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Space-time geometry of quantum dielectrics
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Light experiences dielectric matter as an effective gravitational field and matter experiences light as a form
of gravity as well. Light and matter waves experience each other as dual space-time metrics, thus establishing
a unique model in field theory.Actio et reactioare governed by Abraham’s energy-momentum tensor and
equations of state for quantum dielectrics.

PACS number~s!: 03.65.Bz, 03.75.2b, 03.50.2z, 04.20.2q
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I. INTRODUCTION

A moving dielectric medium appears to light as an effe
tive gravitational field@1–4#. The medium alters the way in
which an electromagnetic field perceives space and time,
mulated most concisely in Gordon’s effective space-ti
metric @1#

gab
F 5gab1S 1

«m
21Duaub . ~1!

We allow for a background metricgab , mostly to have the
convenience of choosing arbitrary coordinates, but also
the possible inclusion of a genuine gravitational field. G
don’s metric~1! depends on the dielectric properties of t
medium, on the permittivity«, and on the magnetic perme
ability m, as well as on the four-dimensional flowua of the
medium ~the local four-velocity!. The product«m is the
square of the refractive index and the prefactor 12(«m)21 is
known as Fresnel’s dragging coefficient@5–7# ~in Fresnel’s
days, the part of the ether that the moving medium is abl
drag@6#!. In the limit of geometrical optics@8#, light rays are
zero-geodesic lines with respect to Gordon’s metric@1–4#. In
the special case of a medium at rest, this result is equiva
to Fermat’s principle@8# and to the formulation of geometri
cal optics as a non-Euclidean geometry in space@9#.

Light experiences dielectric matter as an effective spa
time metric. How does matter experience light? In atom
tics @10#, the traditional role of light and matter is reverse
Atomic de Broglie waves are subject to atom-optical inst
ments made of light. Light acts on matter waves in a sim
way to the way matter acts on light. This paper indicates t
an atomic matter wave experiences an electromagnetic
as the effective metric

gab
A 5~12aLF!gab2bTab

F ~2!

with

a5
1

mc2r
S «1

1

m
22D , b5

1

mc2r
S «2

1

m D . ~3!

HereLF is the Lagrangian of the free electromagnetic fie
defined in Eq.~8! below, andTab

F is the free-field energy-
momentum tensor~10!. As usual,c denotes the speed of ligh
1050-2947/2000/62~1!/012111~8!/$15.00 62 0121
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in vacuum andm is the mass of a single dielectric atom.
the definition~3!, r can be regarded as the probability de
sity of the atomic de Broglie wave, for most practical pu
poses.~Strictly speaking,mc2r describes the total enthalp
density of the matter wave, including the rest energy as
lion’s share.! Throughout this paper we employ SI units an
use the Landau-Lifshitz convention@11# of general relativity
~with the exception of using greek space-time and latin sp
indices!. To derive the result~2! with the dielectric param-
eters~3! we postulate that the interaction between light a
matter takes on the general form of a metric. Then we de
onstrate the consistency of this idea with previous kno
edge, and in particular with Gordon’s metric~1!.

The metric ~2! indicates that the energy-momentum
light curves the space-time of a dielectric matter wave
rectly. Under normal circumstances the deviation from
background geometry is very small@see Eqs.~2! and ~3!#,
because the ratio between the electromagnetic energy an
atomic rest energymc2 is typically an extremely small num
ber. In the Newtonian limit of general relativity@11#, the
gravitational correction to a flat Minkowski space-time
tiny as well, because the correction is proportional to
ratio between the potential energy andmc2 of a test particle.
For weak gravitational fields and low test-particle velocitie
general relativity is an equivalent formulation of Newtonia
physics that agrees in all predicted effects and yet establi
a radically different physical interpretation. Similarly, give
the current state of the art in atom optics, the idea that li
curves the space-time for matter waves is an equivalent
mulation of the known light forces, i.e., of the dipole forc
and of the recently investigated Ro¨ntgen interaction@12#.
However, one can conceive of significantly enhancing
dielectric properties of matter waves@4# using similar meth-
ods as in the spectacular demonstrations of slow light@13#.
Loosely speaking, a large effective dielectric constant«
could counteract the rest energymc2 in the relations~3!. In
this way one could use light to build atom-optical analogs
astronomical objects on Earth, for example, a black h
made of light.

II. ELECTROMAGNETIC FIELDS

A. Field tensors

Let us first agree on the definitions of the principal ele
tromagnetic quantities in SI units in general relativity. W
employ the space-time coordinatesxm5(ct,x). The electro-
magnetic four-potential is
©2000 The American Physical Society11-1
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An5~U,2cA!. ~4!

The electromagnetic-field-strength tensor is constructed

Fmn[DmAn2DnAm5]mAn2]nAm ~5!

using the covariant derivativesDm with respect to the back
ground metricgmn . As is well known@11#, in the definition
~5! of Fmn on a possibly curved space-time, we have be
able to replace theDm by ordinary partial derivatives]m
[]/]xm. The field-strength tensor reads in local Galile
coordinates~in a local Minkowski frame!

Fmn5S 0 Ex Ey Ez

2Ex 0 2cBz cBy

2Ey cBz 0 2cBx

2Ez 2cBy cBx 0

D . ~6!

It will become useful at a later stage of this enterprise
introduce a four-dimensional formulationHmn of the dielec-
tric D andH fields,

Hmn5S 0 2Dx 2Dy 2Dz

Dx 0 2Hz /c Hy /c

Dy Hz /c 0 2Hx /c

Dz 2Hy /c Hx /c 0

D , ~7!

here defined in local Galilean coordinates.

B. Quadratic field tensors

In dielectric media, induced atomic dipoles constitute
interaction between light and matter that is quadratic in
electromagnetic-field-strength tensor@14#. Let us therefore
list a set of linearly independent second-rank tensors tha
quadratic inFmn . The most elementary one is the product
the metric tensorgmn with the scalar LagrangianLF of the
free electromagnetic field@11#. This Lagrangian is

LF52
«0

4
FabFab52

«0

4
gaa8gbb8FabFa8b8 , ~8!

or, in local Galilean coordinates,

LF5
«0

2
~E22c2B2!. ~9!

Another quadratic second-rank tensor is the free electrom
netic energy-momentum tensor@11#

Tmn
F 5«0FmagabFbn2LFgmn , ~10!

or, in local Galilean coordinates,
01211
n

o

n
e

re
f

g-

Tmn
F 5S I 2S/c

2S/c s
D , TF

mn5S I S/c

S/c s
D ~11!

with

I 5
«0

2
~E21c2B2!, S5«0c2E`B,

~12!

s5«0F S E2

2
1

c2B2

2 D12E^ E2c2B^ BG .
Here I denotes the intensity,S is the Poynting vector, ands
is Maxwell’s stress tensor. The symbols̀and^ denote the
three-dimensional vector and tensor product, respectivel

We can form second-rank tensors fromFabFa8b8 only by
some contraction. Consequently, the linear combinations
the two elementary tensorsLFgmn and Tmn

F form the com-
plete class of second-rank tensors that are quadratic in
field strengthsFmn .

III. CLASSICAL ATOMS

A. Postulates

Consider a classical atom in an electromagnetic field. T
atom is pointlike, has a massm, and can sustain induce
electric and magnetic dipoles. In the rest frame of the at
the dipoles respond to the square of the electric fi
strength,E2, and the magnetic field strength,B2, respec-
tively. How does a dielectric atom experience the elect
magnetic field when the atom is moving?

Let us postulate that the atom experiences the field a
effective metric. Consequently, according to general rela
ity @11#, the actionS0 of the atom is

S052mcE ds, ds25gmn
A dxmdxn. ~13!

Let us further postulate that the metric of the atom,gmn
A , is

quadratic in the electromagnetic field strengths. Any me
is a second-rank tensor. Hence, we obtain from Sec. II B
general form~2! mentioned in the Introduction.

B. Properties

A metric of the structure~2! has nice mathematical prop
erties. In particular, the contravariant metric tensorgA

mn ~the
inverse ofgmn

A ) takes on a simple analytic form,

A2gAgA
mn5A2g@~12aLF!gmn1bTF

mn# ~14!

with

gA[det~gmn
A ! ~15!

and
1-2
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A2gA5A2gS ~12aLF!22
b2

4
Tab

F TF
abD , ~16!

as one verifies in local Galilean coordinates, with the relat
Tab

F TF
ab5«0

2@(E22c2B2)214c2(E•B)2#.

C. Nonrelativistic limit

So far, we have not seen how the metric theory~2! and
~13! is related to the model of a moving induced dipole. L
us consider the nonrelativistic limit of velocities low com
pared with the speed of light. This limit corresponds to
motion in an inertial frame close to a rest frame comov
with the atom. We also regard the electromagnetic field
ergy to be weak compared with the atomic rest energymc2.
We neglect any genuine gravitational field, and obtain
Cartesian coordinates

ds5A~12aLF!~c2dt22dx2!2bTmn
F dxmdxn

'Ac2dt22dx22~aLF1bT00
F !c2dt2

'S 12
v2

2c2
2

aLF1bT00
F

2 D c dt ~17!

with v5dx/dt. Consequently, we can write the actionS0 as

S052mcE ds'E ~2mc21L0!dt ~18!

with the nonrelativistic Lagrangian

L05
m

2
v21

aE

2
E21

aB

2
c2B2 ~19!

and

aE5
a1b

2
«0mc2, aB5

b2a

2
«0mc2,

~20!

a5
aE2aB

«0mc2
, b5

aE1aB

«0mc2
.

The LagrangianL0 describes indeed a nonrelativistic ato
with electric and magnetic polarizibilitiesaE and aB , re-
spectively. In this way we have verified that the met
theory ~2! and ~13! agrees with the physical picture of trav
eling dipoles and, simultaneously, we have been able to
press the coefficientsa and b of the metric~2! in terms of
atomic quantities.

IV. MATTER WAVES

A. Postulate

Gordon has shown@1# that an electromagnetic field expe
riences dielectric matter as the effective metric~1!. Here we
postulate that the opposite is also true: A dielectric ma
01211
n

t

-

n

x-

r

wave experiences the electromagnetic field as a metric,
in particular as the metric~2! that we have motivated fo
traveling dipoles in Sec. III. We demonstrate the consiste
of this idea with Gordon’s theory in Sec. V. Let us model t
matter wave as, fittingly, a complex Klein-Gordon scalarc
in an effectively curved space-time. The actionSA of the
atom wavec is

SA5E LAA2gd4x ~21!

in terms of the Klein-Gordon Lagrangian@15#

LA5AgA

g S 1

2m
gA

mn~2 i\]mc* !~ i\]nc!2
mc2

2
c* c D

5AgA

g S \2

2m
~DA

mc* !~Dm
Ac!2

mc2

2
c* c D , ~22!

where we have employed the covariant derivativesDm
A with

respect to the effective metric~2!. The action~21! is minimal
if the matter wavec obeys the Klein-Gordon equation

Dm
ADA

mc1
m2c2

\2
c50, ~23!

or, written explicitly @11#,

1

A2gA

]m~A2gAgA
mn]nc!1

m2c2

\2
c50. ~24!

Equation~24! together with the functions~14! and ~16! and
the parameters~20! describes how atomic matter waves r
spond to electromagnetic fields.

B. Röntgen limit

Let us prove explicitly that the Klein-Gordon Lagrangia
~22! contains the known light forces in the limit of relativel
low velocities~compared withc) and of weak fields~com-
pared withmc2). We separate from the atomic wave fun
tion c the notorious rapid oscillations due to the rest ene
mc2 by defining

w[c expS i
mc2

\
t D . ~25!

We neglect gravity and obtain in Cartesian coordinates
1-3
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LA'A2gAS 1

2
gA

00~mc2w* w1 i\w* ẇ2 i\ẇ* w!1
i\c

2
gA

0k~w* ]kw2w]kw* !2
\2

2m
gA

kl~]kw* !~] lw!2
mc2

2
w* w D

'
mc2

2
w* w~12aLF1bTF

00!1
i\

2
~w* ẇ2ẇ* w!1

i\c

2
bTF

0k~w* ]kw2w]kw* !2
\2

2m
~“w* !•~“w!

2
mc2

2
~122aLF!w* w

5
i\

2
~w* ẇ2ẇ* w!2

\2

2m
~“w* !•~“w!1S aE

2
E21

aB

2
c2B2Dw* w1

aE1aB

2m
~E`B!• i\~w*“w2w“w* !. ~26!
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This result agrees with the Ro¨ntgen Lagrangian of Ref.@16#
in the limit of weak fields and, consequently, indeed d
scribes the known nonresonant light forces including
Röntgen interaction@12#.

C. Dielectric flow

Accelerated by light forces, an atomic matter wave w
form a probability current that appears as a dielectric flo
Let us calculate the flow from the phaseSof the wave func-
tion,

c5ucueiS. ~27!

We introduce

wm[2
\

mc
gA

mn]nS, ~28!

and obtain from the Klein-Gordon equation~24! the conser-
vation law of the four-dimensional probability current,

Dm
A~ ucu2wm!5

1

A2gA

]m~A2gAucu2wm!50. ~29!

In the absence of electromagnetic forces,wm describes the
local four-velocity of a free matter wave. In the presence
a field, we introduce the dielectric flowum by normalizing
wm to unity with respect to the background metricgmn ,

um[
wm

w
, w[Agmnwmwn. ~30!

We define two densities% andr as

%[ucu2wAgA

g
, r[%w. ~31!

We obtain from the conservation law~29!

1

A2g
]m~A2g%um!5Dm~%um!50. ~32!

Consequently,% is the scalar probability density of th
atomic de Broglie wave. For most practical purposes the
01211
-
e

l
.

f

o

densities% andr are identical, becausew is unity to a very
good approximation. The difference between% and r is
subtle: In Sec. V E we show thatmc2r is the total enthalpy
density of the dielectric matter wave, with the rest-ener
densitymc2% as the lion’s share.

D. Hydrodynamic limit

As has been mentioned, the objective of this paper is
proof that the metric interaction~2! between matter wave
and light is compatible with the known theory of dielectri
@1,14#. When a matter wave or, more likely, a macroscop
condensate of identical matter waves reaches the status
dielectric it behaves like a quantum fluid. In this macr
scopic limit the de Broglie density varies over significan
larger ranges than the de Broglie wavelength~the same ap-
plies to frequencies!, and a hydrodynamic approach has b
come extremely successful@17#. Let us approximate

i\]nc'2c\]nS. ~33!

We obtain from the Klein-Gordon Lagrangian~22! the hy-
drodynamic approximation

LA5AgA

g
ucu2S \2

2m
gA

mn~]mS!~]nS!2
mc2

2 D . ~34!

Let us consider the Euler-Lagrange equations derived fr
the hydrodynamic Lagrangian~34!. We obtain from the]mS
dependence ofLA the dielectric flow~32! and from a varia-
tion with respect toucu2 the dielectric Hamilton-Jacobi equa
tion

gA
mn~]mS!~]nS!5

m2c2

\2
, ~35!

or, in terms of the four-vectorwm of Eq. ~28!,

gmn
A wmwn51. ~36!

In the hydrodynamic limit thewm vector represents a four
velocity that is normalized with respect to the effective m
ric ~2!. We also see that the hydrodynamic Lagrangian~34!
vanishes at the actual minimum that corresponds to
physical behavior of a dielectric matter wave.
1-4
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V. QUANTUM DIELECTRICS

A. Actio et reactio

In the previous section we considered a dielectric ma
wave in a given electromagnetic field. Gordon@1# studied the
opposite extreme—an electromagnetic field in a given
electric medium. Let us address here an intermediate reg
of actio et reactiowhere light acts on matter and matter al
acts on light. Such a physical regime, characterizing a qu
tum dielectric, occurs, for example, when a Bose-Einst
condensate of an alkali-metal vapor@17# interacts nonreso
nantly with light @18#. If we were able to arrive at Gordon’
metric~1! from our starting point~2! we would be inclined to
take this as evidence that our approach is right.

To include the dynamics of the electromagnetic field
add the free-field LagrangianLF to the atomicLA in the
hydrodynamic approximation~34!,

L5LF1LA , ~37!

and regard the electromagnetic field as a dynamic object
is subject to the principle of least action. We could a
easily include other interactions by additional terms inLA
such as the atomic collisions within a Bose-Einstein cond
sate@17# by a Gross-Pitaevskii term. Let us consider the fie
variation

dFL5dFLF1AgA

g
ucu2

\2

2m
~]mS!~]nS!dFgA

mn

1A g

gA
LAdFAgA

g
. ~38!

As has been mentioned in Sec. IV D, the atomic Lagrang
LA vanishes at the minimum of the action, in the hydrod
namic limit. We utilize the fact that

dFgA
mn52gA

magA
nbdFgab

A , ~39!

and obtain, using Eqs.~28!–~31!,

dFL5dFLF2
mc2

2
ruaubdFgab

A . ~40!

The variation of the Lagrangian with respect to the field d
termines the field dynamics via the Euler-Lagrange eq
tions. Can we castdFL in the role of a dielectric?

B. Effective Lagrangian

The principal mathematical artifice of this paper is an
fective Lagrangian that is designed to agree withL under
field variations, and that describes a dielectric medium,

Leff[LF1
mc2

2
r~gab2gab

A !uaub ~41!

with

dFL5dFLeff . ~42!
01211
r

i-
e

n-
n

at

-

n
-

-
-

-

Note that the two field variations in the relation~42! differ in
a subtle way: On the left-hand side,dF abbreviates the tota
variation with respect to the electromagnetic field, where
on the right-hand side of Eq.~42! we treat«, m, andua as
being fixed, despite their hidden dependence on the field
to the relations~28!–~31!.

We show explicitly in Sec. V D thatLeff is indeed the
desired Lagrangian of light in a dielectric medium. Here w
note thatLeff may metamorphose into a multitude of form
For example, we introduce the permittivity« and the mag-
netic permeabilitym in terms of elementary atomic quant
ties and in accordance with the parameters~3! mentioned in
the Introduction,

«511
aE

«0
r,

1

m
512

aB

«0
r. ~43!

In this way we obtain directly from Eqs.~2! and ~3! that

Leff5
1

2 F S «1
1

m D LF1S «2
1

m DuaubTab
F G . ~44!

We can also express the effective Lagrangian as

Leff5
1

m
LF1«0

«m21

2m
Fa8b8Fabuaua8gbb8, ~45!

due to the definition~10! of the free-field energy-momentum
tensor, or we may perform further manipulations, utilizin
the relations

Fa8b8Fabuaua8gbb85Fa8b8Fabgaa8ubub8,
~46!

Fa8b8Fabuaua8ubub850,

due to the symmetry of the background metricgab and the
antisymmetry of the field-strength tensorFab .

C. Gordon’s metric

Quite remarkably, one can express the effective Lagra
ian in the form@1#

Leff52
«0

4m
FabF (a)(b) ~47!

with

F (a)(b)[gF
aa8gF

bb8Fa8b8 ~48!

and

gF
ab5gab1~«m21!uaub. ~49!

The effective Lagrangian appears as the free electromagn
Lagrangian in a curved space-time with metric~49!. A short
exercise proves thatgF

ab is the inverse ofgab
F , i.e., as the

notation suggests, the contravariant metric tensor with
spect to the covariantgab

F . Consequently, we have indee
1-5
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arrived at Gordon’s space-time geometry of light in movi
media, starting from our metric~2!, which supports the va
lidity of our postulates.

Note that Gordon’s space-time geometry is not co
pletely perfect@1#. The metrics~1! and ~49! depend only on
the square of the refractive index,«m, whereas a dielectric
medium is characterized by two dielectric constants« andm,
in general. What is the imperfection in the Lagrangian~47!?
In order to describe a density in general relativity, and
particular a Lagrangian density, we must consider the de
minant of the metric that describes the scaling of space
time. Gordon@1# calculated the determinant by employin
comoving medium coordinates, with the result

gF[det~gab
F !5

g

«m
. ~50!

Hence we obtain the effective action

Seff5E LeffA2gd4x

52
«0

4 EA«

m
FabF (a)(b)A2gFd4x ~51!

which may deviate from the perfect

SF52
«0

4 E FabF (a)(b)A2gFd4x ~52!

when «/m varies significantly. However, when the dens
profile of the quantum liquid varies smoothly compared w
the wavelength of light, we can neglect the variation of«/m.
Ultracold atoms or Bose-Einstein condensates@17# are usu-
ally in this regime, which is also compatible with the hydr
dynamic behavior of the quantum liquid.

D. Maxwell’s equations

The first group of Maxwell’s equations follows from th
structure ~5! of the field-strength tensorFmn . The Euler-
Lagrange equations of the effective Lagrangian~47! yield
the second group@1,14#,

DaHab50 or ]a~A2gHab!50 ~53!

with the constitutive equations

Hab5
e0

m
F (a)(b). ~54!

In local Galilean coordinates we can representHab in terms
~7! of the dielectricD andH fields in SI units. In this way we
find yet another physically meaningful expression for t
effective Lagrangian,

Leff52
1

4
FabHab5

E•D

2
2

B•H

2
, ~55!

which is indeed the explicit form of the Lagrangian for th
electromagnetic field in a linear dielectric.
01211
-

r-
d

Equation~54! is equivalent@1# to Minkowski’s constitu-
tive equations in a moving medium@14,19#. In the limit of
low velocities we recover the familiar relationsD5«0«E
andmH5«0c2B, and, via Eq.~43!,

D'~«01aE% !E, H'~«02aB% !c2B, ~56!

assuming a weak field whenr'%. Relativistic first-order
corrections lead to the constitutive equations derived in R
@16# which describe, for example, the Ro¨ntgen effect@20# or
lead to Fresnel’s light drag@6# measured in Fizeau’s exper
ment @7#.

In case of a smooth dielectric density we can regard«/m
as a constant, and obtain from Maxwell’s equations

]a~A2gFF (a)(b)!50 or Da
FF (a)(b)50. ~57!

Light experiences the quantum dielectric as the space-t
metric ~1!, i.e., as an effective gravitational field.

E. Energy-momentum tensor

According to Antoci and Mihich@21#, Gordon @1# has
already settled the notorious debate about Minkowski’s@19#
versus Abraham’s@22# energy-momentum tensor in Abra
ham’s favor. However, in his paper@1#, Gordon assumed the
dielectric properties of the medium«, m, andua as preas-
signed quantities. Having done so, the derived ener
momentum tensor is valid if and only if the dielectric qua
tities are constants, i.e., in the case of a uniform mediu
because the conservation of energy and momentum pre
poses the homogeneity of space-time, according to Noeth
theorem. If one tries to determine the energy and momen
of the electromagnetic field in an inhomogeneous medi
one must not consider the dielectric properties as given fu
tions, but rather as being generated by a physical object, s
as the quantum dielectric studied in this paper. In short,
should take into accountactio et reactio, and in particular the
back action of the medium~an effect seen experimentall
@23#!. Does Abraham’s tensor have significance beyond u
form media?

Let us determine the energy-momentum tensor via g
eral relativity, as a variation of the Lagrangian with respe
to the background metric@11#,

Tmn52
2

A2g

d~A2gL!

dgmn
522

dL

dgmn
2Lgmn. ~58!

A metric variationdg of the Lagrangian gives, in analog
with Eq. ~40! and the considerations in Sec. V B,

dgL5dgLF2
mc2

2
ruaubdggab

A

5dgLeff2
mc2

2
ruaubdggab . ~59!

We recall thatLA vanishes in the hydrodynamic limit. Con
sequently, we arrive at the total energy-momentum tenso
the form
1-6
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Tmn522
dLeff

dgmn
2L Fgmn1mc2rumun. ~60!

We represent this expression as the sum

Tmn5TA
mn1Teff

mn ~61!

with the atomic component

TA
mn5mc2rumun2pgmn, ~62!

p5LF2Leff5
1
4 Fab~Hab2«0Fab!, ~63!

and

Teff
mn522

dLeff

dgmn
2Leffg

mn. ~64!

We are inclined to interpret the tensor~64! as the effective
energy-momentum tensor of the electromagnetic field in
presence of a dielectric medium.

The atomic tensor~62! appears as the energy-momentu
of a fluid under the dielectric pressure~63!. In the limit of
low flow velocities the pressure approaches2«0(aEE2

1aBc2B2)%/2, according to Eqs.~55! and~56!. In this limit,
atomic dipoles with positiveaE andaB are attracted toward
increasing field intensities. We also see from the atom
energy-momentum tensor~62! that a dielectric fluid pos-
sesses the total enthalpy densitymc2r5mc2w%, including
the relativistic rest energy. In this way we have found
interpretation for the densityr that appears at a prominen
place in Eq.~3!. To calculate the enthalpy, we express t
effective Lagrangian~41! in terms of the normw. We use the
definition ~30! of the four-velocityua and the normalization
~36! of the wa, and obtain

p5LF2Leff5
mc2%

2 S 1

w
2wD , ~65!

or, by inversion,

mc2r5mc2w%5Am2c4%21p22p. ~66!

This equation describes how the enthalpy density depend
the pressure and on the dielectric density. On the other h
Eq. ~63! quantifies the pressure, which depends on the
electric density and flow, and on the electromagnetic field
an external quantity. We may interpret the two formulas~63!
and~66! as the equations of state for the quantum dielect
The density of the fluid’s internal energy is the differen
between enthalpy density and pressure@24#,

e5Am2c4%21p222p. ~67!

We see that the internal energy approachesmc21«0(aEE2

1aBc2B2) in the limit of a slow flow and a low dielectric
pressure. Atomic dipoles with positiveaE and aB seem to
gain internal energy in the presence of an electromagn
field.

Let us turn to the energy-momentum tensor of the fie
The effective LagrangianLeff characterizes a medium wit
01211
e

ic

n

on
d,
i-
s

.

tic

.

preassigned dielectric functions« andm, i.e., Gordon’s case
@1#. Consequently@1#, the effective energy-momentum ten
sor of the electromagnetic field is Abraham’s@22#,

Teff
mn5TAb

mn5TMk
mn2~«m21!umVn, ~68!

with Minkowski’s tensor@19#

TMk
mn5HmaFabgbn1 1

4 HabFabgmn ~69!

corrected by theRuhstrahl@22#

Vn5Faa8u
a8ub~Habun1Hbnua1Hnaub!. ~70!

In locally comoving Galilean coordinates or in a medium
rest, the spatial component of theRuhstrahlis proportional
to the Poynting vector~hence the name!,

Vn5S 0,
E`H

c D . ~71!

In this case the effective energy-momentum tensor of
field takes the form

TAb
mn5S I S/c

S/c s
D ~72!

with intensity I, Poynting vectorS, and stress tensors,

I 5
E•D

2
1

B•H

2
, S5E`H,

~73!

s5S E•D

2
1

B•H

2 D12E^ D2B^ H.

We see that Abraham’s tensor indeed describes the effec
energy-momentum of the electromagnetic field, even in
general case of a nonuniform medium that is able to m
under the pressure of light forces.

VI. CREDO

Light experiences dielectric matter as an effective gra
tational field@1–4# and matter experiences light as a form
gravity as well. Light and matter see each other as d
space-time metrics, a unique model in field theory, to
knowledge of the author. We have solidified this mental p
ture by postulating the idea and demonstrating its strik
consistency with the theory of dielectrics@1,14#. It would be
interesting to see whether our model can be derived dire
from first principles. In passing, we have determined
energy-momentum tensor that governsactio et reactioof
electromagnetic fields in quantum dielectrics. The tenso
Abraham’s@22# plus the energy-momentum of the mediu
characterized by a dielectric pressure and an enthalpy
sity.

Our idea may serve as a guiding line for understand
the effects of slow light@13# on matter waves. Here one ca
conceive of creating light fields that appear to atoms as q
siastronomical objects. The ultimate result in this field wou
1-7
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be the creation of a black hole made of light.
Light and matter interact with each other as if both we

gravitational fields, and light and matter are genuine qu
tum fields in nature. A distinct quantum regime of dielectr
has been prepared in laboratories where Bose-Einstein
densates of alkali-metal vapors@17# interact nonresonantly
with light quanta, but has never been viewed as an analo
quantum gravity, to the knowledge of the author. Sound
superfluids@25# and in alkali-metal Bose-Einstein conde
sates@26# has been considered as a quantum field in a cur
space-time, as being able to emit the acoustic analog
Hawking radiation@27#. However, the quantum sound st
propagates in a classical medium, in contrast to light qua
.

re

,

h-

01211
-

n-

of
n

d
of

ta

in a quantum dielectric. In many respects, we have reason
hope that Bose-Einstein condensates may serve as tes
prototype models for quantum gravity.
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