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Temperature dependence of the Casimir effect between metallic mirrors

Cyriaque Genet, Astrid Lambrecht, and Serge Reynaud
Laboratoire Kastler Brossel, Unite´ de l’Ecole Normale Supe´rieure, de l’Universite´ Pierre et Marie Curie, et du Centre National

de la Recherche Scientifique, Campus Jussieu, case 74, 75252 Paris Cedex 05, France
~Received 22 February 2000; published 15 June 2000!

We calculate the Casimir force and free energy for plane metallic mirrors at nonzero temperature. Numerical
evaluations are given with temperature and conductivity effects treated simultaneously. The results are com-
pared with the approximation where both effects are treated independently and the corrections simply multi-
plied. The deviation between the exact and approximated results takes the form of a temperature dependent
function for which an analytical expression is given. The knowledge of this function allows simple estimations
that are accurate below the 1% level.

PACS number~s!: 12.20.Ds, 03.70.1k, 42.50.Lc
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I. INTRODUCTION

The Casimir force@1# has been observed in a number
‘‘historic’’ experiments@2–5#. It has been measured recent
with an improved experimental precision@6–8#. This should
allow for an accurate comparison with the predictions
quantum field theory, provided that these predictions acco
for the differences between real experiments and the id
ized Casimir situation. In particular, experiments are p
formed at room temperature between metallic mirrors a
not at zero temperature between perfect reflectors. The
oretical expectations should be computed with a high ac
racy if the aim is to test agreement between theory and
periment at, say, the 1% level. The efforts for accuracy
also worth for making it possible to control the effect
Casimir force when studying small short range forc
@9–11#.

The influence of thermal field fluctuations on the Casim
force are known to become important for distances of
order of a typical length@12–15#

lT5
2pc

vT
5

\c

kBT
. ~1!

When evaluated at room temperature, this lengthlT is ap-
proximately 7 mm. In contrast, the finite conductivity o
metals has an appreciable effect for distances smaller tha
of the order of the plasma wavelengthlP determined by the
plasma frequencyvP of the metal~see Ref.@16#, and refer-
ences therein!

lP5
2pc

vP
. ~2!

For metals used in the recent experiments, this wavelen
lies in the range 0.1–0.2mm. This means that conductivit
and thermal corrections to the Casimir force are importan
quite different distance ranges. Thermal corrections are u
ally ignored in the sub-mm range where the effect of impe
fect reflection is significant whereas the conductivity corr
tion is unimportant above a fewmm where the effect of
temperature becomes appreciable. This explains why the
corrections are usually treated independently from e
other. When an accurate comparison between experime
and theoretical values of the Casimir force is aimed at,
1050-2947/2000/62~1!/012110~8!/$15.00 62 0121
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error induced by this approximation has, however, to be p
cisely evaluated. Furthermore, the region of overlap of
two corrections is precisely in themm range, which is a
crucial distance range for the comparison between exp
ment and theory.

The purpose of this paper is to give an accurate evalua
of the Casimir forceF taking into account finite conductivity
and temperature corrections at the same time. To chara
ize the whole correction, we will compute the factorhF de-
scribing the combined effect of conductivity and temperat

hF5
F

FCas
,

~3!

FCas5
\cAp2

240L4
.

FCas is the ideal Casimir force corresponding to perfect m
rors in vacuum.L is the distance between the mirrors,A their
surface, and\ and c, respectively, the Planck constant an
the speed of light. We will also evaluate the factors asso
ated with each effect taken separately from each other

hF
P5

FP

FCas
, hF

T5
FT

FCas
. ~4!

FP is the Casimir force evaluated by accounting for fin
conductivity of the metals but assuming zero temperat
and FT is the Casimir force evaluated at temperatureT for
perfect reflectors. Of coursehF

P depends on the ratioL/lP

andhF
T on the ratioL/lT .

Now the question raised in the previous paragraphs m
be stated precisely: to which level of accuracy can the co
plete correction factorhF be approximated as the product
the factorshF

P and hF
T? To answer this question we wi

evaluate the quantity

dF5
hF

hF
PhF

T
21 ~5!

which measures the degree of validity of the approximat
where both effects are evaluated independently from e
other. We will give an analytical estimation of this deviatio
which may thus be taken into account without any difficul
©2000 The American Physical Society10-1
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We will also give the same results for the Casimir energy
defining a factorhE measuring the whole correction of Ca
simir energy due to conductivity and temperature and t
discussing the factorshE

P andhE
T and the deviationdE in the

same manner as for the force.
Some additional remarks have to be made at this po

First, recent experiments are not performed in the pla
plane but in the plane-sphere configuration. The Casi
force in this geometry is usually estimated from the proxi
ity theorem@17–21#. Basically this amounts to evaluating th
force by adding the contributions of various distances a
they were independent. In the plane-sphere geometry
force evaluated in this manner turns out to be given by
Casimir energy evaluated in the plane-plane configura
for the distanceL being defined as the distance of close
approach in the plane-sphere geometry. Hence, the factohE
evaluated in this paper for energy can be used to infer
factor for the force measured in the plane-sphere geome
Then, surface roughness corrections will not be considere
the present paper. Finally the dielectric response of the
tallic mirrors will be described by a plasma model. Th
model is known to describe correctly the Casimir force in
long distance range which is relevant for the study of te
perature effects. Keeping these remarks in mind, our res
will provide one with an accurate evaluation of the Casim
force in the whole range of experimentally explored d
tances.

II. CASIMIR FORCE AND FREE ENERGY

When real mirrors are characterized by frequen
dependent reflection coefficients, the Casimir force is
tained as an integral over frequencies and wavevectors a
ciated with vacuum and thermal fluctuations@22#. The
Casimir force is a sum of two parts corresponding to the t
field polarizations with the two parts having the same fo
in terms of the corresponding reflection coefficients

F5 (
k52`

`
vT

2
F@kvT#,

F@v>0#5
\A

2p2Ev
c

1`

dkk2f ,

~6!

f 5
r'

2 ~ iv,ik!

e2kL2r'
2 ~ iv,ik!

1
r uu

2~ iv,ik!

e2kL2r uu
2~ iv,ik!

,

F@2v#5F@v#.

r'(r uu) denotes the amplitude reflection coefficient for t
orthogonal~parallel! polarization of one of the two mirrors
The mirrors are here supposed to be identical, otherwiser'

2

should be replaced by the product of the two coefficientsv
is the frequency andk the wave vector along the longitudina
direction of the cavity formed by the two mirrors.F@v# is
defined for positive frequencies and extended to nega
ones by parity.
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The Casimir force~6! may also be rewritten after a Fou
rier transformation, as a consequence of Poisson form
@15#

F5 (
m52`

`

F̃~mlT!,

~7!

F̃~x!5E
0

`

dv cosS vx

c DF@v#.

The contribution of vacuum fluctuations, that is also the lim
of a null temperature (vT→0) in Eq.~6!, corresponds to the
contributionm50 in Eq. ~7!

FP5F̃~0!5E
0

`

dvF@v#. ~8!

Hence, the whole force~7! is the sum of this vacuum contri
bution m50 and of thermal contributionsmÞ0.

We will consider metallic mirrors with the dielectric func
tion «( iv) for imaginary frequencies given by the plasm
model

«~ iv!511
vP

2

v2
. ~9!

vP is the plasma frequency related to the plasma wavelen
lP by Eq.~2!. For the metals used in recent experiments,
values chosen for the plasma wavelengthlP will be 107 nm
for Al and 136 nm for Cu and Au. These values are in agr
ment with knowledge from solid state physics@23,24# as
well as with the integration of optical data described in de
in Ref. @16#. As already known, the results obtained from t
plasma model departs from the more accurate integratio
optical data for small distances. In this limit, however, t
thermal corrections do not play a significant role. In t
present paper we will restrict our attention to the plas
model and discuss the validity of the results obtained in t
manner at the end of the next section.

We will also focus the attention on mirrors with a larg
optical thickness for which the reflection coefficien
r'( iv,ik) and r uu( iv,ik) correspond to a simple vacuum
metal interface. With the plasma model, these coefficie
are read as

r'52
AvP

2 1c2k22ck

AvP
2 1c2k21ck

,

~10!

r uu5
AvP

2 1c2k22ck~11vP
2 /v2!

AvP
2 1c2k21ck~11vP

2 /v2!
.

For wave vectorsck smaller thanvP , mirrors may be con-
sidered to be perfectly reflecting. When converted to the d
tance domain, this entails that the force approaches the i
Casimir expression when evaluated at large distanceL
@lP .

The Casimir energy will be obtained from the force b
integration over the mirrors relative distance
0-2



t
ic
e

tiv
im

im
he
e
t

e
re

n
tr

o
in
io
nc

he
bl
pe

ce
it

ct
n

i

n
ha

a
e

h

w-
r-
on

or-
n-
he

ct
ly.
is-
.
en
ore

tion
e
e

,
of
ct
of

n of

cu-
It
hen

TEMPERATURE DEPENDENCE OF THE CASIMIR . . . PHYSICAL REVIEW A 62 012110
E5E
L

`

F~x!dx. ~11!

As this procedure is performed at constant temperature,
energy thus obtained corresponds to the thermodynam
definition of a free energy. For simplicity we will often us
the denomination of an energy. We will define a factorhE
measuring the whole correction of energy due to conduc
ity and temperature effects with respect to the ideal Cas
energy

hE5
E

ECas
,

~12!

ECas5
\cAp2

720L3
.

The positive value of the energy here means that the Cas
energy is a binding energy while the positive value of t
force is associated with an attractive character. We will th
define two factorshE

P and hE
T associated with each effec

taken separately from each other, as in Eq.~4!. As already
done for the force correction factors in Eq.~5!, we will fi-
nally evaluate the quantitydE which characterizes the degre
of validity of the approximation where both effects a
evaluated independently from each other. As mentioned
the Introduction, the results obtained for energy allows o
to deal with the Casimir force in the plane-sphere geome
when trusting the proximity force theorem.

III. NUMERICAL EVALUATIONS

In the following we present the numerical evaluation
the correction factors of the Casimir force and energy us
equations written in the former section. The force correct
factor was evaluated for the experimentally relevant dista
range of 0.1–10mm with the help of Eq.~7!, supposing
explicitly a plasma model for the dielectric function, and t
result was normalized by the ideal Casimir force. A dou
integration over frequencies and wavevectors had to be
formed. Due to the cosine dependence in Eq.~7!, the inte-
grand turned out to be a highly oscillating function. Hen
the integration required care although it was performed w
standard numerical routines. The energy correction fa
was then calculated by numerically integrating the force a
normalizing by the ideal Casimir energy@see Eq.~12!#. In-
tegration was restricted to a finite interval, the upper lim
exceeding at least by a factor of 104 the distance at which the
energy value was calculated. Extending the integration ra
by a factor of 100 changed the numerical result by less t
1027.

The results of the numerical evaluation ofhF are shown
as the solid lines in Fig. 1 for Al and for Cu-Au assuming
temperature ofT5300 K. They are compared with the forc
reduction factorhF

P due to finite conductivity~dashed lines!
and the force enhancement factorhF

T calculated for perfect
mirrors at 300 K~dashed-dotted lines!.

Figure 2 shows similar results for the factorhE obtained
through numerical evaluation of the Casimir free energy. T
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shape of the graphs is similar to the ones of the force. Ho
ever, while finite conductivity corrections are more impo
tant for the force, thermal effects have a larger influence
energy.

For the force as well as for the energy, temperature c
rections are negligible in the short distance limit while co
ductivity corrections may be ignored at large distances. T
whole correction factorh behaves roughly as the produ
hPhT of the two correction factors evaluated separate
However, both correction factors are appreciable in the d
tance range 124 mm in between the two limiting cases
Since this range is important for the comparison betwe
experiments and theory, it is necessary to discuss in a m
precise manner how good is the often used approxima
which identifiesh to the producthPhT. In order to assess th
quality of this approximation, we have plotted in Fig. 3 th
quantitiesdF and dE as a function of the distance for Al
Cu-Au, and two additional plasma wavelengths. A value
d50 would signify that the approximation gives an exa
estimation of the whole correction. An important outcome
our calculation is that the errorsdF anddE are of the order of
1% for Al and Cu-Au at a temperature of 300 K.

For estimations at the 5% level, the separate calculatio
hP andhT and the evaluation ofh as the producthPhT can
therefore be used. However, if a 1% level or a better ac
racy is aimed at, this approximation is not sufficient.
should be noticed furthermore that the error increases w

FIG. 1. Force correction factor for Al~upper figure! and Cu and
Au ~lower graph! as function of the mirrors distance atT5300 K.
0-3
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the temperature or the plasma wavelength are increase
becomes of the order of 4% for a plasma wavelength
0.5 mm at 300 K. The sign obtained ford means that the
approximation gives too small values of force and energ

We want now to emphasize a few points. In order to ma
the discussion precise, we give numerical values of the
rection factors for two experimentally relevant distanc
namely, 0.5 and 3mm. The first distance corresponds to t
smallest distance for which the plasma model gives result
correct agreement with the integration of optical data@16#.
For this distance,L50.5 mm, the thermal corrections do no
play a significant role (hF

T51.000;hE
T51.004).

Al Cu2Au

hF
P 0.843 0.808

hF 0.843 0.808
~13!hE

P 0.879 0.851
hE 0.883 0.855

At shorter distances the results obtained with the plas
model depart from the values calculated from the integra
of optical data by more than 1%. Hence, the values ofhF

P

andhE
P used for distances smaller than 0.5mm have to take

into account the more accurate dielectric function obtain
through an integration of optical data@16#. In this short dis-

FIG. 2. Energy correction factor for Al~upper figure! and Cu
and Au ~lower graph! as function of the mirrors distance atT
5300 K.
01211
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tance range however, the whole correction factorshF andhE
may be obtained as the productshF

PhF
T andhE

PhE
T .

In the long distance range in contrast, the temperat
correction becomes predominant. The conductivity corr
tion has still to be accounted for but it may be calculated
using the plasma model. This is illustrated by the correct
factors obtained for a distance ofL53 mm (hF

T

51.117;hE
T51.470):

Al Cu2Au

hF
P 0.971 0.963

hF
PhF

T 1.084 1.076
hF 1.090 1.083 ~14!
hE

P 0.978 0.972
hE

PhE
T 1.437 1.429

hE 1.449 1.444
For this distance, all corrections have to be taken into
count. The metals cannot be considered as perfect reflec
yet, the temperature corrections are significant and the de
tion between the exact correction and the mere product
to be included if a high accuracy is aimed at. This is es
cially true in the case of Casimir energy.

IV. SCALING LAWS FOR THE DEVIATIONS

An inspection of Fig. 3 shows that the curves correspo
ing to different plasma wavelengthslP have similar shapes

FIG. 3. dF ~upper graph! anddE ~lower graph! as a function of
the mirrors distance. The results are given for the three metals
Cu-Au, and two larger plasma wavelengths.
0-4
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with a maximum which is practically attained for the sam
distance between the mirrors. The amplitude of the de
tions, which is larger for the energy than for the force,
found to vary linearly as a function of the plasma wavelen
lP .

This scaling property is confirmed by Fig. 4 where w
have drawn the deviations after an appropriate rescaling

D5
lT

lP
d. ~15!

The curves obtained forDF and DE for different plasma
wavelengths at temperatureT5300 K are nearly perfectly
identical to each other. These curves correspond to value
the plasma wavelength small compared to the thermal wa
length and the scaling law would not be obeyed so w
otherwise.

In other words, the deviationsdF anddE are proportional
to the factorlP /lT on one hand, and to the functionsDF and
DE on the other hand. The latter functions, which no long

FIG. 4. The deviations are represented for the force~upper
graph! and the free energy~lower graph! after the rescaling de
scribed by Eq.~15!. Different plasma wavelengths lead to near
identical functions, drawn as dotted, dashed, and dotted-da
lines. These functions are hardly distinguishable from the solid li
which represent the analytical expressions derived in the next
tion.
01211
-

h
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r

depend onlP , provide a simple method for reaching a goo
accuracy in the theoretical estimation of the whole correct
factor

h5hPhTS 11
lP

lT
D D . ~16!

This method is less direct than the complete numerical in
gration of the forces which has been performed for obtain
the curves presented in the previous section. But it requ
easier computations while nevertheless giving accurate
mations of the correction factors. Typically, the deviationd
with a magnitude of the order of the % may be estima
with a much better precision through the mere inspection
Fig. 4. Alternatively, one may use the analytical express
of the functionsD presented in the next section and drawn
the solid lines on Fig. 4.

V. ANALYTICAL EXPRESSIONS OF THE DEVIATIONS

The results of numerical integrations presented in
foregoing section have shown that the deviationsdF anddE
are proportional to the plasma wavelengthlP , for plasma
wavelengths small compared to the thermal wavelength
this final section, we explain this scaling law by using
partial analytical integration of the whole correction facto

To this aim, we write the force correction factor by divid
ing Eq. ~7! by the value of the ideal Casimir force

hF5hF
P1~hF

T21!1DhF . ~17!

The first term in Eq.~17! corresponds to the vacuum contr
bution ~8!

hF
P5

120L4

p4 E
0

`

dk k3E
0

1

dy f ~18!

with f still given by Eq. ~6!. A dimensionless frequencyy
5v/ck measured with respect to the wave vector has b
introduced. Note also that the wavevectork is involved
through the dimensionless quantitykL, except in the expres
sions of reflection coefficients. In Eq.~18!, the integration
over y may be performed analytically~see Appendix!. At
long distances,hF

P tends to the limit of perfect reflection with
a known correction@15#

L@lP→hF
P512

8

3p

lP

L
1•••. ~19!

This expansion has been the subject of a number of pa
and it has been used to propose interpolation formu
@20,21#. However such a series expansion can hardly rep
duce the behavior at small distances wherehF

P varies as
L/lP , which just means that the conductivity effect is no
small perturbation at short distances~see the Appendix!.

Coming back to the whole expression~17! of the force
correction factor, it remains to discuss the thermal contri
tions, that is, the second and third terms. These two te
come from the contributionsmÞ0 to Eq. ~7!. The opposite
values of m give equal contributions and they have be

ed
s
c-
0-5
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gathered. The thermal contributions have been split in to
parts, the second and third terms in Eq.~17!, which corre-
spond respectively to the limit of perfect mirrors on o
hand,

hF
T215

240L4

p4 (
m51

` E
0

`

dk k3E
0

1

dy cos~myklT! f 1 ,

~20!

f 15
2

e2kL21

and the remainder, on the other hand,

DhF5
240L4

p4 (
m51

` E
v/c

`

dk k3E
0

1

dy cos~myklT!D f ,

D f 5 f 2 f 1

52
e2kL

e2kL21
S 12r'

2

e2kL2r'
2

1
12r uu

2

e2kL2r uu
2D .

~21!

The contribution~20! has been denoted (hF
T21) with hF

T the
correction factor obtained for perfect mirrors at a nonz
temperature. For this term the integration overy is trivial and
the integration overk may be performed analytically, lead
ing to the known expression@13–15#

hF
T215

480L4

p4 (
m51

` E
0

`

dk
k2

e2kL21

sin~mklT!

mlT

530(
m51

` S 1

~am!4
2

cosh~am!

am sinh3~am!
D , ~22!

a5
plT

2L
.

To obtain the overall correction factor~17! it now remains
to evaluate the last expression~21!. This can be done nu
merically, thus leading to the same results as in the prev
section since no approximation has been performed up
now. But the results of the previous section suggest that
may obtain an accurate estimation of this term through
expansion in powers oflP . The plasma wavelengthlP is
indeed much smaller than the thermal wavelengthlT in all
experimental situations studied up to now. Also, the dev
tion studied in the foregoing section is appreciable only
distancesL much larger thanlP . Hence an accurate descrip
tion of the deviation factor should be obtained by evaluat
DhF at the first order inlP .

This first order term is easily deduced from Eqs.~10!, ~21!

D f .2
e2kL

~e2kL21!2
~12r'

2 112r uu
2!,

.2
e2kL

~e2kL21!2

2klP

p
~11y2!.

~23!
01211
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It is proportional tolP and to a functionfF which does no
longer depend onlP

DhF.
lP

L
fF ,

fF5
15

p (
m51

` S cosh~am!

~am!3sinh~am!
1

1

~am!2sinh2~am!

1
4 cosh~am!

am sinh3~am!
2

214 cosh2~am!

sinh4~am!
D . ~24!

Collecting the results obtained up to now, we get an estim
tion of the force correction factorhF valid in the long dis-
tance rangeL@lP

hF5hF
PhF

T1~12hF
P!~hF

T21!1DhF ,

.hF
PhF

T1
8

3p

lP

L
~hF

T21!1
lP

L
fF .

~25!

Coming back to the notations of the previous section, t
result is equivalent to the following expression for the fun
tion DF :

DF5
8

3p

lT

L

hF
T21

hF
T

1
lT

L

fF

hF
T

. ~26!

This function is plotted as the solid line on Fig. 4 and it
found to fit well the results of the complete numerical int
gration presented in the previous section.

Similar manipulations can be done for evaluating corr
tion factors for the Casimir free energy. We give below t
main results, that is the thermal correction factor evalua
for perfect mirrors

hE
T21545(

m51

` S 2
2

~am!4
1

1

~am!3tanh~am!

1
1

~am!2sinh2~am!
D ~27!

and the first order correction

DhE.
lP

L
fE ,

fE5
45

p (
m51

` S 2
4

~am!4
1

1

~am!3tanh~am!

1
1

~am!2sinh2~am!
1

2cosh~am!

amsinh3~am!
D . ~28!

Since the long distance expansion ofhE
P up to first order in

the plasma wavelength is given by

L@lP→hE
P512

2

p

lP

L
1••• ~29!
0-6
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we deduce the functionDE

DE5
2

p

lT

L

hE
T21

hE
T

1
lT

L

fE

hE
T

. ~30!

This function is plotted as the solid line on the second gra
of Fig. 4 and also found to fit well the results of the nume
cal integration.

VI. SUMMARY

In the present paper, we have given an accurate evalua
of the Casimir force and Casimir free energy between t
plane metallic mirrors, taking into account conductivity a
temperature corrections at the same time. The whole cor
tions with respect to the ideal Casimir formulas, correspo
ing to perfect mirrors in vacuum, have been characterized
factorshF for the force andhE for the energy. These factor
have been computed through a numerical evaluation of
integral formulas. They have also been given a simplifi
form as a product of three terms, namely, the reduction fa
associated with conductivity at null temperature, the incre
factor associated with temperature for perfect mirrors, an
further deviation factor measuring a kind of interplay b
tween the two effects. This last factor turns out to lie in t
1% range for metals used in the recent experiments
formed at ambient temperature. Hence the conductivity
temperature corrections may be treated independently f
each other and simply multiplied for theoretical estimatio
above this accuracy level.

However, when accurate comparisons between exp
mental and theoretical values of the Casimir force are aim
at, the deviation factor has to be taken into account in th
retical estimations. The deviation factor is appreciable
distances greater than the plasma wavelengthlP but smaller
or of the order of the thermal wavelengthlT . We have used
this property to derive a scaling law of the deviation fact
This law allows one to obtain a simple but accurate estim
tion of the Casimir force and free energy through a m
inspection of Fig. 4. Alternatively one can use analytic
expressions which have been obtained through a first o
expansion inlP of the thermal contributions to Casim
forces and fit well the results of complete numerical integ
tion.

We have represented the optical properties of metals
the plasma model. This model does not lead to reliable e
mations of the forces at small distances but this deficie
may be corrected by using the real dielectric function of
metals. This does not affect the discussion of the pres
paper, except for the fact that the pure conductivity effect
to be computed through an integration of optical data
distances smaller than 0.5mm. Finally surface roughnes
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corrections, which have not been considered in the pre
paper, are expected to play a significant role in theo
experiment comparisons in the short distance range.
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APPENDIX: THE VACUUM CONTRIBUTION

In the present appendix, we give further analytical expr
sions for the correction factorhF

P due to conductivity, calcu-
lated with the plasma model for a null temperature. Introd
ing the notations

r5
AvP

2 1c2k22ck

AvP
2 1c2k21ck

, y5
v

ck

we rewrite the reflection coefficients~10!

r'52r, r uu5r
y2~12r!22

y2~12r!12r
.

In this case one integration may be performed analytically
Eq. ~18!

hF
P5

120L4

p4 E
0

`

d kk3
2r21rekLg

e2kL2r2
,

g5
11a2

2

a2
arctan

1

a2
2

11a1
2

a1
arctan

1

a1
,

a65AekL6r

ekL7r

11r

12r
21.

At the large distance limit,hF
P tends to unity, that is the value

obtained for perfect reflectors. At the small distance limit,hF
P

is found to vary as@16#

hF
P.a

L

lP
, L!lP

a5
30

p2E0

`

dKe23K/4S K2

Asinh~K/2!

2
K2

Acosh~K/2!
D
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