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Quantum entanglement and information processing via excitons in optically driven quantum dots
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We show how optically driven coupled quantum dots can be used to prepare maximally entangled Bell and
Greenberger-Horne-Zeilinger states. Manipulation of the strength and duration of the selective light pulses
needed for producing these highly entangled states provides us with crucial elements for the processing of
solid-state-based quantum information. Theoretical predictions suggest that several hundred single quantum bit
rotations and controlled-NOT gates could be performed before decoherence of the excitonic states takes place.

PACS number~s!: 03.67.2a, 71.10.Li, 71.35.2y, 73.20.Dx
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I. INTRODUCTION

Quantum computation, quantum communication, qu
tum cryptography, and quantum teleportation@1–5# are some
of the most exciting applications of the fundamental pr
ciples of quantum theory. Since the seminal idea of Feynm
in 1982 @1# and the work of Deutsch in 1985@2#, both pure
and applied research in the field of quantum information p
cessing has blossomed. In 1994, Shor@6# opened the way to
new fast quantum searching algorithms: he discovered th
quantum computer can factorize large integers. Two ye
later arrived the proof that quantum error-correcting co
exist @7#. Up until now, such quantum-mechanical comput
have been proposed in terms of trapped ions and atoms@8#,
cavity quantum electrodynamics~QED! @9#, nuclear mag-
netic resonance@10#, Josephson junctions@11#, and semicon-
ductor nanostructures@12# schemes. All of the above propos
als have decoherence and operational errors as the
obstacles for their experimental realization, which po
much stronger problems here than in classical computer

There is much current excitement about the possibility
using solid-state-based devices for the achievement of q
tum computation tasks. In particular, semiconductor na
structure fabrication technology is well developed and he
offers us a wide and promising arena for the challeng
project of building quantum information processors. Beca
of their quantum-mechanical nature and their potential s
ability properties, semiconductor quantum dots~QDs! are
very promising candidates for the implementation of qu
tum computing processes. Several solid-state design sch
for quantum computation have been proposed to date: K
@12# has proposed a scheme that encodes information
the nuclear spins of donor atoms in doped silicon electro
devices where externally applied electric fields are used
perform logical operations on individual spins. Loss and D
Vincenzo @12# have presented a scheme based on elec
spin effects, in which coupled quantum dots are used a
quantum gate. This scheme is based on the fact that the
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tron spins on the dots have an exchange interactionJ which
changes sign with increasing external magnetic field. P
sible quantum-gate implementations have also been
posed by Barencoet al. @12# by considering electronic
charge effects in coupled QDs; however, this scheme ha
the main disadvantage rapid phonon decoherence, as c
pared with the above proposals. More recently, Imamo
et al. @12# have considered a quantum computer model ba
on both electron spins and cavity QED which is capable
realizing controlled interactions between two distant Q
spins. In their model, the effective long-range interaction
mediated by the vacuum field of a high finesse microcav
and single quantum bit~qubit! rotations and controlled-NOT

~CNOT! operations are realized using electron-hole Ram
transitions induced by classical laser fields and the ca
mode. Vrijenet al. @12# considered electron spin resonan
transistors in silicon-germanium heterostructures: one
two qubit operations are performed by applying a gate b

In this paper we focus on optically driven coupled QDs
order to obtain highly entangled states of excitons and he
provide a mechanism for processing quantum informat
over a reasonable parameter window, before decoherenc
the excitonic states takes place. In the physical impleme
tion of the quantum entanglement scheme proposed here
exploit recent experimental results involvingcoherent opti-
cal controlof excitons in single quantum dots on the nano
eter and femtosecond scales@13–15#. The amazing degree o
control of the quantum states of these individual ‘‘artifici
atoms’’ @13# due to the manipulation of the confined sta
wave function of a single dot is an exciting and promisi
development. As one exciton can be trapped in the dot,
have the direct possibility to use QDs as elements withquan-
tum memorycapacity in quantum computation operation
through a precise and controlled excitation of the system.
demonstrated in@13#, it is possible to excite and probeonly
one individual QD within a broad distribution of dots, with
the important result that the dephasing time is much lon
in a single dot~40 ps! than in the bulk semiconductor
(,1 ps! studied before. Hence, new experimental wo
means that much longer intrinsic coherence times are
rently available, a fact of fundamental importance wh
looking towards the practical implementation of single qu
rotations and quantumCNOT gates which are crucial ele
©2000 The American Physical Society05-1
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ments for carrying out quantum information process
tasks.

The outline of this paper is as follows: Section II gives
detailed description of the coupling of QDs to pulses of lig
and the generation of maximally entangled Bell~or EPR!
@16,17# and Greenberger-Horne-Zeilinger~GHZ! @18# states
in systems comprising two and three quantum dots, res
tively. The discussion of the results and experimental c
siderations are presented in Sec. III. In Sec. IV we review
elements required for performing quantum computation ta
and the links with the solid-state setup proposed here. C
clusions are given in Sec. V.

II. GENERATION OF MAXIMALLY ENTANGLED
STATES IN OPTICALLY DRIVEN QUANTUM DOTS

Quantum entanglement is of fundamental interest si
many of the most basic aspects of quantum theory requir
successful generation and manipulation. In particular,
Bell and GHZ maximally entangled states are the start
point for fundamental discussions such as the violation
Bell’s inequalities@19# and the nonlocality problem@17#, as
well as for teleportation@5# and quantum cryptograph
@4#. Here we will show how to generate maximally e
tangled states of two and three qubits of t
form uCBell&5(1/A2)(u00&1eiwu11&) and uCGHZ&
5(1/A2)(u000&1eiwu111&), for arbitrary values of the phas
factor w @20#, using a semiconductor nanostructure set
We consider a system ofN identical and equispaced QD
containing no net charge, which are radiated by lon
wavelength classical light. Hence formation of single ex
tons within the individual QDs and their interdot transfer c
be described in the frame of therotating-wave approxima-
tion ~RWA! by the Hamiltonian@21,22# (\51),

H~ t !5
e

2(
p51

N

$cp
†cp2hphp

†%1
W

2 (
p,p851

N

$cp
†hp8cp8hp

†

1hpcp8
† hp8

† cp%1j~ t ! (
p51

N

cp
†hp

†1j* ~ t ! (
p51

N

hpcp ,

~1!

wherecp
† (hp

†) is the electron~hole! creation operator in the
pth quantum dot,e is the QD band gap,W the interdot in-
teraction, andj(t) the laser pulse shape. The operators
volved in Eq.~1! obey the anticommutation rules$cp8 ,cp

†%
5$hp8 ,hp

†%5dpp8 . By introducing the new operators

J15 (
p51

N

cp
†hp

† , J25 (
p51

N

hpcp ,

~2!

JZ5
1

2(
p51

N

$cp
†cp2hphp

†%,

Eq. ~1! adopts the form

H~ t !5H01HL~ t !, ~3!
01230
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where

H05eJZ1W~J22JZ
2
!, HL~ t !5j~ t !J11j* ~ t !J2 ~4!

with J2[ 1
2 @J1J21J2J1#1JZ

2
. The Ji operators obey the

usual angular momentum commutation relations@JZ ,J6#5
6J6 , @J1 ,J2#52JZ , and@J2,J1#5@J2,J2#5@J2,JZ#50.
In going from Eq.~1! to Eq. ~3! we have switched from a
dot-selective~index p) to a nonselective description. Sinc
the dots are equidistant from each other, this descriptio
appropriate for up to four dots~placed at the corners of
tetrahedron!. Hence the quantum-dynamical problem asso
ated with the time evolution of any initial state under t
action ofH(t) is described by

i ] tuC~ t !&S5$H01HL~ t !%uC~ t !&S , ~5!

where the subscriptS indicates the Schro¨dinger picture. We
consider the laser pulse shapej(t)5Ae2 ivt, whereA gives
the electron-photon coupling and the incident electric fi
strength. We also introduce the unitary transformationL(t)
5e2 ivJZt, whose application in the Schro¨dinger picture leads
us from thelaboratory frame~LF! to therotating frame~RF!
using the ruleuC(t)&L5L†(t)uC(t)&S . Hence Eq.~5! may
be rewritten as

i ] tuC~ t !&L5H8uC~ t !&L , ~6!

with

H85DvJZ1W~J22JZ
2!1AJ11A* J2 . ~7!

HereDv[e2v is the detuning parameter. We note the im
portance of theL transformation: the new HamiltonianH8 is
time independent. From a practical point of view, paramet
A and Dv are adjustable in the experiment to give cont
over the system of QDs~or qubits!. SinceJ2 commutes with
the operatorsJ6 , H8 may be diagonalized separately in ea
one of theseJ subspaces. Consider the$J,q% subspace
spanned byuM &[uJ,M ;q&: the only possible values forJ are

N/2,N/221, . . . ,12 or 0, and for eachJ-fixed value, we have
2J11 different values forM, which are given byM5
2(N/2),2(N/2)11, . . . ,(N/2)21,(N/2). We introduce the
label q to further distinguish the states:q51,2, . . . ,DJ ,
where the multiplicityDJ , i.e., the number of states havin
angular momentumJ andM5J, is given by

DJ5
2J11

J1
N

2
11

S N
N

2
1JD .

The product states)k51
N umk&[um1 , . . . ,mN&, with JZ

5(kmk form a 2N-dimensional basis which span the Hilbe
space SU(2)^ N. In this basis, the 2N eigenvalues ofH8 are
obtained by diagonalizing the Hamiltonian matrix of el
ments^J,M ,quH8uJ8,M 8,q8&. We get the nonzero elemen
as follows:
5-2
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^M uH8uM 8&5~DvM1W@J~J11!2M2# !dM ,M8

1AAJ~J11!2M 8~M 811! dM ,M811

1A* AJ~J11!2M 8~M 821! dM ,M821 .

~8!

The matrix elements given in Eq.~8! provide us with the
general rule for any number of QDs. Since the right-ha
side of this equation does not depend onq we only need to
diagonalize a square matrix of side 2J11 for eachJ. Every
eigenvalue so obtained occursDJ times in the entire spec
trum. Next, we show that solving the eigenfunction proble
associated with Eq.~8! leads to the generation of highl
N-entangled states of excitons in QDs.

A. Coupling of NÄ2 QDs and the generation of Bell states

In this section we describe the procedure for the gen
tion of entangled Bell states uCBell&5(1/A2)(u00&
1eiwu11&) for arbitrary values of the phase factorw. Here 0
~1! denotes a zero-exciton~single exciton! QD, and the direct
product of the quantum statesu jk&[u j & ^ uk& form a four-
dimensional basis in the Hilbert space SU(2)^ SU(2). In the
J51 subspace@23#, M[$21,0,1%. We define uM1&[uJ
51,M521&[u0&, uM2&[uJ51,M50&[u1&, and uM3&
[uJ51,M51&[u2&, as the vacuum of excitons, the singl
exciton state, and the biexciton state, respectively. In
absence of light, we have

E~J,M !5DvM1W@J~J11!2M2#, ~9!

so the energy levels of the system areE0[E(1,21)5W
2Dv , E1[E(1,0)52W, and E2[E(1,1)5W1Dv . Note
that E2,0[E22E052Dv is unaffected by the interdot inter
action strengthW. Next, consider the action of the radiatio
pulsej(t) over this pair of QDs; in theJ51 subspace the
Hamiltonian adopts the simple form:

Ĥ85S W2Dv A2A* 0

A2A 2W A2A*

0 A2A W1Dv

D , ~10!

whereA[uAueif defines the real amplitude and the phase
the electron-photon coupling. Diagonalization gives t
eigenenergies and eigenfunctions associated with Eq.~10!.
We get

E324WE21~5W224uAu22Dv
2 !E12W~Dv

2 12uAu22W2!

50, ~11!

as the eigenenergy equation. In resonanceDv[0, hence we
see that Eq.~11! has solutions:

E05W and E1,25
1
2 ~3W6A16uAu21W2!. ~12!
01230
d

a-

e

f
e

The eigenenergies for the case of an off-resonance puls
light can also be found analytically@24#. We do not give the
explicit expressions for brevity. The eigenfunctions for t
N52 problem are given by

uE5Ek&5GkS u0&1
E

k
1Dv2W

A2uAu
u1&

2
2uAu21~2W2E

k
!~E

k
1Dv2W!

2uAu2
u2& D ,

~13!

where Gk5A2uAu@4uAu21(Dv1W)(E
k
1Dv2W)#21/2,

with E
k

given as above (k50,1,2). The procedure describe
here enables us to perform the calculation of the laser p
length required for generating the searched entangled
states.

In general, for any value ofN, the total wave function
associated with the initial conditionuC(t50)&5uC0& can be
expressed asuC(t)&L5(kCke

2 iEktuck&, where H8uck&
5Ekuck&, anduck&5( jAk juM j&. Here the normalization co
efficients Ck @25# depend on the chosen initial conditio
uC0&. The matrix elementsAk j must be determined for eac
particular value ofN, anduM j&[uJ,M j ;q& as indicated ear-
lier in this section. Hence, the total wave functionuC(t)&L

can be written as

uC~ t !&L5(
k

(
j

CkAk je
2 iEktuM j&. ~14!

For the case ofN52 QDs, it is a straightforward exercise t
compute the explicit coefficients of Eq.~14! for both of theJ
subspaces that span the Hilbert space SU(2)^ SU(2). Next
we center our attention on the discussion of finding the c
ditions to produce the maximally entangled Bell states.
achieve this, we project the stateuCBell& over the wave func-
tion given by Eq.~14! obtaining the result

^CBelluC~ t !&L5
1

A2
(

k
Ck~Ak11eiwAk3!e2 iEkt. ~15!

Under the unitary evolution of the HamiltonianH8, the den-
sity of probability `(Bell) for finding the entangled Bel
state in this coupled QD system is proportional toz(^0u
1eiw^2u)uC(t)&Lz2. More explicitly we find

`~Bell!5
1

2U(k
Ck~Ak11eiwAk3!e2 iEktU2

. ~16!

Results and discussion of the time evolution described
Eq. ~16! for several different combinations of the physic
parameters in the model are discussed later.

B. Coupling of NÄ3 QDs and generation of GHZ states

Here we address the problem of the generation of
tangled GHZ states of the formuCGHZ&5(1/A2)(u000&
1eiwu111&), for any w, in the proposed system of thre
5-3
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coupled QDs. In this case, the Hilbert space SU(2)^ 3 is
spanned by the eight basis vectors associated with the t
different J subspaces. Without loss of generality, consid
the J5 3

2 subspace as the only one optically active. We
troduce the notationuM1&[u3/2,23/2&[u0&, uM2&[u3/2,
21/2&[u1&, uM3&[u3/2,1/2&[u2&, and uM4&[u3/2,3/2&
[u3& to denote the vacuum state, the single-exciton state
biexciton state, and the triexciton state, respectively. In
absence of light, the energy levels of the system are give
E0[E(3/2,23/2)5 3

2 (W2Dv), E1[E(3/2,21/2)5 1
2 (7W

2Dv), E2[E(3/2,1/2)5 1
2 (7W1Dv), and E3[E(3/2,3/2)

5 3
2 (W1Dv). We note that, as indicated in the precedi

section, the energy separationE3,0[E32E053Dv is unaf-
fected by the interdot interaction strengthW. Now we con-
sider the effect of the pulse of lightj(t) over this system of
three QDs in theJ5 3

2 subspace: the associated Hamiltoni
is
01230
ee
r
-

he
e
by

Ĥ851
3W

2
2

3Dv

2
A3A* 0 0

A3A
7W

2
2

Dv

2
2A* 0

0 2A
7W

2
1

Dv

2
A3A*

0 0 A3A
3W

2
1

3Dv

2

2 .

~17!

Diagonalization leads us to the following fourth-order equ
tion:
n
d

~@ 3
2 ~W2Dv!2E#@ 1

2 ~7W2Dv!2E#23uAu2!~@ 3
2 ~W1Dv!2E#@ 1

2 ~7W1Dv!2E#23uAu2!

24uAu2@ 3
2 ~W2Dv!2E#@ 3

2 ~W1Dv!2E#50, ~18!

which is nontrivial to solve analytically in the case of a pulse with arbitrary frequencyv. However, if j(t) is applied at
resonance (Dv50), we get the following eigenenergies:

E0,15
5
2 W1uAu6A~W1uAu!213uAu2, E2,35

5
2 W2uAu6A~W2uAu!213uAu2, ~19!

with eigenvectors

uE0,1&5h
0,1
F u0&1S E0,12

3W

2

A3uAu
D u1&1S E0,12

3W

2

A3uAu
D u2&1u3&G , ~20!

uE2,3&5h
2,3
F u0&1S E2,32

3W

2

A3uAu
D u1&2S E2,32

3W

2

A3uAu
D u2&2u3&G , ~21!

where the coefficients

h i5
1

A2
S 11

S Ei2
3W

2 D 2

3uAu2
D 21/2

, with i 50, . . . ,3

are normalization constants. The associated total wave functionuC(t)&L @Eq. ~14!# depends on the chosen initial conditio
uC(t50)&[uC0& and is a linear combination of the eigenfunctions~20! and ~21!. We have computed, in both rotating an
laboratory frames, the analytical expressions foruC(t)&L for all of the initial conditionsuC0&5$u0&,u1&,u2&,u3&%. As an
example of this procedure, we give the result for the zero-exciton state as the initial state, i.e.,uC0&5uM1&[u0&. In this case,
the wave functionuC(t)&L is spanned by the following coefficientsCk andAk j :
5-4
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C05

E12
3W

2

2h0~E12E0!
, C15

E02
3W

2

2h1~E02E1!
, C25

E32
3W

2

2h2~E32E2!
, C35

E22
3W

2

2h3~E22E3!
; ~22!

Â[1
h0

~E02 3
2 W!eiw

A3uAu
h0

~E02 3
2 W!ei2w

A3uAu
h0 ei3wh0

h1
~E12 3

2 W!eiw

A3uAu
h1

~E12 3
2 W!ei2w

A3uAu
h1 ei3wh1

h2
~E22 3

2 W!eiw

A3uAu
h2 2

~E22 3
2 W!ei2w

A3uAu
h2 2ei3wh2

h3
~E32 3

2 W!eiw

A3uAu
h3 2

~E32 3
2 W!ei2w

A3uAu
h3 2ei3wh3

2 . ~23!
s

e
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The density of probabilitỳ (GHZ) of finding the en-
tangled GHZ state between vacuum and triexciton state
given by

`~GHZ!5
1

2U(k
Ck~Ak11eiwAk4!e2 iEktU2

. ~24!

Analytical and numerical computations have been perform
for all of the initial conditionsuC0& mentioned above. Thes
results enable us to obtain specific conditions for the real
tion of such maximally entangled GHZ states starting fro
suitablew pulses and experimental parameterse, W, andA.
Details are discussed in Sec. III.

The quantum dynamical problem given by Eq.~5! is eas-
ily expressed in terms of the expansion coefficientsdM(t) of
the wave function. As usual, we writeuC(t)&L

5(M52J
J dM(t)e2 iEMtuM &, so the time dependent problem

reduced to finding the solutions of the following set of 2J
11 linear differential equations,

i ] tdM~ t !5AAJ~J11!2M ~M21!

3e(EM2EM212v) i tdM21~ t !

1A* AJ~J11!2M ~M11!

3e(EM2EM111v) i tdM11~ t !, ~25!

where EM5E(J,M )1v. More explicitly, EM ,M21[EM
2EM215e1W@122M #, EM ,M115W@112M #2e, and
the problem given by Eq.~25! can be expressed in terms
reduced units as follows:

i ]t f M~t!5lAJ~J11!2M ~M21!

3e[11m(122M )2n] i t f M21~t!

1l* AJ~J11!2M ~M11!

3e2[12m(112M )2n] i t f M11(t) , ~26!
01230
is

d

a-

with the dimensionless parametersl5A/e, m5W/e, n
5v/e, t5et, anddM(t)5 f M(t). The set of Eqs.~26! gives
the dynamics for any number of QDs and (J,M ) values.
Numerical solutions were found by varying the paramet
l, m, andn. Comparison between these numerical solutio
and the analytical ones yields excellent agreement for
generation of both Bell and GHZ states, starting from su
able initial conditionsuC0&. Results will be addressed in th
next section.

III. RESULTS AND DISCUSSION

In this section we discuss the main results obtained fr
the computation of both analytical and numerical solutio
for the unitary evolution described in the preceding secti
Figure 1 shows the probability density for finding the e
tangled Bell state (N52) between vacuum and biexcito
states given by Eq.~16! as a function of time for the initial
conditionuC0&5u0&. As seen from Fig. 1, selective pulses
length t

B
can be used to create maximally entangled B

states in the system of two coupled QDs. The energyW is
kept fixed while the amplitude of the radiation pulseA is
varied. The results indicate that the timet

B
is increased with

diminishing incident field strengthA. As an example, we
consider wide-gap semiconductor QDs, like ZnSe-ba
QDs, with band gape52.8 eV and resonant optical fre
quencyv54.331015 s21. For a 0 or 2p pulse,W50.1 and
A5 1

25 , Fig. 1~a! shows that the generation of the sta
(1/A2)(u0&1u2&) requires a pulse of lengtht

B
57.7

310215 s. By changing the value of the parameterA @see
Figs. 1~b!, 1~c!, and 1~d!#, we can modify the lengtht

B
of

this Bell pulse ~Fig. 1 covers the interval 10211 s,t
B

,10215s). Another method for manipulating the lengtht
B

is

shown in Fig. 2. Here we varyW for fixed A51023. Experi-
mentally, this variation ofW can be tailored by changing th
interdot distance. In this case, the analysis shows that f
5-5
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fixed value of A the lengtht
B

decreases with decreasin
interaction strengthW.

The same investigation of parameter dependance was
formed for the case of the entangled GHZ state (N53) be-
tween vacuum and triexciton states. We calculate the p
ability given by Eq.~24! as a function of time, starting with
the initial conditionuC0&5u0&. Figure 3 shows the selectiv
pulses used to create such maximally entangled GHZ st
in the system of three coupled QDs. For example, in the c
of Fig. 3~a!, the generation of the GHZ state (1/A2)(u0&
1u3&) requires a timet

GHZ
51.3310214 s. Figures 3~b!,

3~c!, and 3~d! explore several different ranges for thet
GHZ

pulses required in the generation of such GHZ states.
fixed W, the time t

GHZ
increases with decreasing incide

field strengthA. In contrast, for fixedA, the lengtht
GHZ

decreases with decreasing interdot interaction strength.
The above results are not restricted to ZnSe-based Q

by employing semiconductors of different band gape ~e.g.,
GaAs!, other regions of parameter space can be explo
We have studied the time evolution of the system of QDs
several different values of the phasew. These give similar
qualitative results to the ones discussed previously. Here
only include the 0 or 2p-pulse results since these are on
corresponding to the discussion in Sec. IV. The relevant
perimental conditions as well as the required coherent c

FIG. 1. Generation of the Bell state (1/A2)(u00&1u11&). These
pulses correspond to the realization of the Hadamard gate follo
by a quantumCNOT gate. W50.1, w50, and ~a! A5

1
25, ~b! A

5
1

50, ~c! A51022, and~d! A51023. In Figs. 1–3,uC(t)& denotes
the total wave function of the system at timet in both laboratory
~solid curves! and rotating frames~dashed curves!. The energy is in
units of the band gape, anduC0&5u0& in all of the figures.
01230
er-

b-

es
se

or

s:

d.
r

e
s
x-
n-

trol to realize the above combinations of parameters are c
patible with those demonstrated in Ref.@13#. We point out
that the procedure described in this paper is valid for a
value of the phase constantw, in contrast to Ref.@21# where
analytic results were derived for the particular casew5p/2.
The generation of maximally entangled states in this pa
has considered the experimental situation of global la
pulses only; however, by using near-field optical spectr
copy @15#, individual QDs from an ensemble can be a
dressed by using local pulses, a feature that can be explo
to generate entangled states with different symmetries, s
as the antisymmetric state (1/A2)(u01&2u10&). We will
hence be able to generate the complete Bell basis consi
of four mutually orthogonal states for the two qubits, all
which are maximally entangled, i.e., the set of sta
(1/A2)$(u00&1u11&), (u00&2u11&), (u01&1u10&), (u01&
2u10&)%. From a general point of view, this basis is of fu
damental relevance for quantum information processing.
stress that the optical generation of excitonic entangled st

ed

FIG. 2. Generation of the Bell state (1/A2)(u00&1u11&). A
51023, w50, and~a! W50.1, ~b! W50.05, and~c! W51022.
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in coupled QDs given here could be exploited in solid-st
devices to perform quantum protocols, as recently propo
in Ref. @26# for teleporting an excitonic state in a couple
QD system.

IV. QUANTUM INFORMATION PROCESSING
IN COUPLED DOTS

To perform quantum computation operations, we can
an initial pure state followed by a series of transformatio
on this state using unitary operations. Another possibility
to use an initial mixed state, providing the decoherence t
is sufficiently long@10#. In order to implement such quantum
operations we need two elements: theHadamardtransforma-
tion and the quantumCNOT gate. In the orthonormal compu
tation basis of single qubits$u0&,u1&%, theCNOT gate acts on
two qubits uw i& and uw j& simultaneously as follows
CNOTi j (uw i&uw j&)°uw i&uw i % w j&. Here % denotesaddition
modulo2, and the indicesi and j refer to the control bit and
the target bit, respectively. The Hadamard transformationHT

acts only on single qubits by performing the rotation
HT(u0&)°(1/A2)(u0&1u1&), and HT(u1&)°(1/A2)(u0&
2u1&). In our scheme,u0& represents the vacuum state f
excitons whileu1& represents a single exciton. Experimen
demonstration of single qubit rotations~and hence the Had
amard transformation! in the case of individual excitons con
fined to QDs should now be possible, as a result of a rec

FIG. 3. Generation of the GHZ state (1/A2)(u000&1u111&).
These pulses correspond to the realization of the Hadamard
followed by two quantumCNOT gates.W50.1, w50, and ~a! A
5

1
25, ~b! A5

1
50, ~c! A51022, and~d! A51023.
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experiment reporting direct observation of excitonic Rabi
cillations in semiconductor quantum wells@27#. Despite the
fact that Rabi flopping in QDs is still under intensive expe
mental study, results given in Ref.@27# lead us to believe tha
we are not too far away from the experimental observation
such excitonic Rabi oscillations in QDs and hence the de
onstration of single qubit operations.

The adequate preparation, computation, and readou
information, in addition to the coherent coupling of the q
bits to the environment, are compulsory steps for the s
cessful construction of a universal quantum computer.
briefly review these requirements and their relationship w
the model proposed here:~1! A very-well-defined Hilbert
space: We must have an adequate control over the Hilb
space of qubits. In our scheme, the orthonormal computa
basis of single qubits is represented by the vacuum s
(u0&) and the single state of excitons (u1&). ~2! Initializing
the computer: Before commencing any quantum comput
tion task, we need a rapid relaxation of our qubits to th
ground state, i.e., zero excitons per dot. In our case, num
cal values indicate that this state is easily achieved by tu
ing the laser off and waiting for a few femtoseconds.~3!
Inputting initial data and readout: As pure and entangled
states with different symmetries can be obtained using
experimental techniques described in Ref.@13–15#, we
would have the ability to manipulate the input of the qua
tum state of the QD system. Hence, we would have the
perimental possibility to control the optical excitation and
detect individual QD signals from an entire dot ensemb
thereby facilitating individual qubit control for the readou
In fact, nanoprobing enables us to measure directly the e
tonic and biexcitonic luminescence from single QDs@15#. ~4!
Universal set of gate operations: We need to be able to per
form single qubit rotations and two qubit gates. We stre
that the generation of the maximally entangled states sh
in Figs. 1–3 corresponds to the physical realization of a H
amard transformation followed by aCNOT operation in the
Bell case, and twoCNOT operations in the GHZ case. As t
the practical semiconductor nanostructure implementat
this set of gate operations is in a preliminary stage of inv
tigation and demands intensive experimental study.~5! De-
coherence and the coupling to the environment: By taking
into account decoherence mechanisms~exciton–acoustic-
phonon type! on the process of generation of the entang
states discussed here, a recent work by Rodrı´guezet al. @28#
has shown that this generation is preserved over a reason
parameter window, hence giving the possibility of perform
ing the unitary transformations required for quantum co
puting before decoherence of the excitonic states takes p

V. CONCLUSIONS

In summary, we have solved both analytically and n
merically the quantum-mechanical equation of motion
excitons in two and three coupled QD systems driven
classical pulses of light. By doing this, we have been able
provide a mechanism for preparing maximally entang
Bell and GHZ states via excitons in optically driven QD
exploiting current levels of coherent optical control such

ate
5-7
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the ones demonstrated using ultrafast spectroscopy@13,14#
and near-field optical spectroscopy@15#. This mechanism en
ables us to generate single qubit rotations, such as the H
amard one, and quantumCNOT gates. In particular, the pro
cedure presented here leads us to the generation of the w
Bell basis, a fact that can be exploited in the process
quantum teleportation of excitonic states in systems
coupled QDs@26#. Furthermore, by taking into account th
main decoherence mechanisms, e.g., exciton–acou
phonon type, we find that this optical generation of quant
entanglement is preserved over a reasonable parameter
a
v.

d
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r

.
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e
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01230
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dow. This leads to the possibility of performing several hu
dred quantum computation operations before decoherenc
these excitonic states takes place.
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