in
probability a®4%/2, the state of Bob's particle is projected this method depends on the outcome of Alice’s measure-
onto one of the following statesg), (*;,),(2).(; ). Qualita-  ment. If her result falls in the set when no POVM is required,
tively this set of outcomes resembles what we have seen ithen the number of classical bits required is two and if it is
the standard teleportation scheme. So, Alice now informsot, the number of classical bits required is three.

Bob of the outcome of her measurement and that requires Although the above scheme may appear to be more com-
two classical bits. Thereafter Bob can appropriately rotate higlicated involving joint three particle measurement, still it
qubit to bring it to the desired state. simplifies the matter in other ways. For example, we have

Type b But Alice’s measurement may also project the shown that there are possibilities when no POVM is required
state onto either of the subspaces spannefidby,®,} and  and for those outcomes the protocol runs exactly the same
{®3,®,}, and each such result occurs with probability*(  way as for a maximally entangled state. By introducing an
+B%)/2. Suppose the result is the subspace spanned hsxtra qubit this partial dependence on POVM is achieved
{®4,®,}. From(8) it follows that after such an outcome is albeit at the cost of a joint three particle measurement. It is

obtained, the combined four qubit state is given by now clear that an outcome falling in the set “typégreatly
simplifies the remaining operations to be performed. But the
a bability of obtaining an outcome of “typ&” bein
U yonp=(a'| @) 1op+ B'|® probabiiity 9 ype 9
¥)izae=(a’[Pr)rat Bl 2>12A)(b>3 2a%B? is always less tham®*+ g%, the probability that an

outcome of “typeb” has been realized. This implies that in
. 12 more occasions Alice nee_ds to undergo the state discrimina-
B tion measurement to achieve perfect teleportation although
realization of a “typea” result would have simplified her
At this stage she performs an optimal POVM to conclusivelytask considerably.

distinguish between the two States,g:)Q¢l;¢2} and

a
+(a’|q)l>12A_B,|q)2>12A])( b

((i,ﬁ'){‘bl?‘bz} [the scalar product of these two nonorthogonal B. Proposal Il
states is &'2— B'?)]. The respective positive operators that  So far we have seen that the suggested methods actually
form an optimal POVM in this subspace are modify the measurement part on Alice’s side. But we can
also think of local operations that may be carried out by Bob
1 [ B? ap B? —a'p after Alice performs a Bell measurement on her two qubits
Afm «'B a'? » A2 —a'B a2 | and communicates her result, following the standard telepor-
tation protocol4]. This is what we do now. This proposal is
B2 carried out in two steps. In the first step the standard telepor-
1-— O tation scheme is followed so that the state of Bob’s qubit at
Ag= @ : (13 the end of this is given by‘g‘g). The second step involves
0 0 certain local operations to be performed by Bob.

We first briefly discuss theNoT operation, which will be
The optimal probability of obtaining a conclusive result from jn use to carry out the protocol. A controlleT gate (or
SUCh4 a, gerleralized measuremeflPOVM) is 28’2 guantumxor) flips the second spin if and only if the first
=2p"1(a"+ ). . _ spin is “up” i.e., it changes the second bit if and only if the
Suppose Alice obtains a conclusive result and thereforgst bit is “1.” It is a unitary transformation, denoted by
concludes that the joint state of her two qubit is now
(g;){(pl;q,z}. She now informs Bob that she had been suc-

cessful in state discrimination and this requires one classicalin our notation|1)=|1) and||)=|0).
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Uxor, acting on pairs of spin-1/2 and defined by the follow- outcome implies that the state of qubit 2 is now given by
ing transformation rules: either §) or (2,) depending on the state of qubit 1. For
example, suppose Bob concludes that the state of qubit 1
|00)—[00);|01)—[01); [10)—|11);|11)—|10), after his POVM is f), then with certainty he also concludes
(19 that the state of qubit 2 is now what he desired. Thus this
method also produces the optimal probability of successful

or when written in matrix form .
teleportation.

1 0 00O
01 0 0 V. QUANTUM SECRET SHARING

Uxor= 0O 0 0 1 (16) In quantum secret sharin@] a person splits quantum
00 1 0 information(encoded in qubifsamong several other persons

such that no individual can recover the whole information

Note that thecNOT gate cannot be decomposed into a tensotnless properly aided by the rest. This is another useful ap-
product of two single bit transformation. The method that wePlication of quantum entanglement and can play important
propose now is as follows: Recall that following the Bennettroles in various diverse practical scenarisee Ref[9]). For
protocol when Alice and Bob share a pure entangled statésimplicity we will be explicit only in three partite systems
Bob ends up with a state given bfiaj. Till this stage the but the methods can nevertheless be generalized to any num-
number of classical bits required is two and no more bits willPer of parties.

be required because all operations will now be carried out by
Bob and there is no need to communicate any further withl_h
Alice.

We start from this stage when the state of Bob’s qulvé
refer this qubit as “qubit 1” for conveniengds given by
(53)1 and suggest tht_a follpwing local operations. Bob pre- |¢>ABC:i(|000>ABC+ Bl11)ag0). (20)
pares an ancilla qubitqubit 2 in a state|0),. Thus the V2
combined state of the two qubits that Bob holds is now given
by Alice also possesses another qubit, sdy, Alice performs a

Bell measurement on her two qubits and communicates her
|¥)1=2aa|00)1,+bB[10)1,. (17 result to Bob and Charlie, who in turn can perform appropri-
ate rotations on their respective qubits so that the pure en-
' tangled state that they now share can be written as

The protocol of quantum secret sharing is as follows.
ree parties, say, Alice, Bob, and Charlie, initially share a
maximally entangled state, for example, a GHZ sfatH,

Bob now performs a&NOT operation on his two qubit state
thus transforming it into the state

|¥)15=aa|00)15+ bB[11)15. (18) ¥)ac=2|00)sctbl1l)gc (21)

Thus the two particles become entangled and this is absgiince information can be encoded in the state of a qubit, by
lutely necessary. The whole idea is to entangle the particl@erforming the Bell measurement Alice actually splits the
with an ancilla and then perform some measurement thafformation that is now shared via the pure entangled state
serves the purpose. Now observe that the state givea8y (21 between Bob and Charlie. The important thing to note is
can also be written as, that neither Bob nor Charlie can recover the stgjeby any
general operations on their respective sides without commu-
a a nicating among themselves. They individually do not have
(a|0>+'3|1>)1<b)2+(a|o>_'3|1>)1( —bu any usgeful infgrmation Whatsoev)ér. Though ){hey have the
(199  amplitude information, that is not sufficient since informa-
tion about the phase is not available. So, in this situation only
From(19) it is clear that a state discrimination measurementpne of the partiegeither Bob or Charlig will be able to
which can conclusively distinguish between the two nonorreconstruct the state, provided the other party agrees to co-
thogonal states|0)+ B|1) and «|0)— B|1), will give the  operate. Assuming that they do agree to work in tandem and
desired result. they also agree on the persdet us assume it is Charlie
In the last subsection we have discussed in some detail theho will have the state, the remaining part of the protocol
formalism and the respective operators involved in such aow goes like this. First we rewrite the state given(Bg) in
measurement. So we do not give the explicit representatiothe following way:
here. Now, this optimal state discrimination measurement,

v _l
| )12=5

which is an optimal POVM, can be carried out on any one of 101 a

the two qubits that Bob holds and let us assume that it is |UYge=— —(|0>+|1>)B(b)

qubit 1 on which such a measurement is performed. As we v2[V2 c

have seen earlier the optimal probability of a conclusive re-

sult is 282, It is clear that this is also the probability of +i(|0>_| 1>)B( a ) 1 (22)
perfect teleportation with fidelity one, because a conclusive V2 —b c
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Bob performs a measurement on his qubit in théasis depends on conclusive outcomes of some generalized mea-
where thex eigenstates are defined by surements. We begin with the fact that Alice, Bob, and Char-
lie share a pure entangled state of the faqg).

1
+y=—(0)=|1 23
|x=) ‘/2(|> 1) 23 A. Proposal |

and communicates his outcome to Charlie. This requires on% '[hef glt_)al of tthhlstprf?poz?l IS to mod|fyt tr?e meas.?rement
one bit of information. Charlie now can appropriately rotate art of Alice so that after Alice carres out her specilic mea-

his qubit to reconstruct the unknown state. Note that thesurement and communicates her result, the state of Bob and
protocol is very similar to that of teleportation. Now, it is Charlie will be given by(21). If this is achieved, then the

easy to see that instead of sharing a GHZ state, if Alice, Bop cmaning part goes exactly as in the original protocol of

and Charlie initially shared a nonmaximally entangled staté_"IIary et al. [9]. To achieve this purpose we note that two
of the form methods that have already been suggested for teleportation

with pure entangled states may turn out to be useful. Indeed,
—al00 + 811 ’ 2 when Alice performs a measurement on her qubits either
[#)asc=al000 sct £l110a5c 24 following the MH protocol(Sec. 1) or Proposal | of qubit-

then following the protocol as it is Charlie ends up with the 2SSisted conclusive teleportatiéQACT) scheme, in either

state {3). But this is not the state that Charlie wishes to case after she communicates her outcome to Bob and Char-

have. Recall that we faced a similar situation in the case ollle'.the. state_shared by qu and Charlie IS g'VeU(BS‘)'
guantum teleportation and the similarity between the natur¥"hICh Is precisely wh_at we intended to ?Ch'e"e- Itis easy t(.)
of these two processes indicates the possibility of successf Pez that the probability of such conclusive secret sharing is
application of the methods developed for teleportation in thi
scenario. Indeed we will see that the methods discussed in
the previous sections can be suitably applied so that secret B. Proposal Il
sharing becomes ultimately successful with a nonzero prob- The previous proposal suggested changes in the type of
ability. As we shall also see in this case the probability ofmeasurement by Alice. In this proposal we keep that part the
successful secret sharing will turn out to bg*2and is con-  same as that if9], i.e., Alice first performs a Bell measure-
jectured to be optimal. This is the subject of the next sectionment on her two qubits and so on. Since now Alice, Bob, and
Charlie initially shared a pure entangled ste2d), then after
VI. QUANTUM SECRET SHARING WITH PURE completion of the first stage of the proto¢él, the entangled
ENTANGLED STATES: CONCLUSIVE QUANTUM state shared by Bob and Charlie will be

SECRET SHARING |V)gc=2aa|00)gc+bp|11)pc (25)

Note that we can broadly view the information splitting
process as a method carried out in three stages.

First stage: Measurement by Alice and communication o
her outcome to Bob and Charlie. Bob and Charlie rotate their
respective qubits so that their state is given(B).

Second stage: Measurement by Bob and communication 1
of his result to Charlie. |‘1’>Bc=§

Final stage: Charlie performs some unitary transformation
on his qubit if necessary.

Since our goal is to implement secret sharing successfully
with nonmaximal entangled states, we can suggest modificdNow, a conclusive result of a POVMdiscussed in Sec.
tions at any one such stage. We propose three expliclV A, for details see[10]) by Bob to discriminate between
schemes for this purpose. To be explicit, the first schemé¢he two nonorthogonal stateg0)+ 8|1) and«|0)— B|1) is
changes the type of measurement by Alice only, keeping theufficient. It is clear from(26) that when Bob concludes that
remaining part of the original protocol intact. The secondthe state of his qubit isx|0)+ 8|1) (or a|0)—B|1)), the
one keeps the measurement part of Alice intact but modifiestate of Charlie’s qubit is projected ont0)+b|1) (or
that of Bob and the last method keeps the whole protoco|0)—b|1)). But for Charlie to have this information Bob
intact till Charlie’s end and suggests further local operationsieeds to communicate with him and he needs to do that
to be carried out by him. We will not describe the first andtwice. First he informs if he is successfukquires one clas-
the last scheme in detail because the methods that have besinal bij and if he is, then he notifies his res@lequiring 1
developed(including that of Mor and Horodeckiwill be  classical bit so that Charlie can perform an appropriate ro-
used and there is no qualitative difference with teleportatiortation if necessary.
as far as their application is concerned. The second proposal The probability of this being successful is nothing but the
will be described in detail. As we shall see later, we canprobability of obtaining a conclusive result from the state
appropriately call such quantum secret sharing conclusivdiscrimination measurement. So the probability of being suc-
quantum secret sharing because the success of the protoc@ssful is 732.

]jnstead of(21).
This state(25) can also be written as,

(a|o>+/3|l>)s(2)c+(“|O>_B|1>)B( —ab)c}
(26)
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C. Proposal lll perform a POVM, otherwise it is two. The second strategy

This proposal follows the original secret sharing protoco|reduce_s the number of classical bits to two, since the local
to its fullest so that at the end the state of Charlie’s qubit iOPerations are carried out by Bob after following the stan-
aa|0)+bB|1). In fact in teleportation when the standard dard teleportation scheme.
scheme was followed, the state of Bob’s qubit resulted in the W€ have aiso discussed how the methods developed for
same state. So we can successfully apply here the proposal(ﬁ?nc'us've teleportation can be successfully applied in quan-

of QACT to recover the desired state, which is discussed ifUMm Secret sharing in a situation where the parties share a
detail in Sec. IV B. Again the probability of being successful PUré nonmaximal entangled state among themselves. We call
is 2.32. it conclusive secret sharing analogous to conclusive telepor-

tation. Here we have exploited the qualitative similarity be-

tween the two processes of teleportation and secret sharing.

The success probability of such conclusive secret sharing
In summary, we have described two optimal methods forlso happens to be twice the square of the smaller Schmidt

teleporting an unknown quantum state using any pure ercoefficient(the three partite entangled state in consideration

tangled state. A positive implication of one of our strategiess Schmidt decomposabland is conjectured to be optimal.

is in its partial dependence on POVM to achieve perfect

teleportation where we have seen that for some of Alice’'s ACKNOWLEDGMENTS
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