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Quantum feedback with weak measurements
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The problem of feedback control of quantum systems by means of weak measurements is investigated in
detail. When weak measurements are made on a set of identical quantum systems, the single-system density
matrix can be determined to a high degree of accuracy while affecting each system only slightly. If this
information is fed back into the systems by coherent operations, the single-system density matrix can be made
to undergo an arbitrary nonlinear dynamics, including, for example, a dynamics governed by a nonlinear
Schralinger equation. We investigate the implications of such nonlinear quantum dynamics for various prob-
lems in quantum control and quantum information theory. The nonlinear dynamics induced by weak quantum
feedback could be used to create a novel form of quantum chaos in which the time evolution of the single-
system wave function depends sensitively on initial conditions.

PACS numbgs): 03.67—a, 03.65.Bz, 05.45.Mt

The conventional theory of quantum feedback control assolitons and Schiinger cat states, to perform quantum
sumes the use of strong or projective measurements to acemputations, and to institute novel forms of quantum chaos.
quire information about the quantum system under control Quantum feedback via weak measurement represents a
[1-1Q. Such measurements typically disturb the quanturmovel paradigm for coherent control of quantum systems. It
system, destroying quantum coherence and giving a stochagnables the performance of operations that are impossible in
tic character to quantum feedback control. But strong meathe normal, strong measurement paradigm for quantum con-
surements are not the only tool available for acquiring infor-trol. For example, suppose that each of the systems in the set
mation about quantum systerfikl, 1. In nuclear magnetic IS in the same unknown pure state. Then feedback with weak
resonancéNMR), for example, one makes collective mea- Measurement can be used to drive them to any desired pure
surements on a set of effectively identical systems: by monistatereversibly while preserving quantum coherence. This
toring the induction field produced by a large number ofcontrasts markedly to quantum feedback using strong mea-
precessing spins, one can obtain the average value of theiFréments, where a system in an unknown quantum state can
magnetization along a given axis while only slightly perturb-be driven to any desired quantum state, but only at the cost

ing the states of the individual spif&3]. We will call such ggnd'sgu;ts)t'pg iltqhe ?}:r:?urascgaaéfeAréi\/i?]r?tlwt:aly ;’;:)ncclss;tochastl-
measurements “weak measurements” since they onl Y, ying q P )

y ; .
AR . < The general picture of quantum feedback control using
weakly perturb the individual syst_ems_m the s&uch weak weak measurements is as follows. Suppose that we have a set
measurements on large sets of identical systems should n

8f N identical noninteracting quantum systems, each with
be confused with thsingle-systemveak measurements de- 94 y '

. . ! . density matrixp. (Of course, no set of quantum systems is
bated in[14-16.) The information acquired by weak mea- yortectly noninteracting, but in many situations — e.g.,

surement can then _be fed back to the sp_ins, for example tﬁ)quid-state NMR, quantum optics — the noninteracting ap-
suppress super-radiant deddy’,18. NMR is not the only  proximation holds to a high degree of accurackssume
system in which weak measurement is possible: one can pejhat the system is coherently open-loop controllable, so that
form weak measurements on essentially any set of quantuije can perform arbitrary unitary transformatiodson the
systems that can be coupled weakly to an external apparatusystem(necessary and sufficient conditions for open-loop co-
This paper provides a general theory of quantum feedbackerent control of quantum systems are well knowa-6]).
control using weak measurements. Since weak measur@ow assume that we are able to make a sequence of collec-
ments allow the accurate determination of the completeéive weak measurements on these systems that allow us to
single-system density matrix of each member of a set ofletermine the single-system reduced density matrixo
identical quantum systems, while affecting each system isome degree of accurady while disturbing this density ma-
the set arbitrarily weakly, quantum feedback by weak meatrix by an amount. As will be seen below, botl ande can
surement will be shown to be capable of accomplishing taskgo to zero in the limit that the number of systems goes to
that are not possible using conventional, strong measurénfinity. If the systems are individual nuclear spins, for ex-
ments. A model of quantum feedback using weak measureample, the single-spin density matrix can be determined by
ments is given and applications are proposed. In addition tmeasuring the induction signal produced about two different
NMR, quantum feedback by weak measurements could baxes: this allows one to determine the expectation of the
used in quantum optics and atomic and molecular systems tmagnetization along thg, y, and z axes, which is in turn
effect arbitrary nonlinear Schdinger equations, to create sufficient information to determine the single-spin density
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matrix. Now feed that information back into the set by ap-vidual systems are perturbed by the weak interaction with the

plying to each system a unitary transformatldg(p), where  measuring apparatus. Here we construct a specific model of

U, is some potentially nonlinear function pf and the sub- weak measurement applicable to a wide range of physical

script § indicates thatl 5 discriminates between differept ~ systems.

to an accuracyd. The time evolution of the system with The general picture of measurement Nridentical sys-

feedback by weak measurement is accordingly given by tems is as follows. The density matrix for the systems is

Poi=pPRpR®---®p. A positive-operator-valued measure

p'=Us(p)(p+Ap)Uk(p), (1a  (POVM) on this system corresponds to a set of operators

_ i _ {A,i} such thatEMiALiAMF I, wherel is the identity opera-
where Ap is the perturbation to the single-system reduced- the measurement corresponding to the POVM gives the
density matrix induced by the weak measurement, wit

. r}esult,u with probability p, =tr=A ,ipAL. , in which case
|Ap|/<e for a suitable nornj| || such as the sup norm. As : : " _h S t
will be shown below, in the limitN— o, the collective mea- the system is left in the stafgo,, = (1/p,,) 2iAipwf i and

surement can be performed in such a way that hbtnd the density matrix for the/th subsystem goes tg,,

; ; ; } = Proy -
6H0.' "?‘”d the time evolution of the single-system density We will define a weak measurement to be one that leaves
matrix is governed by the equation

the single-system density matrices unchanged to within a
p'=U(p)pUT(p). (1b) ~ small accuracy: EMpM||p—p/M||§e. For example, a us\?ful
POVM is the set of Gaussian quasiprojections;,
The remainder of this paper will be devoted to exploring=[1/(2m)Y4AY2|[* e~ (@~m%4% a)(a|da, where the nor-
the implications of Eqs(1a) and(1b). These equations have malization is chosen so thatAffA,=1 and [* ATA du
a variety of interesting features. The first, perhaps most ob=| (here there is no need for the auxiliary indgx If we
vious, is that they can be nonlinear as a funct|orpqrff p  write the single-system density matrix in tre basis as
=apy+ Bpa, 1rt need not be thTe case that(p)pU'(p)  =,,e,.]a)(a’|, then the measurement corresponding to the
= aU(p1)paU (p1) + BU(p2)poU (po). (It is important to A,, determines the value af=trpA to an accuracy\, where

note that although the single-system reduced density matriﬁzfa|a)(a|da. In addition, the measurement has the effect
undergoes a nonlinear evolution, the density matrix for th f reducing the off-diagonal terms op by a factor

set of systems taken collectively undergoes a conventional_ ,_ ;2552 _ . .

linear time evolution: no laws of quantum mechanics are®  corresponding to a perturbation of size
broken in constructing this nonlinearityif the weak mea- ~AA?/2A%, where AA= VirpA®—aZ. If A>AA, the mea-
surement is made continuously in time, then in the linit surement perturbs the system only weakly. Of course, the
—ow, §—0, e—0, feedback causes the single-system denmore weakly the measurement perturbs the system, the less

Sity matrix to obey a nonlinear Schﬂmger equation information it acquires. By making a weak measurement on
all the systems in the set simultaneously, however, one can
dplat=—i[H(p),p], (2 obtain very precise information about the single-system den-

sity matrix while perturbing it only slightly. Consider the
whereH (p) is the Hamiltonian corresponding t(p). Such  N-system POVM given by
nonlinearities in the case of sets of nuclear spins are well-
known: for example, if each nuclear spin in the set interacts % )
with the mean field generated by the spins taken together, AN,L=[1/(27T)1’4A1’2]NJ e~ (B ~Nw)aa% g )
then the single-spin density matrix obeys a nonlinear Bloch m
equation19]. Feedback by weak measurement allows one to X(ay|- - -lay)(ay|day - - -day.
impose ararbitrary nonlinear Hamiltonian dynamics on the

single-system density matrices: if in the open-loop case . . . .
without feedback, one can apply any conventional Iinealﬁ a collective measurement corresponding to this POVM is

time evolution, then in the closed-loop case, with feedbaciPerformed on the systems in the set: ong obtains t.he value of

of the results of weak measurements, one can apply any dé-to an accuracy/A“/N“+AA</N, while still perturbing the

sired nonlinear dynamics that preserves the eigenvalues &ingle-system density matrix by the amount AA%/2A%. It

the density matrix. That is, one can tage-f(p), where can be clearly seen that in the linfit— we can takeA

f(p) has the same eigenvalues@mslf one can apply open- « /N, giving an arbitrarily accurate determination afto-

system operationg20,21] as well as closed-system, unitary gether with an arbitrarily small perturbation of the single-

transformations, then one can alter the eigenvalues of thgystem density matrix. After the measurement, the overall

density matrix as well as take—g(p), whereg(p) can be density matrix is in the formp® - - - ® p+O(€), so that the

an arbitrary density matrix. assumption of no correlation between the systems is only
Now let us look more closely at the dynamics of the weaktrue to ordere. In the limit N—«, ¢e—0, however, the no-

measurement process, in order to determine how accuratetprrelation assumption still holds.

the single-system density matrix can be measured and at Now we construct a model of how such a weak measure-

what cost. There are two measures of the cost of weak meanent might be performed. Our model is analogous to weak

surement: first, the sizd of the set required to attain a given measurements in NMR, in which each system in the set is

accuracys, and second, the amouetby which the indi- coupled weakly to the electromagnetic field in the measure-
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ment coil. Couple each system to the measurement apparatlibat is, the off-diagonal parts gf; are reduced by an

via a single continuous quantum variahfgointer posi-  amount - fdqy(q) ¥(q+(a—a’) yt). A convenient initial
tion”) [22], described by an operat@=fq|q)(qldg, viaa  pointer statel) is a Gaussian wave packet centered at O
Hamiltonian couplingyAP, whereP is the momentum cor- it standard deviatioA Q (analogous to a coherent state of
responding toQ; [P,Q]=i. This gives a dynamics for the e electromagnetic fieldIn this case, it is easily seen that
system and pointera)|q) —|a)|q+ayt) over timet. Now the effect of the coupling to the pointer is to multiply the’

suppose that alN systems are coupled symmetrically to the i _ o N129A 02
pointer by an interactionA; + - - - +Ay)P. If the systems Off-diagonal terr?s ofozby a factore” (@72 )] IZAQ,' That
are all originally in the statg,= p as above, and the pointer 1S When (tAA)9/2AQ°~e<1, the effect of coupling each

is originally in the statéy)= [ #(q)|q)dq, then the interac- Member of the set to the same pointer is essentially the same

tion between the systems and the measurement apparat@g the effect of coupling each member to a different measur-
gives ing apparatus, with a perturbation of size: (ytAA/AQ)2.

This model of measurement can be seen to be equivalent to
p1® -+ - @pn® | W) | — psm(t) the abstract POVM given above.
It is interesting to note that the “weakness” of this model
= E dqdq w(q)l(q’) of measurement can be tuned by adjusting the spigaaf
aja) - ayay, the initial pointer wave packet. AAQ becomes small, the
measurement becomes stronger and stronger, revealing more
X PajarPagala1)(ag]@- - @lay)(ay| information about an individual system while perturbing its
wave function more and more. In the limit th&aQ— 0, this
X@[g+(a;t---+ay) yt)(q'+(a+---+ay | model reduces to von Neumann’s original model of strong
3) measuremeniA Q acts as a knob that allows us to tune con-
tinuously from weak to strong measurement.
One can then find the state of the apparatus at tirbg We can weakly measure several observatilessimulta-
taking neously by adjoining several pointer variabl@s and cou-
pling =,v,0,Q,. In the limit y—0, N—o, the /th
pm(t)=trgpsm(t) pointer provides an accurate assessmeridf) while per-
turbing each system by as small an amount as desired. Note
_ / T that O, need not commute with each other: in the weak
alzaN qudq DY) Pasa, Payay measurement limit where thAQ, are large andy, are
, small, the measurements do not interfere with each other. By
X|q+(agt-- - +an) y(a’ +(agt - - +an) ). monitoringd?— 1 observables, one can obtain an assessment
(4) of all terms in the density matrix simultaneously.
This concludes the detailed discussion of weak measure-
That is, after the measurement the pointer registers the sument. To summarize: by adjoining a suitable measuring ap-
of N-independent samples @& where each resul occurs  paratus and making the number of systeria the set large,
with probability p,=p,,. The sum is registered to an accu- one can obtain the density matrix to a precisigh
racy AQ=(#|Q%¢) —(¢]Q|¢)*. AQ measures the initial = /1/eN?+ 1/N while perturbing each system by an amount
spread of the pointer wave functiggy). Accordingly, after  e(d?—1). By makingN sufficiently large, the single-system
the coupling of the pointer to the systems, the pointer regisreduced density matrix can be determined to arbitrary preci-
ters the result(Ay=trpA=x AA\1/eN?+1/N, where e  sion while perturbing each system by an arbitrarily small
=(yt/AQ)? will be seen to be a measure of the degree ofamount. It can be seen that the detailed model gives the same
perturbation of each individual system, and\A results as the abstract model of weak measurement given
= \JtrpAZ—(trpA)? is the standard deviation @. above.

Now determine the amount of disturbance induced on the It is interesting to investigate whether the underlying sta-
systems in the set. The state of any one of the systems in thistics (fermionic or bosonigof the systems in the set affect
set after the coupling with the pointer is given by tracingthe results above. Since both wave functions and interactions
over all the other systems and the pointer state. Since thare assumed to be symmetric, the results derived above hold
systems are identical by symmetry, just look at the first:  equally well for bosonic systems. If the systems are fermi-

onic, in contrast, they cannot be in completely identical

) — ., states. However, if each system possesses additional degrees
p()=2 . > qudq (A (a’) paar|a) of freedom (position, for example, in the case of nuclear
aa’ a2 -aN . . . . . . .
sping that do not figure in the interaction with the measuring
><<a’|paza2- . -paNaN(q’+(a’+a2+ < tay)yt apparatus, then the discussion above applies to fermions as
well.
X[q+(atayt---+ay)t) In fact, although we have assumed a symmetric situation

in which the systems are described by identical density

:2 f dqw(Q)E[qu(a— a ) ytlpaarla)(@’l. (5 matricesp, this restriction is not necessary. If the systems
aa’ are prepared in the uncorrelated state - - - ® py, Where
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in generalp; # p; , then the entire set of results derived hereweak measurement on the photons in the cavity. Nonlineari-
applies to the determination and control of thgerage ties induced by weak measurement could be used to create
single-system density matrix=(1/N)=,p; . Schralinger’s cat states in the manner of Haus. Wiseman and
Let us now assume that we can perform arbitrary weakMilburn have also proposed a cavity quantum electrodynam-
measurements on a set of quantum systems, and feed tles enactment of feedback via weak measurements to per-
results of those measurements back continuously and cohdrrm optical squeezinj7].
ently using the well-known techniques of coherent control. Finally, quantum feedback via weak measurement could
That is, assume that we can implement arbitrary nonlineabe used to create a novel form of quantum chaos. The usual
unitary transformations as in E¢lb) and nonlinear Schro linear Schrdinger equation does not exhibit sensitive depen-
dinger equations as in E2). How might this technique be dence to initial conditions: the “distance” between any two
applled? states|¢) and |¢'), as measured by their inner product
The first potential use of this technique is simulation: A p|p'), remains constan27,28. (Traditionally, quantum
weak feedback controller could be used to simulate the dyznaos is not the study of sensitive dependence of quantum
namics of a variety of systems that obey a nonlinear Schroyajectories on initial conditions, but rather the study of quan-
dinger equation. Nonlinear Schtimger equations tend to (izeq versions of classical chaotic systeriBhe nonlinear
arise in sets of weakly coupled quantum systems: as notegchralinger equation, in contrast, need not preserve dis-
above in the context of the nonlinear Bloch equation, suchgnces between guantum states, eadexhibit sensitive de-
coupled sets can be thought of as naturally occurring eXpendence on initial conditionf29,30. Quantum feedback
amples of weak feedback. For example, weak feedback cafy weak measurement, because it can be used to effect ar-
be used to simulate any set of systems that can be adequatgfirary nonlinear Schidinger equations, offers unique op-
described by a mean-field theory, in which each system igotunities for investigating the sensitive dependence of
coupled weakly to the expectation value of some operatorgyantum trajectories on initial conditions. Such ensemble
on the ensemble as a whole. o quantum chaos could be used, for example, to construct a
~ The use of a nonlinear Schtinger equation is common  «gchradinger microscope” to detect and amplify small dif-
in quantum optics to describe the evolution of photons thaterences in guantum wave functions.
are weakly interacting with matter, as in a nonlinear optical \ye close by examining the relationship between nonlin-
fiber [23,24). As just noted, such an effect can be thought ofeayity induced by feedback of weak measurements and in-
as a naturally occurring example of quantum feedback byyinsically nonlinear quantum mechanig©nce again, the
weak measurements: the atoms in the fiber weakly monitogojinearity discussed in this paper is effiectivenonlinear-
and acton the photons. The use of weak feedback to creap@,: the underlying quantum dynamics of weak feedback is
nonlinearities has the advantage that the form and strengifhear) Nonlinear Schidinger equations of the type found in
of the _nonhnea_rlty induced by the quantum controller Cangq, (2) above are common in nonlinear quantum mechanics
be varied at will. For example, an optical weak feedback31] Nonlinear quantum mechanics is known to exhibit a
apparatus could be constructed by instrumenting a fiber with ;mper of pathologies, including superluminal communica-
photodetectors and feeding back their signals to the fibejjgp, [32], violations of the second law of thermodynamics
via electro-optic modulator®5]. Such an optical co_ntrolle.r 33], and the ability to solve hard computational problems
could be used as a quantum analog computer to |r_1\_/est|ga%g4]_ Since nonlinearity induced by weak feedback occurs
the effect of time and spatially varying nonlinearities onengjrely within the conventional framework of quantum
the propagation of light down the fiber. It is important mechanics, it cannot exhibit the first two of these patholo-
to note that such a fiber need not itself be nonlinear: alyies. |t might allow the solution of hard computational prob-
the nonlinearity could be supplied by the controller. In addi-jgms by the mechanism of the previous paragraph, viz., con-
tion, weak feedback could be used to create and investigagqructing a “Schrdinger microscope” to detect small
the properties of optical solitons in a variety of no”“nearperturbations in the wave function of a quantum computer
media. ) (see alsd 35]); however, to obtain an exponential speed-up
As noted by Haus23], systems that obey nonlinear gyer classical computations, one needs to amplify exponen-
Schralinger equations can be used to create Stihger's sy small differences in the wave function, which in turn
cats—quantum systems that exist in superpositions of Weequires an exponentially large number of systems in the set.
widely differing quasiclassical states. Although optical fibersygnetheless, it may be the case that weak feedback can be

are lossy and tend to introduce decoherence, single-modgseqd to provide polynomial acceleration for computational
optical cavities of the sort constructed by Kimideal. are  hroplems.

good candidates for control by weak feedb§26]. The very

high Q of such cavities implies that the mode in the cavity is  This work was supported by the ARO and by DARPA
only weakly coupled to modes outside the cavity. Hetero-under the Quantum Information and Computati@UIC)
dyne monitoring of the cavity field therefore constitutes ainitiative.
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