
PHYSICAL REVIEW A, VOLUME 62, 012301
Distinguishability of states and von Neumann entropy
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Let $uc1&, . . . ,ucn&;p1 , . . . ,pn% be an ensemble of pure quantum states. We show that it is possible to
increase all of the pairwise overlapsu^c i uc j&u, i.e., make each constituent pair of the states more parallel~while
keeping the prior probabilities the same!, in such a way that the von Neumann entropyS is increased, and
dually, make all pairs more orthogonal while decreasingS. We show that this phenomenon cannot occur for
ensembles in two dimensions but that it is a feature of almost all ensembles of three states in three dimensions.
It is known that the von Neumann entropy characterizes the classical and quantum information capacities of the
ensemble and we argue that information capacity, in turn, is a manifestation of the distinguishability of the
signal states. Hence, our result shows that the notion of distinguishability within an ensemble is a global
property that cannot be reduced to considering distinguishability of each constituent pair of states.

PACS number~s!: 03.67.2a
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I. INTRODUCTION

The interpretation and physical significance of non
thogonality is one of the fundamental enigmas in the fo
dations of quantum theory. Letuf& and ux& be two nonor-
thogonal states of a quantum system. We may decomp
uf& as a superposition of components parallel and perp
dicular to ux&

uf&5aux&1bux'&, ~1!

where^x'ux&50 anda5^xuf&. Since any time evolution in
quantum mechanics is unitary~when we include also the
state of any ambient environment! ux& and ux'& will evolve
as though independent, remaining orthogonal, and the
composition in Eq.~1! is preserved. Thus, we see that t
overlap u^xuf&u measures the extent to which the stateuf&
behaves as though it were actuallyequal to the stateux&.
This view is further formalized in the many worlds interpr
tation of quantum theory according to which Eq.~1! may be
thought of as a ‘‘splitting’’ into two ‘‘worlds.’’ In one of
these worlds the stateuf& is indeed actually preciselyequal
to ux&.

The overlap~by which we will always mean the absolu
value of the inner product! is also a fundamental ingredien
in the question of~non!distinguishability of quantum states
In standard quantum measurement theoryu^xuf&u2 is the
probability thatuf& passes the test of ‘‘being the stateux&.’’
Although uf& and ux& aredistinct states in the mathematica
formalism of quantum theory, there is no physical proc
that can distinguish them with certainty and indeed the ov
lap provides a quantitative measure of the extent to wh
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the states cannot be distinguished~as for example, in the
Peres measurement@1# for optimal distinguishability of non-
orthogonal states. This is in contrast to distinct states in c
sical physics, which are always perfectly distinguishable
principle.

The purpose of this paper is to describe a situation t
appears to contradict the above intuitions. We will describ
situation in which quantum states actually become more
tinguishable~in a certain natural sense! when they are made
more parallel, i.e., when their overlap increases. Our not
of distinguishability will be based on information–theoret
considerations and will rest on the concept of von Neuma
entropy. Recent work in quantum information theory@3–6#
has shown that this alternative quantification of distingui
ability is very natural and compelling. Indeed if we vie
quantum states as carriers of information then their capa
for embodying information is a very natural measure of d
tinguishability i.e. a set of states can communicate more
formation if and only if the states are made more ‘‘disti
guishable’’~all else, such as prior probabilities remaining t
same!. Quantum states may be used to carry two differ
kinds of information, classical and quantum information, a
we will first briefly outline the essential results character
ing the respective information capacities that form the ba
of our quantification of distinguishability in terms of vo
Neumann entropy.

Consider first the case of quantum information. Supp
that Alice has a source that emits an unending sequenc
qubit signal statesuc1&5u0& and uc2&51/A2(u0&1u1&).
Each emission is chosen to beuc1& or uc2& with an equal
prior probability a half. Letr5 1

2 uc1&^c1u1 1
2 uc2&^c2u be

the density matrix of the source and letS5S(r)
52Tr r log2 r be its von Neumann entropy. Alice wishes
communicate the sequence of states to Bob. Clearly this
be achieved by transmitting one qubit per emitted state
according to the quantum source coding theorem@3,4,6# she
can communicate the quantum information~with arbitrarily

&
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RICHARD JOZSA AND JÜRGEN SCHLIENZ PHYSICAL REVIEW A62 012301
high fidelity! using ~asymptotically! only S qubits per state.
Furthermore, this compression is optimal: no fewer num
of qubits per signal can achieve this task. In our examp
direct calculation gives thatS50.601 qubit per signal.

Now consider the analogous situation in classical phys
if we have two classical signals with equal prior probabiliti
of a half then no compression beyond 1 bit per signa
possible~by Shannon’s source coding theorem@2#! and one
may ask what is the origin of the extra nonclassical comp
sion in the quantum case? Clearly it is related to the over
if u5cos21u^c1uc2&u is the angle between the two signal sta
thenS depends only onu and increases monotonically from
0 to 1 asu increases from 0 top/2 ~corresponding to the
classical situation!. In view of Eq. ~1! and the discussion
following it, one is tempted to think ofu^c1uc2&u as repre-
senting a redundancy or overlap of quantum information
tweenuc1& anduc2&, which may be ‘‘compressed out,’’ i.e.
to some extentuc1& and uc2& are the ‘‘same’’ and this com
mon quantum information in every signal, already known
Bob, need not be sent.

More generally, if we have an ensemble of signal sta
$uc1&, . . . ,ucn&% with prior probabilitiesp1 , . . . ,pn then the
quantum source coding theorem asserts that the quantum
formation may be compressed toSqubits per signal whereS
is the von Neumann entropy ofr5( i pi uc i&^c i u and that this
compression is optimal. Note that the von Neumann entr
S(r) is always less than or equal to the Shannon entr
H(p1 , . . . ,pn) @7,8# and we might think of the extra quan
tum compression toS qubits beyond the classical limit ofH
bits per signal as being due to the overlap of the quan
information represented by the constituent states as
pressed in Eq.~1!. Our results below will imply that this
interpretation is incorrect. Hence the origin of the extra qu
tum compression is evidently more subtle.

Let $uf1&, . . . ,ufn&;p1 , . . . ,pn% denote the ensemble o
quantum statesuf i& taken with prior probabilitiespi respec-
tively. Let

E5$uc1&, . . . ,ucn&;p1 , . . . ,pn%

and

Ẽ5$uc1&, . . . ,ucn&̃;p1 , . . . ,pn%

be two ensembles with the same number of states and
the same corresponding prior probabilities. Let

r5(
i

pi uc i&^c i u, r̃5(
i

pi uc̃ i&^c̃ i u

be the respective density matrices and letSandS̃ be the von
Neumann entropies. We will show that it is possible to ha
the following situation: the states ofE are all pairwise more
parallel ~i.e., have greater overlap! than the corresponding
states ofẼ yet the von Neumann entropy ofE is greater than
that of Ẽ, i.e., we simultaneously have
01230
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~ENS1!: u^c̃ i uc̃ j u<u^c i uc j&u for all i , j

~ENS2!: S̃,S.

This is in contradiction to our intuitive discussion abov
Each pair of states ofE has a greater overlap of quantu
information than the corresponding states ofẼ in the sense of
Eq. ~1! yet as atotality they embodymorequantum informa-
tion.

We will say that an ensembleE2 is a deformation ofE1 if
they have the same number of states and the two ensem
have the same list of prior probabilities~in the given order!,
i.e., the states ofE2 are being thought of as obtained b
‘‘deforming’’ the corresponding states ofE1 while keeping
the probabilities fixed.

We will show that ~ENS1! with ~ENS2! can never be
satisfied for any pair of ensemblesE andẼ in two dimensions
~regardless of the number of states! but that for almost all
ensemblesE of three states in three dimensions, there is
ensembleẼ satisfying~ENS1! and ~ENS2!.

The phenomenon in~ENS1! and~ENS2! shows curiously,
that information capacity~or distinguishability! is a global
property of a set of states and not an accumulative lo
property of pairs of constituent states. Indeed for ensem
$uc1&,uc2&;p1 ,p2% of just two states, the von Neumann e
tropy is a monotonically decreasing function of the overl
u^c1uc2&u. Thus the overlap conditions in~ENS1! imply that
each constituent pair of signals has adiminishedcapacity for
information as we pass fromẼ to E yet ~ENS2! states that the
ensemble as a whole develops anincreasedcapacity.

Von Neumann entropy also characterises theclassicalin-
formation capacity of an ensemble of quantum states. S
pose that Alice is constrained to use the statesuc i& with prior
probabilitiespi and she wishes to communicate classical
formation to Bob. On receiving a string of states, Bob
allowed to perform any joint measurement on a signal blo
of any length in order to maximise his acquired mutual
formation about the identity of the states. Then it may
shown @5# that the von Neumann entropyS of the signal
ensemble gives the maximum amount of information per s
nal that Alice is able to reliably transmit to Bob under th
above constraints. Nowclassical information capacity is
very closely related to the concept of distinguishabili
which, by any definition, is itself a form of classical info
mation about the identity of the states. Then~ENS1! with
~ENS2! shows that the members of an ensemble of quan
states can become pairwise less distinguishable yet a
whole the ensemble becomes more distinguishable, i.e.,
more classical information capacity.

II. GRAM MATRIX FORMULATION

We now describe a formalism for studying the conditio
represented by~ENS1! and ~ENS2! and give a method for
generating realizations in dimensiond.2.

Consider an ensemble$uc1&, . . . ,ucn&;p1 , . . . ,pn% of n
states ind dimensions. The density matrix is
1-2
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DISTINGUISHABILITY OF STATES AND VON . . . PHYSICAL REVIEW A62 012301
r5(
i 51

n

pi uc i&^c i u. ~2!

We introduce the Gram matrixG defined as then3n matrix
of rescaled inner products

Gi j 5Apipj^c i uc j&. ~3!

The Gram matrix enjoys the following two fundament
properties:

~G1!: The nonzero eigenvalues ofG are the same as th
nonzero eigenvalues ofr ~and their respective multiplicities
are also the same!. Note that in generaldÞn so the mis-
match in the numbers of eigenvalues is made up by z
eigenvalues. It follows thatr andG also have the same vo
Neumann entropy.

To see this, introducen orthogonal vectorsuei& in an aux-
iliary Hilbert space and consider the pure state

uf&5(
i 51

n

Api uc i&uei&. ~4!

Then r and G are just the two reduced states obtained
partial trace ofuf&^fu over the second and first componen
respectively. Hence, they must have the same nonzero e
values~c.f. appendix of Ref.@7#!.h

~G2!: G is always a positive matrix and TrG51. Con-
versely, ifA is anym3m positive matrix with TrA51 then
A is the Gram matrix of an ensemble ofm states inm di-
mensions@9#.

The first part follows immediately from Eq.~4! whereG
is identified as a density matrix itself. For the converse sta
ment note that ifA is positive we can writeA5B2 whereB
is Hermitian soA5B†B. Let b̂i be the normalizedi th col-
umn of B and let t i be its squared length. ThenA5B†B
expresses precisely the fact thatA is the Gram matrix of the
ensemble ofm-dimensional states$b̂1 , . . . ,b̂m ;t1 , . . . ,tm%.
The probabilitiest i are just the diagonal entries ofA.h

The Gram matrix, expressed in terms of the inner pr
ucts rather than the states themselves, provides a natura
hicle for studying the conditions~ENS1! and ~ENS2!. In-
deed, we are generally not interested in the actual posit
of the ensemble states but only in their relative positions,
inner products. The following theorem shows that the Gr
matrix encodes this information while eliminating the sup
fluous data of overall unitary repositionings:

Lemma 1: Two ensembles

E15$ua1&, . . . ,uam&;p1, . . . ,pm% on H1

and

E25$ub1&, . . . ,ubn&;q1 , . . . ,qn% on H2

have equal Gram matricesG15G2 if and only if m5n, pi
5qi for i 51, . . . ,m and there is a unitary transformationU
on H1% H2 with ub i&5Uua i& for all i.h

We give the proof in the appendix.
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Let G and G̃ be respectively the Gram matrices of th
ensemblesE and Ẽ, which have the same prior state pro
abilities ~i.e., G and G̃ have the same diagonals!. Then
~ENS1! is equivalent touG̃i j u<uGi j u for eachi and j, i.e.

G̃i j 5r i j Gi j r i j PC andur i j u<1 for eachi , j . ~5!

The matrixr5@r i j # satisfies the following properties:
~R1! r is Hermitian~without loss of generality!
~R2! the diagonal entriesr ii are all equal to 1 andur i j u

<1 for all i and j.
However, for givenG, r cannot be chosen arbitrarily sub

ject to ~R1! and ~R2! becauseG̃ is required to be a positive
matrix @by ~G2!#. Also, we wish to chooser so that Eq.~5!
induces a decrease in the entropy of the Gram matrixG.

The componentwise product ofG and r in Eq. ~5! is
known as the Hadamard product of matrices. We denote i

G̃5r* G ~6!

to distinguish it from the usual matrix product. The Sch
product theorem@9# asserts that the Hadamard product
any positive matrices is again a positive matrix. Hence, ifr is
chosen to be positive then by~G2! G̃ will again correspond
to an ensemble of states. However, in this case~ENS2! can
never be satisfied, i.e., the entropy is nondecreasing. To
this, letG be the Gram matrix of an ensembleE comprising
n statesuc i& with probabilitiespi . If r satisfying ~R1! and
~R2! is positive then ~G2! implies thatr /n is also a Gram
matrix of some collection of states,uj1&, . . . ,ujn& say, taken
with equal prior probabilities 1/n. Thus,

r i j 5^j i uj j&.

Hence, Eq.~5! asserts thatG̃ is the Gram matrix of the en
sembleE(j) comprising the statesuc i& ^ uj i& with probabili-
ties pi . Thus,E(j) is an ‘‘extension’’ ofE obtained by sim-
ply adjoining the statesuj i& to the correspondinguc i& ’s. As
such, the entropyS(j) of E(j) can never be smaller than th
entropyS of E. We give three brief proofs of this fact, eac
invoking a different~substantial! theorem. First, ifS(j),S
then Alice could reliably communicate the quantum inform
tion of E to Bob using less thanS qubits per signal. She
simply adjoins the statesuj i&, compresses toS(j) qubits per
signal and on reception and decompression, Bob just
cards the extensions. This contradicts the quantum noise
coding theorem@3,4,6#. Secondly, in a similar way,S(j)
,S contradicts the classical information capacity theor
@5# ~which asserts that the von Neumann entropy is the c
sical information capacity!: the extended ensembleE(j) can-
not have a smaller information capacity since Alice and B
can always just ignore the presence of the extensions for
purposes of classical communication. Thirdly, the pass
from uc i&uj i& to uc i& ~i.e. discarding the second state! is a
physically realizable operation and hence a completely p
tive ~CP! map. Then Uhlmann’s monotonicity theore
@10,11# ~asserting that relative entropy can never incre
under any CP map! immediately implies that the entropy ofE
1-3
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RICHARD JOZSA AND JÜRGEN SCHLIENZ PHYSICAL REVIEW A62 012301
cannot exceed the entropy ofE(j) @since the entropy of any
ensemble of pure statesr i5uf i&^f i u is just the average rela
tive entropy( i piS(ruur i) wherer5( i pir i is the ensemble
density matrix#.

Hence, we have
Lemma 2: If we wish to satisfy~ENS2! together with

~ENS1! it is necessary that the matrixr of multipliers in Eq.
~5! have at least one negative eigenvalue.h

An example described later~havingG̃ positive! will show
that this necessary condition is unfortunately not also su
cient.

III. ENSEMBLES IN TWO DIMENSIONS

We begin by proving
Lemma 3: ~ENS1! and ~ENS2! can never be simulta

neously satisfied for any ensembles in two dimensions.h

For the case of two states (n52) we have already note
that lemma 3 follows readily from the explicit formula fo
von Neumann entropy which, for anyp1 and p2, depends
monotonically on the overlap of the two states. Alternative
in this case we note thatr is a 2 by 2 matrix which by~R1!
and ~R2! must take the form

r5S 1 eib cosa

e2 ib cosa 1 D .

This is always a positive matrix~as the eigenvalues 1
6cosa are both non-negative! and we then apply lemma 2

For general values ofn we introduce the linearized en
tropy Slin defined by

Slin5Tr ~r2r2!.

Substituting Eq.~2! we get

Slin5S 12(
i 51

n

pi
2D 22(

i , j
pipj u^c i uc j&u2. ~7!

Hence,Slin is a monotonically decreasing function of each
the overlapsu^c i uc j&u. Next, we note that ford52, the von
Neumann entropyS(r) is also a monotonically increasin
function of Slin , giving our claimed result thatS(r) is a
monotonically decreasing function of each overlap. To
that S is monotonically increasing withSlin for d52 let the
eigenvalues ofr be l and 12l. Then,

S52l logl2~12l!log~12l!

and

Slin5l1~12l!2l22~12l!2.

ComputingdS/dl anddSlin /dl shows that

dS

dSlin
5

dS

dlY dSlin

dl
.0.
01230
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IV. ENSEMBLES IN THREE DIMENSIONS

We will focus on the case that the inequalities in~ENS1!
are all equalities

u^c̃ i uc̃ j u5u^c i uc j&u for all i , j . ~8!

This will readily imply our basic resultviz that the entropy
can be increased by increasing the overlap of each pai
states. Indeed suppose thatE and Ẽ are two different en-
sembles~with the same prior probabilities! satisfying Eq.~8!

but with SÞS̃. Without loss of generality suppose thatS̃
,S. Now consider a small deformation of the states ofE,
which slightly increases all the pairwise overlaps, giving
ensembleE* with entropy S* . Then eitherS* .S ~so S*
.S̃ giving a direct example of our result! or S* <S. In the
latter case, we will always haveS* .S̃ if the deformation is
sufficiently small, again giving an example of our resu
~with ensemblesẼ andE* ).

We will show that for almost any ensembleE of three
linearly independent states~i.e., n53 andd53) it is pos-
sible to deformE, in two ways such that

~D1! all pairwise overlaps are increased and the entro
increases,

~D2! all pairwise overlaps are decreased and the entr
decreases.

For clarity in this section, it is useful to distinguish~nor-
malized! state vectors, written as ketsuc& from physical
states, which we will denote with square brackets as@c#. A
physical state is a full set of all normalized vectors that dif
only in overall phase:

@c#5$eifuc&:0<f,2p%,

i.e., state vectors are elements of the Hilbert space whe
physical states are elements of the projective Hilbert spa
The vectorseifuc& in @c# are called phase representatives
the state@c#.

Consider three normalized vectorsuc1&,uc2&,uc3& in H3.
We have the overlaps~non-negative real numbers!

a125u^c1uc2&u, a235u^c2uc3&u, a315u^c3uc1&u,

and the triple quantity denotedY123 ~generally complex! de-
fined as

Y1235^c1uc2&^c2uc3&^c3uc1&

5a12a23a31e
i j, for some phasej.

Note that the real numbersa12,a23,a31,j are well defined on
physical states rather than just on the vectors, i.e., if
arbitrarily change the phases of the vectors then these
numbers remain invariant. Also for any prior probabilitie
the density matrix and entropy of the ensemb
$uc1&,uc2&,uc3&;p1 ,p2 ,p3% is a function of the correspond
ing physical states. Note also that unitary transformations
well defined on physical states and leave the quanti
a12,a23,a31,j invariant.
1-4
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From the point of view of physics, we are primarily inte
ested in ensembles of physical states rather than ensem
of state vectors. In contrast to the overlapsai j and j, the
Gram matrix depends on the choices of phase represe
tives. For any ensemble, given any choice of phase repre
tative of@c1# we may always choose representatives of@c2#
and@c3# to make^c1uc2& and^c1uc3& real and positive so
the Gram matrix has the form

G5S p1 Ap1p2a12 Ap1p3a31

Ap1p2a12 p2 Ap2p3a23e
i j

Ap1p3a31 Ap2p3a23e
2 i j p3

D . ~9!

To any ensemble of physical states we will associate a G
matrix of this form depending only on the invariantsai j , j

and the prior probabilities. Then, ifE and Ẽ have the same
overlaps@as in Eq.~8!#, the Gram matrices must be related
in Eq. ~6! by a matrix of multipliersr of the form

r ~f!5S 1 1 1

1 1 eif

1 e2 if 1
D . ~10!

To study deformations preserving overlaps we begin
giving a characterization of the set of all possible triples
physical states$@c1#,@c2#,@c3#% compatible with a given
prescribed seta12,a23,a31 of overlaps. We clearly have an
overall unitary transformation of any allowed triple but w
are especially interested in triples that are not unitarily
lated. A complete characterization is given in the followi
theorem, whose proof is given in the appendix.

Theorem 1: Suppose we are given real numbers

0<a12<1, 0<a23<1, 0<a31<1.

~a! If $@c1#,@c2#,@c3#% is any set of physical states ha
ing a12,a23,a31 as overlaps then the phasej of Y123 satisfies

112a12a23a31cosj>a12
2 1a23

2 1a31
2 . ~11!

Conversely, for any solutionj of Eq. ~11! there is a set of
states having overlapsa12,a23,a31 and triple quantityY123
5a12a23a31e

i j. Thus the existence of a solution of Eq.~11!
is a necessary and sufficient condition for a set of real nu
bersa12,a23,a31 to be realisable as a set of overlaps.

~b! The solutionsj of Eq. ~11! give a one-to-one param
eterization of all sets of states up to unitary equivalence,
have the prescribed overlaps. We always takej to be in the
interval @2p,p# so if Eq.~11! has solutions they are alway
of the form2jmax<j<jmax with jmax<p ~and we identify
the values6p if jmax5p).

~c! ~Explicit formulas up to unitary equivalence!. Suppose
that $@c1#,@c2#,@c3#% is any set of physical states havin
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a12,a23,a31 as overlaps. Then there is an orthonormal ba
$u0&,u1&,u2&% of H3 such that phase representatives of t
states are given by

uc1~j!&5u0&,

uc2~j!&5a12u0&1A12a12
2 u1&, ~12!

uc3~j!&5a13u0&1
a23e

i j2a23a31

A12a12
2

u1&

1
A12a12

2 2a23
2 2a31

2 12a12a23a31cosj

A12a12
2

u2&.

Here,j is the phase ofY123.h
To illustrate theorem 1 and its significance for furth

developments we describe an example.
Example 1. Consider the ensemble E

5$ua1&,ua2&,ua3&;
1
3 , 1

3 , 1
3 % where

ua1&5u0&,

ua2&5
1

A2
~ u0&1u1&), ~13!

ua3&5
1

A3
~ u0&1u1&1u2&).

The Gram matrix has eigenvalues 0.053, 0.145, and 0.
with entropyS50.613~where natural logarithms have bee
used!. According to theorem 1, up to unitary equivalence a
ensemble with the same overlaps has the formE(j)

5$ua1(j)&,ua2(j)&,ua3(j)&; 1
3 , 1

3 , 1
3 % where

ua1~j!&5u0&,

ua2~j!&5
1

A2
~ u0&1u1&), ~14!

ua3~j!&5
1

A3
u0&1

2ei j21

A3
u1&1A4

3
cosj21u2&.

Here, the parameterj is constrained by Eq.~11! giving

cosj>
3

4
i.e. jmax50.72 rad.

G(j), the Gram matrix ofE(j), is positive so long asuju
<arccos34 . At the maximum value ofj the amplitude ofu2&
becomes zero and the states become linearly dependen

The von Neumann entropy ofE(j) may be computed
from the eigenvalues ofG(j). This is shown in Fig. 1 and
we see that the entropy falls monotonically withj for the
1-5
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RICHARD JOZSA AND JÜRGEN SCHLIENZ PHYSICAL REVIEW A62 012301
ensemblesE(j) which have constant overlaps.~For negative
values ofj the graph is reflected in the vertical axis!. Thus,

for any 0,j,arccos34 we may deformE(j) to obtain an
ensembleE* with the same overlaps but having strict
lower ~respectively higher! entropy. Then by slightly de-
forming E* to make all overlaps lower~respectively higher!
we obtain a deformation ofE(j) satisfying „D2… @respec-
tively „D1…#. Note that ifj50 ~i.e. Y123 is real! then we only
get „D2… @and not„D1…# by this method. Also forj5jmax

5arccos34 we get only„D1… ~by this method! asj can only
be decreased.h

We now return to general ensembles of three states
study the variation of von Neumann entropy with deform
tions that preserve the overlaps. According to Theorem
these deformations, up to unitary equivalence, are para
trized by j. We will find that the behavior exhibited in ex
ample 1 is generic–the entropyS(j) falls monotonically asj
increases from 0 tojmax just as in Fig. 1. Then the sam
deformation arguments as in example 1 give the follow
theorem:

Theorem 2: Suppose the ensemble E
5$uc1&,uc2&,uc3&;p1 ,p2 ,p3% has rank 3 ~i.e. the un-
normalized statesApi uc i& are linearly independent! with
overlapsa12,a23,a31 and phasej0 of Y123.

~a! If Y123 is not real~i.e., j0Þ0,p) then E can be de-
formed according to both„D1… and„D2….

~b! If Y123 is real positive~i.e., j050) then E can be
deformed according to„D2…. If Y123 is real negative~i.e.,
j05p) thenE can be deformed according to„D1….h

The proof of theorem 2 is given in the appendix.
Note that in theorem 2~b! we have not ruled out the pos

sibility of a „D1… deformation@respectively„D2… deforma-
tion# when E hasY123 real positive~respectively negative!.
We have shown only that such deformations cannot
achieved by the particular method of first altering the entro
while keeping the overlaps constant and then slightly

FIG. 1. Variation of von Neumann entropy for the family o
ensembles in Eq.~14! with unchanging overlaps, as a function ofj,
the phase ofY123. j is measured in radians and the entropy
calculated using natural logarithms. The maximum value ofj is

arccos34 '0.72 radians.
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creasing or decreasing the overlaps. Indeed consider the
sembleF of states

uc1&5u0&

uc2&5
1

A2
~ u0&1u1&)

uc3&5
A221

6
u0&1

A211

6
u1&

taken with equal probabilities. Here, we haveY123 real posi-
tive so our method cannot give a„D1… deformation. However
such deformations do exist, for example the ensembleF8 of
states:

uc1&5u0&

uc2&5
1

A2
~ u0&1u1&)

uc3&5
2

3A2
u0&1

4

3A3
u1&1

A7

3A3
u2&.

F8 has overlaps greater than or equal to those ofF yet its
entropyS850.91 is greater than the entropyS50.85 of F,
i.e., F8 is a deformation ofF of type „D1….

This leads us to conjecture that the conclusions in th
rem 2~a! also hold for the ensembles in~b! and more gener-
ally that any ensemble containing a subset of three states
has no parallel or orthogonal pairs, admits deformations
both types„D1… and „D2…. However, it is possible to show
from our results that if such deformations always exist, th
are not always realisable ascontinuousdeformations of the
appropriate type starting with the given ensemble. Indeed
E be any ensemble withY123 complex, consisting of three
linearly dependent states, lying in a planeP @so that from
theorem 1~c! the phasej of Y123 must take the maximum
value allowed by the overlaps#. From the result of Sec. III we
know that there are no deformations~continuous or not! of
type„D1… or „D2… lying within the planeP. SinceE is planar,
its density matrix has a zero eigenvalue, sayl350. The
entropy functionS(l1,l2 ,l3) has infinite slope atl350 in
the l3 direction ~and finite slopes in thel1 and l2 direc-
tions, forl1 ,l2.0) so any continuous deformation ofE out
of the planeP must begin toincrease S, regardless of the
overlaps. Hence, nocontinuousdeformations, by any method
whatever, of type„D2… can exist, yet there may still exist
‘‘distant’’ ensemble E8 with decreased overlaps and d
creased entropy@i.e., a „D2… deformation# which cannot be
connected toE by a continuous family of„D2… deformations.

In relation to theorem 1 it is interesting to note that in R
@17# Gisin and Popescu have described another method
~discontinuous! deformation of a particular class of en
sembles that preserves all overlaps. Letun& denote the qubit
1-6
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state corresponding to the unit vectorn on the Bloch sphere
Let E5$un1&un1&, . . . ,unk&unk&;p1 . . . ,pk% be any ensemble
of two qubit states where each constituent state compr
two copies of a single qubit state. We now replace e
second componentuni& by the orthogonal stateu2ni& to get
E* 5$un1&u2n1&, . . . ,unk&u2nk&;p1 . . . ,pk%. Clearly,E and
E* have the same pairwise overlaps but in general the
Neumann entropies will be different. IndeedE always lies
within the three dimensional subspace of symmetric sta
whereasE* generally spans the full four dimensions of tw
qubits. In Ref.@17# the ensembleE uniformly distributed
over the whole Bloch sphere was considered. It was sho
that E* allows one to guess the identity of the directionn
with greater average fidelity than is possible with the sta
from E. This provides another manifestation of the idea t
the distinguishability in an ensemble can vary while keep
all pairwise overlaps fixed.

V. DISCUSSION

One of the initial motivations for this work was the pro
lem of determining the optimal compression of quantum
formation in mixed state signals@12,13#. For pure states the
optimal compression is given by the von Neumann entro
of the source~and Schumacher compression@3,4# provides
an explicit asymptotically optimal compression protocol! but
for mixed states the value is unknown. One method of co
pressing the ensemble$r1 , . . . ,rn ;p1 , . . . ,pn% of mixed
states~where the compresser knows the identity of the s
nals! is to first prepare purificationsuc i& of the statesr i and
then apply Schumacher compression to the pure state
semble$uc1&, . . . ,ucn&;p1 , . . . ,pn%. Thus, we wish to con-
struct the ensemble of purifications that has the least
Neumann entropy. Forn52 the solution is given by the
purifications with the largest overlap and the correspond
minimum entropy can be readily calculated from Uhlman
transition probability formula@14,15#. However, for three or
more states the results in this paper show that the maxim
overlap condition is no longer correct and the problem
minimizing the entropy is evidently more subtle. It has be
shown in Ref.@16# that the problem of optimal mixed stat
compression, in full generality, may be translated into
problem of minimizing the entropy of a suitable ensemble
purifications~of blocks of signal states!.

From a mathematical viewpoint our results amount to
investigation of the von Neumann entropySnot as a function
of a density matrix, but as a function of variables defining
ensemble:

S5S(r)5S((pi uc i&^c i u!5S(uc1&, . . . ,ucn&;p1 , . . . ,pn).

In particular, we have considered the behavior ofSwhen the
statesuc i& are varied while the probabilitiespi are held fixed.
In this context, many further interesting questions arise.
example, given an ensemble, what is the largest entropy
can be attained by deformations that make the states m
parallel? Conversely given a valueS0 of von Neumann en-
tropy, what is the maximum possible~average! overlap of
any ensemble that has entropyS0? Are there ensembles wit
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the property that every continuous deformation that increa
overlaps, begins to increase the entropy? We may also
sider varying the probabilities. Suppose we have t
ensembles E5$uc1&,uc2&,uc3&;p1 ,p2 ,p3% and E*
5$uf1&,uf2&,uf3&;q1,q2 ,q3% where the states ofE* have
greater pairwise overlap than the corresponding states oE.
Let cap (E) be the maximum entropy attainable from th
states inE by varying the prior probabilities. Is it possible t
have cap(E* ).cap(E)? This question is of particular interes
since cap(E) is the classical information capacity of a qua
tum channel using the states ofE as basic signal states@5#.

In the introduction we argued that von Neumann entro
quantifies a notion of distinguishability for the constitue
states of an ensemble and pointed out that it is surprising
distinguishability~as well as the lower limit for compress
ibility ! may be increased by increasing all pairwise overla
~for ensembles of three or more states!. Thus, the notion of
distinguishability and the redundancy involved in quantu
information compression depend not only on the overla
but also on the relative phases of the amplitudes^c i uc j&. For
ensembles with just two states there is only one such ph
and it is rendered physically irrelevant by the overall pha
freedom in a physical quantum state. For three or more st
the relative phases cannot be eliminated and they pro
further parameters for issues of compressibility and dis
guishability. For general ensembles we can consider
quantities:

Y~ i 1 ,i 2 , . . . ,i k!5^c i 1
uc i 2

&^c i 2
uc i 3

&•••^c i k21
uc i k

&

3^c i k
uc i 1

& ~15!

associated to each subset@c i 1
#, . . . ,@c i k

# of physical states

~noting the cyclic chain of indicesi 1 , . . . ,i k ,i 1 returning to
i 1 to complete the cycle.! These quantities are all unitar
invariants and independent of the choice of phase repre
tatives. Chains of length 1 define the normalization wh
chains of length 2 are just~the squares of! the pairwise over-
laps. The modulus of any chain of lengthk is a product of
overlaps but its phase is a new quantity. For example
three states, the phase of any chain of length 3 is~up to a
sign! the parameterj considered previously. It would be in
teresting to understand the physical bearing of these par
eters on issues of distinguishability and compressibility.

We have seen that a family of ensembles with fixed ov
laps can exhibit a variation of information content. In pa
ticular for ensembles of three states we have the extra q
tum mechanical phase parameterj. It is interesting to note
that an analogous phenomenon may occur in a purely c
sical context@19#. Suppose Alice wishes to communica
information to Bob using three signalsA, B, C with equal
prior probabilities. The signals themselves are probabi
distributions on three values$1,2,3%. A is the uniform distri-
bution on $1,2%, B on $2,3%, and C on $1,3%. To send a
signal, Alice samples the corresponding distribution a
sends the result, e.g., to sendB she tosses a fair coin labele
by 2 and 3, and sends the outcome.~Alternatively we may
attribute the probabilistic nature of the signals to noise in
channel!. Bob then reads the received value. We may read
1-7
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RICHARD JOZSA AND JÜRGEN SCHLIENZ PHYSICAL REVIEW A62 012301
calculate the probabilityp(yuX) that Bob readsy ~1, 2, or 3!
given that Alice sentX (A, B, or C) and the mutual infor-
mationI (X:Y) between Alice and Bob. In classical informa
tion theory,I (X:Y) quantifies the amount of information tha
Bob gets about Alice’s message, i.e., the information cap
ity of the communication protocol. Consider now the sa
scenario with three new signalsA8, B8, andC8, which are
probability distributions on four values$1,2,3,4%. A8 is the
uniform distribution on$1,4%, B8 on $2,4%, andC8 on $3,4%.
The mutual information is now different but in any reaso
able sense, the signalsA8, B8, andC8 have the same pair
wise overlaps as the corresponding signals from the orig
setA, B, C—in every case the two distributions coincide o
one value and are disjoint on the other value. Thus, in
purely classical context we again have the phenomenon
the global information content~in the sense of mutual infor
mation here! differs even though the pairwise overlaps~and
pairwise information contents! are the same.

There are various other possible natural concepts of
tinguishability, which one can associate to an ensem
$uc1&, . . . ,ucn&;p1 , . . . ,pn% of pure quantum states. Tw
such concepts are the accessible information and the m
mum error probability@18#. For the latter, we attempt to
identify the state by applying a measurementM with out-
comes 1,2, . . . ,n. Let p( j u i ) be the probability of obtaining
outcomej for the input stateuc i&. The error probability is
defined byPerror5( i pi„12p( i u i )…. We chooseM to mini-
mize Perror and use that minimum value as a measure
distinguishability for the ensemble~where a smaller value
indicates greater distinguishability!. The accessible informa
tion of an ensemble is the maximum Shannon mutual in
mation of any POVM measurement on the ensemble sta
For n52 both of these measures are monotonic functions
the overlapu^c1uc2&u but for n>3, like the von Neumann
entropy, they are not functions of the overlaps alone. Thu
seems plausible that they too—like the von Neuma
entropy—will exhibit increased distinguishability with sui
able deformations of the ensemble that decreases all pair
overlaps. But unlike the von Neumann entropy this is di
cult to study analytically: the computation of minimum err
probability or accessible information involves difficult opt
misations and is generally intractible analytically for all b
the simplest ensembles.
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APPENDIX

Proof of Lemma 1

Suppose that the two ensembles are unitarily rela
Then it is easy to see that they have the same Gram mat
~as the inner products are unitary invariants!.
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Conversely, suppose thatG15G2. Then the number of
states and corresponding probabilities~being the diagonal of
the Gram matrix! must be the same. So write

E15$ua1&, . . . ,uak&;p1 , . . . ,pk%

and

E25$ub1&, . . . ,ubk&;p1 , . . . ,pk%.

We will use proof by induction onk to show that ua i&
5Uub i& for some unitaryU. The result is clearly true fork
51, i.e., ensembles with only one state. Assume~the induc-
tion hypothesis! that it is true for all ensembles ofk states
Consider two ensembles ofk11 states:

E15$ua1&, . . . ,uak&,uak11&;p1 , . . . ,pk ,pk11%

E25$ub1&, . . . ,ubk&,ubk11&;p1 , . . . ,pk ,pk11%

with the same Gram matrices. Then the subensembles of
the first k states @with probabilities rescaled by 1/(1
2pk11)] will have the same Gram matrices so by the indu
tion hypothesis there is a unitaryU with

ub i&5Uua i& for i 51, . . . ,k .

Now compare the ensemblesU(E1) andE2. They differ only
in their (k11)th states that are respectivelyUuak11& and
ubk11&. Let B5span(ub1&, . . . ,ubk&). Consider the paralle
and perpendicular projections with respect toB

Uuak11&5~Ua! i1~Ua!'

ubk11&5~b! i1~b!' .

SinceE1 and E2 @and hence alsoU(E1)] have equal Gram
matrices,Uuak11& and ubk11& have equal inner product
with ub1&, . . . ,ubk& and hence with a basis ofB. Thus, the
parallel projections (Ua) i and (b) i are equal and so the
perpendicular projections have the same length. If this len
is zero thenE25UE1. If it is not zero, letB' be the two-
dimensional space spanned by (Ua)' and (b)' and letV be
a unitary transformation inB' with V(Ua)'5(b)' . Fi-
nally, let U8 be the unitary transformation which is the ide
tity in B and V in B'. Then E25U8UE1, completing the
proof of the lemma.h

Proof of Theorem 1

For any set of states$@c1#,@c2#,@c3#% we can always
choose phase representatives making^c1uc2& and ^c1uc3&
real non-negative. Hence,$@c1#,@c2#,@c3#% will have over-
lapsa12,a23,a31

iff there are representatives with

^c1uc2&5a12 ^c1uc3&5a31

and

^c2uc3&5a23e
i j for somej ~A1!
1-8
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iff

G~j! defined by
1

3 S 1 a12 a31

a12 1 a23e
i j

a31 a23e
2 i j 1

D
is a Gram matrix ~A2!

iff 3G is a positive matrix@whereG is the matrix in Eq.
~A2!#

iff the eigenvaluesl1 ,l2 ,l3 of 3G are all non-negative
Next, we claim~and prove in the next paragraph! that the

last condition holdsiff det 3G>0. Then computing det3G
directly from G above, gives the required condition~11!.
Note also from Eq.~A1! that j is the phase of the triple
quantityY123 and this completes the proof of~a!.

To justify the claim above, we show that 3G cannot have
exactly two negative eigenvalues. Considerb5l1l2
1l2l31l3l1 and suppose that there are two negative
genvaluesl1 andl2. Then, Tr 3G535l11l21l3 gives

b5l1l21~l11l2!@32~l11l2!#

52l1
22l2

22l1l213~l11l2!.

Thus, b,0 as all terms are negative. Butb is the linear
coefficient in the characteristic equation of 3G and a direct
calculation of det(lI 23G) gives

b532a12
2 2a23

2 2a31
2

so thatb>0. Hence, 3G can never have exactly two neg
tive eigenvalues and the non-negativity of det 3G5l1l2l3
is equivalent to the non-negativity of all three eigenvalue

To prove~b! we recall thatY123 and hencej, is an invari-
ant of any overall unitary transformation. Hence, for fix
a12, a23, anda31, different j ’s correspond to unitarily in-
equivalent sets of states.

To prove~c! suppose that$@c1#,@c2#,@c3#% is any set of
states with the given overlaps. We choose an orthonor
basis$u0&,u1&,u2&% of H3 and phase representativesuc i& as
follows. Choose an arbitrary phase representativeuc1& of
@c1# and set

u0&5uc1&.

Chooseu1& orthogonal tou0& in the plane of@c1# and @c2#
~with phase ofu1& to be fixed later!. Then any representativ
uc2& of @c2# has the form

uc2&5a12e
iau0&1bu1&.

Choose the overall phase ofuc2& to makea50 and choose
the phase ofu1& to makeb real and non-negative, so

uc2&5a12u0&1A12a12
2 u1&.

Then chooseu2& orthonormal tou0& and u1& ~with phase to
be fixed later! so any representative of@c3# has the form

uc3&5vu0&1hu1&1zu2&.
01230
i-

al

Choose the overall phase ofuc3& to make v real non-
negative sov5a31. Choose the phase ofu2& to makez real
non-negative. Then,

uc3&5a31u0&1hu1&1zu2& with z real>0, h complex.
~A3!

We have two further conditions

u^c2uc3&u5a235ua31a121A12a12
2 hu ~A4!

and normalization

z2512uhu22a31
2 . ~A5!

From Eq.~A4! we introducej so that

a31a121A12a12
2 h5a23e

i j.

This givesh parameterized byj

h5
a23e

i j2a31a12

A12a12
2

. ~A6!

Then Eq.~A5! gives

z25
12a12

2 2a23
2 2a31

2 12a12a23a31cosj

12a12
2

5

detS 1 a12 a31

a12 1 ei ja23

a31 e2 i ja23 1
D

12a12
2

~A7!

Substituting Eqs.~A6! and ~A7! into Eq. ~A3! gives the re-
quired form of uc3&. Note that the conditionz2>0 in Eq.
~A7! reproduces the condition~11! in part~a! of the theorem.
h

Proof of Theorem 2

Given the ensembleE5$uc1&,uc2&,uc3&;p1 ,p2 ,p3% let
E(j) denote the family of ensembles~up to unitary equiva-
lence! which have the same overlaps asE. Here, j is the
phase ofY123. We study the variation ofSwith j through a
sequence of lemmas~with proofs given at the end!:

Lemma A1: The ensemblesE(j) have constant Trr and
constant Trr2. Hence,S may be viewed as a function o
Tr r35Tr G3.

Lemma A2: If Tr r and Trr2 are held constant thenS is
a monotonically increasing function of Trr3.

Lemma A3: For any ensembleE, Tr r3 has the form

Tr r35C16p1p2p3 ReY123

5C16p1p2p3a12a23a31cosj, ~A8!

whereC is independent ofj.
In view of these lemmas we have
1-9
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RICHARD JOZSA AND JÜRGEN SCHLIENZ PHYSICAL REVIEW A62 012301
Proof of Theorem 2: We consider the family of en
semblesE(j) with the same overlaps asE, parametrized by
j, the phase ofY123.

~a! If Y is not real andj0Þ6jmax ~asE has rank 3! then
we can perturbj0 slightly in both the positive and negativ
directions inducing either an increase or decrease in Tr3

~by Lemma A3!. Hence, by Lemmas A1 and A2 we ma
either increase or decreaseS while keeping the overlaps th
same, giving the possibilities„D1… and„D2….

~b! If j050 then cosj0 is at its maximum value. Thus
any perturbation ofj0 leads to a decrease in Trr3 and hence
a decrease inS ~while keeping all overlaps constant!. Thus,
we get„D2… only. At j05p, cosj0 is minimum so similarly,
we get only„D1….h

Proof of Lemma A1: We have Trr51 for all j. Also
Tr r25Tr G25( i j Gi j Gji 5(uGi j u2 asG is Hermitian. Since
E(j) have constant overlaps, the Gram matrices are rel
by Hadamard product withr of the form in Eq.~10! with
ur i j u51 for all i , j . Hence, Trr2 remains constant. The thre
eigenvalues ofr are uniquely determined by the values
Tr r, Tr r2, and Trr3 so S may be viewed as a function o
Tr r3. h

Proof of Lemma A2: Note first thatS is unitarily invari-
ant so we may assume without loss of generality thatr is
diagonal, and work on the classical probability simplex

P35$~l1 ,l2 ,l3!:l1>0,l2>0,l3>0 and l11l2

1l351%.

To represent the constraint Trr25const. it is convenient to
introduce a polar coordinate system (r ,u) in P3 as shown in

Fig. 2. r is measured from the centerM5( 1
3 , 1

3 , 1
3 ) of P3 and

u is measured anticlockwise from the line joiningM to the
vertex ~1,0,0!.

A direct calculation gives the coordinates of a gene
state as

l15
1

3
1A2

3
r cosu,

l25
1

3
1A2

3
r cosS u1

2p

3 D , ~A9!

l35
1

3
1A2

3
r cosS u1

4p

3 D .

The constraint

Tr r25( l i
25A25const. ~A10!

corresponds to the intersection of the simplexXYZ with a
sphere of radiusA centred at~0,0,0!. This gives a circle or
part of a circle~as shown in Fig. 2! within the simplex. In
terms of polar coordinates we get

( l i
25

1

3
1r 2. ~A11!
01230
ed

l

In Fig. 2 the linesMX, MY, andMZ divide the circle into
six symmetrical parts corresponding to the six possible p
mutations of the eigenvalues. Since we will be interes
only in the~unordered! set of values of thel ’s it suffices to
consider just one of these regions. Thus, without loss of g
erality we may take

0<u<umax<
p

3
.

For some values of constant Trr2 or r, the angleu will have
a maximum valueumax smaller thanp/3, e.g., for ther
shown in Fig. 2 we take only the arcab. At the pointb one
of the eigenvalues has become zero.

From Eq.~A11! we see that the constraint Trr25const
corresponds tor being constant. Using Eq.~A9! we get

Tr r35( l i
35

1

9
1r 21

1

A6
r 3 cos 3u.

Since u lies in the range@0,p/3# we see that Trr3 is a
monotonically decreasing function ofu.

Next we show thatS is also monotonically decreasin
with u. To study the variation of entropy

S52( l i logl i

FIG. 2. The triangleXYZ is the probability simplexP3 @or
space of diagonal density matrices diag(l1,l2 ,l3)] in d53 dimen-
sions. It is obtained by intersecting the planel11l21l351 with
the positive octant in the space of all triples (l1 ,l2 ,l3). The three
vertices are the three pure states and the edges are rank 2 dia

states. The central pointM5diag(1
3 , 1

3 , 1
3 ) is the maximally mixed

state. Along linesMX, MY, and MZ two eigenvalues are equa
We introduce polar coordinates on this simplex withr being the
distance fromM and the polar angleu is measured anticlockwise
from the lineMX. The coordinates for a general state are given
Eq. ~A9!. The arcab includes all diagonal statesr ~up to a per-
mutation of the diagonal entries! at a constant radiusr with a fixed
Tr r25

1
3 1r 2 @cf Eq. ~A11! et seq.#
1-10
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with u when Trr2 is held constant, note that(l i51 so we
get

(
]l i

]u
50 ~A12!

and so

]S

]u
52(

i

]l i

]u
logl i .

Since 0<u<p/3, we have from Eq.~A9!

]l1

]u
,
]l2

]u
<0

]l3

]u
>0.

Hence, using Eq.~A12! we get

]S

]u
5U]l1

]u U log
l1

l3
1U]l2

]u U log
l2

l3
.

Using the inequality logx<x21 we get directly
an

hy

01230
]S

]u
<0

with equality possible only foru50 or p/3.
To summarize, any givenr corresponds to a unique poin

(r ,u) with 0<u<p/3. If Tr r25 1
3 1r 2 is held constant then

both Trr3 and S are monotonically decreasing functions
u. Hence,S is a monotonically increasing function of Trr3,
which completes the proof of Lemma A2.h

Proof of Lemma A3: We have

Tr r35Tr G35(
i jk

Gi j GjkGki . ~A13!

Sincer is invariant under choices of phase representati
we may assume without loss of generality thatG has the
form given in Eq.~9!. Then in Eq.~A13! the j dependence
arises only through three terms~via cyclic permutation of the
subscripts! of the form G23G31G125p1p2p3Y123 and the
three corresponding complex conjugate termsG32G21G13

5p1p2p3Y123̄. This gives Eq.~A8!.h
cher
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