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Quantum feedback with weak measurements
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The problem of feedback control of quantum systems by means of weak measurements is investigated in
detail. When weak measurements are made on a set of identical quantum systems, the single-system density
matrix can be determined to a high degree of accuracy while affecting each system only slightly. If this
information is fed back into the systems by coherent operations, the single-system density matrix can be made
to undergo an arbitrary nonlinear dynamics, including, for example, a dynamics governed by a nonlinear
Schrödinger equation. We investigate the implications of such nonlinear quantum dynamics for various prob-
lems in quantum control and quantum information theory. The nonlinear dynamics induced by weak quantum
feedback could be used to create a novel form of quantum chaos in which the time evolution of the single-
system wave function depends sensitively on initial conditions.

PACS number~s!: 03.67.2a, 03.65.Bz, 05.45.Mt
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The conventional theory of quantum feedback control
sumes the use of strong or projective measurements to
quire information about the quantum system under con
@1–10#. Such measurements typically disturb the quant
system, destroying quantum coherence and giving a stoc
tic character to quantum feedback control. But strong m
surements are not the only tool available for acquiring inf
mation about quantum systems@11,12#. In nuclear magnetic
resonance~NMR!, for example, one makes collective me
surements on a set of effectively identical systems: by mo
toring the induction field produced by a large number
precessing spins, one can obtain the average value of
magnetization along a given axis while only slightly pertur
ing the states of the individual spins@13#. We will call such
measurements ‘‘weak measurements’’ since they o
weakly perturb the individual systems in the set.~Such weak
measurements on large sets of identical systems should
be confused with thesingle-systemweak measurements de
bated in@14–16#.! The information acquired by weak mea
surement can then be fed back to the spins, for exampl
suppress super-radiant decay@17,18#. NMR is not the only
system in which weak measurement is possible: one can
form weak measurements on essentially any set of quan
systems that can be coupled weakly to an external appar
This paper provides a general theory of quantum feedb
control using weak measurements. Since weak meas
ments allow the accurate determination of the comp
single-system density matrix of each member of a set
identical quantum systems, while affecting each system
the set arbitrarily weakly, quantum feedback by weak m
surement will be shown to be capable of accomplishing ta
that are not possible using conventional, strong meas
ments. A model of quantum feedback using weak meas
ments is given and applications are proposed. In additio
NMR, quantum feedback by weak measurements could
used in quantum optics and atomic and molecular system
effect arbitrary nonlinear Schro¨dinger equations, to creat
1050-2947/2000/62~1!/012307~5!/$15.00 62 0123
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solitons and Schro¨dinger cat states, to perform quantu
computations, and to institute novel forms of quantum cha

Quantum feedback via weak measurement represen
novel paradigm for coherent control of quantum systems
enables the performance of operations that are impossib
the normal, strong measurement paradigm for quantum c
trol. For example, suppose that each of the systems in the
is in the same unknown pure state. Then feedback with w
measurement can be used to drive them to any desired
statereversibly, while preserving quantum coherence. Th
contrasts markedly to quantum feedback using strong m
surements, where a system in an unknown quantum state
be driven to any desired quantum state, but only at the c
of disturbing the system’s state irreversibly and stocha
cally, destroying quantum coherence in the process.

The general picture of quantum feedback control us
weak measurements is as follows. Suppose that we have
of N identical noninteracting quantum systems, each w
density matrixr. ~Of course, no set of quantum systems
perfectly noninteracting, but in many situations — e.
liquid-state NMR, quantum optics — the noninteracting a
proximation holds to a high degree of accuracy.! Assume
that the system is coherently open-loop controllable, so
we can perform arbitrary unitary transformationsU on the
system~necessary and sufficient conditions for open-loop
herent control of quantum systems are well known@1–6#!.
Now assume that we are able to make a sequence of co
tive weak measurements on these systems that allow u
determine the single-system reduced density matrixr to
some degree of accuracyd, while disturbing this density ma
trix by an amounte. As will be seen below, bothd ande can
go to zero in the limit that the number of systems goes
infinity. If the systems are individual nuclear spins, for e
ample, the single-spin density matrix can be determined
measuring the induction signal produced about two differ
axes: this allows one to determine the expectation of
magnetization along thex, y, and z axes, which is in turn
sufficient information to determine the single-spin dens
©2000 The American Physical Society07-1
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matrix. Now feed that information back into the set by a
plying to each system a unitary transformationUd(r), where
Ud is some potentially nonlinear function ofr, and the sub-
script d indicates thatUd discriminates between differentr
to an accuracyd. The time evolution of the system wit
feedback by weak measurement is accordingly given by

r85Ud~r!~r1Dr!Ud
†~r!, ~1a!

where Dr is the perturbation to the single-system reduc
density matrix induced by the weak measurement, w
iDri<e for a suitable normi i such as the sup norm. A
will be shown below, in the limitN→`, the collective mea-
surement can be performed in such a way that bothd and
e→0, and the time evolution of the single-system dens
matrix is governed by the equation

r85U~r!rU†~r!. ~1b!

The remainder of this paper will be devoted to explori
the implications of Eqs.~1a! and~1b!. These equations hav
a variety of interesting features. The first, perhaps most
vious, is that they can be nonlinear as a function ofr: if r
5ar11br2, it need not be the case thatU(r)rU†(r)
5aU(r1)r1U†(r1)1bU(r2)r2U†(r2). ~It is important to
note that although the single-system reduced density ma
undergoes a nonlinear evolution, the density matrix for
set of systems taken collectively undergoes a conventio
linear time evolution: no laws of quantum mechanics
broken in constructing this nonlinearity.! If the weak mea-
surement is made continuously in time, then in the limitN
→`, d→0, e→0, feedback causes the single-system d
sity matrix to obey a nonlinear Schro¨dinger equation

]r/]t52 i @H~r!,r#, ~2!

whereH(r) is the Hamiltonian corresponding toU(r). Such
nonlinearities in the case of sets of nuclear spins are w
known: for example, if each nuclear spin in the set intera
with the mean field generated by the spins taken toget
then the single-spin density matrix obeys a nonlinear Blo
equation@19#. Feedback by weak measurement allows one
impose anarbitrary nonlinear Hamiltonian dynamics on th
single-system density matrices: if in the open-loop ca
without feedback, one can apply any conventional lin
time evolution, then in the closed-loop case, with feedb
of the results of weak measurements, one can apply any
sired nonlinear dynamics that preserves the eigenvalue
the density matrix. That is, one can taker→ f (r), where
f (r) has the same eigenvalues asr. If one can apply open-
system operations@20,21# as well as closed-system, unita
transformations, then one can alter the eigenvalues of
density matrix as well as taker→g(r), whereg(r) can be
an arbitrary density matrix.

Now let us look more closely at the dynamics of the we
measurement process, in order to determine how accura
the single-system density matrix can be measured an
what cost. There are two measures of the cost of weak m
surement: first, the sizeN of the set required to attain a give
accuracyd, and second, the amounte by which the indi-
01230
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vidual systems are perturbed by the weak interaction with
measuring apparatus. Here we construct a specific mode
weak measurement applicable to a wide range of phys
systems.

The general picture of measurement onN identical sys-
tems is as follows. The density matrix for the systems
r tot5r ^ r ^ •••^ r. A positive-operator-valued measur
~POVM! on this system corresponds to a set of operat
$Am i% such that(m iAm i

† Am i5I , whereI is the identity opera-
tor; the measurement corresponding to the POVM gives
resultm with probability pm5tr( iAm ir totAm i

† , in which case
the system is left in the stater totm5(1/pm)( iAm ir totAm i

† and
the density matrix for thel th subsystem goes tor l m
5trl 8Þl r totm .

We will define a weak measurement to be one that lea
the single-system density matrices unchanged to withi
small accuracye: (mpmir2r l mi<e. For example, a usefu
POVM is the set of Gaussian quasiprojections:Am

5@1/(2p)1/4D1/2#*2`
` e2(a2m)2/4D2

ua&^auda, where the nor-
malization is chosen so that trAm

† Am51 and *2`
` Am

† Amdm
5I ~here there is no need for the auxiliary indexi ). If we
write the single-system density matrix in thea basis as
(aa8eaa8ua&^a8u, then the measurement corresponding to
Am determines the value ofā5trrA to an accuracyD, where
A5*aua&^auda. In addition, the measurement has the effe
of reducing the off-diagonal terms ofr by a factor
e2(a2a8)2/2D2

, corresponding to a perturbation of sizee

'DA2/2D2, whereDA5AtrrA22ā2. If D@DA, the mea-
surement perturbs the system only weakly. Of course,
more weakly the measurement perturbs the system, the
information it acquires. By making a weak measurement
all the systems in the set simultaneously, however, one
obtain very precise information about the single-system d
sity matrix while perturbing it only slightly. Consider th
N-system POVM given by

ANm5@1/~2p!1/4D1/2#NE
2`

`

e2(( l al 2Nm)2/4D2
ua1&

3^a1u•••uaN&^aNuda1•••daN .

If a collective measurement corresponding to this POVM
performed on the systems in the set, one obtains the valu
ā to an accuracyAD2/N21DA2/N, while still perturbing the
single-system density matrix by the amounte'DA2/2D2. It
can be clearly seen that in the limitN→` we can takeD
}AN, giving an arbitrarily accurate determination ofā to-
gether with an arbitrarily small perturbation of the singl
system density matrix. After the measurement, the ove
density matrix is in the formr ^ •••^ r1O(e), so that the
assumption of no correlation between the systems is o
true to ordere. In the limit N→`, e→0, however, the no-
correlation assumption still holds.

Now we construct a model of how such a weak measu
ment might be performed. Our model is analogous to we
measurements in NMR, in which each system in the se
coupled weakly to the electromagnetic field in the measu
7-2
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QUANTUM FEEDBACK WTH WEAK MEASUREMENTS PHYSICAL REVIEW A62 012307
ment coil. Couple each system to the measurement appa
via a single continuous quantum variable~‘‘pointer posi-
tion’’ ! @22#, described by an operatorQ5*quq&^qudq, via a
Hamiltonian couplinggAP, whereP is the momentum cor-
responding toQ; @P,Q#5 i . This gives a dynamics for the
system and pointer:ua&uq&→ua&uq1agt& over timet. Now
suppose that allN systems are coupled symmetrically to t
pointer by an interaction (A11•••1AN)P. If the systems
are all originally in the stater i5r as above, and the pointe
is originally in the stateuc&5*c(q)uq&dq, then the interac-
tion between the systems and the measurement appa
gives

r1^ •••^ rN^ uc&^cu→rSM~ t !

5 (
a1a18•••aNaN8

E dqdq8c~q!c̄~q8!

3ra1a
18
•••raNa

N8
ua1&^a18u ^ •••^ uaN&^aN8 u

3 ^ uq1~a11•••1aN!gt&^q81~a181•••1aN8 !gtu.

~3!

One can then find the state of the apparatus at timet by
taking

rM~ t !5trSrSM~ t !

5 (
a1•••aN

E dqdq8c~q!c̄~q8!ra1a1
•••raNaN

3uq1~a11•••1aN!gt&^q81~a11•••1aN!gtu.

~4!

That is, after the measurement the pointer registers the
of N-independent samples ofA, where each resulta occurs
with probability pa5raa . The sum is registered to an acc
racy DQ5A^cuQ2uc&2^cuQuc&2. DQ measures the initia
spread of the pointer wave functionuc&. Accordingly, after
the coupling of the pointer to the systems, the pointer re
ters the result ^A&5trrA6DAA1/eN211/N, where e
5(gt/DQ)2 will be seen to be a measure of the degree
perturbation of each individual system, andDA
5AtrrA22(trrA)2 is the standard deviation ofA.

Now determine the amount of disturbance induced on
systems in the set. The state of any one of the systems in
set after the coupling with the pointer is given by traci
over all the other systems and the pointer state. Since
systems are identical by symmetry, just look at the first:

r~ t !5(
aa8

(
a2•••aN

E dqdq8c~q!c̄~q8!raa8ua&

3^a8ura2a2
•••raNaN

^q81~a81a21•••1aN!gt

3uq1~a1a21•••1aN!gt&

5(
aa8

E dqc~q!c̄@q1~a2a8!gt#raa8ua&^a8u. ~5!
01230
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That is, the off-diagonal parts ofr1 are reduced by an

amount 12*dqc(q)c̄„q1(a2a8)gt…. A convenient initial
pointer stateuc& is a Gaussian wave packet centered a
with standard deviationDQ ~analogous to a coherent state
the electromagnetic field!. In this case, it is easily seen tha
the effect of the coupling to the pointer is to multiply theaa8

off-diagonal terms ofr by a factore2[gt(a2a8)] 2/2DQ2
. That

is, when (gtDA)2/2DQ2'e!1, the effect of coupling each
member of the set to the same pointer is essentially the s
as the effect of coupling each member to a different mea
ing apparatus, with a perturbation of sizee5(gtDA/DQ)2.
This model of measurement can be seen to be equivale
the abstract POVM given above.

It is interesting to note that the ‘‘weakness’’ of this mod
of measurement can be tuned by adjusting the spreadDQ of
the initial pointer wave packet. AsDQ becomes small, the
measurement becomes stronger and stronger, revealing
information about an individual system while perturbing
wave function more and more. In the limit thatDQ→0, this
model reduces to von Neumann’s original model of stro
measurement.DQ acts as a knob that allows us to tune co
tinuously from weak to strong measurement.

We can weakly measure several observablesOl simulta-
neously by adjoining several pointer variablesQl and cou-
pling ( l g l Ol Ql . In the limit g→0, N→`, the l th
pointer provides an accurate assessment of^Ol & while per-
turbing each system by as small an amount as desired. N
that Ol need not commute with each other: in the we
measurement limit where theDQl are large andg l are
small, the measurements do not interfere with each other
monitoringd221 observables, one can obtain an assessm
of all terms in the density matrix simultaneously.

This concludes the detailed discussion of weak meas
ment. To summarize: by adjoining a suitable measuring
paratus and making the number of systemsN in the set large,
one can obtain the density matrix to a precisiond
5A1/eN211/N while perturbing each system by an amou
e(d221). By makingN sufficiently large, the single-system
reduced density matrix can be determined to arbitrary pr
sion while perturbing each system by an arbitrarily sm
amount. It can be seen that the detailed model gives the s
results as the abstract model of weak measurement g
above.

It is interesting to investigate whether the underlying s
tistics ~fermionic or bosonic! of the systems in the set affec
the results above. Since both wave functions and interact
are assumed to be symmetric, the results derived above
equally well for bosonic systems. If the systems are ferm
onic, in contrast, they cannot be in completely identic
states. However, if each system possesses additional de
of freedom ~position, for example, in the case of nucle
spins! that do not figure in the interaction with the measuri
apparatus, then the discussion above applies to fermion
well.

In fact, although we have assumed a symmetric situa
in which the systems are described by identical den
matricesr, this restriction is not necessary. If the system
are prepared in the uncorrelated stater1^ •••^ rN , where
7-3
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in generalr iÞr j , then the entire set of results derived he
applies to the determination and control of theaverage

single-system density matrixr̄5(1/N)( ir i .
Let us now assume that we can perform arbitrary we

measurements on a set of quantum systems, and feed
results of those measurements back continuously and co
ently using the well-known techniques of coherent contr
That is, assume that we can implement arbitrary nonlin
unitary transformations as in Eq.~1b! and nonlinear Schro¨-
dinger equations as in Eq.~2!. How might this technique be
applied?

The first potential use of this technique is simulation
weak feedback controller could be used to simulate the
namics of a variety of systems that obey a nonlinear Sch¨-
dinger equation. Nonlinear Schro¨dinger equations tend to
arise in sets of weakly coupled quantum systems: as n
above in the context of the nonlinear Bloch equation, su
coupled sets can be thought of as naturally occurring
amples of weak feedback. For example, weak feedback
be used to simulate any set of systems that can be adequ
described by a mean-field theory, in which each system
coupled weakly to the expectation value of some opera
on the ensemble as a whole.

The use of a nonlinear Schro¨dinger equation is common
in quantum optics to describe the evolution of photons t
are weakly interacting with matter, as in a nonlinear opti
fiber @23,24#. As just noted, such an effect can be thought
as a naturally occurring example of quantum feedback
weak measurements: the atoms in the fiber weakly mon
and act on the photons. The use of weak feedback to cr
nonlinearities has the advantage that the form and stre
of the nonlinearity induced by the quantum controller c
be varied at will. For example, an optical weak feedba
apparatus could be constructed by instrumenting a fiber w
photodetectors and feeding back their signals to the fi
via electro-optic modulators@25#. Such an optical controlle
could be used as a quantum analog computer to investi
the effect of time and spatially varying nonlinearities
the propagation of light down the fiber. It is importa
to note that such a fiber need not itself be nonlinear:
the nonlinearity could be supplied by the controller. In ad
tion, weak feedback could be used to create and investi
the properties of optical solitons in a variety of nonline
media.

As noted by Haus@23#, systems that obey nonlinea
Schrödinger equations can be used to create Schro¨dinger’s
cats—quantum systems that exist in superpositions of
widely differing quasiclassical states. Although optical fibe
are lossy and tend to introduce decoherence, single-m
optical cavities of the sort constructed by Kimbleet al. are
good candidates for control by weak feedback@26#. The very
high Q of such cavities implies that the mode in the cavity
only weakly coupled to modes outside the cavity. Hete
dyne monitoring of the cavity field therefore constitutes
01230
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weak measurement on the photons in the cavity. Nonline
ties induced by weak measurement could be used to cr
Schrödinger’s cat states in the manner of Haus. Wiseman
Milburn have also proposed a cavity quantum electrodyna
ics enactment of feedback via weak measurements to
form optical squeezing@7#.

Finally, quantum feedback via weak measurement co
be used to create a novel form of quantum chaos. The u
linear Schro¨dinger equation does not exhibit sensitive depe
dence to initial conditions: the ‘‘distance’’ between any tw
statesuf& and uf8&, as measured by their inner produ
^fuf8&, remains constant@27,28#. ~Traditionally, quantum
chaos is not the study of sensitive dependence of quan
trajectories on initial conditions, but rather the study of qua
tized versions of classical chaotic systems.! The nonlinear
Schrödinger equation, in contrast, need not preserve d
tances between quantum states, andcanexhibit sensitive de-
pendence on initial conditions@29,30#. Quantum feedback
via weak measurement, because it can be used to effec
bitrary nonlinear Schro¨dinger equations, offers unique op
portunities for investigating the sensitive dependence
quantum trajectories on initial conditions. Such ensem
quantum chaos could be used, for example, to constru
‘‘Schrödinger microscope’’ to detect and amplify small di
ferences in quantum wave functions.

We close by examining the relationship between non
earity induced by feedback of weak measurements and
trinsically nonlinear quantum mechanics.~Once again, the
nonlinearity discussed in this paper is aneffectivenonlinear-
ity: the underlying quantum dynamics of weak feedback
linear.! Nonlinear Schro¨dinger equations of the type found i
Eq. ~2! above are common in nonlinear quantum mechan
@31#. Nonlinear quantum mechanics is known to exhibit
number of pathologies, including superluminal communic
tion @32#, violations of the second law of thermodynami
@33#, and the ability to solve hard computational problem
@34#. Since nonlinearity induced by weak feedback occ
entirely within the conventional framework of quantu
mechanics, it cannot exhibit the first two of these patho
gies. It might allow the solution of hard computational pro
lems by the mechanism of the previous paragraph, viz., c
structing a ‘‘Schro¨dinger microscope’’ to detect sma
perturbations in the wave function of a quantum compu
~see also@35#!; however, to obtain an exponential speed-
over classical computations, one needs to amplify expon
tially small differences in the wave function, which in tur
requires an exponentially large number of systems in the
Nonetheless, it may be the case that weak feedback ca
used to provide polynomial acceleration for computatio
problems.

This work was supported by the ARO and by DARP
under the Quantum Information and Computation~QUIC!
initiative.
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