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Let {|#1), ... |n)iP1, - - - Pn} be an ensemble of pure quantum states. We show that it is possible to
increase all of the pairwise overlal{g/;| ¢;)|, i.e., make each constituent pair of the states more pateiéle
keeping the prior probabilities the samé such a way that the von Neumann entrdpis increased, and
dually, make all pairs more orthogonal while decreasthiyVe show that this phenomenon cannot occur for
ensembles in two dimensions but that it is a feature of almost all ensembles of three states in three dimensions.
It is known that the von Neumann entropy characterizes the classical and quantum information capacities of the
ensemble and we argue that information capacity, in turn, is a manifestation of the distinguishability of the
signal states. Hence, our result shows that the notion of distinguishability within an ensemble is a global
property that cannot be reduced to considering distinguishability of each constituent pair of states.

PACS numbd(s): 03.67—a

[. INTRODUCTION the states cannot be distinguishés for example, in the
Peres measuremel] for optimal distinguishability of non-
The interpretation and physical significance of nonor-orthogonal states. This is in contrast to distinct states in clas-
thogonality is one of the fundamental enigmas in the founsical physics, which are always perfectly distinguishable in
dations of quantum theory. L¢t) and|x) be two nonor-  principle.
thogonal states of a quantum system. We may decompose The purpose of this paper is to describe a situation that
|#) as a superposition of components parallel and perperappears to contradict the above intuitions. We will describe a
dicular to] x) situation in which quantum states actually become more dis-
tinguishable(in a certain natural senswhen they are made
|py=a|x)+b|x"), (1)  more parallel, i.e., when their overlap increases. Our notion
of distinguishability will be based on information—theoretic
where{ x*|x)=0 anda= (x| #). Since any time evolution in considerations and will rest on the concept of von Neumann
guantum mechanics is unitaiyvhen we include also the entropy. Recent work in quantum information the®8y-6]
state of any ambient environmen) and|x*) will evolve  has shown that this alternative quantification of distinguish-
as though independent, remaining orthogonal, and the debility is very natural and compelling. Indeed if we view
composition in Eq.(1) is preserved. Thus, we see that the quantum states as carriers of information then their capacity
overlap|{x|#)| measures the extent to which the stef¢  for embodying information is a very natural measure of dis-
behaves as though it were actuaéigual to the state]y).  tinguishability i.e. a set of states can communicate more in-
This view is further formalized in the many worlds interpre- formation if and only if the states are made more “distin-
tation of quantum theory according to which Efj) may be  guishable”(all else, such as prior probabilities remaining the
thought of as a “splitting” into two “worlds.” In one of same. Quantum states may be used to carry two different
these worlds the sta{@) is indeed actually preciselgqual  kinds of information, classical and quantum information, and
to | x). we will first briefly outline the essential results characteriz-
The overlap(by which we will always mean the absolute ing the respective information capacities that form the basis
value of the inner produgts also a fundamental ingredient of our quantification of distinguishability in terms of von
in the question ofnondistinguishability of quantum states. Neumann entropy.
In standard quantum measurement thefry| ¢)|? is the Consider first the case of quantum information. Suppose
probability that| ¢) passes the test of “being the stae.” that Alice has a source that emits an unending sequence of
Although|¢) and|) aredistinctstates in the mathematical qubit signal stategy;)=[0) and |y,)=1/y2(]0)+|1)).
formalism of quantum theory, there is no physical proces€ach emission is chosen to b#;) or |,) with an equal
that can distinguish them with certainty and indeed the overprior probability a half. Letp=3|y )|+ 2|o) (| be
lap provides a quantitative measure of the extent to whichhe density matrix of the source and les=S(p)
=—Trplog, p be its von Neumann entropy. Alice wishes to
communicate the sequence of states to Bob. Clearly this may
*Present address: Test and Measurement Division, Rohde &e achieved by transmitting one qubit per emitted state but
Schwarz GmbH & Co. KG, Mildorfstrasse 15, P.O. Box 801469, according to the quantum source coding theof8m,6] she
D-81671 Munich, Federal Republic of Germany. can communicate the quantum informatigmith arbitrarily
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high fidelity) using (asymptotically only S qubits per state. W T <l o
Furthermore, this compression is optimal: no fewer number ENSD: [l =<Kuilg)] - for all i,]
of qubits per signal can achieve this task. In our example a _
direct calculation gives th&=0.601 qubit per signal. (ENS2: S<S.

Now consider the analogous situation in classical physics:
if we have two classical signals with equal prior probabilitiesThis is in contradiction to our intuitive discussion above.
of a half then no compression beyond 1 bit per signal isEachpair of states ofé has a greater overlap of quantum
possible(by Shannon’s source coding theor¢#)) and one o mation than the corresponding state€an the sense of

may _ask what is the origin of the ex_trf';\ nonclassical compresEq_ (1) yet as aotality they embodynorequantum informa-
sion in the quantum case? Clearly it is related to the overlapﬁon

it 6=cos "[(yx|y») is the angle between the two signal states e i say that an ensembl®, is a deformation of; if
thenSdepends only o and increases monotonically from o have the same number of states and the two ensembles
0 to 1 as¢ increases from 0 tar/2 (corresponding to the a6 the same list of prior probabilitiés the given order
classg:al _sﬂuanp In view of Eq.. (1) and the discussion ie., the states of, are being thought of as obtained by
foII0\_N|ng it, one is tempted to think °|f<"/’1|‘/’2>.| as repre-  «geforming” the corresponding states & while keeping
senting a redundancy or overlap of quantum information beg, probabilities fixed.

tween| ;) and| ), which may be “compressed out,” i.e., ~\ye will show that(ENSD with (ENS2 can never be

to some extenfi,) and|,) are the “same” and this com- - . ~ . . .
. el ; satisfied for any pair of ensemblésand& in two dimensions
mon quantum information in every signal, already known to(regardless of the number of statdmit that for almost all

Bob, need not be sent. nsembleg of three states in three dimensions, there is an
More generally, if we have an ensemble of signal state§ ! : lons, :

{#1), ... |¥n)} with prior probabilitiesp; , . . . p, thenthe ~ €nsemblet’ satisfying(ENS1 and (ENS2. .
quantum source coding theorem asserts that the quantum in- The phenomenon i(ENS1) and(ENS2 shows curiously,
formation may be compressed $ajubits per signal whers that information capacityor distinguishability is a gl(_)bal

is the von Neumann entropy pf= =;pi| 4 )(| and that this property of a .set of statgs and not an accumulative local
compression is optimal. Note that the von Neumann entropproPerty of pairs of gonsutuent states. Indeed for ensembles
S(p) is always less than or equal to the Shannon entropyl¥1):1#2):P1.p2} of just two states, the von Neumann en-
H(py, . ...p,) [7,8] and we might think of the extra quan- tropy is a monotonically decreasmg fu.nctlon qf the overlap
tum compression t& qubits beyond the classical limit &f  |[{#1/#2)|. Thus the overlap conditions (ENS1) imply that

bits per signal as being due to the overlap of the quanturﬁaCh constituent pair of S|g~nals hadiminishedcapacity for
information represented by the constituent states as exnformation as we pass frodito € yet (ENS2 states that the
pressed in Eq(1). Our results below will imply that this ensemble as a whole developsiaoreasedcapacity.
interpretation is incorrect. Hence the origin of the extra quan- Von Neumann entropy also characterisesdlassicalin-

tum compression is evidently more subtle. formation capacity of an ensemble of quantum states. Sup-
Let {|#1), ... |én):P1, - .. .Pn} denote the ensemble of pose that Alice is constrained to use the staggs with prior
quantum statefp;) taken with prior probabilitie; respec-  probabilitiesp; and she wishes to communicate classical in-
tively. Let formation to Bob. On receiving a string of states, Bob is
allowed to perform any joint measurement on a signal block
E={4), . Jwn)ipa, o of any length in order to maximise his acquired mutual in-

formation about the identity of the states. Then it may be
shown[5] that the von Neumann entropy of the signal
and ensemble gives the maximum amount of information per sig-
nal that Alice is able to reliably transmit to Bob under the
E={|¢n), .. Tdn)iP1, - - - Po} above constraints. Novelassical information capacity is
very closely related to the concept of distinguishability,

be t bl ith th ber of stat d wi hich, by any definition, is itself a form of classical infor-
€ two ensembles wi € same number of states and Wity ~iion about the identity of the states. Th@NS21) with

the same corresponding prior probabilities. Let

(ENS2 shows that the members of an ensemble of quantum
states can become pairwise less distinguishable yet as a

B ~ ~ o~ whole the ensemble becomes more distinguishable, i.e., has
P—Z pilyi)(yil, p—}i: pil i) (il more classical information capacity.

be the respective density matrices and3eindS be the von Il. GRAM MATRIX FORMULATION
Neumann entropies. We will show that it is possible to have We now describe a formalism for studying the conditions

the fltl)lll()wing rs]ituation: the statels 6;are f]l” pairwise m(;)_re represented byENSD and (ENS2 and give a method for
parallel (i.e., have greater overlaghan the corresponding generating realizations in dimensiorr2.

states of yet the von Neumann entropy 6&fis greater than Consider an ensembl@,), . .. |¢n):P1, - - . Pn} OF N
that of €, i.e., we simultaneously have states ind dimensions. The density matrix is
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" Let G and G be respectively the Gram matrices of the
p:izl Pil i) (b @ ensemblest and €, which have the same prior state prob-
abilities (i.e., G and G have the same diagonalsThen

We introduce the Gram matri® defined as the<n matrix  (ENSY) is equivalent tdéij|$|Gij| for eachi andj, i.e.
of rescaled inner products

Gij=Vpipi(¥il ;). ©)
_ . . The matrixr=[r;;] satisfies the following properties:
The Gram matrix enjoys the following two fundamental (R1) r is Hermitian(without loss of generality

properties: _ (R2) the diagonal entries;; are all equal to 1 andr ;|
(G1: The nonzero eigenvalues Gf are the same as the <1 for all i and;.

nonzero eigenvalues @f (and their respective multiplicities However, for giverG, r cannot be chosen arbitrarily sub-

are alsp the sameNote that. in generadj_;&n so the mis- ject to (R1) and(R2) becauses is required to be a positive
match in the numbers of eigenvalues is made up by zer atrix [by (G2)]. Also, we wish to choose so that Eq.(5)
eigenvalues. It follows thgt andG also have the same von induces a decrease in the entropy of the Gram marix
Neumann entropy. The componentwise product @& andr in Eq. (5) is

_ To see this, introduce orthogonal vectore)) in an aux- o\ as the Hadamard product of matrices. We denote it by
iliary Hilbert space and consider the pure state

Gjj=rijGj rijeCand|r;|<1 foreach,j. (5

n G=r*G (6)
|¢>_§1 Veilunle). @ to distinguish it from the usual matrix product. The Schur
product theoren{9] asserts that the Hadamard product of
Thenp and G are just the two reduced states obtained byany positive matrices is again a positive matrix. Hence jsf
partial trace of ¢){ ¢| over the second and first components, chosen to be positive then K%2) G will again correspond
respectively. Hence, they must have the same nonzero eigefr an ensemble of states. However, in this cdE&S2 can
values(c.f. appendix of Ref{7]).c0 never be satisfied, i.e., the entropy is nondecreasing. To see
(G2): G is always a positive matrix and G=1. Con- this, letG be the Gram matrix of an ensemiflecomprising
versely, ifA is anymXxm positive matrix with TA=1 then  n states|;) with probabilitiesp; . If r satisfying(R1) and
A is the Gram matrix of an ensemble of states inm di-  (R2) is positive then (G2) implies thatr/n is also a Gram
mensiong 9]. matrix of some collection of statels;), . .. ,|&,) say, taken
The first part follows immediately from Eq4) whereG  with equal prior probabilities 1. Thus,
is identified as a density matrix itself. For the converse state-
ment note that ifA is positive we can write = B? whereB rij=(&l&)-

is Hermitian soA=B'B. Let Bi be the normalizedth col- ~
umn of B and lett; be its squared length. TheA=B'B Hence, Eq(5) asserts thaG is the Gram matrix of the en-

expresses precisely the fact thais the Gram matrix of the Semble&(&) comprising the statelgy;) ® |£;) with probabili-
0 tiesp;. Thus,&(¢) is an “extension” of £ obtained by sim-

ensemble ofn-dimensional stateb;, ... bty . .. tmh. Co .
ety mt mt ply adjoining the statek) to the correspondingy;)’s. As

The probabilities; are just the diagonal entries &f[]
The Gram matrix, expressed in terms of the inner prod-SUCh’ the entrop$(¢) of £(¢) can never be smaller than the

ucts rather than the states themselves, provides a natural V@AtropyS of £. We give three brief proofs of this fact, each
hicle for studying the conditionéENSYD) and (ENS2. In- mvokm_g a d|fferent_(substant|al th_eorem. First, |fS(§)<S
deed, we are generally not interested in the actual position&€n Alice could reliably communicate the quantum informa-
of the ensemble states but only in their relative positions, i.eion of £ to Bob using less thai$ qubits per signal. She
inner products. The following theorem shows that the Gran®iMply adjoins the statels;), compresses t8(£) qubits per
matrix encodes this information while eliminating the super-Signal and on reception and decompression, Bob just dis-

fluous data of overall unitary repositionings: cards the extensions. This contradicts the quantum noiseless
Lemma 1: Two ensembles coding theorem{3,4,6]. Secondly, in a similar ways(é)
<S contradicts the classical information capacity theorem
E={lar), ... lam)iP1, - .. .Pm} ON H; [5] (which asserts that the von Neumann entropy is the clas-
sical information capacity the extended ensemhbf§¢) can-
and not have a smaller information capacity since Alice and Bob
can always just ignore the presence of the extensions for the
E={B1), .- IBn)id1, - - - On} ON Hy purposes of classical communication. Thirdly, the passage

from |;)|&) to |4;) (i.e. discarding the second stais a
have equal Gram matric€s,=G, if and only if m=n, p; physically realizable operation and hence a completely posi-

=q; fori=1,... mand there is a unitary transformatith  tive (CP) map. Then Uhlmann’s monotonicity theorem
on H,®H, with |B3;)=U|«;) for all i.00 [10,17] (asserting that relative entropy can never increase
We give the proof in the appendix. under any CP mgpmmediately implies that the entropy 6&f
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cannot exceed the entropy 8(¢) [since the entropy of any IV. ENSEMBLES IN THREE DIMENSIONS
ensemble of pure statgs=|¢;)( ;| is just the average rela-  \yq will focus on the case that the inequalities ENS 1
tive entropy>;p;S(p||p;) wherep=X;p;p; is the ensemble .o 4 equalities
density matriy.

Hence, we have

Lemma 2: If we wish to satisfy(ENS2 together with
(ENSJ) it is necessary that the matnixof multipliers in Eq.
(5) have at least one negative eigenvdllie.

An example described laténavingG positive) will show
that this necessary condition is unfortunately not also suffi
cient.

[(dnld = Kl )| for all i (8)

This will readily imply our basic resultiz that the entropy
can be increased by increasing the overlap of each pair of

states. Indeed suppose thétand € are two different en-

'sembleqwith the same prior probabiliti¢satisfying Eq.(8)

but with S#S. Without loss of generality suppose th&t

<S. Now consider a small deformation of the statesfpf
IIl. ENSEMBLES IN TWO DIMENSIONS which slightly increases all the pairwise overlaps, giving an

We begin by proving ensemble£* with entropy S*. Then eitherS* >S (so S*

Lemma 3: (ENS1 and (ENS2 can never be simulta- >S giving a direct example of our resplor S*<S. In the
neously satisfied for any ensembles in two dimensidns. latter case, we will always hav& >S if the deformation is
For the case of two states€2) we have already noted sufficiently small, again giving an example of our result
that lemma 3 follows readily from the explicit formula for (ywith ensembles and &*).
von Neumann entropy which, for any; and p;, depends e will show that for almost any ensemhizof three
monotonically on the overlap of the two states. Alternativelyjinearly independent statdge., n=3 andd=3) it is pos-
in this case we note thatis a 2 by 2 matrix which byR1)  gjple to deforms, in two ways such that

and (R2) must take the form (D1) all pairwise overlaps are increased and the entropy
, increases,

B 1 e'f cosa (D2) all pairwise overlaps are decreased and the entropy
"l e B cosa 1 : decreases.

For clarity in this section, it is useful to distinguighor-

This is always a positive matrixas the eigenvalues 1 malized state vectors, written as ketg) from physical
+ cosa are both non-negatiyeand we then apply lemma 2. states, which we will denote with square bracket§ @k A
For genera| values ofi we introduce the linearized en- phyS|CaI state is a full set of all normalized vectors that differ

tropy S, defined by only in overall phase:
Sin=Tr (p—p?). [4]={e'’|y):0=p<2m]},

i.e., state vectors are elements of the Hilbert space whereas
physical states are elements of the projective Hilbert space.
n The vectore'?| ) in [ ¢] are called phase representatives of
=1- 2l 9o il L2 7 the statd ].
Sin ( 'Zl p,) 'E<J Pyl )] @ Consider three normalized vectdig, ),| ,),|¥s) in Ha.
We have the overlap8on-negative real numbers

Hence,S;, is a monotonically decreasing function of each of
the overlapg(#i|¢;)|. Next, we note that fod=2, the von ap=[(¢alv2)l,  ax=[valta)l, azm=[(wsly)l,
Neumann entropy5(p) is also a monotonically increasing
function of S;,,, giving our claimed result thaB(p) is a  and the triple quantity denoteéd,,; (generally complexde-
monotonically decreasing function of each overlap. To sedined as
that S is monotonically increasing witls;;,, for d=2 let the
eigenvalues op be\ and 1-\. Then, Y 105= (| o) ho| 3) (3| 1)

Substituting Eq(2) we get

= (F3
S=—\logh —(1—\)log(1—\) a,,a,985:€'%, for some phaset.

Note that the real numbees,,a,3,as;,¢ are well defined on

and physical states rather than just on the vectors, i.e., if we
B 2 5 arbitrarily change the phases of the vectors then these four

Sin=A+(1=M)=A"=(1-M)% numbers remain invariant. Also for any prior probabilities,

) the density matrix and entropy of the ensemble

ComputingdS/d\ anddS;,/d\ shows that {1420, 2),| #3):P1.P2. 3} is a function of the correspond-
ing physical states. Note also that unitary transformations are
das _ds / dSin well defined on physical states and leave the quantities
dS;, dx ) ay5,83,a31,& invariant.
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From the point of view of physics, we are primarily inter- a;,,a,3,a83; as overlaps. Then there is an orthonormal basis
ested in ensembles of physical states rather than ensemblg$),|1),|2)} of H; such that phase representatives of the
of state vectors. In contrast to the overlags and §, the  states are given by
Gram matrix depends on the choices of phase representa-

tives. For any ensemble, given any choice of phase represen- |1(€))=10),
tative of[ ;] we may always choose representativepiyaf]
and[ 3] to make(yy|4,) and(y4|) real and positive so |2(£))=a170) + J1-a7)1), (12)
the Gram matrix has the form ’
A"t —aysAs
[~ [~ |$3(§)) =a1g0) +——F—=—11)
P1 P1P2212 P1P3a31 V1- azlz
G=| Vpip,oa Vpopsase' s | . (9
P1P2a1 P2 . P2Psass 9 \/l_aiz_ a§3— a§1+ 28,8585, COSE
VP1P3d31  VP2P3a2:€ P3 + \/?’312 12).

To any ensemble of physical states we will associate a Gramere ¢ is the phase oFf 155.0]

matrix of this form depending only on the invariarets, ¢ To illustrate theorem 1 and its significance for further
and the prior probabilities. Then, & and £ have the same developments we describe an example.

overlapdas in Eq.(8)], the Gram matrices must be related as  Example 1. Consider the ensemble &

in Eq. (6) by a matrix of multipliersr of the form ={lay),|az),|as); 3,5, 1} where

1 1 1 |a1)=10),

)= 1 1 €?¢]. (10 L
1 e 1 as)=—(]0)+]1)), 13
|az) @“ )+11)) (13
To study deformations preserving overlaps we begin by

giving a characterization of the set of all possible triples of 1
physical stateq[4],[#,],[#3]} compatible with a given |“3>_ﬁ(|0>+|1>+|2>)'

prescribed seh;,,a,3,a3; of overlaps. We clearly have any

overall unitary transformation of any allowed triple but we The Gram matrix has eigenvalues 0.053, 0.145, and 0.802
are especially interested in triples that are not unitarily rewith entropyS=0.613(where natural logarithms have been
lated. A complete characterization is given in the followingysed. According to theorem 1, up to unitary equivalence any

theorem, whose proof is given in the appendix. ensemble with the same overlaps has the fofit)
Theorem 1: Suppose we are given real numbers ={lay(&)]an(E)|as(8)):1,1,1} where

O<ap<1, O<ay<1, O<ag<Ll. |1(€))=10),

@ If {[1],[¥2],[ 3]} is any set of physical states hav-
ing a,,,a,3,a31 as overlaps then the phagef Y ;,; satisfies i

lay(£)) = \/§(|0>+|1>). (14)

1+ 2a3,8,583; COSE=aT,+ a55+ a3 11

! o+zei§_11+\/4 12
Conversely, for any solutiog of Eq. (11) there is a set of las(8)) \/§| ) J3 L 3C0s¢ 12)
states having overlaps;,,a,3,a3; and triple quantityY ;,3
=a,,3,783,€'¢. Thus the existence of a solution of E41)  Here, the parametef is constrained by Eq(11) giving
is a necessary and sufficient condition for a set of real num-
bersa,,,as3,a31 to be realisable as a set of overlaps.

(b) The solutionst of Eq. (11) give a one-to-one param-
eterization of all sets of states up to unitary equivalence, that ) ] .
have the prescribed overlaps. We always take be in the ~C(¢), the Gram matrix ofé(£), is positive so long a$]|
interval[ — r, ] so if Eq.(11) has solutions they are always <arccog. At the maximum value of the amplitude of2)
of the form — &, 4= €< &nax With &a= 7 (and we identify ~ becomes zero and the states become linearly dependent.
the values* 7 if &npa= ). The von Neumann entropy of(¢) may be computed

(c) (Explicit formulas up to unitary equivalenceSuppose  from the eigenvalues oB(&). This is shown in Fig. 1 and
that {[ ¢11,[ ¥-],[ 3]} is any set of physical states having we see that the entropy falls monotonically wighfor the

3
cosé= 7 i.e. &max=0.72rad.
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creasing or decreasing the overlaps. Indeed consider the en-
sembleF of states
|¢1)=10)
06 F
: [2)= == (10)+11))
St [ Jpe—
£ T2
5]
05 3 5z
2-1 2+1
= +
04 L - ' taken with equal probabilities. Here, we ha¥e,; real posi-
0.0 0.2 0.4 06 08 tive so our method cannot give(R1) deformation. However

Phase such deformations do exist, for example the ensenfblef

FIG. 1. Variation of von Neumann entropy for the family of states:

ensembles in Eq14) with unchanging overlaps, as a functiongof
the phase ofY;,3. ¢ is measured in radians and the entropy is |¢1>:|0>
calculated using natural logarithms. The maximum valuet o

arcco$ ~0.72 radians. 1
| ih2) = T(|O>+|l>)
ensembleg (&) which have constant overlap$:or negative 2
values of¢ the graph is reflected in the vertical axighus,

for any O0<é¢<arccog we may deform&(&) to obtain an o= 2 0+ 4
ensemble&* with the same overlaps but having strictly V)= 3.2 33 343
lower (respectively higherentropy. Then by slightly de-
forming & to make all overlaps lowefrespectively higher F' has overla ;

. . o ps greater than or equal to thoseFaofet its
we obtain a deformation of(¢) satisfying (D2) [respec-  opirony s =0.91 is greater than the entro=0.85 of 7,
tively (D1)]. Note that ifé=0 (i.e. Y 1»3is rea) then we only i.e., 7 is a deformation ofF of type (D1).

J7

1D+ —=12).

get (B2) [and not(D1)] by this method. Als0 foré=Emax This leads us to conjecture that the conclusions in theo-
=arccog we get only(D1) (by this method as¢ can only  rem 2a) also hold for the ensembles {h) and more gener-
be decrease(dl ally that any ensemble containing a subset of three states that

We now return to general ensembles of three states anths no parallel or orthogonal pairs, admits deformations of
study the variation of von Neumann entropy with deforma-both types(D1) and (D2). However, it is possible to show
tions that preserve the overlaps. According to Theorem Irom our results that if such deformations always exist, they
these deformations, up to unitary equivalence, are paramere not always realisable asontinuousdeformations of the
trized by ¢&. We will find that the behavior exhibited in ex- appropriate type starting with the given ensemble. Indeed let
ample 1 is generic—the entro®(¢) falls monotonically ag £ be any ensemble with';,3 complex, consisting of three
increases from 0 t&,ax just as in Fig. 1. Then the same linearly dependent states, lying in a plaRdso that from
deformation arguments as in example 1 give the followingtheorem 1c) the phasef of Y,3; must take the maximum
theorem: value allowed by the overlaps=rom the result of Sec. Ill we

Theorem 2: Suppose the ensemble £  know that there are no deformatiofontinuous or notof
={|yn),|¥2),|¥3);p1,P2,p3} has rank 3(i.e. the un- type(D1) or (D2) lying within the planeP. Sincef is planar,
normalized states/p;| ;) are linearly independentwith its density matrix has a zero eigenvalue, say=0. The

overlapsai,,ass,as; and phase, of Y ,s. entropy functionS(\1,A,,A3) has infinite slope ak;=0 in
(@ If Yq,5is not real(i.e., £,#0,7) then & can be de- the A3 direction (and finite slopes in tha; and\, direc-
formed according to botfD1) and(D2). tions, for\,,A»,>0) so any continuous deformation &fout

(b) If Y55 is real positive(i.e., £,=0) then& can be of the planeP must begin toincrease Sregardless of the
deformed according tdD2). If Y 1,5 is real negative(i.e.,  overlaps. Hence, ncontinuousdeformations, by any method
¢o=m) then& can be deformed according (91).[] whatever, of typdD2) can exist, yet there may still exist a

The proof of theorem 2 is given in the appendix. “distant” ensemble &' with decreased overlaps and de-

Note that in theorem (®) we have not ruled out the pos- creased entropfi.e., a(D2) deformatior which cannot be
sibility of a (D1) deformation[respectively(D2) deforma- connected t& by a continuous family ofD2) deformations.
tion] when & has ;,5 real positive(respectively negatiye In relation to theorem 1 it is interesting to note that in Ref.
We have shown only that such deformations cannot b¢l7] Gisin and Popescu have described another method for
achieved by the particular method of first altering the entropy(discontinuous deformation of a particular class of en-
while keeping the overlaps constant and then slightly in-sembles that preserves all overlaps. |rét denote the qubit
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state corresponding to the unit vectoon the Bloch sphere. the property that every continuous deformation that increases
Let E={|ny)[n1), ... |n)n);p1 - - - P} be any ensemble overlaps, begins to increase the entropy? We may also con-
of two qubit states where each constituent state comprisesder varying the probabilities. Suppose we have two
two copies of a single qubit state. We now replace eaclensembles E={|yn),|¢,),|#3);p1,P2,ps} and  &*
second componenh;) by the orthogonal state-n;) to get  ={|#1),|$,).|#$3);01,92,03} where the states of* have

E ={In)|—=ny), ... In)|=n;ps1....py}. Clearly,€ and  greater pairwise overlap than the corresponding states of
&* have the same pairwise overlaps but in general the vohet cap €) be the maximum entropy attainable from the
Neumann entropies will be different. Indeédalways lies states in€ by varying the prior probabilities. Is it possible to
within the three dimensional subspace of symmetric statebave cap£*)>cap(€)? This question is of particular interest
whereasc* generally spans the full four dimensions of two since capf) is the classical information capacity of a quan-
qubits. In Ref.[17] the ensemblef uniformly distributed tum channel using the states &fas basic signal stat¢s].

over the whole Bloch sphere was considered. It was shown In the introduction we argued that von Neumann entropy
that £&* allows one to guess the identity of the direction quantifies a notion of distinguishability for the constituent
with greater average fidelity than is possible with the statestates of an ensemble and pointed out that it is surprising that
from £. This provides another manifestation of the idea thatdistinguishability (as well as the lower limit for compress-
the distinguishability in an ensemble can vary while keepingbility ) may be increased by increasing all pairwise overlaps

all pairwise overlaps fixed. (for ensembles of three or more statebhus, the notion of
distinguishability and the redundancy involved in quantum
V. DISCUSSION information compression depend not only on the overlaps

but also on the relative phases of the amplitudgs$;). For

One of the initial motivations for this work was the prob- ensembles with just two states there is only one such phase
lem of determining the optimal compression of quantum in-and it is rendered physically irrelevant by the overall phase
formation in mixed state signald42,13. For pure states the freedom in a physical quantum state. For three or more states
optimal compression is given by the von Neumann entropythe relative phases cannot be eliminated and they provide
of the source(land Schumacher compressif4] provides further parameters for issues of compressibility and distin-
an explicit asymptotically optimal compression protodmit ~ guishability. For general ensembles we can consider the
for mixed states the value is unknown. One method of comguantities:

pressing the ensemblg,, ... ,0n;P1,s - - -,Pn} Of mixed

states(where the compresser knows the identity of the sig- Y (i1,iz, - i) =(i [ )bl bi) - (i )

nalg is to first prepare purificationsy;) of the stategp; and

then apply Schumacher compression to the pure state en- ><(lﬂik| ¢il> (15
semble{|#1), ... .| ¥n)iP1, - - - Pn}. Thus, we wish to con-

struct the ensemble of purifications that has the least voassociated to each subget; 1, ... [#; ] of physical states
Neumann entropy. Fon=2 the solution is given by the (noting the cyclic chain of indicels, . . . ,ix,i; returning to

purifications with the largest overlap and the corresponding, to complete the cyclg.These quantities are all unitary
minimum entropy can be readily calculated from Uhlmann’sinvariants and independent of the choice of phase represen-
transition probability formuld14,15. However, for three or tatives. Chains of length 1 define the normalization while
more states the results in this paper show that the maximumshains of length 2 are jugthe squares ofthe pairwise over-
overlap condition is no longer correct and the problem oflaps. The modulus of any chain of lengthis a product of
minimizing the entropy is evidently more subtle. It has beenoverlaps but its phase is a new quantity. For example for
shown in Ref[16] that the problem of optimal mixed state three states, the phase of any chain of length Qijsto a
compression, in full generality, may be translated into asign) the paramete¢ considered previously. It would be in-
problem of minimizing the entropy of a suitable ensemble ofteresting to understand the physical bearing of these param-
purifications(of blocks of signal statgs eters on issues of distinguishability and compressibility.
From a mathematical viewpoint our results amount to an  \We have seen that a family of ensembles with fixed over-
investigation of the von Neumann entrofyiot as a function  laps can exhibit a variation of information content. In par-
of a density matrix, but as a function of variables defining anticular for ensembles of three states we have the extra quan-

ensemble: tum mechanical phase parameterlt is interesting to note
that an analogous phenomenon may occur in a purely clas-
S=S(p) =S(Zpi| i) )=S(|¢1), - . . |bn);P1, - - - Pn).  sical context[19]. Suppose Alice wishes to communicate

information to Bob using three signals, B, C with equal
In particular, we have considered the behavioSeihen the  prior probabilities. The signals themselves are probability
stated ;) are varied while the probabilitigg are held fixed. distributions on three valug4,2,3}. A is the uniform distri-
In this context, many further interesting questions arise. Fobution on{1,2}, B on {2,3}, and C on {1,3}. To send a
example, given an ensemble, what is the largest entropy thatgnal, Alice samples the corresponding distribution and
can be attained by deformations that make the states mosends the result, e.g., to seBadhe tosses a fair coin labeled
parallel? Conversely given a val® of von Neumann en- by 2 and 3, and sends the outcon&lternatively we may
tropy, what is the maximum possibl@average overlap of  attribute the probabilistic nature of the signals to noise in the
any ensemble that has entrofy? Are there ensembles with channel. Bob then reads the received value. We may readily
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calculate the probabilitp(y|X) that Bob ready (1, 2, or 3 Conversely, suppose th&;=G,. Then the number of
given that Alice seniX (A, B, or C) and the mutual infor- States and corresponding probabilitieging the diagonal of
mation! (X:Y) between Alice and Bob. In classical informa- the Gram matrix must be the same. So write

tion theory,l (X:Y) quantifies the amount of information that _ ]

Bob gets about Alice’s message, i.e., the information capac- E={lay), ... Jaip1, .. P}

ity of the communication protocol. Consider now the same d
scenario with three new signals’, B', andC’, which are an

probability distributions on four valuegl,2,3,4. A’ is the _ .

uniform distribution on{1,4}, B’ on{2,4, andC’ on{3,4. &={1By). - |BiP1. - - P

;L‘E r::rt]gzl 'S]fgrgsgrt]'g& 'SBr)O";’n?j'f(f:e,rir:\lzutthg‘ s?:r%ere;:i?-n_we will use proof by induction ork to show that|a;)
wise overlaps as the corresponding signals from the original U| ;) for some unitand. The result is clearly true fok

setA, B, C—in every case the two distributions coincide on L, l.e., ensembles with only one state. Assuthe induc-

one value and are disjoint on the other value. Thus, in thi lon hypothesisthat it is true for all ensembles &f states

purely classical context we again have the phenomenon th&tOnsider two ensembles &f-1 states:
the global information conteriin the sense of mutual infor-

mation herg differs even though the pairwise overlag@sd E={lar), .. Jad.lakia)iPry - PPl
pairwise information contentsare the same.

There are various other possible natural concepts of dis-  £2={lB1). - - - [Bi Bir1)iP1s - - - PPt
tinguishability, which one can associate to an ensemble . ) )
(v, ... Ja):pa, P} of pure quantum states. Two with the same Gram matrices. Then the subensembles of just

such concepts are the accessible information and the minthe first k states [with probabilities rescaled by 1/(1
mum error probability[18]. For the latter, we attempt to — Pk-+1)] will have the same Gram matrices so by the induc-
identify the state by applying a measuremevtt with out-  tion hypothesis there is a unitaty with

comes 1,2...,n. Let p(j|i) be the probability of obtaining )

outcomej for the input statd ;). The error probability is |Bi)=Ula;) fori=1,...k.

defined byP¢, o= =ipi(1—p(i]i)). We chooseM to mini- )

mize Py and use that minimum value as a measure ofNOwW compare the ensemble§ &) and&,. They differ only
distinguishability for the ensemblavhere a smaller value in their (k+1)th states that are respectivelij ;) and
indicates greater distinguishabilityThe accessible informa- |Bk+1). Let B=span(B;), ... ,|Bk)). Consider the parallel
tion of an ensemble is the maximum Shannon mutual inforand perpendicular projections with respecBto

mation of any POVM measurement on the ensemble states.

Forn=2 both of these measures are monotonic functions of Ulags)=(Ua)+(Ua),
the overlap|(#1|¥,)| but for n=3, like the von Neumann
entropy, they are not functions of the overlaps alone. Thus it |Bk+1)=(B)+(B). -

seems plausible that they too—like the von Neumann
entropy—uwill exhibit increased distinguishability with suit- Since &; and &, [and hence als®J(£;)] have equal Gram
able deformations of the ensemble that decreases all pairwiseatrices,U| ., 1) and|B,.,) have equal inner products
overlaps. But unlike the von Neumann entropy this is diffi-with | 3,), ... ,|8) and hence with a basis &. Thus, the
cult to study analytically: the computation of minimum error parallel projections Wa); and (8) are equal and so the
probability or accessible information involves difficult opti- nerpendicular projections have the same length. If this length
misations and is generally intractible analytically for all butig ,ero thenS,=U&,. If it is not zero, letB- be the two-
the simplest ensembles. dimensional space spanned hy4), and (3), and letV be
a unitary transformation irB* with V(Ua), =(8), . Fi-
nally, letU’ be the unitary transformation which is the iden-

This work was initiated at the Elsag-Bailey ISI workshop ity in B and V in B*. Then &=U'U&;, completing the
on quantum computation held in Torino and we are gratefuproof of the lemma.]
for the support and opportunity of collaboration provided by
that meeting. We are especially grateful to Armin Uhlmann
for originally suggesting the Gram matrix approach adopted
in this paper and for other helpful comments. Much of the For any set of state$§[ ¢],[#,].[ 3]} we can always
work was supported by the European TMR Research Netchoose phase representatives makitg| i,) and (4| 3)
work ERB-FMRX-CT96-0087. RJ is also supported by thereal non-negative. Hencé, ¢, 1,[ #],[ #/5]} will have over-
UK Engineering and Physical Sciences Research Council. lapsa;,,a,s,a3;

iff there are representatives with

(nlvay=a, (Yilvs)=ay
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APPENDIX

Proof of Lemma 1

Suppose that the two ensembles are unitarily relatedand
Then it is easy to see that they have the same Gram matrices _
(as the inner products are unitary invariants (| hs)=a,€'€ for someé (A1)
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iff
1 aip ds;

1 )
G(¢) defined byz| a1 &
agy axe 't 1

is a Gram matrix (A2)

iff 3G is a positive matriYwhereG is the matrix in Eq.
(A2)]

iff the eigenvalue& ;,\,,\5 of 3G are all non-negative.

Next, we claim(and prove in the next paragrapiat the
last condition holdsff det3G=0. Then computing det3
directly from G above, gives the required conditigtl).
Note also from Eq.Al) that ¢ is the phase of the triple
guantity Y 1,5 and this completes the proof ¢d).

To justify the claim above, we show thaG3cannot have
exactly two negative eigenvalues. Considg=\\,

PHYSICAL REVIEW A62 012301

Choose the overall phase of/;) to make » real non-
negative sav=ag;. Choose the phase {##) to make{ real
non-negative. Then,

|3y =azq0)+ 5|1)+2|2) with zreal=0, » complex.

+XoN3+ N3\ and suppose that there are two negative ei-This givesn parameterized by

genvalues\; andh,. Then, Tr3&&=3=A;+ A, +\3 gives

B=NAo+ (N1 +A)[3—(N1+Ay)]

—NE=NS=NAp+ 3N+ )y).

Thus, <0 as all terms are negative. Bjt is the linear
coefficient in the characteristic equation d&3and a direct
calculation of det{| —3G) gives

_ 2 .2 .2
B=3—ap—ay—az

so thatB=0. Hence, & can never have exactly two nega-

tive eigenvalues and the non-negativity of d&t=3\ A\ 5

is equivalent to the non-negativity of all three eigenvalues.

To prove(b) we recall thatY 1,3 and hencg, is an invari-

ant of any overall unitary transformation. Hence, for fixed

a,,, ay3, andas;, different &’'s correspond to unitarily in-
equivalent sets of states.
To prove(c) suppose thaf[ 4 1,[ ¥-],[ 3]} is any set of

(A3)
We have two further conditions
(2l )| = B3=|@gsa1+ V1 —aZ | (A4)
and normalization
22=1—|p|?—a3,. (A5)
From Eg.(A4) we introduce¢ so that
agag+ \1-al,n=axe't.
ape't—agay,
(e "o
Then Eq.(A5) gives
e 1— a3, a5y~ a3+ 285,83, COSE
1-a3,
1 a as;
deff aj 1 e'fa,;
_ az, € fay; 1 A7)

Substituting Eqs(A6) and (A7) into Eq. (A3) gives the re-
quired form of|3). Note that the conditiorz?=0 in Eq.
(A7) reproduces the conditiogd1) in part(a) of the theorem.

states with the given overlaps. We choose an orthonorma¥

basis{|0),|1),|2)} of H; and phase representativies) as
follows. Choose an arbitrary phase representalive) of
[#4] and set

|0>:|¢1>-

Choose|1) orthogonal to0) in the plane of ¢, ] and[ ]
(with phase of 1) to be fixed latex. Then any representative
|4,) of [,] has the form

|¢o) =a;16'%|0)+ B|1).

Choose the overall phase pf,) to makea=0 and choose
the phase of1) to makeg real and non-negative, so

|2)=a31,]0)+ V1—af,|1).

Then choosg2) orthonormal to]0) and|1) (with phase to
be fixed later so any representative pf/3] has the form

|1h3) = w|0) + 7| 1)+ £]2).

Proof of Theorem 2

Given the ensemble={|y),|¢2),|¥3);p1,P2,P3} let
&(€) denote the family of ensembléap to unitary equiva-
lence which have the same overlaps &sHere, ¢ is the
phase ofY ;,3. We study the variation o with ¢ through a
sequence of lemmasvith proofs given at the end

Lemma Al: The ensemble§(&) have constant Tg and
constant Tp?. Hence,S may be viewed as a function of
Trp3=TrG3.

Lemma A2: If Tr p and Trp? are held constant the®is
a monotonically increasing function of BF.

Lemma A3: For any ensemblé, Trp® has the form

Trp3=C+6p;p,ps ReY z;
=C+6p1pop3asRrzds) COSE, (A8)

whereC is independent o€.
In view of these lemmas we have
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Proof of Theorem 2: We consider the family of en- Y(0,1,0)
semblesE(€) with the same overlaps & parametrized by b=n/3
¢, the phase ol 3.

(@) If Y is not real andty# = £,.4 (@€ has rank 3then
we can perturk¥, slightly in both the positive and negative
directions inducing either an increase or decrease ip>Tr B
(by Lemma A3. Hence, by Lemmas Al and A2 we may
either increase or decreaSevhile keeping the overlaps the 5
same, giving the possibilitied1) and (D2). M o L0

(b) If ¢€,=0 then cos, is at its maximum value. Thus, ”
any perturbation of, leads to a decrease in gt and hence
a decrease 15 (while keeping all overlaps constanfhus,
we get(D2) only. At £3= 7, c0S&, is minimum so similarly,
we get only(D1).00

Proof of Lemma Al: We have Tp=1 for all §{. Also
Trp?=TrG?=3;G;;G; ==|G;;|* asG is Hermitian. Since
&(€) have constant overlaps, the Gram matrices are related
by Hadamard product with of the form in Eq.(10) with FIG. 2. The triangleXYZ is the probability simplexP; [or
rij|=1 for alli,j. Hence, Tip? remains constant. The three space of diagonal density matrices digg(,,A3)] in d=3 dimen-
eigenvalues op are uniquely determined by the values of sions. It is obtained by intersecting the plang+A,+X3=1 with

Trp, Trp?, and Trp® so Smay be viewed as a function of the positive octant in the space of all triples;(A,,\3). The three
Tr ps. 0 vertices are the three pure states and the edges are rank 2 diagonal

Proof of Lemma A2: Note first thatSis unitarily invari-  states. The central poidl = diag(3, 5,3) is the maximally mixed

ant so we may assume without loss of generality fhas state. Along linesM X, MY, andMZ two eigenvalues are equal.

diagonal, and work on the classical probability simplex We introduce polar coordinates on this simplex wittbeing the
distance fromM and the polar angl® is measured anticlockwise

=0

Z(0,0,1)

P3={(AN1, A2, 3):A1=0\5,=0A3=0 andX;+X\, from the lineM X. The coordinates for a general state are given in
Eq. (A9). The arcap includes all diagonal statgs (up to a per-
+A\3= 1}- mutation of the diagonal entrigat a constant radiuswith a fixed

. . . Tr p?=1+r? [cf Eq. (Al1) et seq]
To represent the constraint Zﬁ"Z const. it Is convenient to

introduce a polar coordinate system{) in s as shownin |, gy 5 the JinesMX, MY, andMZ divide the circle into

Fig. 2.r is measured from the centbt=(3,3,5) of P;and  sjx symmetrical parts corresponding to the six possible per-
0 is measured anticlockwise from the line joinii to the  mutations of the eigenvalues. Since we will be interested

vertex(1,0,0. only in the (unorderedl set of values of tha.’s it suffices to
A direct calculation gives the coordinates of a generalconsider just one of these regions. Thus, without loss of gen-
state as erality we may take
)\1:§+ §r cosd, 0=¢< 9max$§-
1 2 T i
A==+ \ﬁr cod o+°7 | (A9) For some values of constant % or r, the angled will have
3 3 3 a maximum valueé,,,, smaller than=/3, e.g., for ther

shown in Fig. 2 we take only the argB. At the pointB one
of the eigenvalues has become zero.

From Eq.(Al11) we see that the constraint F#=const
corresponds te being constant. Using EGA9) we get

1 2 4T
)\3=§+ §I'CO 6+? .

The constraint

1 1
Trpd=> A== +r2+——r3cos .
Trp?=2, N>=A?=const. (A10) =2 N 9 J6

corresponds to the intersection of the simpkXZ with a  Since ¢ lies in the range[0,7/3] we see that Tp® is a
sphere of radiuf\ centred at(0,0,0. This gives a circle or monotonically decreasing function &t

part of a circle(as shown in Fig. Rwithin the simplex. In Next we show thaiS is also monotonically decreasing
terms of polar coordinates we get with 6. To study the variation of entropy
2 1 2
2 \f=g+r2 (A11) S=—> )\ logh,
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with @ when Trp? is held constant, note th&\;=1 so we

get
IN;
a0
and so
=— E Iog A
I

Since O< =< 7/3, we have from Eq(A9)

INy IN, N3
—=0.
9090 =0 5970

Hence, using EqA12) we get

aS
a6

2
96

A
g—

3

INa

log2
96|

Using the inequality log=x—1 we get directly

(A12)

PHYSICAL REVIEW A62 012301

aS 0
<
a0

with equality possible only fof=0 or =/3.

To summarize, any givepl corresponds to a unique point
(r,6) with 0<@</3. If Tr p?=3%+r? is held constant then
both Trp® and S are monotonically decreasing functions of
6. Hence,Sis a monotonically increasing function of F?,
which completes the proof of Lemma A2l

Proof of Lemma A3: We have

Trp3=TrG3=§|:, GijijGki . (A13)

ij

Sincep is invariant under choices of phase representatives
we may assume without loss of generality tlathas the
form given in Eq.(9). Then in Eq.(A13) the ¢ dependence
arises only through three termda cyclic permutation of the
subscripty of the form G,3G3:G1,=p1p2p3Y 123 and the
three corresponding complex conjugate ter@gG,1G13

=p1p2P3Y 123 This gives Eq(A8).00
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