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Quantum entanglement and information processing via excitons in optically driven quantum dots
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We show how optically driven coupled quantum dots can be used to prepare maximally entangled Bell and
Greenberger-Horne-Zeilinger states. Manipulation of the strength and duration of the selective light pulses
needed for producing these highly entangled states provides us with crucial elements for the processing of
solid-state-based quantum information. Theoretical predictions suggest that several hundred single quantum bit
rotations and controlledtoT gates could be performed before decoherence of the excitonic states takes place.

PACS numbgs): 03.67—a, 71.10.Li, 71.35-y, 73.20.Dx

[. INTRODUCTION tron spins on the dots have an exchange interactiamich
changes sign with increasing external magnetic field. Pos-
Quantum computation, quantum communication, quansible quantum-gate implementations have also been pro-
tum cryptography, and quantum teleportatiér-5] are some posed by Barenccet al. [12] by considering electronic
of the most exciting applications of the fundamental prin-charge effects in coupled QDs; however, this scheme has as
ciples of quantum theory. Since the seminal idea of Feynmathe main disadvantage rapid phonon decoherence, as com-
in 1982[1] and the work of Deutsch in 198%], both pure  pared with the above proposals. More recently, Imamoglu
and applied research in the field of quantum information proet al.[12] have considered a quantum computer model based
cessing has blossomed. In 1994, Sf&jropened the way to on both electron spins and cavity QED which is capable of
new fast quantum searching algorithms: he discovered that@alizing controlled interactions between two distant QD
guantum computer can factorize large integers. Two yearspins. In their model, the effective long-range interaction is
later arrived the proof that quantum error-correcting codesnediated by the vacuum field of a high finesse microcavity,
exist[7]. Up until now, such quantum-mechanical computersand single quantum biqubit) rotations and controlledoT
have been proposed in terms of trapped ions and af8ins (CNOT) operations are realized using electron-hole Raman
cavity quantum electrodynamiag®QED) [9], nuclear mag- transitions induced by classical laser fields and the cavity
netic resonancgl0], Josephson junctiorjd 1], and semicon- mode. Vrijenet al. [12] considered electron spin resonance
ductor nanostructurd42] schemes. All of the above propos- transistors in silicon-germanium heterostructures: one and
als have decoherence and operational errors as the maiwo qubit operations are performed by applying a gate bias.
obstacles for their experimental realization, which pose In this paper we focus on optically driven coupled QDs in
much stronger problems here than in classical computers. order to obtain highly entangled states of excitons and hence
There is much current excitement about the possibility ofprovide a mechanism for processing quantum information
using solid-state-based devices for the achievement of quaver a reasonable parameter window, before decoherence of
tum computation tasks. In particular, semiconductor nanothe excitonic states takes place. In the physical implementa-
structure fabrication technology is well developed and hencéon of the quantum entanglement scheme proposed here, we
offers us a wide and promising arena for the challengingexploit recent experimental results involviegherent opti-
project of building quantum information processors. Becauseal control of excitons in single quantum dots on the nanom-
of their quantum-mechanical nature and their potential scaleter and femtosecond scal[d$8—15. The amazing degree of
ability properties, semiconductor quantum d¢@Ds are  control of the quantum states of these individual “artificial
very promising candidates for the implementation of quan-atoms” [13] due to the manipulation of the confined state
tum computing processes. Several solid-state design schemeave function of a single dot is an exciting and promising
for quantum computation have been proposed to date: Kangevelopment. As one exciton can be trapped in the dot, we
[12] has proposed a scheme that encodes information onteave the direct possibility to use QDs as elements gitan-
the nuclear spins of donor atoms in doped silicon electronitcum memorycapacity in quantum computation operations,
devices where externally applied electric fields are used tthrough a precise and controlled excitation of the system. As
perform logical operations on individual spins. Loss and Di-demonstrated ifi13], it is possible to excite and prolzly
Vincenzo[12] have presented a scheme based on electroaneindividual QD within a broad distribution of dots, with
spin effects, in which coupled quantum dots are used as tine important result that the dephasing time is much longer
guantum gate. This scheme is based on the fact that the elei- a single dot(40 ps than in the bulk semiconductors
(<1 p9 studied before. Hence, new experimental work
means that much longer intrinsic coherence times are cur-

*Electronic address: j.reina-estupinan@physics.ox.ac.uk rently available, a fact of fundamental importance when
"Electronic address: luis@anacaona.uniandes.edu.co looking towards the practical implementation of single qubit
*Electronic address: n.johnson@physics.ox.ac.uk rotations and quantunecNOT gates which are crucial ele-
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ments for carrying out quantum information processingwhere
tasks.

The outline of this paper is as follows: Section Il gives a Ho= EJZ+W(J2—J;), Ho(D)=¢&t)J, +&(H)I_ (4
detailed description of the coupling of QDs to pulses of light
and the generation of maximally entangled Bl EPR i J25%[3+J_+J_J+]+J; The J, operators obey the
[16,17 and Greenberger-Home-ZeilingdBHZ) [18] states i, a1 angular momentum commutation relatipds, .. |=
in systems comprising two and three quantum dots, respec;;L, [J. ., 1=23,, and[JZ,J+]=[J2,J,]=[J2,J’z]_=0.

tively. The discussion of the results and experimental conl_ . ;
. ) . . n going from Eq.(1) to Eq. (3) we have switched from a
siderations are presented in Sec. Ill. In Sec. IV we review th going a.(1) a.(3

i ) : %ot—selective(index p) to a nonselective description. Since
elements required for performing quantum computation taSkﬁwe dots are equidistant from each other, this description is

and the links with the solid-state setup proposed here. Conéippropriate for up to four dotéplaced at the corners of a

clusions are given in Sec. V. tetrahedrop Hence the quantum-dynamical problem associ-
ated with the time evolution of any initial state under the
Il. GENERATION OF MAXIMALLY ENTANGLED action of H(t) is described by
STATES IN OPTICALLY DRIVEN QUANTUM DOTS

Quantum entanglement is of fundamental interest since 19 W (1)s={Ho+HL(O}P(D))s, ©)

many of the most basic aspects of quantum theory require its
successful generation and manipulation. In particular, th
Bell and GHZ maximally entangled states are the startin
point for fundamental discussions such as the violation o
Bell's inequalities[19] and the nonlocality problefi7], as
well as for teleportation[5] and quantum cryptography
[4]. Here we will show how to generate maximally en-
tangled states of two and three qubits of the
form [l%e..>=(,1/@(|00>+ew|11>) and  |¥epy)
=(1/y/2)(|000 +€'?|111)), for arbitrary values of the phase : —y

factor ¢ [20], using a ]s>emiconductor nanostructure setup. W O)A=HT¥ (D), ©)
We consider a system df identical and equispaced QDs, with

containing no net charge, which are radiated by long-

wavelength classical light. Hence formation of single exci- ;L 2 42 %

tons with?n the individugl QDs and their interdot trar?sfer can HT = 8,0z WIT=J2) + A+ AT @)
be described in the frame of thetating-wave approxima-
tion (RWA) by the Hamiltoniar{21,22 (A=1),

here the subscrip indicates the Schrdinger picture. We
onsider the laser pulse shag)=Ae '“!, whereA gives

he electron-photon coupling and the incident electric field

strength. We also introduce the unitary transformatiq(h)

=e '®Jz' whose application in the Schiimger picture leads

us from thelaboratory frame(LF) to therotating frame(RF)

using the ruld ¥ (t)),=AT(t)|¥(t))s. Hence Eq.(5) may

be rewritten as

Here A ,=e— w is the detuning parameter. We note the im-
portance of the\ transformation: the new Hamiltonid#h’ is
e N w N time independent_. From a.practical poi.nt of view, .parameters
Ht)==>, {cgcp—h h£}+— > {cih ,cp,hl‘; A and A, are adjustable in the experiment to give cqntrol
2p=1 2 p.p =1 over the system of QD®r qubit9. SinceJ? commutes with
the operatord-., H' may be diagonalized separately in each

N N
+heeh hl e+ &t Thi 4 &% (t h.c.. one of theseJ subspaces. Consider thg,q} subspace
pCor My Col &1 )pzl Cohp &7 )pzl pCe spanned byM)=|J,M;q): the only possible values fdrare
(1) N/2N/2—1, ... 3 or 0, and for eacl-fixed value, we have

2J+1 different values forM, which are given byM=
Wherec; (hg) is the electronhole) creation operator in the —(N/2),—(N/2)+1,...,(N/2)—1,(N/2). We introduce the
pth quantum dote is the QD band gapW the interdot in-  label g to further distinguish the stategj=1,2,... D,
teraction, and4(t) the laser pulse shape. The operators in-where the multiplicityD, i.e., the number of states having
volved in Eq.(1) obey the anticommutation rulds, ,c)} ~ angular momentund andM=J, is given by
={hy ,h:;}= dpp - By introducing the new operators

N
N N B 2J+1
— thi - J N =+J
J. p§=:1 cphp, J- p§=:1 hoCp, ‘]+§+1 2
N 2
; 232 fcle.—h hl} The product stateslTf_;|m)=|m;, ... my), with J;
22, e Tl =3,m, form a 2N-dimensional basis which span the Hilbert
space SU(2)N. In this basis, the 2 eigenvalues of’ are
Eq. (1) adopts the form obtained by diagonalizing the Hamiltonian matrix of ele-
ments(J,M,q|H'|J",M’,q"). We get the nonzero elements
H(t)=Hgo+H(t), (3 as follows:
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(MH'IM"y=(A M +W[I(I+1)—M?]) Sy m/ The eigenenergies for the case of an off-resonance pulse of
' light can also be found analytical[24]. We do not give the
+FAVII+1D) =M (M'+1) Symrir explicit expressions for brevity. The eigenfunctions for the

N=2 problem are given b
+A*VIAT DM (M —1) Sy mro1. P given by

(8) E+A,~W
|[E=E =T |0>+TA||1>
The matrix elements given in E¢8) provide us with the
general rule for any number of QDs. Since the right-hand 2|A]2+ (2W— EJ(E +A,—W)
side of this equation does not dependmwe only need to — > [2) ],
diagonalize a square matrix of sidd-21 for eachJ. Every 2|A|
eigenvalue so obtained occubs; times in the entire spec- (13)

trum. Next, we show that solving the eigenfunction problem

associated with Eq(8) leads to the generation of highly where — T'y=\2|A|[4[A]>+(A,+W)(E +A,~W)] "2

N-entangled states of excitons in QDs. with E, given as abovek=0,1,2). The procedure described
here enables us to perform the calculation of the laser pulse

A. Coupling of N=2 QDs and the generation of Bell states length required for generating the searched entangled Bell

In this sect describe th dure for th Jlates.
n this section we describe Ihe procedure for the genera- -, general, for any value oN, the total wave function

tion of entangled Bel states|Wgen)=(112)(100)  ,qsociated with the initial conditidi? (t=0))=|W¥,) can be
+€'?|11)) for arbitrary values of the phase factpr Here 0 expressed as|¥(t)),=3,Cee =6 y), where H'|y)
(1) denotes a zero-excitc(eingle_ excitpm QD, and the direct _ Elii), and| i) =S Ag[M,). Here thé normalization co-
product of the quantum stateg)=|j)®|k) form a four-  ogiients ¢, [25] depend on the chosen initial condition
dimensional basis in the Hilbert space SU@U(Z)' In the |Wo). The matrix elementd,; must be determined for each
J=1 subspace23], M={-1,0,1;. We define|[M)=|3 5 ricular value oN, and|M;)=|J,M;;q) as indicated ear-

=1M=-1)=|0), [Mp)=[J=1M=0)=|1), and [M3) jier i this section. Hence, the total wave functiphi(t))
T . : _ , R
=[J=1M=1)=[2), as the vacuum of excitons, the single- .. e written as

exciton state, and the biexciton state, respectively. In the
absence of light, we have

W(t)r= C.A,.e Ed|M ). 14
E(J,M)=A,M+W[I(I+1)—M?], ) [W(t))a EK:EI: Ae M) (14

For the case oN=2 QDs, it is a straightforward exercise to
so the energy levels of the system @&g=E(1,~1)=W  compute the explicit coefficients of E(L4) for both of theJ
—4,, E;=E(1,0=2W, and E,=E(1,1)=W+4A,,. Note  gypspaces that span the Hilbert space SW(@Y(2). Next
thatE; ;=E,—Eq=24A,, is unaffected by the interdot inter- e center our attention on the discussion of finding the con-
action strengthw. .Next., conS|der'the action of the radiation ditions to produce the maximally entangled Bell states. To
pulse&(t) over this pair of QDs; in thd=1 subspace the  achieve this, we project the stad ) over the wave func-

Hamiltonian adopts the simple form: tion given by Eq.(14) obtaining the result
W-A 2A* 0 1 - |
R o N2 (Ve V(1) y=—= 2 Cu(Ag+e*Ag)e Bl (15
A= VA 2w 2ar |, (10) V2 %
0 \/EA W+A, Under the unitary evolution of the Hamiltonia#', the den-

sity of probability p(Bell) for finding the entangled Bell

whereA=|A|e'¢ defines the real amplitude and the phase ofStaEe in this couzpled QD system s proportional 16¢0]
the electron-photon coupling. Diagonalization gives the™ € *(2DIW ()| More explicitly we find
eigenenergies and eigenfunctions associated with(Hg). 1 _ |2

We get p(Bell)=3 ; Cu(A+e'*A)e B . (16)

ES—4WE?+ (5W2—4|A|?— A2)E+2W(A%2 +2|A]?>~W?)  Results and discussion of the time evolution described by
_ Eq. (16) for several different combinations of the physical
=0, 1D parameters in the model are discussed later.

as the eigenenergy equation. In resonafige=0, hence we B. Coupling of N=3 QDs and generation of GHZ states

see that Eq(11) has solutions: Here we address the problem of the generation of en-

tangled GHZ states of the formi¥gz)=(1/v2)(/000
Eo=W and E;,=3(3W= V16A[°+W?). (120  +e'?|111)), for any ¢, in the proposed system of three
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coupled QDs. In this case, the Hilbert space SU&)s 3W 34, .
spanned by the eight basis vectors associated with the three o T o V3A 0 0
different J subspaces. Without loss of generality, consider

the J=3 subspace as the only one optically active. We in- J3A M_ ﬂ 2A* 0
troduce the notationM)=|3/2,—3/2)=|0), |M,)=|3/2, 2 2

—12)=|1), [M3)=|3/2,1/2=|2), and |M,)=|3/2,31d2 H'= WA

=|3) to denote the vacuum state, the single-exciton state, the 0 2A > 7“’ \/§A*
biexciton state, and the triexciton state, respectively. In the

absence of light, the energy levels of the system are given by 3W 34,
Eo=E(3/2-3/2)=3(W—A,), E,=E(3/2—1/2)=1(7W 0 0 BA L

—A,), E,=E(3/2,1/2=3(7TW+A,), and E;=E(3/2,3/2)
=3(W+A,). We note that, as indicated in the preceding
section, the energy separati@ (=E;—Ey=3A,, is unaf-
fected by the interdot interaction strength Now we con- ) o )
sider the effect of the pulse of lighi(t) over this system of Dlagonallzatlon leads us to the following fourth-order equa-
three QDs in theJ=3 subspace: the associated Hamiltoniant!On:

is

(17)

([3(W=A,)—EI[(TW=A,)—E]-3|AI)([5 (W+A,)—EI[3 (TW+A,)—E]-3|A]?)

—4|A[3 (W=-4,)—E][3 (W+A,)—E]=0, (18

which is nontrivial to solve analytically in the case of a pulse with arbitrary frequencidowever, if £&(t) is applied at
resonanceX ,=0), we get the following eigenenergies:

Eo1=3W+ Al = J(W+[A)?+3[A[%,  Epz=3W—|A[= J(W—]A])*+3[A[%, (19
with eigenvectors
i 3wW 3w )
Foam - Form 5
Eo )= O+ | ——— | [+ | ————— [ [2)+]3) |, (20)
| 0,1> ﬂoyl_| > \/§|A| | > \/§|A| | > | >-
[ 3W 3w )
F2a” 7 F2am
E,o= O+ | ——— 1) —| —————][2)—|3) |, (22)
| 2,3> 7723-| > \/§|A| | > \/§|A| | > | >-
where the coefficients
3W 2\ —1/2
! +( i_T) ith i=0 3
= _— . wi i=0,...,
"2 3/AP

are normalization constants. The associated total wave funcligt)), [Eq. (14)] depends on the chosen initial condition
|W(t=0))=|¥,) and is a linear combination of the eigenfunctiq@§) and (21). We have computed, in both rotating and
laboratory frames, the analytical expressions [f#(t)), for all of the initial conditions|¥y)=1{|0),/1),|2),|3)}. As an
example of this procedure, we give the result for the zero-exciton state as the initial stat#,g.e=|M,)=|0). In this case,
the wave functior]¥(t)), is spanned by the following coefficien® andAy;:
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£ 3w E 3W £ 3w £ 3w
S S S S S S -
0 270(E;—Eyp)’ L 29(Eg—Ey)’ 2 2my(E3—Ep)’ 3 2m3(Ey—Ey)’
” (EO_ %W)ei‘p (EO_ %W)eich eig“’n
0 7o 7o 0
V3|A| V3|A|
. (E;— 2 W)e'® (E;— 3 W)e'?¢ LT
1 71 71 1
) V3|A| V3|A|
A= E,— 3W)e'® E,— 3 W)e'?¢ 29
" ( 2 2 )e ( 2 2 )e _eig(Pn
2 /F 72 2
V3|A| V3|A|
. (Es— 3 W)e'¥ (Eg— 3 W)e'?# ey
3 73 - 73 3
V3|A| V3|A|

The density of probabilityp (GHZ) of finding the en-

with the dimensionless parameteks=Ale, u=Wle, v

tangled GHZ state between vacuum and triexciton states is w/e, 7= e€t, anddy(t) =y, (7). The set of Eqs(26) gives

given by

2

1 . .
P(GHZ)=7| X, C(Aate“Ag)e ™ . (24

the dynamics for any number of QDs and,i) values.

Numerical solutions were found by varying the parameters
N\, wm, andv. Comparison between these numerical solutions
and the analytical ones yields excellent agreement for the
generation of both Bell and GHZ states, starting from suit-

Analytical and numerical computations have been performedble initial conditiong ¥ ). Results will be addressed in the
for all of the initial conditiong ¥,) mentioned above. These next section.

results enable us to obtain specific conditions for the realiza-

tion of such maximally entangled GHZ states starting from

suitablee pulses and experimental parametersw, andA.
Details are discussed in Sec. .

The quantum dynamical problem given by E§) is eas-
ily expressed in terms of the expansion coefficiahjgt) of
the wave function. As usual, we write|W(t)),

Ill. RESULTS AND DISCUSSION

In this section we discuss the main results obtained from
the computation of both analytical and numerical solutions
for the unitary evolution described in the preceding section.

zzﬂﬂzddM(t)e*iEMt|M>, so the time dependent problem is Figure 1 shows the probability density for finding the en-
reduced to finding the solutions of the following set of 2 tangled Bell state N=2) between vacuum and biexciton

+1 linear differential equations,

igdy(H)=AVIJ+1)—M(M—1)

X e(EMfEM,lfw)ith_l(t)

+A* JJ(I+1) -M(M+1)

X elEu=Emratelitg, (1), (25)

where Ey=E(J,M)+w. More explicitly, Ey y-1=Epy
_EM_1:€+W[1_2M], EM‘M_*_]_:W[]."FZM]_E, and

the problem given by Eq25) can be expressed in terms of

reduced units as follows:

id,fm(T)=AIJ+1)—M(M—1)

Xe[l+ﬂ(172M)7V]inM,l( 7_)

+A*VIJ+1) —-M(M+1)

Xe—[l—,u,(l+2M)—V]inM+1(T) , (26)

states given by Eq.16) as a function of time for the initial
condition|¥,)=10). As seen from Fig. 1, selective pulses of
length 7, can be used to create maximally entangled Bell
states in the system of two coupled QDs. The enéigis
kept fixed while the amplitude of the radiation pul8eis
varied. The results indicate that the timBeis increased with
diminishing incident field strengt\. As an example, we
consider wide-gap semiconductor QDs, like ZnSe-based
QDs, with band gape=2.8 eV and resonant optical fre-
quencyw=4.3x10° s 1. For a 0 or 2r pulse,W=0.1 and
A=3, Fig. 1(a shows that the generation of the state
(1/y2)(|0)+|2)) requires a pulse of lengthr_=7.7

x 10" 1% s. By changing the value of the paramefefsee
Figs. 1b), 1(c), and 1d)], we can modify the lengtfr_ of

this Bell pulse (Fig. 1 covers the interval 10" s<r7_
<10™**s). Another method for manipulating the lengthis
shown in Fig. 2. Here we vary for fixed A=10"3. Experi-
mentally, this variation ofV can be tailored by changing the
interdot distance. In this case, the analysis shows that for a
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(a) (b)
1
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ot ot
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0t
i | |
T
l\ } Iy ‘ i {1 [ ‘
fixed value of A the length T decreases with decreasing ‘ » J L =
interaction strengti. il
The same investigation of parameter dependance was per 0 2000 4000 6000 8000
formed for the case of the entangled GHZ stdte=3) be- ot
tween vacuum and triexciton states. We calculate the prob- 5 5> Generation of the Bell state (\ﬁ)(|00>+|11>) A
ability given by Eq.(24) as a function of time, starting with  _14-3 ,—0 and(a) W=0.1, (b) W=0.05, and(c) W=10"2.
the initial condition| W 4)=|0). Figure 3 shows the selective ' o
pulses used to create such maximally entangled GHZ statdgol to realize the above combinations of parameters are com-
in the system of three coupled QDs. For example, in the casgatible with those demonstrated in RgL3]. We point out
of Fig. 3(a), the generation of the GHZ state @)qo) that the procedure described in this paper is valid for any
+/3)) requires a timer =1.3x10 * s. Figures &), Value of the phase constapt in contrast to Refl21] where
GHz

3(c), and 3d) explore several different ranges for the analytic resu_lts were de_rived for the particular c_zﬁeq_rlz.
GHz _ The generation of maximally entangled states in this paper

pulses reqwre_d in the _generatlon (.)f such GH_Z st_ate_:s FQlas considered the experimental situation of global laser
fixed W, the time 7., increases with decreasing incident ,iseq only; however, by using near-field optical spectros-
field strengthA. In contrast, for fixedA, the length7_ .~ copy [15], individual QDs from an ensemble can be ad-
decreases with decreasing interdot interaction strength.  dressed by using local pulses, a feature that can be exploited
The above results are not restricted to ZnSe-based QD#0 generate entangled states with different symmetries, such
by employing semiconductors of different band gage.g., as the antisymmetric state @ﬁ)(|01}—|10)). We will
GaAs, other regions of parameter space can be explorechence be able to generate the complete Bell basis consisting
We have studied the time evolution of the system of QDs forof four mutually orthogonal states for the two qubits, all of
several different values of the phage These give similar which are maximally entangled, i.e., the set of states
qualitative results to the ones discussed previously. Here wgl/y2){(|00)+[11)), (|00)—|11)), (|01)+]10)), (|01
only include the O or Zr-pulse results since these are ones—|10))}. From a general point of view, this basis is of fun-
corresponding to the discussion in Sec. IV. The relevant exdamental relevance for quantum information processing. We
perimental conditions as well as the required coherent corstress that the optical generation of excitonic entangled states

FIG. 1. Generation of the Bell state (@)(|00)+|11)). These
pulses correspond to the realization of the Hadamard gate followed
by a quantumcnoT gate.W=0.1, ¢=0, and (@ A=3, (b) A
=25, (0) A=10"2, and(d) A=10"3. In Figs. 1-3|¥(t)) denotes
the total wave function of the system at tihén both laboratory
(solid curve$ and rotating frameg&dashed curvgsThe energy is in
units of the band gag, and|¥,)=]0) in all of the figures.
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o
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012305-6



(a)

experiment reporting direct observation of excitonic Rabi os-
cillations in semiconductor quantum well87]. Despite the
fact that Rabi flopping in QDs is still under intensive experi-
mental study, results given in R¢27] lead us to believe that
we are not too far away from the experimental observation of
such excitonic Rabi oscillations in QDs and hence the dem-
onstration of single qubit operations.

The adequate preparation, computation, and readout of
information, in addition to the coherent coupling of the qu-

|<GHz [ (>

(c)

—

=
Posy

=3
=

7/ 4

|<GHz [wt) >

=3
D2

E=S
353
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(b)
M bits to the environment, are compulsory steps for the suc-
cessful construction of a universal quantum computer. We
0 S 100 150200 0 500 1000 1500 2000 2500 briefly review these requirements and their relationship with
ot ot the model proposed her¢l) A very-well-defined Hilbert
space We must have an adequate control over the Hilbert
(d) space of qubits. In our scheme, the orthonormal computation
basis of single qubits is represented by the vacuum state
(/0)) and the single state of excitonklf). (2) Initializing
the computer Before commencing any quantum computa-
tion task, we need a rapid relaxation of our qubits to their
ground state, i.e., zero excitons per dot. In our case, numeri-
cal values indicate that this state is easily achieved by turn-
ing the laser off and waiting for a few femtosecon¢)
Inputting initial data and readoutAs pure and entangled
states with different symmetries can be obtained using the
£ 6 8 10 0 2 4 6§ 10 experimental techniques described in REL3-15, we
Otx10 Otx10 ¢ would have the ability to manipulate the input of the quan-
tum state of the QD system. Hence, we would have the ex-
FIG. 3. Generation of the GHZ state (®)(/000+|111).  perimental possibility to control the optical excitation and to
These pulses correspond to the realization of the Hadamard gafgetect individual QD signals from an entire dot ensemble,
followed by two quantumcnoT gates.W=0.1, ¢=0, and(@ A thereby facilitating individual qubit control for the readout.
=35, (b) A=755, (0 A=10"?, and(d) A=10"2, In fact, nanoprobing enables us to measure directly the exci-
tonic and biexcitonic luminescence from single JDS]. (4)
in coupled QDs given here could be exploited in solid-stateUniversal set of gate operationg/e need to be able to per-
devices to perform quantum protocols, as recently proposefbrm single qubit rotations and two qubit gates. We stress
in Ref. [26] for teleporting an excitonic state in a coupled that the generation of the maximally entangled states shown
QD system. in Figs. 1-3 corresponds to the physical realization of a Had-
amard transformation followed by @oT operation in the
Bell case, and tw@NOT operations in the GHZ case. As to
V. QUANTU'\I/INI'\é';%RP'\ﬁéSggTPSROCESSWG thg practical semicon_duct(_)r ‘hanostructure implemen_tation,
this set of gate operations is in a preliminary stage of inves-
To perform quantum computation operations, we can uségation and demands intensive experimental sty@y De-
an initial pure state followed by a series of transformationscoherence and the coupling to the environmesy taking
on this state using unitary operations. Another possibility ignto account decoherence mechanisfexciton—acoustic-
to use an initial mixed state, providing the decoherence tim@honon typg on the process of generation of the entangled
is sufficiently long[10]. In order to implement such quantum States discussed here, a recent work by Rpmzet al. [28]
operations we need two elements: th@damardtransforma-  has shown that this generation is preserved over a reasonable
tion and the quanturanoT gate. In the orthonormal compu- parameter window, hence giving the possibility of perform-
tation basis of single qubit§0),|1)}, thecNoT gate acts on Ing the unitary transformations required for quantum com-
two qubits |¢;) and |¢;) simultaneously as follows: PUting before decoherence of the excitonic states takes place.
cNOT; (| @i @) ei) | ¢i® ¢;). Here ® denotesaddition
modulo2, and the indices andj refer to the control bit and
the target bit, respectively. The Hadamard transformatidn V. CONCLUSIONS
acts only on single qubits by performing the rotations: In summary, we have solved both analytically and nu-
HT(|0))—(1/42)(J0)+]1)), and HT(|1))~(1/y/2)(|0)  merically the guantum-mechanical equation of motion for
—[1)). In our scheme|0) represents the vacuum state for excitons in two and three coupled QD systems driven by
excitons while|1) represents a single exciton. Experimentalclassical pulses of light. By doing this, we have been able to
demonstration of single qubit rotatioand hence the Had- provide a mechanism for preparing maximally entangled
amard transformatiorin the case of individual excitons con- Bell and GHZ states via excitons in optically driven QDs,
fined to QDs should now be possible, as a result of a recergxploiting current levels of coherent optical control such as
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the ones demonstrated using ultrafast spectros¢dByl4  dow. This leads to the possibility of performing several hun-
and near-field optical spectroscob]. This mechanism en- dred quantum computation operations before decoherence of
ables us to generate single qubit rotations, such as the Hathese excitonic states takes place.

amard one, and quantugNOT gates. In particular, the pro-
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Bell basis, a fact that can be exploited in the process of

guantum teleportation of excitonic states in systems of JH.R. and L.Q. acknowledge the support of
coupled QD9 26]. Furthermore, by taking into account the COLCIENCIAS. J.H.R. thanks D. J. T. Leonard for helpful
main decoherence mechanisms, e.g., exciton—acoustidiscussions, and the hospitality of the 1999 ESF-QIT pro-
phonon type, we find that this optical generation of quantungram meeting in Cambridge, where part of this work was
entanglement is preserved over a reasonable parameter wiperformed.

[1] R.P. Feynman, Int. J. Theor. Phy&l, 467(1982; Opt. News 4204 (1999; R. Vrijen, E. Yablonovitch, K. Wang, H.W.
11, 11 (1985. Jiang, A. Balandin, and D.P. DiVincenzo, e-print

[2] D. Deutsch, Proc. R. Soc. London, Ser480, 97 (1985. quant-ph/9905096.

[3] W.K. Wooters and W.H. Zurek, Naturé.ondon 299 802 [13] N.H. Bonadeo, J. Erland, D. Gammon, D.S. Katzer, D. Park,
(1982; N.D. Mermin, Phys. Today8 (4), 38 (1985; W.H. and D.G. Steel, Scienc@82, 1473(1998.

Zurek, ibid. 44 (10), 36(1991); C.H. Bennettjbid. 48 (10), 24 [14] N.H. Bonadeo, G. Chen, D. Gammon, D.S. Katzer, D. Park,
(1999; see articles in the special issue on quantum informa- and D.G. Steel, Phys. Rev. Le81, 2759(1998.
tion, Phys. Worldl1, March 1998; A. Ekert and R. Jozsa, Rev. [15] A. Chavez-Pirson, J. Temmyo, H. Kamada, H. Gotoh, and H.
Mod. Phys.68, 733(1996. Ando, Appl. Phys. Lett72, 3494(1998.

[4] A.K. Ekert, Phys. Rev. Leti67, 661(1991); C.H. Bennett, G.  [16] J.S. Bell, Physic$Long Island City, N.Y) 1, 195 (1964).
Brassard, and N.D. Merminbid. 68, 557 (1992; C.H. Ben-  [17] A. Einstein, B. Podolsky, and N. Rosen, Phys. R&v, 777

nett, G. Brassard, and A. Ekert, Sci. AB67 (4), 26 (1992. (1935.

[5] C.H. Bennett, G. Brassard, C. @au, R. Jozsa, A. Peres, and [18] D.M. Greenberger, M.A. Horne, and A. Zeilinger, Bell's
W.K. Wooters, Phys. Rev. Let?0, 1895(1993. Theorem, Quantum Theory and Conceptions of the Uniyerse

[6] P.W. Shor, inProceedings of the 35th Annual Symposium on edited by M. Kafatog(Kluwer, Dordrecht, The Netherlands,
the Foundations of Computer Scienedited by S. Goldwasser 1989, p. 73; D.M. Greenberger, M.A. Horne, A. Shimony,
(IEEE Computer Society, Santa Fe, 199d. 124. and A. Zeilinger, Am. J. Phy$8, 1131(1990.

[7] P.W. Shor, Phys. Rev. A2, 2493(1999; A.M. Steane, Phys. [19] A. Aspect, J. Dalibard, and G. Roger, Phys. Rev. L8,
Rev. Lett.77, 793(1996. 1804(1982.

[8] J.I. Cirac and P. Zoller, Phys. Rev. Lef4, 4091(1995; C. [20] Throughout this paper we refer to this phase factor as the
Monroe, D.M. Meekhof, B.E. King, W.M. Itano, and D.J. pulse” to denote the type of entangled state generated in the
Wineland,ibid. 75, 4714(1995. optical process.

[9] Q.A. Turchete, C.J. Hood, W. Lange, H. Mabuchi, and H.J.[21] L. Quiroga and N.F. Johnson, Phys. Rev. L&8 2270
Kimble, Phys. Rev. Lett75, 4710(1995. (1999.

[10] N.A. Gershenfeld and I.L. Chuang, Scier2e5 350 (1997); [22] We ignore the constant terrN\(/Z)Ep{c;Qcer hph;}:Wle in
D.G. Cory, A.F. Fahmy, and T.F. Havel, Proc. Natl. Acad. Sci. the HamiltonianH.
USA, 94, 1634 (1997; E. Knill, I.L. Chuang, and R. [23]In general forJ=N/2 the multiplicity D;=1, henceq is irrel-
Laflamme, Phys. Rev. A7, 3348 (1998; J.A. Jones, M. evant.
Mosca, and R.H. Hansen, Natufieondon 393 344 (1998. [24] J.H. Reina(unpublishegl

[11] A. Shnirman, G. Schm and Z. Hermon, Phys. Rev. Left9, [25] Write |W(0))==,8dM) (B={(M|¥(0))). From the ex-

2371 (1997; D.V. Averin, Solid State Communl05 659 pansion given fot¥ (t)), it follows that| ¥ (0))==,Cy| ),
(1998; Y. Makhlin, G. Scham, and A. Shnirman, Natur@.on- hence the general expresion for the coefficie@fsbecomes
dor) 398 305(1999. Ci={(t.[¥(0))==;Bi{ M) == B;AL; -

[12] B.E. Kane, NaturglLondon 393 133 (1998; D. Loss and [26] J.H. Reina and N.F. Johnson, e-print cond-mat/9906034.
D.P. DiVincenzo, Phys. Rev. A7, 120(1998; G. Burkard, D.  [27] A. Schuzgen, R. Binder, M.E. Donovan, M. Lindberg, K.
Loss, and D.P. DiVincenzo, Phys. Rev5B, 2070(1999; A. Wundke, H.M. Gibbs, G. Khitrova, and N. Peyghambarian,
Barenco, D. Deutsch, A. Ekert, and R. Jozsa, Phys. Rev. Lett. Phys. Rev. Lett82, 2346(1999.

74, 4083(1995; A. Imamoglu, D.D. Awschalom, G. Burkard, [28] F.J. Rodmguez, L. Quiroga, and N.F. Johnson, e-print
D.P. DiVincenzo, D. Loss, M. Sherwin, and A. Smattlid. 83, cond-mat/9909139.

012305-8



