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Temperature dependence of the Casimir effect between metallic mirrors
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We calculate the Casimir force and free energy for plane metallic mirrors at nonzero temperature. Numerical
evaluations are given with temperature and conductivity effects treated simultaneously. The results are com-
pared with the approximation where both effects are treated independently and the corrections simply multi-
plied. The deviation between the exact and approximated results takes the form of a temperature dependent
function for which an analytical expression is given. The knowledge of this function allows simple estimations
that are accurate below the 1% level.

PACS numbgs): 12.20.Ds, 03.70:k, 42.50.Lc

[. INTRODUCTION error induced by this approximation has, however, to be pre-
cisely evaluated. Furthermore, the region of overlap of the
The Casimir forcd 1] has been observed in a number of two corrections is precisely in them range, which is a
“historic” experiments[2-5]. It has been measured recently crucial distance range for the comparison between experi-
with an improved experimental precisip8—8|. This should ment and theory.
allow for an accurate comparison with the predictions of The purpose of this paper is to give an accurate evaluation
guantum field theory, provided that these predictions accourtf the Casimir force- taking into account finite conductivity
for the differences between real experiments and the ideaknd temperature corrections at the same time. To character-
ized Casimir situation. In particular, experiments are per4ize the whole correction, we will compute the factps de-
formed at room temperature between metallic mirrors andcribing the combined effect of conductivity and temperature
not at zero temperature between perfect reflectors. The the-

oretical expectations should be computed with a high accu- Ne= F ,
racy if the aim is to test agreement between theory and ex- Fcas
periment at, say, the 1% level. The efforts for accuracy are 5 3
also worth for making it possible to control the effect of _hcAm
L : Feae——.
Casimir force when studying small short range forces 2404

[9-11).
The influence of thermal field fluctuations on the CasimirF,sis the ideal Casimir force corresponding to perfect mir-
force are known to become important for distances of theors in vacuumL is the distance between the mirrofstheir

order of a typical lengtti12—15 surface, andi andc, respectively, the Planck constant and
the speed of light. We will also evaluate the factors associ-
2wc ke ;
Ap=——= T ) ated with each effect taken separately from each other
T B P ET
When evaluated at room temperature, this lengthis ap- 7E= = (4)

y .
F Cas FCas

proximately 7 um. In contrast, the finite conductivity of

metals has an appreciable effect for distances smaller than @ js the Casimir force evaluated by accounting for finite
of the order of the plasma wavelengti determined by the conductivity of the metals but assuming zero temperature
plasma frequencyp of the metal(see Ref[16], and refer-  andFT is the Casimir force evaluated at temperatiiréor

ences therein perfect reflectors. Of coursgp depends on the ratib/\p
2mC and »{ on the ratioL/\ .
Ap= wp 2 Now the question raised in the previous paragraphs may

be stated precisely: to which level of accuracy can the com-
For metals used in the recent experiments, this wavelengthlete correction faCtOVIF be approximated as the product of
lies in the range 0.1-0.2:m. This means that conductivity the factorszg and {? To answer this question we will
and thermal corrections to the Casimir force are important irevaluate the quantity

quite different distance ranges. Thermal corrections are usu-

ally ignored in the suhsm range where the effect of imper- Se= F -1 (5)

fect reflection is significant whereas the conductivity correc- F 77E 77;

tion is unimportant above a fewm where the effect of

temperature becomes appreciable. This explains why the twahich measures the degree of validity of the approximation
corrections are usually treated independently from eachlvhere both effects are evaluated independently from each
other. When an accurate comparison between experimentather. We will give an analytical estimation of this deviation
and theoretical values of the Casimir force is aimed at, thevhich may thus be taken into account without any difficulty.
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We will also give the same results for the Casimir energy by The Casimir forcg6) may also be rewritten after a Fou-
defining a factorpz measuring the whole correction of Ca- rier transformation, as a consequence of Poisson formula
simir energy due to conductivity and temperature and thef15]

discussing the factorst and 5¢ and the deviatiors in the .
same manner as for the force. =
- . . F= F(m\y),
Some additional remarks have to be made at this point. m:z—w (MA+)
First, recent experiments are not performed in the plane- (7)
plane but in the plane-sphere configuration. The Casimir Fix) = °°d X F
force in this geometry is usually estimated from the proxim- (x)= 0 @ Co c [].

ity theorem[17-21]. Basically this amounts to evaluating the

force by adding the contributions of various distances as iffhe contribution of vacuum fluctuations, that is also the limit
they were independent. In the plane-sphere geometry thef a null temperature¢—0) in Eq.(6), corresponds to the
force evaluated in this manner turns out to be given by theontributionm=0 in Eq.(7)

Casimir energy evaluated in the plane-plane configuration

for the distancel being defined as the distance of closest p_=_ |

approach in the plane-sphere geometry. Hence, the fagtor Fr=F0)= fo doife], ®)
evaluated in this paper for energy can be used to infer the

factor for the force measured in the plane-sphere geometryence, the whole forc€r) is the sum of this vacuum contri-
Then, surface roughness corrections will not be considered ibution m=0 and of thermal contributionsi#0.

the present paper. Finally the dielectric response of the me- We will consider metallic mirrors with the dielectric func-
tallic mirrors will be described by a plasma model. Thistion £(iw) for imaginary frequencies given by the plasma
model is known to describe correctly the Casimir force in themodel
long distance range which is relevant for the study of tem-
perature effects. Keeping these remarks in mind, our results

will provide one with an accurate evaluation of the Casimir

force in the whole range of experimentally explored dis-

tances. wp is the plasma frequency related to the plasma wavelength
\p by Eq.(2). For the metals used in recent experiments, the
Il. CASIMIR FORCE AND FREE ENERGY values chosen for the plasma wavelengthwill be 107 nm
) . for Al and 136 nm for Cu and Au. These values are in agree-
When real mirrors are characterized by frequencyment with knowledge from solid state physif23,24 as
dependent reflection coefficients, the Casimir force is obyye|| as with the integration of optical data described in detail
tained as an integral over frequencies and wavevectors assprRef. [16]. As already known, the results obtained from the
ciated with vacuum and thermal fluctuation82]. The  njasma model departs from the more accurate integration of
Casimir force is a sum of two parts corresponding to the tWQystica| data for small distances. In this limit, however, the
field polarizations with the two parts having the same formynarmal corrections do not play a significant role. In the

. wp
s(la))=1+E. (9)

in terms of the corresponding reflection coefficients present paper we will restrict our attention to the plasma
w model and discuss the validity of the results obtained in this
» .
F= 2 —TF[kw ] manner at the end of the next section.
k= = We will also focus the attention on mirrors with a large
optical thickness for which the reflection coefficients
AA [+ r (iw,ix) andr(iw,ix) correspond to a simple vacuum-
Flw=0]= —sz drk?f, metal interface. With the plasma model, these coefficients
2mJg are read as
(6)
r2(iw,ik) rA(iw,ix) r Jwp+c?k®—ck
= + , IS T
et —r2(io,ik) e —ri(iwix) Vos+c?k?+cr
(10)
M- w]=Fw]. Vob+c?k?—ck(1+ wdlw?)

r= .
. . o I \/wzp+02K2+CK(1+w,23/w2)
r (ry) denotes the amplitude reflection coefficient for the

orthogonal(paralle) polarization of one of the two mirrors. For wave vectorgx smaller thanwp, mirrors may be con-
The mirrors are here supposed to be identical, otherwiise sidered to be perfectly reflecting. When converted to the dis-
should be replaced by the product of the two coefficients. tance domain, this entails that the force approaches the ideal
is the frequency ané the wave vector along the longitudinal Casimir expression when evaluated at large distarices
direction of the cavity formed by the two mirrorB[w] is  >\p.

defined for positive frequencies and extended to negative The Casimir energy will be obtained from the force by
ones by parity. integration over the mirrors relative distance
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% 3.0
E=f F(x)dx. (11 .
L T]'r
20 7
As this procedure is performed at constant temperature, the !
energy thus obtained corresponds to the thermodynamical
definition of a free energy. For simplicity we will often use ;e
the denomination of an energy. We will define a facigr Al A
measuring the whole correction of energy due to conductiv- (1):8 ettty
ity and temperature effects with respect to the ideal Casimir 08 |
energy 0.7
£ 2.6 -
KL 0.1 1.0 10.0
, (12) L[um]
hCAT a0
Cas 720—3 . L n:
—-=-1
The positive value of the energy here means that the Casimir 20—
energy is a binding energy while the positive value of the
force is associated with an attractive character. We will then
define two factorsnE and nE associated with each effect e Cu-Au 7
taken separately from each other, as in E. As already 10 frmemrme ==
done for the force correction factors in E@), we will fi- g'g [
nally evaluate the quantityz which characterizes the degree 07 |
of validity of the approximation where both effects are 06 -
evaluated independently from each other. As mentioned in 0.5 )
the Introduction, the results obtained for energy allows one 0.1 1.0 100
to deal with the Casimir force in the plane-sphere geometry L{um]

when trusting the proximity force theorem. ) i
FIG. 1. Force correction factor for Aupper figurg¢ and Cu and

Au (lower graph as function of the mirrors distance at=300 K.
IIl. NUMERICAL EVALUATIONS

In the following we present the numerical evaluation of shape of the graphs is similar to the ones of the force. How-
the correction factors of the Casimir force and energy usingver, while finite conductivity corrections are more impor-
equations written in the former section. The force correctionant for the force, thermal effects have a larger influence on
factor was evaluated for the experimentally relevant distancenergy.
range of 0.1-10um with the help of Eq.(7), supposing For the force as well as for the energy, temperature cor-
explicitly a plasma model for the dielectric function, and therections are negligible in the short distance limit while con-
result was normalized by the ideal Casimir force. A dOUb|eductivity corrections may be ignored at large distances. The
integration over frequencies and wavevectors had to be pefvhole correction factor; behaves roughly as the product
formed. Due to the cosine dependence in &9, the inte- ;P57 of the two correction factors evaluated separately.
grand turned out to be a highly oscillating function. Hence,However, both correction factors are appreciable in the dis-
the integration required care although it was performed withance range +4 um in between the two limiting cases.
standard numerical routines. The energy correction factogince this range is important for the comparison between
was then calculated by numerically integrating the force an@xperiments and theory, it is necessary to discuss in a more
normalizing by the ideal Casimir energgee Eq.(12)]. In-  precise manner how good is the often used approximation
tegration was restricted to a finite interval, the upper limitwhich identifiesz to the product;”7". In order to assess the
exceeding at least by a factor 0f4]1(DIe distance at which the qua”ty of this approximation, we have p|0tted in F|g 3 the
energy value was calculated. Extending the integration rangguantities ¢ and 8z as a function of the distance for Al,
by a factor of 100 changed the numerical result by less thagy-Au, and two additional plasma wavelengths. A value of
1077 6=0 would signify that the approximation gives an exact

The results of the numerical evaluation pf are shown  estimation of the whole correction. An important outcome of

as the solid lines in Fig. 1 for Al and for Cu-Au assuming aour calculation is that the errof and &g are of the order of
temperature of =300 K. They are compared with the force 19 for Al and Cu-Au at a temperature of 300 K.

reduction factorz due to finite conductivitydashed linels For estimations at the 5% level, the separate calculation of
and the force enhancement factg calculated for perfect 5P and 5" and the evaluation of as the product®»™ can
mirrors at 300 K(dashed-dotted lings therefore be used. However, if a 1% level or a better accu-

Figure 2 shows similar results for the factgg obtained racy is aimed at, this approximation is not sufficient. It
through numerical evaluation of the Casimir free energy. Theshould be noticed furthermore that the error increases when
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FIG. 2. Energy correction factor for Alupper figur¢ and Cu
and Au (lower graph as function of the mirrors distance at

=300 K.
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FIG. 3. 8¢ (upper graphand &g (lower graph as a function of
the mirrors distance. The results are given for the three metals Al,
Cu-Au, and two larger plasma wavelengths.

tance range however, the whole correction factgrand 7
may be obtained as the produajf»; and 727t .

the temperature or the plasma wavelength are increased. It In the long distance range in contrast, the temperature
becomes of the order of 4% for a plasma wavelength oforrection becomes predominant. The conductivity correc-

0.5 um at 300 K. The sign obtained faf¥ means that the

tion has still to be accounted for but it may be calculated by

approximation gives too small values of force and energy. using the plasma model. This is illustrated by the correction
We want now to emphasize a few points. In order to makeactors obtained for a distance olL=3 um (7{

the discussion precise, we give numerical values of the cor= 1_117;7;E= 1.470):

rection factors for two experimentally relevant distances, Al

namely, 0.5 and 3um. The first distance corresponds to the
smallest distance for which the plasma model gives results in  7¢

correct agreement with the integration of optical dgté].

For this distance, =0.5 um, the thermal corrections do not
play a significant role ﬁlz 1.000;77E= 1.004).

Al Cu—Au
e 0.843 0.808
7E 0.843 0.808
nE 0.879 0.851 (13
7e 0.883 0.855

Cu—Au
0.971 0.963
nent 1.084 1.076
e 1.090 1.083 (14)
e 0.978 0.972
nENE 1.437 1.429
e 1.449 1.444

For this distance, all corrections have to be taken into ac-

count. The metals cannot be considered as perfect reflectors
yet, the temperature corrections are significant and the devia-
tion between the exact correction and the mere product has

At shorter distances the results obtained with the plasm& be included if a high accuracy is aimed at. This is espe-
model depart from the values calculated from the integratior¢ially true in the case of Casimir energy.

of optical data by more than 1%. Hence, the valuemﬁ)f
and nE used for distances smaller than Ogam have to take

IV. SCALING LAWS FOR THE DEVIATIONS

into account the more accurate dielectric function obtained An inspection of Fig. 3 shows that the curves correspond-

through an integration of optical daf&6]. In this short dis-

ing to different plasma wavelengths have similar shapes

012110-4



TEMPERATURE DEPENDENCE OF THE CASINR . .. PHYSICAL REVIEW A 62012110

0.6 depend on\p, provide a simple method for reaching a good
accuracy in the theoretical estimation of the whole correction
05 | factor
041 n= nPnT(l-l- ;\\—:A). (16)
A 03}
This method is less direct than the complete numerical inte-
02| gration of the forces which has been performed for obtaining
the curves presented in the previous section. But it requires
01} easier computations while nevertheless giving accurate esti-
mations of the correction factors. Typically, the deviati®n
0.0 : with a magnitude of the order of the % may be estimated
0.1 1.0 10.0 . - : .
L{um] wlth a much bgtter precision through the mere mspecuoq of
Fig. 4. Alternatively, one may use the analytical expression
0.6 of the functionsA presented in the next section and drawn as
the solid lines on Fig. 4.
05 |
V. ANALYTICAL EXPRESSIONS OF THE DEVIATIONS
04 The results of numerical integrations presented in the
Ae o3t foregoing section have shown that the deviatidpsand 5
are proportional to the plasma wavelength, for plasma
02 | wavelengths small compared to the thermal wavelength. In
this final section, we explain this scaling law by using a
o1 partial analytical integration of the whole correction factors.
To this aim, we write the force correction factor by divid-
0,001 e =0 ing Eq. (7) by the value of the ideal Casimir force

L{um] ne=nE+(nE— 1)+ A7, (17)

FIG. 4. The deviations are represented for the fofepper  The first term in Eq(17) corresponds to the vacuum contri-
graph and the free energylower graph after the rescaling de- pytion (8)

scribed by Eq.(15). Different plasma wavelengths lead to nearly

identical functions, drawn as dotted, dashed, and dotted-dashed 120L4 [ 5 1

lines. These functions are hardly distinguishable from the solid lines /= J dx K f dy f (18
which represent the analytical expressions derived in the next sec- m 0 0

tion.

with f still given by Eq.(6). A dimensionless frequency

. . C ) ) = w/ck measured with respect to the wave vector has been
with @ maximum which is practically attained for the same;oduced. Note also that the wavevecteris involved

d_istance _betv_veen the mirrors. The amplitude of the deV_iafhrough the dimensionless quantity, except in the expres-
tions, which is larger for the energy than for the force, iSgigng of reflection coefficients. In EGL8), the integration
found to vary linearly as a function of the plasma wavelength,, o, y may be performed analyticallisee Appendix At

Np- long di P imi i i
. . . ) . g distancesy tends to the limit of perfect reflection with
This scaling property is confirmed by Fig. 4 where We o \nown correctiorj15]

have drawn the deviations after an appropriate rescaling

L>)\P—>7’E:1_§T+”" (19

A= —6. (15

This expansion has been the subject of a number of papers

and it has been used to propose interpolation formulas

The curves obtained foAr and Ag for different plasma [20,21. However such a series expansion can hardly repro-

wavelengths at temperatuiie=300 K are nearly perfectly duce the behavior at small distances whe;fe varies as

identical to each other. These curves correspond to values &ff A, which just means that the conductivity effect is not a

the plasma wavelength small compared to the thermal wavesmall perturbation at short distancege the Appendijx

length and the scaling law would not be obeyed so well Coming back to the whole expressi¢h7) of the force

otherwise. correction factor, it remains to discuss the thermal contribu-
In other words, the deviation$- and 5 are proportional tions, that is, the second and third terms. These two terms

to the factom p /N1 on one hand, and to the functioAg and  come from the contributionm#0 to Eq.(7). The opposite

A on the other hand. The latter functions, which no longevalues of m give equal contributions and they have been
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gathered. The thermal contributions have been split in to twdt is proportional toxp and to a functionpg which does no
parts, the second and third terms in Efj7), which corre- longer depend onp
spond respectively to the limit of perfect mirrors on one

Ap
hand, AWFZT(ﬁF,
- 240_4
e~ 2 f dx K f dycogmyxki)fq, 15 =~ cost{am) 1
(20 P i1\ (am)sintam) | (am)Zsint?(am)
2
f1= 4 coslfam 2+4 costf(am
1ol _q N Ham) - (am) | 20

amsint?(am) sintt(am)

and the remainder, on the other hand, ) ) )
Collecting the results obtained up to now, we get an estima-

2404 o e tion of the force correction factope valid in the long dis-
Ame= > f dx f dy cogmyxht)Af, tance rangé.>\p
T m=1 Jolc 0
+(1- 1)+ Ang,
Af=f—1, 21) Ne= 77F77F ( 77F)(77F ) U= 25
_ P T 8 Ap T_1 P
_ e?rt ( 1-r? . 1—rﬁ ) _7]F77F+§T(7’F_ )+T¢F-
2kl 2kl 2 2kl 2
ert—1\e”—rf e —rj

Coming back to the notations of the previous section, this

The contribution(20) has been denotedyf;— 1) with 7]; the '[ieoSnUIAt |s. equivalent to the following expression for the func-
F .

correction factor obtained for perfect mirrors at a nonzero
temperature. For this term the integration oyés trivial and 8 \r mT:_l \r br

the integration ovek may be performed analytically, lead- Fa-7T 7 vt - (26)
ing to the known expressigi3—-15 3Sm L gl L e
. 4804 ~ @ k?>  sin(mk\y) This function is plotted as the solid line on Fig. 4 and it is
7E—1= > f de—— mA found to fit well the results of the complete numerical inte-
m=1Jo e —1 T gration presented in the previous section.
o Similar manipulations can be done for evaluating correc-
_130 ( 1 cosham) ) (22)  tion factors for the Casimir free energy. We give below the
(am)*  amsink(am) ' main results, that is the thermal correction factor evaluated
for perfect mirrors
AT -
d= —(——.
2L nE—1=452, (— 2, !
m=1 | (am)?* (am)3taniam)
To obtain the overall correction fact@t7) it now remains
to evaluate the last expressi¢®l). This can be done nu- 1
merically, thus leading to the same results as in the previous + (@m)2sint?(am) (27)
section since no approximation has been performed up to
now. But the results of the previous section suggest that wgnd the first order correction
may obtain an accurate estimation of this term through an
expansion in powers ofp. The plasma wavelengthp is Ay Ap
indeed much smaller than the thermal wavelengthin all e T¢E’
experimental situations studied up to now. Also, the devia-
tion studied in the foregoing section is appreciable only for 45 4 1
distances. much larger tham . Hence an accurate descrip- %= - E - 2t 3
tion of the deviation factor should be obtained by evaluating m-t (am)™  (am)*tanf(am)
A 5 at the first order inp.
This first order term is easily deduced from E(), (21) + ! + 2cosHam) . (28
(am)?sintf(am)  amsint®(am)
eZKL
Af=— ————(1-r?+1-rf), Since the long distance expansion#ft up to first order in
(e7=1) 29) the plasma wavelength is given by
g2t 2Kk\p 2\
@i w (1+y?). L>xp_>ng=1—;f+-.- (29)
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we deduce the functiodg corrections, which have not been considered in the present
- paper, are expected to play a significant role in theory-
A _E At e 1 Ar ﬁ (30) experiment comparisons in the short distance range.
L o5l Lol
E E
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VI. SUMMARY

) ) APPENDIX: THE VACUUM CONTRIBUTION
In the present paper, we have given an accurate evaluation

of the Casimir force and Casimir free energy between two In the present appendix, we give further analytical expres-
plane metallic mirrors, taking into account conductivity andsions for the correction factayi due to conductivity, calcu-
temperature corrections at the same time. The whole corredated with the plasma model for a null temperature. Introduc-
tions with respect to the ideal Casimir formulas, corresponding the notations

ing to perfect mirrors in vacuum, have been characterized by )
factorszg for the force andyg for the energy. These factors p=2 wp+ C K"~ CK y=—
have been computed through a numerical evaluation of the \/w§,+ 24 ek Ck

integral formulas. They have also been given a simplified

form as a product of three terms, namely, the reduction factowe rewrite the reflection coefficientd0)

associated with conductivity at null temperature, the increase

factor associated with temperature for perfect mirrors, and a y(1-p)=2
’ r,=- r=p——m.

further deviation factor measuring a kind of interplay be- + p: I py2(1_p)+2p

tween the two effects. This last factor turns out to lie in the

1% range for metals used in the recent experiments petn this case one integration may be performed analytically in

formed at ambient temperature. Hence the conductivity anéq. (18)

temperature corrections may be treated independently from

) 2 . ; . 4 o 2 L
each other and simply multiplied for theoretical estimations P_ 1200 f d ki3 2p"+peg
above this accuracy level. I + Jo et p2

However, when accurate comparisons between experi- 5 )

mental and theoretical values of the Casimir force are aimed _ 1+a 1 1+a%) 1

at, the deviation factor has to be taken into account in theo- 9= —_arctap— - — —arctan -,

retical estimations. The deviation factor is appreciable for

distances greater than the plasma wavelengtibut smaller kb4 n 14+
e"xtpltp

or of the order of the thermal wavelength . We have used ar=\/—/——-——1L
etxzpl-p

this property to derive a scaling law of the deviation factor.

This law allows one to obtain a simple but accurate estima-,

tion of the Casimir force and free energy through a mereAt th_e large distance IimityE tends to unity, that is the_value
inspection of Fig. 4. Alternatively one can use analyticaI_Obta'ned for perfect reflectors. At the small distance limf,

expressions which have been obtained through a first ordd$ found to vary ag16]

expansion inAp of the thermal contributions to Casimir L
forces and fit well the results of complete numerical integra- nE:a)\—, L<\p
tion. P
We have represented the optical properties of metals by 30 (= K2
the plasma model. This model does not lead to reliable esti- a= _f dKe3K’4(—
mations of the forces at small distances but this deficiency m?Jo vsinh(K/2)
may be corrected by using the real dielectric function of the )
metals. This does not affect the discussion of the present B K
paper, except for the fact that the pure conductivity effect has \/m
to be computed through an integration of optical data for
distances smaller than 0.am. Finally surface roughness =1.193.
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