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Space-time geometry of quantum dielectrics
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Light experiences dielectric matter as an effective gravitational field and matter experiences light as a form
of gravity as well. Light and matter waves experience each other as dual space-time metrics, thus establishing
a unique model in field theoryActio et reactioare governed by Abraham’s energy-momentum tensor and
equations of state for quantum dielectrics.

PACS numbgs): 03.65.Bz, 03.75:-b, 03.50-z, 04.20-—q

[. INTRODUCTION in vacuum andm is the mass of a single dielectric atom. In
the definition(3), p can be regarded as the probability den-
A moving dielectric medium appears to light as an effec-sity of the atomic de Broglie wave, for most practical pur-
tive gravitational field 1—4]. The medium alters the way in Poses.(Strictly speakingmc®p describes the total enthalpy
which an electromagnetic field perceives space and time, fodensity of the matter wave, including the rest energy as the

mulated most concisely in Gordon’s effective space-timgion’s share) Throughout this paper we employ Sl units and
metric [1] use the Landau-Lifshitz conventi¢f1] of general relativity

(with the exception of using greek space-time and latin space
indices. To derive the resulf2) with the dielectric param-
—1) UgUg. (1) eters(3) we postulate that the interaction between light and
matter takes on the general form of a metric. Then we dem-
onstrate the consistency of this idea with previous knowl-
?dge, and in particular with Gordon’s met(it).
The metric(2) indicates that the energy-momentum of
light curves the space-time of a dielectric matter wave di-
rectly. Under normal circumstances the deviation from the

1

E
= + [ —
gaﬁ gaﬁ epm

We allow for a background metrig,;, mostly to have the

convenience of choosing arbitrary coordinates, but also fo
the possible inclusion of a genuine gravitational field. Gor-
don’s metric(1) depends on the dielectric properties of the

me_<_j|um, on the permittivity, and_on thg magnetic perme- background geometry is very smalee Eqs(2) and (3)],
ability 41, as well as on the four-dimensional flavf of the  pacayse the ratio between the electromagnetic energy and the
medium (the local four-velocity. The producten is the  aiomic rest energinc is typically an extremely small num-
square of the refractive index and the prefacter(tu) "*is  per. In the Newtonian limit of general relativifi1], the
known as Fresnel's dragging coefficidi®-7] (in Fresnel's  gravitational correction to a flat Minkowski space-time is
days, the part of the ether that the moving medium is able téiny as well, because the correction is proportional to the
drag[6]). In the limit of geometrical opticE8], light rays are  ratio between the potential energy amd? of a test particle.
zero-geodesic lines with respect to Gordon’s mdttie4]. I For weak gravitational fields and low test-particle velocities,
the special case of a medium at rest, this result is equivalerfeneral relativity is an equivalent formulation of Newtonian
to Fermat’s principld8] and to the formulation of geometri- physics that agrees in all predicted effects and yet establishes
cal optics as a non-Euclidean geometry in spdde a radically different physical interpretation. Similarly, given
Light experiences dielectric matter as an effective spacethe current state of the art in atom optics, the idea that light
time metric. How does matter experience light? In atom op<curves the space-time for matter waves is an equivalent for-
tics [10], the traditional role of light and matter is reversed: mulation of the known light forces, i.e., of the dipole force
Atomic de Broglie waves are subject to atom-optical instru-2nd of the recently investigated Rgen interaction{12].
ments made of light. Light acts on matter waves in a similat1OWeVer, one can conceive of significantly enhancing the
way to the way matter acts on light. This paper indicates thaflielectric properties of matter wavgs] using similar meth-

an atomic matter wave experiences an electromagnetic fie@dS @S in the spectacular demonstrations of slow lgBj.
as the effective metric Loosely speaking, a large effective dielectric constant

could counteract the rest energyc? in the relationg(3). In

A _ F this way one could use light to build atom-optical analogs of
=(1-a% —bT 2 y g p g
Gas ™ #)%s “p @ astronomical objects on Earth, for example, a black hole
with made of light.
1 N 1 2) ) 1 ( 1 a Il. ELECTROMAGNETIC FIELDS
a= e+ —— , =—\e——|. .
mcp M mc2p m A. Field tensors

Let us first agree on the definitions of the principal elec-
Here ¢ is the Lagrangian of the free electromagnetic field,tromagnetic quantities in Sl units in general relativity. We
defined in Eq.(8) below, andT! ; is the free-field energy- employ the space-time coordinates=(ct,x). The electro-
momentum tensof10). As usualc denotes the speed of light magnetic four-potential is
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A,=(U,—cA). (4) I —Slc | St
T = . TE= (12)
L . m —-Sc o Slc
The electromagnetic-field-strength tensor is constructed as
with
F..=D,A,—D,A,=d,A,—3d,A, (5)
&
using the covariant derivative3,, with respect to the back- | = ?0(E2+ c?B?), S=gCc’E/\B,
ground metricg,,,,. As is well known[11], in the definition
(5) of F,, on a possibly curved space-time, we have been (12)
able to replace th® , by ordinary partial derivativeg,, E2 (2B? )
=g/9x*. The field-strength tensor reads in local Galilean o=g|| 5+ —|1-E®E-CcB®B|.

coordinateqin a local Minkowski frame
Herel denotes the intensity§ is the Poynting vector, anat

0 E, E, E, is Maxwell’s stress tensor. The symbdlsand® denote the
_E 0 _¢B. cB three-dimensional vector and tensor product,/re/spectlvely.
F= § ‘ Y. (6) We can form second-rank tensors frémgF* # only by
—Ey c¢B; 0 —CB, some contraction. Consequently, the linear combinations of
—-E, —cB, cBy 0 the two elementary tensorgeg,, and TZ,, form the com-

plete class of second-rank tensors that are quadratic in the
It will become useful at a later stage of this enterprise tofield strengths,,.
introduce a four-dimensional formulatidh*” of the dielec-
tric D andH fields, ll. CLASSICAL ATOMS

A. Postulates

0 -Dy -D, -D, . . . L
Consider a classical atom in an electromagnetic field. The
Huy— Dx 0 —H./c H/c 7) atom is pointlike, has a mass, and can sustain induced
h D, H,lc 0 —Hy/c|’ electric and magnetic dipoles. In the rest frame of the atom

the dipoles respond to the square of the electric field
strength,E?, and the magnetic field strengtB?, respec-
tively. How does a dielectric atom experience the electro-
magnetic field when the atom is moving?

Let us postulate that the atom experiences the field as an
B. Quadratic field tensors effective metric. Consequently, according to general relativ-

In dielectric media, induced atomic dipoles constitute anty [11], the actionS, of the atom is
interaction between light and matter that is quadratic in the
electromagnetic-field-strength tengdr4]. Let us therefore A
list a set of linearly independent second-rank tensors that are So=- mcf ds, ds’=g,,dx“dx". (13
quadratic inF ,,. The most elementary one is the product of
the metric tensog,,, with the scalar Lagrangiat’s of the | et us further postulate that the metric of the ataf), , is
free electromagnetic fielpl1]. This Lagrangian is quadratic in the electromagnetic field strengths. Any metric
is a second-rank tensor. Hence, we obtain from Sec. || B the
general form(2) mentioned in the Introduction.

D, —Hy/lc Hlc 0

here defined in local Galilean coordinates.

. 80 a 8() aa’ ’
%F:_ZFO‘BF B:_Zg gﬁﬁ FO‘BFQ,B,’ (8)

B. Properties
or, in local Galilean coordinates, A metric of the structuré2) has nice mathematical prop-
erties. In particular, the contravariant metric teng@f (the

0 inverse ofg’,,) takes on a simple analytic form,

- E
‘:%'F=7(E2—CZBZ). (9)
V=0a04 =V—0a[(1-a¥g)g”"+bTe"] (14

Another quadratic second-rank tensor is the free electromag-

netic energy-momentum tensidr1] with
7= 80F 4aQ"F s ZeGp00, (10 ga=detg},) (15
or, in local Galilean coordinates, and
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b2 wave experiences the electromagnetic field as a metric, and
JV=ga=v-9g (1—6\1%;F)2—ZT25T§B : (16)  in particular as the metri€2) that we have motivated for
traveling dipoles in Sec. Ill. We demonstrate the consistency
as one verifies in local Galilean coordinates, with the relatiorPf this idea with Gordon’s theory in Sec. V. Let us model the
TEBTE‘ﬁ:eg[(EZ—csz)2+4CZ(E~ B)?]. matter wave as, fittingly, a complex Klein-Gordon scajar
in an effectively curved space-time. The actiSg of the

C. Nonrelativistic limit atom wavey is

So far, we have not seen how the metric the@yand
(13) is related to the model of a moving induced dipole. Let SA:f %A\/—_gd“x (21)
us consider the nonrelativistic limit of velocities low com-
pared with the speed of light. This limit corresponds to a
motion in an inertial frame close to a rest frame comoving; ; -
with the atom. We also regard the electromagnetic field egl—n terms of the Klein-Gordon LagrangidaS]
ergy to be weak compared with the atomic rest enengy.

We neglect any genuine gravitational field, and obtain in
Cartesian coordinates

& — 9af 1 mv s *\ (i mc? *
La= \/E omIa (10, 4" ) (1hd ) ———y* ¢

ds=\(1—a%p)(c?dt?—dx?) —bT, dx*dx” 2
i . - \/%(ﬁ—mxw*)m’*w)—m—czw* w), 22
~\/c?dt?—dx?— (a Zg+bThyc’dt? g\2m o 2
v?  a%e+bT,
~|1- 2 c (17 where we have employed the covariant derivatiBgswith

respect to the effective metri2). The action(21) is minimal
with v=dx/dt. Consequently, we can write the actiSgas If the matter waveys obeys the Klein-Gordon equation

Soz—mcf dS%J'(—mCZ-l-LO)dt (18 m2c2
DADAy+ Py =0, (23

o

with the nonrelativistic Lagrangian

m a a or, written explicitly[11],
2 2 2
and
1 m?c?
—==3,(N=9a9R"d,4) + ——y=0. (24)
a+b b—a V=0 h
A= Somcz, ag= Somcz,
2 2
(20 Equation(24) together with the function&l4) and (16) and
ag— ag ag+ ag the parameter§20) describes how atomic matter waves re-
a= , =—F. spond to electromagnetic fields.
80mC2 SOmCZ
The LagrangiarL, describes indeed a nonrelativistic atom B. Rontgen limit

with electric and magnetic polarizibilitieag and ag, re- . ) .

spectively. In this way we have verified that the metric L€t us prove explicitly that the Klein-Gordon Lagrangian

theory (2) and (13) agrees with the physical picture of trav- (22 conta_lns the known Ilght forces in the I|m|t_ of relatively

eling dipoles and, simultaneously, we have been able to eXOW velocities (compared withc) and of weak fieldgcom-

press the coefficienta and b of the metric(2) in terms of ~ Pared W|thmc2)_. We separate from the atomic wave func-

atomic quantities. tion ¢ the notorious rapid oscillations due to the rest energy
mc? by defining

IV. MATTER WAVES

mc
A. Postulate o=y exp( i Tt) . (25

Gordon has showfil] that an electromagnetic field expe-
riences dielectric matter as the effective metfiz Here we
postulate that the opposite is also true: A dielectric matteiWe neglect gravity and obtain in Cartesian coordinates
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1 ) S ihc
La= =0 598 (MEe* p+itp* o—ifig* @)+ g

2

mc? o,
- (1-2a%p)¢% e

ih . hzv*v+
7(@@ ¢* o) %( ¢*)- (Vo)

aEZ
—E24
(ZE

This result agrees with the Rtgen Lagrangian of Ref16]

0Ok
A (@* o — @dye™ ) —

*p(1— 7+bT°°)+i—h fom ot o)+ OO % g )
o*o(l—a%r FIt 5 (e" o= ¢ )+ —-DTe(¢" dkp— @dke™)

B
2

a
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ﬁ2
ki *
mgA(‘?k‘P )(d¢) —

*
o ¢ @

ﬁZ
5= (V¢*)(Vg)

+
R (EAB) i(e* VooV et).  (26)

CZBZ> (P*(P+

densitiesp andp are identical, because is unity to a very

in the limit of weak fields and, consequently, indeed de-4o0q approximation. The difference betwegnand p is
scribes the known nonresonant light forces including the; ptie: In Sec. VE we show that p is the total enthalpy

Rontgen interactio12].

C. Dielectric flow

Accelerated by light forces, an atomic matter wave will

density of the dielectric matter wave, with the rest-energy
densitymc®o as the lion’s share.

D. Hydrodynamic limit

form a probability current that appears as a dielectric flow. aAg has been mentioned, the objective of this paper is the

Let us calculate the flow from the phaSef the wave func-
tion,
y=ule®. 27

We introduce

f
wh=— —gh’a,s,

e (29

and obtain from the Klein-Gordon equati¢?4) the conser-
vation law of the four-dimensional probability current,

1
N=0a

In the absence of electromagnetic forces; describes the

DA PwH) = 9, (N—gal¥]?w*)=0. (29

proof that the metric interactiof2) between matter waves
and light is compatible with the known theory of dielectrics
[1,14]. When a matter wave or, more likely, a macroscopic
condensate of identical matter waves reaches the status of a
dielectric it behaves like a quantum fluid. In this macro-
scopic limit the de Broglie density varies over significantly
larger ranges than the de Broglie wavelengtie same ap-
plies to frequencies and a hydrodynamic approach has be-
come extremely successfil7]. Let us approximate

ihd,p~—ha,S. (33
We obtain from the Klein-Gordon Lagrangid82) the hy-
drodynamic approximation

S i

h? o mc?

local four-velocity of a free matter wave. In the presence of

a field, we introduce the dielectric flow* by normalizing
w* to unity with respect to the background metgg, ,

)

w
ut= wow= VO, WHW?, (30
We define two densitieg andp as
— .2 9a _
o=|yl*w g’ p=pQw. (3D
We obtain from the conservation la{29)
1
——=4d,(J—geu*)=D,(eu*)=0. (32)

-9

Consequently,o is the scalar probability density of the

Let us consider the Euler-Lagrange equations derived from
the hydrodynamic Lagrangiai34). We obtain from the?,,S
dependence of/, the dielectric flow(32) and from a varia-
tion with respect td|? the dielectric Hamilton-Jacobi equa-
tion

2-2

, m-c
9A (%S)(ﬁys)=7, (35

or, in terms of the four-vectow* of Eq. (28),
gl WAwW =1, (36)

In the hydrodynamic limit thev* vector represents a four-
velocity that is normalized with respect to the effective met-
ric (2). We also see that the hydrodynamic Lagrandiz4)
vanishes at the actual minimum that corresponds to the

atomic de Broglie wave. For most practical purposes the twghysical behavior of a dielectric matter wave.

012111-4



SPACE-TIME GEOMETRY OF QUANTUM DIELECTRICS PHYSICAL REVIEW A2 012111

V. QUANTUM DIELECTRICS Note that the two field variations in the relatid?) differ in

a subtle way: On the left-hand sidé&; abbreviates the total
variation with respect to the electromagnetic field, whereas
In the previous section we considered a dielectric mattepn the right-hand side of Eq42) we treate, u, andu® as

wave in a given electromagnetic field. Gorddij studied the  peing fixed, despite their hidden dependence on the field due
opposite extreme—an electromagnetic field in a given dito the relationg28)—(31).

electric medium. Let us address here an intermediate regime We show explicitly in Sec. VD thatZ.; is indeed the
of actio et reactiowhere light acts on matter and matter alsodesired Lagrangian of light in a dielectric medium. Here we
acts on light. Such a physical regime, characterizing a quarote that 4 may metamorphose into a multitude of forms.
tum dielectric, occurs, for example, when a Bose-EinsteirFor example, we introduce the permittivityand the mag-
condensate of an alkali-metal VaF[dﬂ] interacts nonreso- netic permeab"rtylu in terms Of e|ementary atomic quanti_

nantly with light[18]. If we were able to arrive at Gordon’s ties and in accordance with the paramet@smentioned in
metric (1) from our starting poin{2) we would be inclined to  the Introduction,

take this as evidence that our approach is right.

To include the dynamics of the electromagnetic field we ag 1 ag
add the free-field Lagrangiafts to the atomic %, in the e=l+_—p, —=1-—p. (43
hydrodynamic approximatiot84), 0 H 0

A. Actio et reactio

In this way we obtain directly from Eq$2) and(3) that

=L+ La, (37

and regard the electromagnetic field as a dynamic object that V{,’g"'eﬁzl (8+ i Fet|e—— UQUBTZ,B ) (44)
is subject to the principle of least action. We could also 2 M M
easily include other interactions by additional terms%i . .
such as the atomic collisions within a Bose-Einstein conden?V& can also express the effective Lagrangian as
sate[17] by a Gross-Pitaevskii term. Let us consider the field 1 ep—1
Varlatlon %/eff:;%F"_ SoTFa/BIFaﬁuaua gﬁﬂ y (45)

N T » - :

Op L= O L+ E' W %(&#S)(&,,S) Or0A due to the definitior{10) of the free-field energy-momentum

tensor, or we may perform further manipulations, utilizing

g Ia the relations
+\/—Zab\/ —. (38
ga g

FarﬁrFaﬂuaua,gBﬁ, = FarIBrFalBgaa’UBUB’,
As has been mentioned in Sec. IV D, the atomic Lagrangian , ) (46)
%, vanishes at the minimum of the action, in the hydrody- Farp Fapuu® ufu? =0,

namic limit. We utilize the fact that
due to the symmetry of the background megft® and the

Segh’= _gxagzﬁalzgﬁﬁl (39) antisymmetry of the field-strength tendey,; .
and obtain, using Eq$28)—(31), C. Gordon’s metric
mc Quite remarkably, one can express the effective Lagrang-
S V= 5FU%’F—Tpu“u35Fg’;B. (40)  ian in the form[1]
€

The variation of the Lagrangian with respect to the field de- L= — 4—OFQBF(“)(B) (47)
termines the field dynamics via the Euler-Lagrange equa-
tions. Can we casf:_~ in the role of a dielectric? with

B. Effective Lagrangian F(a)(ﬁ)zgg“'ggﬁrFa,B, (48

The principal mathematical artifice of this paper is an ef-
fective Lagrangian that is designed to agree withunder —and
field variations, and that describes a dielectric medium,

2 geP=g%+ (e u—1)uuP. (49)
m
Lett=Lrt TP(gaﬁ_ ggﬁ)“auﬁ (4D The effective Lagrangian appears as the free electromagnetic
Lagrangian in a curved space-time with metd®). A short
with exercise proves thag‘,i'6 is the inverse og';B, i.e., as the
notation suggests, the contravariant metric tensor with re-
O L= 6L ot - (42 spect to the covariarg';ﬁ. Consequently, we have indeed
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arrived at Gordon’s space-time geometry of light in moving Equation(54) is equivalenf1] to Minkowski's constitu-

media, starting from our metri2), which supports the va-

lidity of our postulates.

tive equations in a moving mediufi4,19. In the limit of
low velocities we recover the familiar relatioi3=¢ycE

Note that Gordon's space-time geometry is not com-and uH=&,c?B, and, via Eq(43),

pletely perfec{1]. The metricg1) and(49) depend only on
the square of the refractive indexu, whereas a dielectric

medium is characterized by two dielectric constantnd u,
in general. What is the imperfection in the Lagrang(am)?

In order to describe a density in general relativity, and in
particular a Lagrangian density, we must consider the dete
minant of the metric that describes the scaling of space an
time. Gordon[1] calculated the determinant by employing

comoving medium coordinates, with the result

g
— Fy_ 2
gr=de{(g,) e (50)
Hence we obtain the effective action
SeffZJ eV —gd*x
o ° (@ (B) [~ g_d?
which may deviate from the perfect
&
SF: - ZOJ FaﬁF(a)(B) \ _ng4X (52)

D~(go+ag@)E, H=~(go—apQ)c?B, (56)
assuming a weak field whep~p. Relativistic first-order

corrections lead to the constitutive equations derived in Ref.

J16] which describe, for example, the Rigen effec{20] or

lgad to Fresnel's light draf] measured in Fizeau's experi-
ment[7].

In case of a smooth dielectric density we can regdrd
as a constant, and obtain from Maxwell's equations

0o = geF ) =0 (57)

Light experiences the quantum dielectric as the space-time
metric (1), i.e., as an effective gravitational field.

or DFF@® =0,

E. Energy-momentum tensor

According to Antoci and Mihich[21], Gordon[1] has
already settled the notorious debate about MinkowdKi%
versus Abraham’§22] energy-momentum tensor in Abra-
ham’s favor. However, in his papgt], Gordon assumed the
dielectric properties of the medium, w, andu® as preas-
signed quantities. Having done so, the derived energy-
momentum tensor is valid if and only if the dielectric quan-
tities are constants, i.e., in the case of a uniform medium,

when &/ varies significantly. However, when the density because the conservation of energy and momentum presup-
profile of the quantum liquid varies smoothly compared withPoses the homogeneity of space-time, according to Noether’s

the wavelength of light, we can neglect the variatiorz b.
Ultracold atoms or Bose-Einstein condensdtEg are usu-

theorem. If one tries to determine the energy and momentum
of the electromagnetic field in an inhomogeneous medium

ally in this regime, which is also compatible with the hydro- ©ne must not consider the dielectric properties as given func-

dynamic behavior of the quantum liquid.

D. Maxwell's equations

The first group of Maxwell’'s equations follows from the

structure (5) of the field-strength tensoF ,,. The Euler-
Lagrange equations of the effective Lagrangi@a) yield
the second groufl,14],

D, H*¥=0 or d,(J—gH*¥)=0 (53
with the constitutive equations
€0
HaB=—F(a)(B), (54)
)72

In local Galilean coordinates we can represdfif in terms

(7) of the dielectricD andH fields in Sl units. In this way we
find yet another physically meaningful expression for the

effective Lagrangian,

1 B E-D B-H
%eff:__FaBH :T_T,

7 (59

tions, but rather as being generated by a physical object, such
as the quantum dielectric studied in this paper. In short, one
should take into accouiaictio et reactig and in particular the
back action of the mediunjan effect seen experimentally
[23]). Does Abraham'’s tensor have significance beyond uni-
form media?

Let us determine the energy-momentum tensor via gen-
eral relativity, as a variation of the Lagrangian with respect
to the background metricd 1],

2 s-9n)__ o7
vV—0 59;/.1/ 59;/.1/

A metric variation y of the Lagrangian gives, in analogy
with Eg. (40) and the considerations in Sec. VB,

THr=_

Zghr. (58

. v mC2 ap B A
5gu/;=59‘,,ép—7pu U”64Y0p
~ mé& p
= 0gLeti— Tpu“u 0g9p - (59

We recall that”, vanishes in the hydrodynamic limit. Con-

which is indeed the explicit form of the Lagrangian for the sequently, we arrive at the total energy-momentum tensor in

electromagnetic field in a linear dielectric.

the form

012111-6
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8L ot ‘ preassigned dielectric functiomsand u, i.e., Gordon’s case
= —259 — ZEg"’+mcputu’. (600 [1]. Consequently1], the effective energy-momentum ten-
wy sor of the electromagnetic field is Abraham?2],
We represent this expression as the sum
P P THI =T =Tl — (e~ 1)UAQ”, (68)
TH=TR"+TES (61) ) _ ]
with Minkowski's tensor{19]
with the atomic component .
Thi=HHF 10"+ FHPF g (69)
Th"=mc?puru’—pg?, (62
corrected by théruhstrahl[22]
P= L~ o= iFap(HP—8oF *P), (63) ,
OV=F U ug(H*Pu"+ HP u + H"*uP).  (70)
and
In locally comoving Galilean coordinates or in a medium at
0L eft rest, the spatial component of tiRuhstrahlis proportional
wy_ _ v ! X
Teit 2 89,0 Zeng"". (64) to the Poynting vectothence the name
We are inclined to interpret the tens(@@4) as the effective v—[ o E/H 71
energy-momentum tensor of the electromagnetic field in the e (72)

presence of a dielectric medium.

The atomic tenso62) appears as the energy-momentumin this case the effective energy-momentum tensor of the
of a fluid under the dielectric pressu(@3). In the limit of  field takes the form
low flow velocities the pressure approachessq(agE?

+ agc®B?) p/2, according to EqY55) and(56). In this limit, L [V Sle
atomic dipoles with positiverg and ag are attracted toward Tho= Sc o (72)
increasing field intensities. We also see from the atomic
energy-momentum tensd62) that a dielectric fluid pos- with intensityl, Poynting vectorS, and stress tensar,
sesses the total enthalpy densitc®p=mc®we, including
the relativistic rest energy. In this way we have found an _E-D B-H _EA
interpretation for the density that appears at a prominent I= 2 + 2 S=EAH,
place in Eq.(3). To calculate the enthalpy, we express the (73)
effective Lagrangiari41) in terms of the normv. We use the E.-D B-H
definition (30) of the four-velocityu® and the normalization oc=|—F—+——|]1-E®D-B®H.
. 2 2
(36) of thew®, and obtain
2 We see that Abraham’s tensor indeed describes the effective
- mce |1l o X
P=Lr— Log= (——w), (65  energy-momentum of the electromagnetic field, even in the
2 \w general case of a nonuniform medium that is able to move

: : under the pressure of light forces.
or, by inversion,

m&p=mcwe = Jm?c? o+ pZ—p. (66) VI. CREDO

This equation describes how the enthalpy density depends on Light experiences dielectric matter as an effective gravi-
the pressure and on the dielectric density. On the other hanéftional field[1—4] and matter experiences light as a form of

Eq. (63 quantifies the pressure, which depends on the digravity as well. Light and matter see each other as dual
electric density and flow, and on the electromagnetic field a§Pace-time metrics, a unique model in field theory, to the
an external quantity. We may interpret the two formué® knowledge of th(_a author._ We have solidified tr_ns r’r_1enta|_p_|c—
and(66) as the equations of state for the quantum dielectricturé by postulating the idea and demonstrating its striking
The density of the fluid’s internal energy is the differenceconsistency with the theory of dielectrigs, 14]. It would be

between enthalpy density and pressizzd], intere;ting to see whether our model can be derive_d directly
from first principles. In passing, we have determined the
e=m?c*p?+p?-2p. (67) energy-momentum tensor that goverastio et reactio of

electromagnetic fields in quantum dielectrics. The tensor is

We see that the internal energy approaches+sq(agE?>  Abraham’s[22] plus the energy-momentum of the medium
+ agc?B?) in the limit of a slow flow and a low dielectric characterized by a dielectric pressure and an enthalpy den-
pressure. Atomic dipoles with positivez and ag seem to  sity.
gain internal energy in the presence of an electromagnetic Our idea may serve as a guiding line for understanding
field. the effects of slow lighf13] on matter waves. Here one can

Let us turn to the energy-momentum tensor of the field.conceive of creating light fields that appear to atoms as qua-
The effective Lagrangiar¥ .+ characterizes a medium with siastronomical objects. The ultimate result in this field would
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be the creation of a black hole made of light. in a quantum dielectric. In many respects, we have reasons to
Light and matter interact with each other as if both werehope that Bose-Einstein condensates may serve as testable
gravitational fields, and light and matter are genuine quanprototype models for quantum gravity.
tum fields in nature. A distinct quantum regime of dielectrics
has been prepared in laboratories where Bose-Einstein con-
densates of alkali-metal vapof47] interact nonresonantly
with light quanta, but has never been viewed as an analog of
guantum gravity, to the knowledge of the author. Sound in | am very grateful to Sir Michael Berry, Ignacio Cirac,
superfluids[25] and in alkali-metal Bose-Einstein conden- Carsten Henkel, Susanne Klein, Rodney Loudon, Paul
sateq26] has been considered as a quantum field in a curveBiwnicki, Stig Stenholm, and Martin Wilkens for conversa-
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