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Approximate transformations and robust manipulation of bipartite pure-state entanglement
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We analyzeapproximatetransformations of pure entangled quantum states by local operations and classical
communication, finding explicit conversion strategies which optimize the fidelity of transformation. These
results allow us to determine the most faithful teleportation strategy via an initially shared partially entangled
pure state. They also show that procedures for entanglement manipulation such as entanglement catalysis
[Jonathan and Plenio, Phys. Rev. L&®, 3566(1999] are robust against perturbation of the states involved,
and motivate the notion afonlocal fidelity which quantifies the difference in the entangled properties of two
quantum states.

PACS numbgs): 03.67.Hk, 03.65.Bz

[. INTRODUCTION this measure of distance between two entangled states. Sec-
tion VI concludes the paper.

Entanglement is aesourceat the heart of quantum me-
chanics; iron in the classical world’s bronze age. It is a key Il. BACKGROUND
ingredient in effects such as quantum computafignquan- ) o
tum teleportatior{2], and superdense codirig]. To better ‘Supposey is a pure state of a bipartite system shared by
understand entanglement as a resource, we would like /i€ and Bob, and let
understand what transformations of an entangled state may n n
be accomplished, when only some restricted class of opera- _ . _
tions is allgwed to accomplish this transformation. This era— |¢>_i21 \/;i|IAIB>’ = a+1=0, '21 «=1 D
digm, introduced in Ref§4-6], has been very successful in
identifying many of the fundamental properties of entangle-be its Schmidt decompositigri3]. (Throughout this paper
ment. The best studied class of operations is local operationse switch back and forth between the bra-ket notafigh
and classical communicatiof.OCC)—that is, the two en- and the notation/ without commen). Without loss of gen-
tangled parties may do whatever they wish to their locaerality we may suppose Alice and Bob have state spaces of
System, and may communicate C|assica”y, but they Cann(ﬁqual dimensiom. All results extend tr|V|a"y to the case of
use guantum communication. unequal dimensions. Suppose the parties wish to transform

This class of transformations has been studied in considhis initial state into a second pure stas) with Schmidt
erable detail in Refd.7—11]. The purpose of this paper is to d€composition
generalize earlier results to studypproximatetransforma- N n
tions of one pure state into another. In particular, we obtain a _ S _
scheme for performing the best possible entanglement trans- |¢>_i21 \/E“AIB o BEhina=0, ;1 A=l @
formation, in the sense that the transformation results in a
state which is “nearest” the desired target state, with respecthat we shall call thearget state, by just acting locally on
to a well-motivated measure of distance. Our results showheir subsystems and communicating classically.
that existing results about entanglement transformation are Necessary and sufficient conditions for tlisterministic
robust against the effects of slight noise, and quantify exactljocal transformation to be possible, along with an explicit
how robust. Our results extend and complement recent arfotocol for the conversion, were presented in R&f. It
independent work by Barnufii2] on approximate transfor- Was shown there thay is locally convertible intog in a

mations with applications to cryptography. deterministic manner if and only if the vectom
The paper is structured as follows. In Sec. Il we review=(q,, ... ,@,) is majorized by the vector G

the relevant background material. Section Il proves the mair_ (B B8.) &<B'

result of the paper, an optimal scheme for performing ap- ~ =’ " """ '

proximate entanglement transformation. Section IV illus- k k

trates our main result by application to some concrete en- e 2 aigz B, k=1,...n, 3

tanglement transformation tasks. In particular, we determine =1 i=1

the optimal fidelity of any teleportation scheme that uses a

partially entangled pure state as its quantum channel. Sectiomith equality holding wherk=n. Condition(3) can be given
V introduces the concept afonlocal fidelitybetween two an equivalent description in terms of thetanglement mono-
entangled states, and studies some elementary propertiestofies g, =1, ... n, introduced in Ref[9],
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which are quantities that do not increase, on average, unde AN
any local transformatioril4]. The stateys can be locally \\
transformed intap with certainty if and only if none of these L0} E
entanglement monotones are increased during the conver
sion, that is,
CONCLUSIVE CONVERSION FAITHFUL CONVERSION
U ¢ - . .
Ef=E’ I1=1,...n (5) FIG. 1. Suppose local operations on the subsystems and classi-

f h diti . . cal communication between Alice and BObOCC) are not suffi-
We suppose from now on that conditi¢8) is not satis- cient for adeterministicconversion of the initial state into their

fied, and that therefore the parties cannot locally conyert target statep, i.e., -~ é. A conclusivelocal conversion may then
into ¢ deterministically, that is)/+ ¢. What options do g the job with some prior probability of success, i.e., sometimes
they have? the protocol will lead to the target stageand sometimes will fail to

In some cases, namely, whgnhas at least as many non- do so. Alternatively, daithful conversion will deterministically lead
vanishing Schmidt coefficients af, the parties can still lo- to a final statet which is only(but often reasonab)ysimilar to the
cally transformys into ¢ with some nonvanishing probability target statep.
of success, performing what we shall calt@anclusivecon-
version. The optimatonclusiveprotocol is the one with the are not possible at all. For example, this is the case whenever
maximal probabilityP(#— ¢) that the conversion is suc- the target state has more nonvanishing Schmidt coefficients

cessful. This probability can be shown to |84 than the initial stat¢7]. This is relevant to the problem of
diluting the entanglement of a finite set of pure, maximally
P(— b)= min Ei(y) ©) entangled states into a larger set of other pure, partially en-
leumEI(#)’ tangled ones. Such a problem can be well posed from the

point of view of faithful conversions, and we will address
and thus it is the greatest quantity compatible with the nonhere the question of which are the optin{éat is, most

increasing character of the entanglement monot@es faithful) dilution protocols for the finite case.
Entanglement distillation—the extraction of pure state en-

An appealing feature otonclusiveconversions is that tanglement from mixed states—is a second context where
when the protocol succeeds the parties end up sharing efaithful conversions are highly relevant. It is kno\ts] that
actly the target statgp they wanted. This is useful in any the conclusive local conversion df copies of a mixed state
situation where Alice and Bob need the target statactly  p into any entangled pure statg is in general impossible,
and do not wish to accept a merefymilar outcome, say that is the probability of making the transformatigi¥™
another staté with a reasonably high overlap wiih. One . ¢ is typically equal to O for any finité\, whereas distil-
may conceive, for instance, that the parties want to perforniation of pure state entanglement is often possible in the limit
fully reliable teleportatiori2]. In order to do so they may try N—o [6]. Thus faithful conversions of mixed states into
to conclusively convert the initial pure stateinto anmrstate  pure states appear as a more adequate framework for the
[7]—a state of the form study of approximate entanglement distillation.

" A third reason for interest in faithful transformation pro-

1 - tocols is that, as we will show here, in general they differ

| )= \/_ﬁ 21 liaig)- () from the conclusive protocols with the highest probability of
success. Finally, the study of approximate conversions al-

In the present work we consider, on the contrary, that thdows us to quantify how robust exact transformations are, a
parties allow for the final outcomg of the conversion to be Problem of direct relevance to applications of entanglement
just an approximated version of the target stateWe shall ~ transformation such as entanglement catalys# and cer-
call this alternative type of transformatiofesthful (see Fig. tain cryptographic protocolgl2,18.

1). More specifically, we present here faithful conversions

— & such that the fidelity between the final stgtand the I1l. OPTIMAL CONVERSIONS BETWEEN PURE STATE
target statep, which we define as ENTANGLEMENT
F(& ¢)=|(€| o), (8) We consider here the most general local transformations

of the initial stateyy, namely, those that convet into an
is the greatest locally achievabl@Note that our nomencla- ensemble of possible final staigswith corresponding prob-
ture differs from that used, e.g., in R¢.9], whose defini- abilitiesp, (see Fig. 2 In the case opurefinal states, it has
tion of “fidelity” corresponds to the square root of ours.  been shown in Ref10] that such grobabilistictransforma-
This approximateapproach is more suitable than conclu- tion can be performed by local means if, and only if, the
sive transformations in a number of contexts. First, it allowsentanglement monoton&s do not increase on average, that
us to consider local conversions when the conclusive oneis,
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closely related to lemma 1 and lemma 2 have recently been
LOCC obtained independently by Barnuft2], however, he does
not provide the general solution to the approximation prob-
p P, lem, theorem 3.
! Lemma l.Let r,weC"®C" be two normalized states
P, P, with ordered Schmidt decompositions in the same local ba-
\lf —_— : : sis, that is,
n
Pk Pk |7'>:i21 Vriliaig),  7=7:1>0, (12
n
FIG. 2. The most general local transformation a bipartite pure |w)=_§:l Voilige), o=w,;=0, (13
|=

statei can undergo may bgrobabilisticin nature, and its outcom-
ing states may beixed Lemma 1 allows us to restrict our consid- d | id h | fideli
erations tadeterministictransformations off into a finalpure state an et us consider the overlap or fidelitfy v

— 2 : —
¢, when searching for the mosaithful local conversion into a = (7/@uv)|* between 7 and a third vectorwyy=(U
target statep. ®V)w, whereU andV are any two local unitaries on Alice’s

and Bob'’s subsystems, respectively. Then

maxFy y= (14
u,v

—{pr. & & El= EX, I=1,...n. (9 " 2
b—1{Pi. &} | Ekpk| 9 (Em)
usV i=1
We can extend this result to the case where the final states
may be mixed states, . Notice thatanylocal protocol gen- the maximal overlap corresponding precisely to the ddse
erating an ensemblfpy,p,} of final mixed states from the =V=1, o, y=o.
pure statay can be(nonuniquely viewed as the outcome of Proof. Let us begin by reexpressingw in the form[20]
a two-step procedure of the following form: first, an en-

semble of pure statepydy ;. & j} such that Ty =1®07a);|w)=1® 0" a), (19

=2 Gyl | (10) where 7,0 are the diagonahxn matrices constructed

P i i €€ from the ordered Schmidt coefficients afw (i.e., o]
=) and a=="_,|iAig) is the unnormalized maximally

is locally produced; then the information concerning the in-entangled state. The overlap betweeand any vectom v

dex j is discarded. Therefore the transformation  obtained fromw by local unitary rotations is then
—{px,px} can be performed locally if, and only if, there

exists an ensemblig,qy ; , & ;} satisfying Eq(10) and such [(rlU®V|w)|?={a|(UcVao?)|a)|?
that
=Nal(l®a™Vo“UT)|a)|?
E/=>, pEX*I, 1=1,...n. (11) =|Tr(cVoU")J?, (16)
k.

) ) where we have used the easily verified observationsUhat
We can now proceed to the main results of this work. In®||a>: | ®UT|a> and (a|(1®A)|a)=Tr{A]. The desired
lemma 1, we determine the most faithful strategy for conyegyt follows directly from problem 111.6.12 in Refl5].

vert!ng between pure states when only local unitary tranSforAlternatively, a sketch of the remainder of the proof is as
mations are allowed. In lemma 2, we show that among alky|ows. First. rewrite

possible local transformations of the initial pure statey

—{px,px} (see Fig. 2, the maximal average fidelity with ITr(oVoeUT)| = |Tr(Jo Ve o UTo?)|. (17
respect to the target statl = pi(®|pil ), can always be

obtained in a local and deterministic conversion of the stat®y  the Cauchy-Schwarz inequality |Tr(A™B)|
¢ into a final pure statg. These results are then used to </ Tr(ATA)Tr(B'B), we then have

prove theorem 3, which provides the value of the optimal

fidelity and the identity of the best possible final stdte T ™VaUT)|<Tr(c“VTe™V)Tr(a7U* c“UT).
while also constructing an explicit local protocol for the con- (18)
version. It is worth noting that the pure state fidelity is

equivalent to the “trace distance,” a quantity with a well- Define C=V'o"V. Since o“ is diagonal, we have
definedoperational meanin@s the probability of making an Tr(o“C)=Tr[o“diag(C)], where diagC) is obtained by
error distinguishing two statel9]. The state¢ is in this  retaining only the diagonal elements Gf Now, sinceo”
sense the best possible physical approximation to the gtate diagonalizesC, Schur’s theoren{Ref. [21], theorem 9.B.1
that may be achieved using LOCC. We note that resultsmplies that there exist permutation operatBrssuch that
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diagC)=2>, piP;a"P]. (19)

It follows that
Tr(o""C)=Z o] Tr(O'wPiO'TPiT)gz p; Tr(c“o™)
I I

=Tr(c%c7), (20
where the inequality follows from the observation that
<X, andy;<y, imply that x;y,+X,y;<X;y1+X5y;, and
S0 Tr(a""Pi(TTPiT)STr(o""O"). Similarly, Tr(c"U*o“UT)
<Tr(o“c"). Substituting these results in E.8) and then
into Eq. (16), we finally obtain
{rlU®V|w)|?<Tr}(c“c7) (21)

which is precisely the overlap betweerandw given in Eq.
(14).

Lemma 2Among all possible local transformations of the

bipartite pure states, —{py,px}, a deterministic oneys

PHYSICAL REVIEW A 62 012304

; pF (o, a?)<F(a%,0?), (25)

which corresponds to concavity of the fidelity since by con-

structiono =3, p,otk.

Lemma 2 implies that we need focus only on determinis-
tic conversions into a final pure stage We assume, without
loss of generality, thah (the dimension of the local Hilbert
spacep is the greatest of the number of nonvanishing
Schmidt coefficients of the initial staig and the target state
¢. We need to introduce some notation before we finally
present the most faithful local conversion. Let us thenlgall
the smallest integee&[1,n] such that

B, E
— = min —=r,
Ef’i le[1,n] Efﬁ

(=<1). (26)

It may happen that,=r,;=1. If not, it follows from the

— ¢, into some pure staté can always be found which equivalence
achieves the most faithful transformation with respect to the

target statep.
Proof. Because of the linearity of the trace[Tr-], the
overlap Tf|¢){ ¢|p] betweeng and a mixed statp equals

the average overlap betwe@nhand any ensemble realizing

p. Therefore we can consider, without loss of generalitythat for any integeke[1,],—1]

[compare the discussion around Ef0)], just local transfor-
mations ¢—{py,& into pure states¢,, with squared

Schmidt coefficients¥= ¥, ;=0. By lemma 1, the average

fidelity F with the target statep of Eq. (2) satisfies

(22

EsZk pk<§nl W)Z

Moreover, it follows from Eqs(5) and(9) that the pure state
¢, defined as

@E; Ek SATIATAY (23

with the same Schmidt basis as the target statecan be
obtained deterministically frongs in Eq. (1). The concavity

of Uhimann’s fidelity F(py,p2)=(Tr\'Vp1ps\p1)? [22]

implies that the ovgrlap betweehand the target staté is
an upper bound of,

<3 ol 5, 78] <{ £ 3 ot

(24

More precisely, define diagonalx n matriceso?, ok, and

o, constructed from the square of the ordered Schmidt co-

efficients of ¢, & and ¢, respectively(e.g.,oc?= ;). Then
the second inequality in Eq24) is equivalent to

aave . a2 b,c,d>0 2
5 brd b d (a,b,c, ) (27)
Ex—E/
—>r,. (28
E¢—EJ

Let us then defing, as the smallest integer[1,,—1] such
that

Ef—E/ E/—E/
h=————= mn —/———
Ef'/;—Ef; lefuly-1) Ef— Efﬁ

(>ry). (29

Repeating this process untj|=1 for somek, we obtain a
series ofk+1 integerslg>1,;>1,>--->I, (I,=n+1) and
k positive real numbers Qr;<r,<---<r,, by means of
which we define our final state

n
=2, Vrlisig), (30
where|i,), |ig) are the same as in E(), and
’yiErjﬁi ifiE[lj,lj_l_l], (31)

that is,
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- Blk -
M :
Bi -1
R B, ]
= S (32)
r2 :
| Bi-1]
_ B, -
rq :
L LAl |
By constructiony;=y;,, and
E/=Ef Vle[1n], (33

so the vectorr is majorized by the vectoy, @< y. Accord-
ing to condition(3) the local strategy presented in REB]
will indeed allow the parties to obtain the statérom ¢ with
certainty. Now, let us define positive quantities

Aj=E/-E]
] 1=

1

li_1—1
= ]_2| a (E{=0), (34)
=l

1

Bj=E/~E/ = ;I_ B (E=0). (35
J

Then the fidelity between the final stateind the target state

¢ reads, in terms of the initial and target states

(36)

k 2
|<§|¢>|2:(jE1 Jﬁ) -

Without loss of generality, lemma 1 allows us to assum
that any other possible final stafé has the same Schmidt
basis as the target sta#e and squared Schmidt coefficients
inequality

¥i=v,,=0, so by the Cauchy-Schwarz
(VX1Y 1+ VXy2) < (X1 +X2) (Y1 +Y2), (X1.X2,Y1,Y2=>0),

n 2
F@F(f'@z(@l W) 37

ko (lj—g—1 112 2
EE e

wherel; (j=1, ... k) have been defined in EqR6)—(29).
Now, recall thatEi:”'i—l*ly{ = EFj' - Eﬁ_’fl, and that the lo-
cal and deterministic character of the conversjgn ¢’ im-

plies thatE{= E,f' (I=1,...n). We can therefore defire
as

ajEE,VJf— El‘fj’; a,=0. (39)

PHYSICAL REVIEW A 62 012304

The conditiona<y’ implies thata;=0 for eachj. We may
rewrite Eq.(38) in terms of thea; and theA; introduced in
Eq. (34) as

2

k
Fgrg le \/Aj_aj‘f'a.j_l\/gj Ef(a)

(40

Our interest is in the behavior éfa) as a function of.. We
will show that in the allowed parameter regiﬁ(ﬁ) is maxi-
mized whena=0. A direct computation shows that the

(tridiagona) matrix of second derivatives df(éi), (My)jj
Eazf/aai&aj , is negative definite in the regicACR" de-
fined by the constraintg;=0 andA;—a;+a;_,=0, which
contains all relevant situations compatible wighi= v/, ,
=0. Next, note that

_ e [Biri \/E)
ﬁ 6—\/f(0)< Ao Nal @

a=

of(a)
ﬁaj

By constructionA;/Bj<A;;1/Bj,, [compare Eqs(26)—
(29) and (34),(35)], so

af(a)
a;

(42

a=0

It follows that the maximum of (a e A) occurs at=0, that

is, when the final statg’ is precisely the staté as defined in

Egs.(30)—(32). Therefore, we can conclude the following.
Theorem 3.The maximal fidelity F,,; achievable in a

faithful local transformation of the initial pure state into

the target pure staté is given by Eq.(36),

2

(43)

k
Fop= ( le JVAB;

®r'he most faithful protocol consists in a deterministic conver-

sion of ¢ into the pure staté as defined in Eq9.30)—(32).

IV. DISCUSSION AND APPLICATIONS

The next few sections apply theorem 3 to several prob-
lems of entanglement transformation. Section IV A finds the
most faithful protocol for performing a special type of en-
tanglement transformation known as entanglement concen-
tration, in which a large number of partially entangled states
are transformed into Bell pairs. This result is then applied to
determine the most faithful teleportation protocol via any
given pure quantum state. Section IV B finds the most faith-
ful protocol for performing the reverse procedure to concen-
tration, entanglement dilution. Section IV C compares the
most faithful transformation with the optimal conclusive
transformation, and concludes that in general they are differ-
ent. Section IV D explains how our results can be used to
demonstrate the robustness against noise of entanglement
transformation protocols for pure states and Sec. IV E ex-
plains this in the special case of entanglement catalysis.
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A. Concentration of entanglement but also allow for the possibility of failur24]. On the other
and optimal teleportation fidelity hand, faithful strategies seek to maximize the so-called fidel-
ity of teleportation. For any given teleportation stratefly

for obtaining maximally entangled states from some partiallyNiS quantity is, naturally definef®5] as the average overlap
entangled initial(pure state ¢ using only LOCC. In the between Alice’s initial statep and the final teleported state

original formulation of this concept, due to Bennett, Bern-OPtained by Bob
stein, Popescu, and Schumacfe}, many(N) copies of an
(nxn)-dimensional state/ are available, and the goal is to :f
obtain the largest number ofstates in the asymptotic limit f(Azy) de(elAzul#XeDlg). 49
where N—«. More recently, the optimal way to conclu-
sively concentrate the entanglement afiagle copyof ¢ has ~ Where Az, is the trace-preserving quantum operation that
also been obtainef,10,11. maps the initial state onto the teleported daeconstruction
In this section we solve the same problem from the poinfor this operation may be found in Re®26]). .
of view of faithful conversions. In this case, the goal is to  Recently, a connection has been found between this quan-
determine the local strategy that maximizes the fidelity belity and faithful entanglement concentration procedy@ss.
tween the single copy ofs and the maximally entangled It has been shown that, for any given initial statépure or
n-statey, . It turns out that the optimal strategy in this caseMixed in (nxn)-dimensional Hilbert space, the maximum
is essentially to do nothing at all. The only requirement is tovalue of f over all possible teleportation protocols imple-
apply the local unitary rotations that align the Schmidt com-mented using LOCC is given by
ponents ofy to those ofy,, in the manner implied by
lemma 1. This result can be shown using E6)—(32). f (o) Fma{p)n+1
However, a simpler derivation can be obtained from the fol- max P n+1
lowing argument. First, for any pure stagewith Schmidt
coefficients\a;= - - - = \a,,, consider the function Here,F ha{p) is precisely the maximum fidelity that can be
T 5 achieved betwee_p and almn-state(zj un_delr a tlrace-pre_serving .
quantum operation implemented via local operations an
Fmal /)= ﬁ( Zfl \/;') ' (49 Classical communication. In general, it is not yet known how
to calculate this quantity. However, in the case of a pure
initial state p=y, its value is the one found in Ed44)

As has been pointed out by Horode¢R3], F ., is a uni- : o ; I
tarily invariant, concave function of the reduced density ma_above. The maximum fidelity of teleportation wiais then

trix pa=Trg|#)(|. Following theorem 2 in Ref.14], it is also immediately determined via E(6):

An entanglement concentration proto¢6] is a strategy

(46)

therefore an entanglement monotone for pure states. In fact, n 2

lemma 1 shows thdk,,,(#) is the greatest fidelity with re- (2 Jai | +1

spect toyr, that is achievable frong by local unitary rota- =

tions. Now, following lemma 2, le¢ be the most faithful fmal V)= —— 77— (47)
approximation ofi,, obtainable fromys by LOCC. By defi-

nition then, F a(¢) <Fma(¢). On the other hand, sindeya, A “most faithful” teleportation protocol that achieves

is an entanglement monotone, we must also Mayg&(¥)  this limit has also been described in RE5]. For any initial
=Fna{§)- These quantities are therefore equal, which im-state its first step requires transforming into the most
plies that the optimally faithful strategy can be achieved ustaithful achievable approximation of anstate. In the case of
ing only local unitary rotations. a pure statay, we now know that this is done merely by the

_ Itis interesting to note thaf ,, can also have another schmidt-basis alignment described above. The remainder of
interpretation. It is equivalent to the robustness of entanglege protocol requires then only a so-callet & U* twirl-
mentR(¢), an entanglement monotone that was comprehenng» [25] of the state(resulting in a Werner statg27]),
sively studied in Ref[14]. R(¢) is defined as the minimal fo|lowed by applying the standard teleportation procedure
amount of separable noise that has to be mixed with state [2]. we therefore have now an explicit protocol for realizing

in order to wash out its quantum correlations completely. Fopptimally faithful teleportation via pure states.
pure states, its value reaB§ ) =nF () —1.

An important consequence of determiniRg,,, is that it
also allows us to determine the optimal fidelity of teleporta-
tion via . Recall that perfect teleportation of an unknown We now consider the reverse process to entanglement
n-dimensional state can be realized only if an State” is ~ concentration, entanglement dilutigs]. In this case, the
shared between Alice and BJB]. For a more general ini- parties start out with som@-state,,, and aim at obtaining a
tially shared statey, one must admit some imperfection in final, less entangled statg constituted oN copies of some
the procedure. As with entanglement transformations, it ismaller-dimensional state, i.e., ¢=x®". If the number of
possible to consider two approaches to imperfect teleportaaonvanishing Schmidt coefficients gfis greater tha/m,
tion: on the one hand, conclusive teleportation strategies sedken this exact transformation is not possible at all — not
to maximize the likelihood of achieving ideal teleportation, even with only some probability of success — singéhas

B. Entanglement dilution
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fewer Schmidt components thanm<n [7]. In this case, it Alice and Bob’s chances of conclusively obtaining the target
is interesting to consider the most faithful approximation tostate. This follows since the final stagen Eqgs.(30)—(32) is
x®N that can be achieved. precisely the same as the intermediate state the optimal

Let |¢)=3"",VBiliaig). The most faithful approxima- conclusive protocol presented in REd], Egs.(9)—(13). This
tion & to ¢ that can be obtained froms,, by LOCC is deter- means then that no probability of success is lost during a
mined using Eqs(26)—(32) as follows: from Eq.(26), we  most faithful conversion, that is,
have r;=0, |;=m+1. Equation (29 gives r,

—(m=™ 8", 1,=1. It follows that P(y—d)=P({—4). (50
1 m In other words, the parties may postpone their decision on
1&)= ——— > VBilinia), (48 whether or not they wish to risk their initial state in a con-
m i=1 clusive transformation intap, while obtaining already the
Bi most faithful approximation tap.
i=1
and the corresponding optimal fidelit¢3) simply reads D. Robustness of transformations
m Up to this point, our discussion has assumed that the ini-
F o= 2 B (49) tial stateys shared by Alice and Bob is pure. Suppose, how-
R =] ever, thaty is corrupted a little before it is made available to

S ] Alice and Bob, so they receive a density matpixinstead.
In other words, the best approximation to the target sféi®  \what can we say about the possibility of transforminigto
the state of h|ghest_norm _that can be obtained by projecting target statep? This section establishes upper and lower
¢ onto an (nxm)-dimensional subspace. . bounds on the fidelity with which the transformatipn- ¢
In Ref. [5] the problem of optimal entanglement dilution may be accomplished, and the next section explains how

was solved in the asymptotic limih,N—c. In this regime, thege results may be used to analyze the robustness of effects
the dilution procedure can actually be realized with 100%gch as entanglement catalygld].

efficiency. The protocol realizing this is well-defined for any oy results are most easily presented using the trace dis-
finite values ofm,N. It consists essentially in identifying the (gnce a metric on Hermitian operators definedTH, B)
subspace o spanned by itsn largest Schmidt components =Tr(|A—B|), where|X| denotes the positive square root of
and then using then-statey, to teleport half of this over to  ihe Hermitian matrixX2. Ruskai [28] has shown that the
Bob. It can be easily verified that the resulting fidelity with {5ce distance contracts under physical processes. More pre-
respect tog is given precisely by the expression above. Thiscisely, if p and o are any two density operators, andpif

then shows that not only does this protocol approach fidelity— &(p) anda’ =&(o) denote states after some physical pro-

1 asm,NHo?,_ but it is also optimal for any finite values of ggg represented by tfteace-preservingquantum operation
these quantities. & occurs, then

C. Faithful versus conclusive transformations T(p',0")<T(p,0). (51
Suppose Alice and Bob’s aim is to transform the state : .
- : g < We will useT(#, ¢) to denote the trace distance between the
nto the state). We have found the optimal fide . :

! ¢ ve fou P idelity with fensity matrice$y)( | and|$){ ¢|. For pure states the trace

which this transformation can be accomplished. A naturad ¢ d the fidelit lated by the simple f |
question to ask is how this faithful conversion strategy com- IStance and the Tidelity are refated by the simple formufa

pares with the optimal conclusive strategy—the one that
maximizes the probability of successful c%%vers{@j. A T(,d)=2V1-F (¢, ¢). (52
first observation is that the latter is in generdlt also the
most faithful strategy. This follows since the optimal conclu-  Returning to the problem of entanglement transformation,
sive strategy will not usually succeed with 100% probability, supposey is a pure state that we wish to transform into a
whereas lemma 2 shows that the fidelity with respeaptis  pure statep. Let T(¢y— ¢) denote the minimal trace dis-
always maximized by means of a deterministic transformatance that can be achieved by such a transformation; this is
tion. A simple example is the case of a two-qubit systemeasily found by substituting Eq43) into Eq. (52). We will
initially in a partially entangled state|00)+b|11), with a  provide upper and lower bounds difp— ¢), the minimal
>b>0. As we have seen above, the most faithful strategyrace distance tg@ that may be achieved by a protocol start-
for converting it into the maximally entangled two state ising with the statep, and using local operations and classical
simply to do nothing, which corresponds to a fidelity pf communication.
+ab. On the other hand, the optimal conclusive transforma- Suppose we start with the staie and apply the protocol
tion, which succeeds with probabilityb2 [7,9], results in an  that most faithfully transformg into ¢. Definep’ to be the
average fidelity of:+b?, which is strictly less than was result of applying this protocol t@, and ¢’ the result of
achieved by the most faithful transformation. applying the protocol tay. Then since this is just one pos-
We also note the surprising fact that, in all cases, realizingible protocol, not necessarily optimal, for transforming
the most faithful conversion does not diminish in any wayinto ¢, we must have
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T(p—d)<T(p',p). (53  the lines of the present work, is to regard them as reducing
the minimal trace distance achievable in a faithful conver-
By the metric property of the trace distance sion:
T(p",)<T(p" ) +T(Y' ¢). (54) T(y@n— P n)<T(y—¢). (60)

But by the contractivity property51) we haveT(p’,#')  We can now ask whether this improvement survives in the
<T(p,¢), and the choice of protocol ensures tidi)’, ¢) presence of a distortion of the states involved. Suppose for

=T(4— ¢). Thus Eq.(54) implies instance that the initial state and catalyst are subject to some
noise, so that instead @f® » we have in fact a mixed state
T(p— )<T(p,h)+T(— ), (55 p which is merely close tay® ». Taking the trace distance

e=T(p,¥® n) as a measure of the magnitude of the noise,
we can then ask how smallhas to be if the catalytic effect
is to be preserved.

From Eq.(58) we have

which is an upper bound of(p— ¢) in terms of the easily
calculated quantitie$ (p,) andT(y— ¢).

A lower bound onT(p— ¢) may be obtained by a similar
technique. Suppos€’ and /" are the states obtained frgm
and ¢, respectively, by applying the optimal transformation T(p— @) —T(y® n— ¢ n)<T(p,y®@7)=¢.
protocol for obtainings from p. Then we must have (61)

T(p— d)<T(Y", ). (56)  Now let AT, =T(y—¢)—T(4® n— ¢@n) be the reduc-
) tion in the trace distance achievable using the catafyst
By the metric propertyT (4", ¢)<T(4",p")+T(p".¢). BY  when there is no initial error. Then as long as
contractivity, T(¢”,p")<T(4,p), and by the choice of pro-

tocol, T(p",$)=T(p— ¢). Thus e<AT,, (62

T(p—P)<T(p, )+ T(p— ), (57  we still obtain T(p— ¢® n)<T(¢p— @), and therefore a
catalytic enhancement of the fidelity obtainable via LOCC is
which provides a lower bound 6h(p— ¢). Combining up-  still present.

per and lower bounds of(p— ¢) into a single equation we
have the useful inequality V. NONLOCAL DISTANCE MEASURES

I T(p— ) —T(b—)|<T(p,¢). (58 We can use the optimality result of theorem 3 to define
) ) notions of fidelity and distance on the space of quantum
We note in passing that the same method may be used ates that measures how different the “nonlocal” properties
prove that for any quadruple of quantum staiesp,,01,02  of those states are. For example, we definertbelocal fi-
the following more general inequality holds: delity between pure statég/) and|¢) by

T(p1—=01) = T(p2—02)|<T(p1,p2) +T(a1,07). 59 Fr( . ¢)=min(F(y— ¢),F(d— 1)), 63)
o o . . whereF (4— ¢) is the optimal fidelity for transforming to
This inequality is of special use in Fhe case where, for X+, by LOCC, andF(¢— i) is the optimal fidelity, in general
ample, p, and o, are pure states, since then theorem 3 aljitferent, for transformingp into ¢ by LOCC. The nonlocal
lows T(p,—07) to be calculated explicitly, and EA59)  figelity quantifies the similarity in quantum correlations
then bounds the quantifi(p,— o), which we do not know  resent ing and ¢. The nonlocal fidelity can be turned into

how to calculate exactly in general. a metric by using thdrace distance Recall that the trace
distance between density matricesand o is defined by
E. Example: robustness of entanglement catalysis T(p,0)=Tr|p—o|. For pure statesy and ¢ the trace dis-

As an illustration of the usefulness of the inequal®®), tance is related to the fideli.ty by the formu2), which we
we study the robustness of the phenomenoergéinglement  "eProduce here for convenience:

catalysis[17] under the presence of initial noise. First let us A
recall the nature of this effect: it is sometimes the case that, T(W.¢)=2V1=F(4.¢). (64)

f""th"“gh Alice and Bob _cannot deterministically trans_fopr_n Analogous to the nonlocal fidelity we may define the nonlo-
into ¢ by local operations and classical communication, .| race distance

there existtatalystentangled states such thaty® » can be

transformed into¢® » by local operations and classical Tou(t,d)=21—F (4, ). (65)
communication. More generally, partial catalyst states may

exist that improve the efficiency of the conversion frafm This is a metric on the space of pure states of a bipartite
into ¢, although not to 100%. In Refl7] this effect was system, where we agree to identify two states if they have the
studied from the point of view of conclusive conversions:same Schmidt coefficients. To see the metric property, note
partial catalysts were seen to improve the probability of conthat the nonlocal distance is manifestly symmetric, and that
clusively obtaininge¢ from . Another point of view, along T, (#,¢)=0 if and only if F(¢y—¢)=1 and F(¢— ¢)
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Py Y3 S0 T(p,p3)<T(¢,,¥,). Combining this observation with
Eqg. (70) and then applying Eq68) gives

& To( 1, 3) <T(bo,102) + T( 3, 3) (71)

FIG. 3. ¢ is the best approximation t¢; that may be obtained
from ¢, by local operations and classical communication. STr(1,¥2) + T, 103), (72

=1, which we know is true if and only iy and ¢ have the
same Schmidt coefficients. All that remains is to prove theyhich is the triangle inequality66).

triangle inequality Analogous constructions may be carried out for the mixed
_ state case. Unfortunately, general conditions for transform-
Ty, ) STy, h2) + T4, ). (66) ing one mixed state to another by local operations and clas-

&ical communication are not yet known, so we cannot evalu-
ate the nonlocal distance or nonlocal fidelity in this instance.
[Note, however, that Eq(58) does allow one to prove
Tl ) =T (3, ), (67) bounds on the general nonlocal distance the case of
mixed states there are inequivalent measures of distance
whered is the best possible approximationgg that may be available for use in the definition of nonlocal distance, such
obtained fromy; by local operations and classical commu- @s the trace distance and the Bures dist4@6¢ In general,
nication. Furthermore, let, be the best approximation to any good measure of distance for quantum states can be used
i, that can be obtained frong, by local operations and to define a good measure of nonlocal distance, provided it
classical communication, and lei; be the best approxima- has a contractivity property analogous to that for the trace
tion to 45 that can be obtained fromt, by local operations ~ distance(which, for example, the Bures distance has
and classical communication. Then

T( ¢2!¢2)$Tnl( lr/lli'/IZ)! T( ¢31¢3)$Tn|( 1/12117113)(68) VI. CONCLUSION

To prove this, we use a construction illustrated in Figs. 3 an
4. Without loss of generality, we suppose that

We have found the optimal approximate schemes for
Furthermore, lep;, ¢ be the ensemble of states that resultsgransforming one pure entangled state into another using lo-
when the protocol used to transforp into ¢3 is applied to  cal operations and classical communication. These results
¢ instead. Defing=ZXp;| ¢/ )(¢#{|. Then sincep may be  have been used to determine the best possible schemes for
obtained fromys; by local operations and classical commu- entanglement concentration and dilution, to determine the

nication we have optimal teleportation fidelity that may be achieved when im-
perfect pure state entanglement is available, and to obtain
Tr(h1,43)<T(p,h3) (69 pounds on how well entanglement can be transformed in the

presence of a small amount of noise in the initial state. This

<T(p,3) +T(3,¢3), (70 in turn allows us to estimate how robust surprising effects

. . . such as entanglement catalysis are against such small pertur-
where we applied the metric property of the trace distance ofjationg. Furthermore, we defined a nonlocal fidelity to mea-
fche Sﬁcor]rd line. We again uge the resul.:t thRUERa] St  gyre the difference in the entanglement present in two quan-
ing that T(.--,---) never ec.reasesl. : q the sa;1me trace-y,m states. This quantity is not affected by local unitary
preserving quantum operation is applied to each argumenty,,qes o the system, and can be used to define interesting

nonlocal metrics on the space of entangled states. We believe

Y1 P2 s that these results shed considerable light on the ongoing ef-
fort to develop the notion of entanglement as a physical re-
source that can be employed in a wide variety of information

®2 ®3 processing tasks. In particular, an understanding of approxi-

mation is crucial to the analysis of proposals for tasks of
practical interest, such as the cryptographic protocol recently
P proposed by Barnuril2], whose security depends upon th-

edifficulty of performing certain entanglement transforma-
FIG. 4. ¢, is the best approximation t¢, that can be obtained tjgns.

from ¢, by local operations and classical communicatiggp.is the
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