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Approximate transformations and robust manipulation of bipartite pure-state entanglement
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We analyzeapproximatetransformations of pure entangled quantum states by local operations and classical
communication, finding explicit conversion strategies which optimize the fidelity of transformation. These
results allow us to determine the most faithful teleportation strategy via an initially shared partially entangled
pure state. They also show that procedures for entanglement manipulation such as entanglement catalysis
@Jonathan and Plenio, Phys. Rev. Lett.83, 3566~1999!# are robust against perturbation of the states involved,
and motivate the notion ofnonlocal fidelity, which quantifies the difference in the entangled properties of two
quantum states.

PACS number~s!: 03.67.Hk, 03.65.Bz
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I. INTRODUCTION

Entanglement is aresourceat the heart of quantum me
chanics; iron in the classical world’s bronze age. It is a k
ingredient in effects such as quantum computation@1#, quan-
tum teleportation@2#, and superdense coding@3#. To better
understand entanglement as a resource, we would lik
understand what transformations of an entangled state
be accomplished, when only some restricted class of op
tions is allowed to accomplish this transformation. This pa
digm, introduced in Refs.@4–6#, has been very successful
identifying many of the fundamental properties of entang
ment. The best studied class of operations is local operat
and classical communication~LOCC!—that is, the two en-
tangled parties may do whatever they wish to their lo
system, and may communicate classically, but they can
use quantum communication.

This class of transformations has been studied in con
erable detail in Refs.@7–11#. The purpose of this paper is t
generalize earlier results to studyapproximatetransforma-
tions of one pure state into another. In particular, we obta
scheme for performing the best possible entanglement tr
formation, in the sense that the transformation results i
state which is ‘‘nearest’’ the desired target state, with resp
to a well-motivated measure of distance. Our results sh
that existing results about entanglement transformation
robust against the effects of slight noise, and quantify exa
how robust. Our results extend and complement recent
independent work by Barnum@12# on approximate transfor
mations with applications to cryptography.

The paper is structured as follows. In Sec. II we revi
the relevant background material. Section III proves the m
result of the paper, an optimal scheme for performing
proximate entanglement transformation. Section IV illu
trates our main result by application to some concrete
tanglement transformation tasks. In particular, we determ
the optimal fidelity of any teleportation scheme that use
partially entangled pure state as its quantum channel. Sec
V introduces the concept ofnonlocal fidelitybetween two
entangled states, and studies some elementary properti
1050-2947/2000/62~1!/012304~10!/$15.00 62 0123
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this measure of distance between two entangled states.
tion VI concludes the paper.

II. BACKGROUND

Supposec is a pure state of a bipartite system shared
Alice and Bob, and let

uc&5(
i 51

n

Aa i u i A i B&, a i>a i 11>0, (
i 51

n

a i51, ~1!

be its Schmidt decomposition@13#. ~Throughout this paper
we switch back and forth between the bra-ket notationuc&
and the notationc without comment.! Without loss of gen-
erality we may suppose Alice and Bob have state space
equal dimensionn. All results extend trivially to the case o
unequal dimensions. Suppose the parties wish to transf
this initial state into a second pure stateuf& with Schmidt
decomposition

uf&5(
i 51

n

Ab i u i A8 i B8 &, b i>b i 11>0, (
i 51

n

b i51, ~2!

that we shall call thetarget state, by just acting locally on
their subsystems and communicating classically.

Necessary and sufficient conditions for thisdeterministic
local transformation to be possible, along with an expli
protocol for the conversion, were presented in Ref.@8#. It
was shown there thatc is locally convertible intof in a
deterministic manner if and only if the vectoraW

5(a1 , . . . ,an) is majorized by the vector bW

5(b1 , . . . ,bn), aW abW :

c→f ⇔ (
i 51

k

a i<(
i 51

k

b i , k51, . . . ,n, ~3!

with equality holding whenk5n. Condition~3! can be given
an equivalent description in terms of theentanglement mono
tones El , l 51, . . . ,n, introduced in Ref.@9#,
©2000 The American Physical Society04-1



nd

v

t

-

y

-

on

t
e

y

r

th

n

-

u-
w
n

ever
ents
f
lly
en-
the
s

n-
ere

,

mit
to

the

-
fer
of
al-
, a
ent

ons

he
at

assi-

es
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El
c[(

i 5 l

n

a i , El
f[(

i 5 l

n

b i , ~4!

which are quantities that do not increase, on average, u
any local transformation@14#. The statec can be locally
transformed intof with certainty if and only if none of these
entanglement monotones are increased during the con
sion, that is,

El
c>El

f, l 51, . . . ,n. ~5!

We suppose from now on that condition~3! is not satis-
fied, and that therefore the parties cannot locally converc
into f deterministically, that is,c→” f. What options do
they have?

In some cases, namely, whenc has at least as many non
vanishing Schmidt coefficients asf, the parties can still lo-
cally transformc into f with some nonvanishing probabilit
of success, performing what we shall call aconclusivecon-
version. The optimalconclusiveprotocol is the one with the
maximal probabilityP(c→f) that the conversion is suc
cessful. This probability can be shown to be@9#

P~c→f!5 min
l P[1,n]

El~c!

El~f!
, ~6!

and thus it is the greatest quantity compatible with the n
increasing character of the entanglement monotonesEl .

An appealing feature ofconclusiveconversions is tha
when the protocol succeeds the parties end up sharing
actly the target statef they wanted. This is useful in an
situation where Alice and Bob need the target stateexactly
and do not wish to accept a merelysimilar outcome, say
another statej with a reasonably high overlap withf. One
may conceive, for instance, that the parties want to perfo
fully reliable teleportation@2#. In order to do so they may try
to conclusively convert the initial pure statec into anm-state
@7#—a state of the form

ucm&5
1

Am
(
i 51

m

u i Ai B&. ~7!

In the present work we consider, on the contrary, that
parties allow for the final outcomej of the conversion to be
just an approximated version of the target statef. We shall
call this alternative type of transformationsfaithful ~see Fig.
1!. More specifically, we present here faithful conversio
c→j such that the fidelity between the final statej and the
target statef, which we define as

F~j,f![ z^juf& z2 , ~8!

is the greatest locally achievable.~Note that our nomencla
ture differs from that used, e.g., in Ref.@19#, whose defini-
tion of ‘‘fidelity’’ corresponds to the square root of ours.!

This approximateapproach is more suitable than concl
sive transformations in a number of contexts. First, it allo
us to consider local conversions when the conclusive o
01230
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are not possible at all. For example, this is the case when
the target state has more nonvanishing Schmidt coeffici
than the initial state@7#. This is relevant to the problem o
diluting the entanglement of a finite set of pure, maxima
entangled states into a larger set of other pure, partially
tangled ones. Such a problem can be well posed from
point of view of faithful conversions, and we will addres
here the question of which are the optimal~that is, most
faithful! dilution protocols for the finite case.

Entanglement distillation—the extraction of pure state e
tanglement from mixed states—is a second context wh
faithful conversions are highly relevant. It is known@16# that
the conclusive local conversion ofN copies of a mixed state
r into any entangled pure statef is in general impossible
that is the probability of making the transformationr ^ N

→f is typically equal to 0 for any finiteN, whereas distil-
lation of pure state entanglement is often possible in the li
N→` @6#. Thus faithful conversions of mixed states in
pure states appear as a more adequate framework for
study of approximate entanglement distillation.

A third reason for interest in faithful transformation pro
tocols is that, as we will show here, in general they dif
from the conclusive protocols with the highest probability
success. Finally, the study of approximate conversions
lows us to quantify how robust exact transformations are
problem of direct relevance to applications of entanglem
transformation such as entanglement catalysis@17# and cer-
tain cryptographic protocols@12,18#.

III. OPTIMAL CONVERSIONS BETWEEN PURE STATE
ENTANGLEMENT

We consider here the most general local transformati
of the initial statec, namely, those that convertc into an
ensemble of possible final statesrk with corresponding prob-
abilitiespk ~see Fig. 2!. In the case ofpurefinal states, it has
been shown in Ref.@10# that such aprobabilistic transforma-
tion can be performed by local means if, and only if, t
entanglement monotonesEl do not increase on average, th
is,

FIG. 1. Suppose local operations on the subsystems and cl
cal communication between Alice and Bob~LOCC! are not suffi-
cient for adeterministicconversion of the initial statec into their
target statef, i.e., c→” f. A conclusivelocal conversion may then
do the job with some prior probability of success, i.e., sometim
the protocol will lead to the target statef and sometimes will fail to
do so. Alternatively, afaithful conversion will deterministically lead
to a final statej which is only~but often reasonably! similar to the
target statef.
4-2
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c→$pk ,jk% ⇔ El
c>(

k
pkEl

jk , l 51, . . . ,n. ~9!

We can extend this result to the case where the final st
may be mixed statesrk . Notice thatany local protocol gen-
erating an ensemble$pk ,rk% of final mixed states from the
pure statec can be~nonuniquely! viewed as the outcome o
a two-step procedure of the following form: first, an e
semble of pure states$pkqk, j ,jk, j% such that

rk5(
j

qk, j ujk, j&^jk, j u ~10!

is locally produced; then the information concerning the
dex j is discarded. Therefore the transformationc
→$pk ,rk% can be performed locally if, and only if, ther
exists an ensemble$pkqk, j ,jk, j% satisfying Eq.~10! and such
that

El
c>(

k, j
pk, jEl

jk, j , l 51, . . . ,n. ~11!

We can now proceed to the main results of this work.
lemma 1, we determine the most faithful strategy for co
verting between pure states when only local unitary trans
mations are allowed. In lemma 2, we show that among
possible local transformations of the initial pure statec, c
→$pk ,rk% ~see Fig. 2!, the maximal average fidelity with
respect to the target statef, (kpk^furkuf&, can always be
obtained in a local and deterministic conversion of the s
c into a final pure statej. These results are then used
prove theorem 3, which provides the value of the optim
fidelity and the identity of the best possible final statej,
while also constructing an explicit local protocol for the co
version. It is worth noting that the pure state fidelity
equivalent to the ‘‘trace distance,’’ a quantity with a we
definedoperational meaningas the probability of making an
error distinguishing two states@19#. The statej is in this
sense the best possible physical approximation to the staf
that may be achieved using LOCC. We note that res

FIG. 2. The most general local transformation a bipartite p
statec can undergo may beprobabilistic in nature, and its outcom
ing states may bemixed. Lemma 1 allows us to restrict our consid
erations todeterministictransformations ofc into a finalpurestate
j, when searching for the mostfaithful local conversion into a
target statef.
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closely related to lemma 1 and lemma 2 have recently b
obtained independently by Barnum@12#, however, he does
not provide the general solution to the approximation pro
lem, theorem 3.

Lemma 1.Let t,vPC n
^ C n be two normalized state

with ordered Schmidt decompositions in the same local
sis, that is,

ut&5(
i 51

n

At i u i Ai B&, t i>t i 11>0, ~12!

uv&5(
i 51

n

Av i u i Ai B&, v i>v i 11>0, ~13!

and let us consider the overlap or fidelityFU,V
[u^tuvU,V&u2 between t and a third vectorvU,V[(U
^ V)v, whereU andV are any two local unitaries on Alice’s
and Bob’s subsystems, respectively. Then

max
U ^ V

FU,V5S (
i 51

n

At iv i D 2

, ~14!

the maximal overlap corresponding precisely to the caseU
5V5I , vU,V5v.

Proof. Let us begin by reexpressingt,v in the form@20#

ut&5I ^ stua&;uv&5I ^ svua&, ~15!

where st,sv are the diagonaln3n matrices constructed
from the ordered Schmidt coefficients oft,v ~i.e., s i i

t

5At i) and a5( i 51
n u i Ai B& is the unnormalized maximally

entangled state. The overlap betweent and any vectorvU,V
obtained fromv by local unitary rotations is then

u^tuU ^ Vuv&u25u^au~U ^ stVsv!ua&u2

5u^au~ I ^ stVsvUT!ua&u2

5uTr~stVsvUT!u2, ~16!

where we have used the easily verified observations thaU
^ I ua&5I ^ UTua& and ^au(I ^ A)ua&5Tr@A#. The desired
result follows directly from problem III.6.12 in Ref.@15#.
Alternatively, a sketch of the remainder of the proof is
follows. First, rewrite

uTr~stVsvUT!u5uTr~AstVAsvAsvUTAst!u. ~17!

By the Cauchy-Schwarz inequality uTr(A†B)u
<ATr(A†A)Tr(B†B), we then have

uTr~stVsvUT!u<ATr~svV†stV!Tr~stU* svUT!.
~18!

Define C[V†stV. Since sv is diagonal, we have
Tr(svC)5Tr@svdiag(C)#, where diag(C) is obtained by
retaining only the diagonal elements ofC. Now, sincest

diagonalizesC, Schur’s theorem~Ref. @21#, theorem 9.B.1!
implies that there exist permutation operatorsPi such that

e

4-3
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diag~C!5(
i

pi Pis
tPi

† . ~19!

It follows that

Tr~svC!5(
i

pi Tr~svPis
tPi

†!<(
i

pi Tr~svst!

5Tr~svst!, ~20!

where the inequality follows from the observation thatx1
<x2 and y1<y2 imply that x1y21x2y1<x1y11x2y1, and
so Tr(svPis

tPi
†)<Tr(svst). Similarly, Tr(stU* svUT)

<Tr(svst). Substituting these results in Eq.~18! and then
into Eq. ~16!, we finally obtain

u^tuU ^ Vuv&u2<Tr2~svst! ~21!

which is precisely the overlap betweent andv given in Eq.
~14!.

Lemma 2.Among all possible local transformations of th
bipartite pure statec, c→$pk ,rk%, a deterministic one,c
→j, into some pure statej can always be found which
achieves the most faithful transformation with respect to
target statef.

Proof. Because of the linearity of the trace Tr@•••#, the
overlap Tr@ uf&^fur# betweenf and a mixed stater equals
the average overlap betweenf and any ensemble realizin
r. Therefore we can consider, without loss of genera
@compare the discussion around Eq.~10!#, just local transfor-
mations c→$pk ,jk% into pure statesjk , with squared
Schmidt coefficientsg i

k>g i 11
k >0. By lemma 1, the averag

fidelity F̄ with the target statef of Eq. ~2! satisfies

F̄<(
k

pkS (
i 51

n

Ag i
kb i D 2

. ~22!

Moreover, it follows from Eqs.~5! and~9! that the pure state
j̄, defined as

u j̄&[(
i 51

n

A(
k

pkg i
ku i A8 i B8 &, ~23!

with the same Schmidt basis as the target statef, can be
obtained deterministically fromc in Eq. ~1!. The concavity

of Uhlmann’s fidelity F(r1 ,r2)[(TrAAr1r2Ar1)2 @22#

implies that the overlap betweenj̄ and the target statef is
an upper bound onF̄,

F̄<(
k

pkS (
i 51

n

Ag i
kb i D 2

<S (
i 51

n

A(
k

pkg i
kb i D 2

.

~24!

More precisely, define diagonaln3n matricessf, sjk, and
sj̄, constructed from the square of the ordered Schmidt
efficients off, jk and j̄, respectively~e.g.,s i i

f5b i). Then
the second inequality in Eq.~24! is equivalent to
01230
e

y

o-

(
k

pkF~sjk,sf!<F~sj̄,sf!, ~25!

which corresponds to concavity of the fidelity since by co
structionsj̄5(kpks

jk.
Lemma 2 implies that we need focus only on determin

tic conversions into a final pure statej. We assume, withou
loss of generality, thatn ~the dimension of the local Hilber
spaces! is the greatest of the number of nonvanishi
Schmidt coefficients of the initial statec and the target state
f. We need to introduce some notation before we fina
present the most faithful local conversion. Let us then call 1
the smallest integerP@1,n# such that

El 1
c

El 1
f

5 min
l P[1,n]

El
c

El
f

[r 1 ~<1!. ~26!

It may happen thatl 15r 151. If not, it follows from the
equivalence

a

b
,

a1c

b1d
⇔ a

b
,

c

d
~a,b,c,d.0! ~27!

that for any integerkP@1,l 121#

Ek
c2El 1

c

Ek
f2El 1

f
.r 1 . ~28!

Let us then definel 2 as the smallest integerP@1,l 121# such
that

r 2[
El 2

c 2El 1
c

El 2
f 2El 1

f
5 min

l P[1,l 121]

El
c2El 1

c

El
f2El 1

f
~.r 1!. ~29!

Repeating this process untill k51 for somek, we obtain a
series ofk11 integersl 0. l 1. l 2.•••. l k ( l 0[n11) and
k positive real numbers 0,r 1,r 2,•••,r k , by means of
which we define our final state

uj&[(
i 51

n

Ag i u i A8 i B8 &, ~30!

whereu i A8 &, u i B8 & are the same as in Eq.~2!, and

g i[r jb i if i P@ l j ,l j 2121#, ~31!

that is,
4-4
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gW 53
r kF b l k

A

b l k2121

G
A

r 2F b l 2

A

b l 121

G
r 1F b l 1

A

b l 021

G 4 . ~32!

By constructiong i>g i 11 and

El
c>El

j ; l P@1,n#, ~33!

so the vectoraW is majorized by the vectorgW , aW agW . Accord-
ing to condition~3! the local strategy presented in Ref.@8#
will indeed allow the parties to obtain the statej from c with
certainty. Now, let us define positive quantities

Aj[El j

c2El j 21

c 5 (
i 5 l j

l j 2121

a i ~El 0
c [0!, ~34!

Bj[El j

f2El j 21

f 5 (
i 5 l j

l j 2121

b i ~El 0
f [0!. ~35!

Then the fidelity between the final statej and the target state
f reads, in terms of the initial and target states

u^juf&u25S (
j 51

k

AAjBj D 2

. ~36!

Without loss of generality, lemma 1 allows us to assu
that any other possible final statej8 has the same Schmid
basis as the target statef and squared Schmidt coefficien
g i8>g i 118 >0, so by the Cauchy-Schwarz inequali
(Ax1y11Ax2y2)2<(x11x2)(y11y2), (x1 ,x2 ,y1 ,y2>0),

Fj8[F~j8,f![S (
i 51

n

Ag i8b i D 2

~37!

<F (
j 51

k S (
i 5 l j

l j 2121

g i8D 1/2

ABj G2

, ~38!

wherel j ( j 51, . . . ,k) have been defined in Eqs.~26!–~29!.

Now, recall that( i 5 l j

l j 2121g i85El j

j82El j 21

j8 , and that the lo-

cal and deterministic character of the conversionc→j8 im-

plies thatEl
c>El

j8 ( l 51, . . . ,n). We can therefore defineaj

as

aj[El j

c2El j

j8 ; a0[0. ~39!
01230
e

The conditionaag8 implies thataj>0 for eachj. We may
rewrite Eq.~38! in terms of theaj and theAj introduced in
Eq. ~34! as

Fj8<S (
j 51

k

AAj2aj1aj 21ABj D 2

[ f ~aW !. ~40!

Our interest is in the behavior off (aW ) as a function ofaW . We
will show that in the allowed parameter regionf (aW ) is maxi-
mized whenaW 50. A direct computation shows that th
~tridiagonal! matrix of second derivatives off (aW ), (Mn) i j
[]2f /]ai]aj , is negative definite in the regionA,R n de-
fined by the constraintsaj>0 andAj2aj1aj 21>0, which
contains all relevant situations compatible withg i8>g i 118
>0. Next, note that

] f ~aW !

]aj
U

aW 50W
5Af ~0W !SABj 11

Aj 11
2ABj

Aj
D . ~41!

By constructionAj /Bj,Aj 11 /Bj 11 @compare Eqs.~26!–
~29! and ~34!,~35!#, so

] f ~aW !

]aj
U

aW 50W
,0. ~42!

It follows that the maximum off (aW PA) occurs ataW 50W , that
is, when the final statej8 is precisely the statej as defined in
Eqs.~30!–~32!. Therefore, we can conclude the following.

Theorem 3.The maximal fidelityFopt achievable in a
faithful local transformation of the initial pure statec into
the target pure statef is given by Eq.~36!,

Fopt5S (
j 51

k

AAjBj D 2

. ~43!

The most faithful protocol consists in a deterministic conv
sion of c into the pure statej as defined in Eqs.~30!–~32!.

IV. DISCUSSION AND APPLICATIONS

The next few sections apply theorem 3 to several pr
lems of entanglement transformation. Section IV A finds t
most faithful protocol for performing a special type of e
tanglement transformation known as entanglement conc
tration, in which a large number of partially entangled sta
are transformed into Bell pairs. This result is then applied
determine the most faithful teleportation protocol via a
given pure quantum state. Section IV B finds the most fa
ful protocol for performing the reverse procedure to conc
tration, entanglement dilution. Section IV C compares
most faithful transformation with the optimal conclusiv
transformation, and concludes that in general they are dif
ent. Section IV D explains how our results can be used
demonstrate the robustness against noise of entangle
transformation protocols for pure states and Sec. IV E
plains this in the special case of entanglement catalysis.
4-5
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A. Concentration of entanglement
and optimal teleportation fidelity

An entanglement concentration protocol@5# is a strategy
for obtaining maximally entangled states from some partia
entangled initial~pure! state c using only LOCC. In the
original formulation of this concept, due to Bennett, Ber
stein, Popescu, and Schumacher@5#, many ~N! copies of an
(n3n)-dimensional statec are available, and the goal is t
obtain the largest number ofn-states in the asymptotic limi
where N→`. More recently, the optimal way to conclu
sively concentrate the entanglement of asingle copyof c has
also been obtained@7,10,11#.

In this section we solve the same problem from the po
of view of faithful conversions. In this case, the goal is
determine the local strategy that maximizes the fidelity
tween the single copy ofc and the maximally entangle
n-statecn . It turns out that the optimal strategy in this ca
is essentially to do nothing at all. The only requirement is
apply the local unitary rotations that align the Schmidt co
ponents ofc to those ofcn , in the manner implied by
lemma 1. This result can be shown using Eqs.~26!–~32!.
However, a simpler derivation can be obtained from the f
lowing argument. First, for any pure statec with Schmidt
coefficientsAa1>•••>Aan, consider the function

Fmax~c!5
1

n S (
i 51

n

Aa i D 2

. ~44!

As has been pointed out by Horodecki@23#, Fmax is a uni-
tarily invariant, concave function of the reduced density m
trix rA5TrBuc&^cu. Following theorem 2 in Ref.@14#, it is
therefore an entanglement monotone for pure states. In
lemma 1 shows thatFmax(c) is the greatest fidelity with re
spect tocn that is achievable fromc by local unitary rota-
tions. Now, following lemma 2, letj be the most faithful
approximation ofcn obtainable fromc by LOCC. By defi-
nition then,Fmax(c)<Fmax(j). On the other hand, sinceFmax
is an entanglement monotone, we must also haveFmax(c)
>Fmax(j). These quantities are therefore equal, which i
plies that the optimally faithful strategy can be achieved
ing only local unitary rotations.

It is interesting to note thatFmax can also have anothe
interpretation. It is equivalent to the robustness of entan
mentR(c), an entanglement monotone that was compreh
sively studied in Ref.@14#. R(c) is defined as the minima
amount of separable noise that has to be mixed with stac
in order to wash out its quantum correlations completely.
pure states, its value readsR(c)5nFmax(c)21.

An important consequence of determiningFmax is that it
also allows us to determine the optimal fidelity of telepor
tion via c. Recall that perfect teleportation of an unknow
n-dimensional state can be realized only if an ‘‘n state’’ is
shared between Alice and Bob@2#. For a more general ini-
tially shared statec, one must admit some imperfection
the procedure. As with entanglement transformations, i
possible to consider two approaches to imperfect telepo
tion: on the one hand, conclusive teleportation strategies s
to maximize the likelihood of achieving ideal teleportatio
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but also allow for the possibility of failure@24#. On the other
hand, faithful strategies seek to maximize the so-called fid
ity of teleportation. For any given teleportation strategyT,
this quantity is naturally defined@25# as the average overla
between Alice’s initial statef and the final teleported stat
obtained by Bob

f ~LT,c!5E df^fuLT,c~ uf&^fu!uf&, ~45!

where LT,c is the trace-preserving quantum operation th
maps the initial state onto the teleported one~a construction
for this operation may be found in Ref.@26#!.

Recently, a connection has been found between this qu
tity and faithful entanglement concentration procedures@25#.
It has been shown that, for any given initial stater ~pure or
mixed! in (n3n)-dimensional Hilbert space, the maximu
value of f over all possible teleportation protocols imple
mented using LOCC is given by

f max~r!5
Fmax~r!n11

n11
. ~46!

Here,Fmax(r) is precisely the maximum fidelity that can b
achieved betweenr and ann-state under a trace-preservin
quantum operation implemented via local operations a
classical communication. In general, it is not yet known h
to calculate this quantity. However, in the case of a p
initial state r5c, its value is the one found in Eq.~44!
above. The maximum fidelity of teleportation viac is then
also immediately determined via Eq.~46!:

f max~c!5

S (
i 51

n

Aa i D 2

11

n11
. ~47!

A ‘‘most faithful’’ teleportation protocol that achieve
this limit has also been described in Ref.@25#. For any initial
stater, its first step requires transformingr into the most
faithful achievable approximation of ann state. In the case o
a pure statec, we now know that this is done merely by th
Schmidt-basis alignment described above. The remainde
the protocol requires then only a so-called ‘‘U ^ U* twirl-
ing’’ @25# of the state~resulting in a Werner state@27#!,
followed by applying the standard teleportation proced
@2#. We therefore have now an explicit protocol for realizin
optimally faithful teleportation via pure states.

B. Entanglement dilution

We now consider the reverse process to entanglem
concentration, entanglement dilution@5#. In this case, the
parties start out with somem-statecm and aim at obtaining a
final, less entangled statef, constituted ofN copies of some
smaller-dimensional statex, i.e., f5x ^ N. If the number of
nonvanishing Schmidt coefficients ofx is greater thanAN m,
then this exact transformation is not possible at all — n
even with only some probability of success — sincef has
4-6
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fewer Schmidt components thanc,m,n @7#. In this case, it
is interesting to consider the most faithful approximation
x ^ N that can be achieved.

Let uf&5( i 51
n Ab i u i Ai B&. The most faithful approxima-

tion j to f that can be obtained fromcm by LOCC is deter-
mined using Eqs.~26!–~32! as follows: from Eq.~26!, we
have r 150, l 15m11. Equation ~29! gives r 2

5(m( i 51
m b i)

21, l 251. It follows that

uj&5
1

A(
i 51

m

b i

(
i 51

m

Ab i u i Ai B&, ~48!

and the corresponding optimal fidelity~43! simply reads

Fopt5(
i 51

m

b i . ~49!

In other words, the best approximation to the target statef is
the state of highest norm that can be obtained by projec
f onto an (m3m)-dimensional subspace.

In Ref. @5# the problem of optimal entanglement dilutio
was solved in the asymptotic limitm,N→`. In this regime,
the dilution procedure can actually be realized with 100
efficiency. The protocol realizing this is well-defined for an
finite values ofm,N. It consists essentially in identifying th
subspace off spanned by itsm largest Schmidt component
and then using them-statecm to teleport half of this over to
Bob. It can be easily verified that the resulting fidelity wi
respect tof is given precisely by the expression above. T
then shows that not only does this protocol approach fide
1 asm,N→`, but it is also optimal for any finite values o
these quantities.

C. Faithful versus conclusive transformations

Suppose Alice and Bob’s aim is to transform the statec
into the statef. We have found the optimal fidelity with
which this transformation can be accomplished. A natu
question to ask is how this faithful conversion strategy co
pares with the optimal conclusive strategy—the one t
maximizes the probability of successful conversion@9#. A
first observation is that the latter is in generalnot also the
most faithful strategy. This follows since the optimal conc
sive strategy will not usually succeed with 100% probabili
whereas lemma 2 shows that the fidelity with respect tof is
always maximized by means of a deterministic transform
tion. A simple example is the case of a two-qubit syst
initially in a partially entangled stateau00&1bu11&, with a
.b.0. As we have seen above, the most faithful strate
for converting it into the maximally entangled two state
simply to do nothing, which corresponds to a fidelity of1

2

1ab. On the other hand, the optimal conclusive transform
tion, which succeeds with probability 2b2 @7,9#, results in an
average fidelity of1

2 1b2, which is strictly less than was
achieved by the most faithful transformation.

We also note the surprising fact that, in all cases, realiz
the most faithful conversion does not diminish in any w
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Alice and Bob’s chances of conclusively obtaining the tar
state. This follows since the final statej in Eqs.~30!–~32! is
precisely the same as the intermediate stateV in the optimal
conclusive protocol presented in Ref.@9#, Eqs.~9!–~13!. This
means then that no probability of success is lost durin
most faithful conversion, that is,

P~c→f!5P~j→f!. ~50!

In other words, the parties may postpone their decision
whether or not they wish to risk their initial state in a co
clusive transformation intof, while obtaining already the
most faithful approximation tof.

D. Robustness of transformations

Up to this point, our discussion has assumed that the
tial statec shared by Alice and Bob is pure. Suppose, ho
ever, thatc is corrupted a little before it is made available
Alice and Bob, so they receive a density matrixr instead.
What can we say about the possibility of transformingr into
a target statef? This section establishes upper and low
bounds on the fidelity with which the transformationr→f
may be accomplished, and the next section explains h
these results may be used to analyze the robustness of e
such as entanglement catalysis@17#.

Our results are most easily presented using the trace
tance, a metric on Hermitian operators defined byT(A,B)
[Tr(uA2Bu), whereuXu denotes the positive square root
the Hermitian matrixX2. Ruskai @28# has shown that the
trace distance contracts under physical processes. More
cisely, if r and s are any two density operators, and ifr8
[E(r) ands8[E(s) denote states after some physical pr
cess represented by the~trace-preserving! quantum operation
E occurs, then

T~r8,s8!<T~r,s!. ~51!

We will useT(c,f) to denote the trace distance between
density matricesuc&^cu anduf&^fu. For pure states the trac
distance and the fidelity are related by the simple formul

T~c,f!52A12F~c,f!. ~52!

Returning to the problem of entanglement transformati
supposec is a pure state that we wish to transform into
pure statef. Let T(c→f) denote the minimal trace dis
tance that can be achieved by such a transformation; th
easily found by substituting Eq.~43! into Eq. ~52!. We will
provide upper and lower bounds onT(r→f), the minimal
trace distance tof that may be achieved by a protocol sta
ing with the stater, and using local operations and classic
communication.

Suppose we start with the stater, and apply the protoco
that most faithfully transformsc into f. Definer8 to be the
result of applying this protocol tor, and c8 the result of
applying the protocol toc. Then since this is just one pos
sible protocol, not necessarily optimal, for transformingr
into f, we must have
4-7
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T~r→f!<T~r8,f!. ~53!

By the metric property of the trace distance

T~r8,f!<T~r8,c8!1T~c8,f!. ~54!

But by the contractivity property~51! we haveT(r8,c8)
<T(r,c), and the choice of protocol ensures thatT(c8,f)
5T(c→f). Thus Eq.~54! implies

T~r→f!<T~r,c!1T~c→f!, ~55!

which is an upper bound onT(r→f) in terms of the easily
calculated quantitiesT(r,c) andT(c→f).

A lower bound onT(r→f) may be obtained by a simila
technique. Supposer9 andc9 are the states obtained fromr
andc, respectively, by applying the optimal transformati
protocol for obtainingf from r. Then we must have

T~c→f!<T~c9,f!. ~56!

By the metric property,T(c9,f)<T(c9,r9)1T(r9,f). By
contractivity,T(c9,r9)<T(c,r), and by the choice of pro
tocol, T(r9,f)5T(r→f). Thus

T~c→f!<T~r,c!1T~r→f!, ~57!

which provides a lower bound onT(r→f). Combining up-
per and lower bounds onT(r→f) into a single equation we
have the useful inequality

uT~r→f!2T~c→f!u<T~r,c!. ~58!

We note in passing that the same method may be use
prove that for any quadruple of quantum statesr1 ,r2 ,s1 ,s2
the following more general inequality holds:

uT~r1→s1!2T~r2→s2!u<T~r1 ,r2!1T~s1 ,s2!.
~59!

This inequality is of special use in the case where, for
ample,r2 and s2 are pure states, since then theorem 3
lows T(r2→s2) to be calculated explicitly, and Eq.~59!
then bounds the quantityT(r1→s1), which we do not know
how to calculate exactly in general.

E. Example: robustness of entanglement catalysis

As an illustration of the usefulness of the inequality~58!,
we study the robustness of the phenomenon ofentanglement
catalysis@17# under the presence of initial noise. First let
recall the nature of this effect: it is sometimes the case t
although Alice and Bob cannot deterministically transformc
into f by local operations and classical communicatio
there existcatalystentangled statesh such thatc ^ h can be
transformed intof ^ h by local operations and classic
communication. More generally, partial catalyst states m
exist that improve the efficiency of the conversion fromc
into f, although not to 100%. In Ref.@17# this effect was
studied from the point of view of conclusive conversion
partial catalysts were seen to improve the probability of c
clusively obtainingf from c. Another point of view, along
01230
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the lines of the present work, is to regard them as reduc
the minimal trace distance achievable in a faithful conv
sion:

T~c ^ h→f ^ h!,T~c→f!. ~60!

We can now ask whether this improvement survives in
presence of a distortion of the states involved. Suppose
instance that the initial state and catalyst are subject to s
noise, so that instead ofc ^ h we have in fact a mixed stat
r which is merely close toc ^ h. Taking the trace distance
«5T(r,c ^ h) as a measure of the magnitude of the noi
we can then ask how small« has to be if the catalytic effec
is to be preserved.

From Eq.~58! we have

T~r→f ^ h!2T~c ^ h→f ^ h!<T~r,c ^ h!5«.
~61!

Now let DTh5T(c→f)2T(c ^ h→f ^ h) be the reduc-
tion in the trace distance achievable using the catalysh
when there is no initial error. Then as long as

«,DTh , ~62!

we still obtain T(r→f ^ h),T(c→f), and therefore a
catalytic enhancement of the fidelity obtainable via LOCC
still present.

V. NONLOCAL DISTANCE MEASURES

We can use the optimality result of theorem 3 to defi
notions of fidelity and distance on the space of quant
states that measures how different the ‘‘nonlocal’’ propert
of those states are. For example, we define thenonlocal fi-
delity between pure statesuc& and uf& by

Fnl~c,f![min„F~c→f!,F~f→c!…, ~63!

whereF(c→f) is the optimal fidelity for transformingc to
f by LOCC, andF(f→c) is the optimal fidelity, in genera
different, for transformingf into c by LOCC. The nonlocal
fidelity quantifies the similarity in quantum correlation
present inc andf. The nonlocal fidelity can be turned int
a metric by using thetrace distance. Recall that the trace
distance between density matricesr and s is defined by
T(r,s)[Trur2su. For pure statesc and f the trace dis-
tance is related to the fidelity by the formula~52!, which we
reproduce here for convenience:

T~c,f!52A12F~c,f!. ~64!

Analogous to the nonlocal fidelity we may define the non
cal trace distance

Tnl~c,f![2A12Fnl~c,f!. ~65!

This is a metric on the space of pure states of a bipar
system, where we agree to identify two states if they have
same Schmidt coefficients. To see the metric property, n
that the nonlocal distance is manifestly symmetric, and t
Tnl(c,f)50 if and only if F(c→f)51 and F(f→c)
4-8
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51, which we know is true if and only ifc andf have the
same Schmidt coefficients. All that remains is to prove
triangle inequality

Tnl~c1 ,c3!<Tnl~c1 ,c2!1Tnl~c2 ,c3!. ~66!

To prove this, we use a construction illustrated in Figs. 3 a
4. Without loss of generality, we suppose that

Tnl~c1 ,c3!5T~c3 ,f!, ~67!

wheref is the best possible approximation toc3 that may be
obtained fromc1 by local operations and classical comm
nication. Furthermore, letf2 be the best approximation t
c2 that can be obtained fromc1 by local operations and
classical communication, and letf3 be the best approxima
tion to c3 that can be obtained fromc2 by local operations
and classical communication. Then

T~c2 ,f2!<Tnl~c1 ,c2!, T~c3 ,f3!<Tnl~c2 ,c3!.
~68!

Furthermore, letpi ,f i8 be the ensemble of states that resu
when the protocol used to transformc2 into f3 is applied to
f2 instead. Definer[( i pi uf i8&^f i8u. Then sincer may be
obtained fromc1 by local operations and classical comm
nication we have

Tnl~c1 ,c3!<T~r,c3! ~69!

<T~r,f3!1T~f3 ,c3!, ~70!

where we applied the metric property of the trace distance
the second line. We again use the result of Ruskai@28# stat-
ing that T(•••,•••) never decreases if the same trac
preserving quantum operation is applied to each argum

FIG. 3. f is the best approximation toc3 that may be obtained
from c1 by local operations and classical communication.

FIG. 4. f2 is the best approximation toc2 that can be obtained
from c1 by local operations and classical communication.f3 is the
best approximation toc3 that can be obtained fromc2 by local
operations and classical communication.r is the ~possibly mixed!
state that results when the protocol convertingc2 to c3 is applied to
f2.
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so T(r,f3)<T(f2 ,c2). Combining this observation with
Eq. ~70! and then applying Eq.~68! gives

Tnl~c1 ,c3!<T~f2 ,c2!1T~f3 ,c3! ~71!

<Tnl~c1 ,c2!1Tnl~c2 ,c3!, ~72!

which is the triangle inequality~66!.
Analogous constructions may be carried out for the mix

state case. Unfortunately, general conditions for transfo
ing one mixed state to another by local operations and c
sical communication are not yet known, so we cannot eva
ate the nonlocal distance or nonlocal fidelity in this instan
@Note, however, that Eq.~58! does allow one to prove
bounds on the general nonlocal distance.# In the case of
mixed states there are inequivalent measures of dista
available for use in the definition of nonlocal distance, su
as the trace distance and the Bures distance@29#. In general,
any good measure of distance for quantum states can be
to define a good measure of nonlocal distance, provide
has a contractivity property analogous to that for the tra
distance~which, for example, the Bures distance has!.

VI. CONCLUSION

We have found the optimal approximate schemes
transforming one pure entangled state into another using
cal operations and classical communication. These res
have been used to determine the best possible scheme
entanglement concentration and dilution, to determine
optimal teleportation fidelity that may be achieved when i
perfect pure state entanglement is available, and to ob
bounds on how well entanglement can be transformed in
presence of a small amount of noise in the initial state. T
in turn allows us to estimate how robust surprising effe
such as entanglement catalysis are against such small pe
bations. Furthermore, we defined a nonlocal fidelity to m
sure the difference in the entanglement present in two qu
tum states. This quantity is not affected by local unita
changes to the system, and can be used to define intere
nonlocal metrics on the space of entangled states. We be
that these results shed considerable light on the ongoing
fort to develop the notion of entanglement as a physical
source that can be employed in a wide variety of informat
processing tasks. In particular, an understanding of appr
mation is crucial to the analysis of proposals for tasks
practical interest, such as the cryptographic protocol rece
proposed by Barnum@12#, whose security depends upon t
edifficulty of performing certain entanglement transform
tions.
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