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Quantum properties of classical Fisher information
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~Received 13 December 1999; published 14 June 2000!

The Fisher information of a quantum observable is shown to be proportional to both~i! the difference of a
quantum and a classical variance, thus providing a measure of nonclassicality; and~ii ! the rate of entropy
increase under Gaussian diffusion, thus providing a measure of robustness. The joint nonclassicality of position
and momentum observables is shown to be complementary to their joint robustness in an exact sense.

PACS number~s!: 03.65.Bz
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I. INTRODUCTION

Fisher information was originally introduced by Fisher
1925 @1#, as a measure of ‘‘intrinsic accuracy’’ in statistic
estimation theory. It provides in particular a bound on t
degree to which members of a family of probability distrib
tions can be distinguished@2#. Quantum generalizations o
Fisher information may be given, providing correspondi
bounds on the degree to which members of a family of qu
tum states can be distinguished by measurement@3#. How-
ever, in both the classical and quantum contexts, the bou
are typically not achievable. Hence the primary applicat
of the Fisher information has been in providing unsharp s
tistical inequalities.

In this paper two curious connections betweenclassical
Fisher information andquantumsystems will be pointed out
which involve exactequalities. First, it is shown that the
classical Fisher information of a quantum observable is p
portional to the difference between the quantum variance
the classical variance of the conjugate observable. Thus
a measure of thenonclassicalityof the conjugate observable
Second, it is shown that the classical Fisher information
proportional to the rate of entropy increase of the observa
when the quantum system is subjected to Gaussian diffus
i.e., Brownian motion. Hence it is also a measure of
robustnessof the observable with respect to noise. The
sults further lead to natural measures of joint nonclassica
and joint robustness for quantum states, which are inver
related to each other.

Fisher information is defined in the following section, a
its relation to statistical measures of uncertainty briefly
viewed. In Sec. III the role of Fisher information as a me
sure of nonclassicality is developed and explored, based
natural decomposition of each quantum observable int
‘‘classical’’ and a ‘‘nonclassical’’ component. The ‘‘join
nonclassicality’’ of a quantum system is defined, and it
conjectured that it has a nontrivial lower bound for pu
quantum states, i.e., such states are inherently nonclas
In Sec. IV the connection between Fisher information a
quantum diffusion is demonstrated, essentially generaliz
de Bruijn’s identity for classical systems@4–6#. It follows
that the robustness of a quantum system with respect to n
is inversely proportional to its degree of nonclassicality, i
the more robust the state is with respect to noise, the m
classical it is. Generalizations to higher dimensions
briefly discussed in Sec. V, and conclusions given in Sec.
1050-2947/2000/62~1!/012107~6!/$15.00 62 0121
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II. FISHER INFORMATION AND FISHER LENGTH

The classical Fisher information associated with trans
tions of a one-dimensional observableX with corresponding
probability densityp(x) is given by@1,2#

FX5E dxp~x!@d ln p~x!/dx#2.0. ~1!

The primary application of this quantity in classical estim
tion theory is the lower bound

VarX>FX
21 ~2!

for the variance ofX, known as the Cramer-Rao inequali
@2#.

One may also define a corresponding Fisherlengthfor X,
by

dX5FX
21/2. ~3!

From Eq. ~1! dX is seen to quantify the length scale ov
which p(x) @or more precisely lnp(x)# varies appreciably.
The Cramer-Rao inequality Eq.~2! may then be rewritten as
the simple length inequality

DX>dX ~4!

for the root mean square deviationDX of X.
It is worth noting that Eq.~4! can be derived via the

properties of a length measure of fundamental geometric
nificance, theensemble lengthof X, given by the exponentia
of the entropy ofp(x):

LX5expF2E dxp~x!ln p~x!G . ~5!

LX is the unique measure of uncertainty that satisfies sev
basic geometric properties expected of a ‘‘length’’@7#, and
one has

A2peDX>LX>A2pedX. ~6!

The first inequality in Eq.~6! corresponds to the well known
property that entropy is maximized for a fixed value ofDX
by a Gaussian distribution. The second inequality may
derived from either an identity of de Bruijn@5,6# ~see also
Sec. IV!, or from a logarithmic Sobelov inequality@8#, and is
also saturated by Gaussian distributions. The Cramer-
inequality Eq.~4! immediately follows from Eq.~6!.
©2000 The American Physical Society07-1
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III. MEASURE OF NONCLASSICALITY

A. Position

Consider a quantum system described by wave func
c(x). The position probability density is thenp(x)
5uc(x)u2, and hence from Eq.~1! the corresponding Fishe
information is

FX5E dxuc~x!u2@c8~x!/c~x!1c* 8~x!/c* ~x!#2

54E dxc* 8~x!c8~x!1E dxuc~x!u2@c8~x!/c~x!

2c* 8~x!/c* ~x!#2

5~4/\!2@^P2&c2^Pcl
2 &c#, ~7!

whereP denotes the momentum observable conjugate toX,
and Pcl is a classicalmomentum observable correspondi
to the statec, given by the function

Pcl~x!5~\/2i !@c8~x!/c~x!2c* 8~x!/c* ~x!#

5\@argc~x!#8. ~8!

The identification of the observablePcl with a classical
momentum is strongly supported on two grounds. First,
probability densityuc(x)u2 is well known to satisfy the clas
sical continuity equation@9#

]uc~x!u2/]t1~]/]x!@ uc~x!u2m21Pcl~x!#50, ~9!

as a direct consequence of the Schro¨dinger equation. Thus
m21Pcl(x) is the local velocity of probability flow in posi-
tion space, implyingPcl(x) may be interpreted as a classic
momentum of a particle at positionx, where the probability
of finding the particle atx is uc(x)u2. Second, one has th
identity

^P&c5^Pcl&c ~10!

following from Eq. ~8! ~using integration by parts!. Hence
the expectation values of the observablesP andPcl are equal
for all wave functions.

Now, given the quantum and classical momentum obse
ablesP andPcl , it is natural to define thenonclassicalmo-
mentum of the system byPnc5P2Pcl . Thus the momen-
tum P separates into a classical and a nonclass
contribution. From Eq.~8! one has

^PPcl1PclP&c5E dx~Pc!* ~Pclc!1E dx~Pclc!* ~Pc!

5~\/ i !E dx@c8~x!c* ~x!

2c* 8~x!c~x!#Pcl~x!

52^Pcl
2 &c ,

and so from Eq.~10!
01210
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VarcP5VarcPcl1VarcPnc . ~11!

Hence the classical and nonclassical contributions are un
related in variance.

The main result of this section is a simple relationsh
between nonclassicality and Fisher information. In partic
lar, from Eqs.~7!, ~10!, and~11! one has

FX5~4/\2!~DPnc!
2. ~12!

The position Fisher information is therefore proportional
the nonclassical variance of the conjugate momentum.

A direct measure of the nonclassicality of the momentu
representing the size of nonclassical momentum fluctuatio
is given by the root mean square deviationDPnc . From Eq.
~3! one may equivalently write Eq.~12! as

dXDPnc5\/2. ~13!

Thus the Fisher length of position is inversely proportion
to the nonclassicality of momentum. Equation~13! is rather
similar in form to the Heisenberg uncertainty relation, a
indeed the latter may be immediately derived from it.
particular, one has

DXDP>dXDP>dXDPnc5\/2, ~14!

where the first inequality follows from Eq.~4!, and the sec-
ond from Eq.~11!. The inequalitydXDP>\/2 implicit in
Eq. ~14! was previously proved by Stam@4,6#.

Note that the Fisher length is always finite from Eqs.~1!
and ~3!, and hence the momentum nonclassicality is ne
zero. Further, from Eq.~11!, the momentum nonclassicalit
is maximum, for a fixed value ofDP, when the variance of
Pcl vanishes, i.e., whenPcl is a constant. From Eq.~8! this
occurs when the phase ofc(x) is linear inx. Thus

DPnc5DP iff argc~x!5a1k0x, ~15!

for constantsa andk0.

B. Momentum

One may, in direct analogy with Eqs.~11!, ~12!, and~13!,
obtain the conjugate equalities

FP5~4/\2!~DXnc!
25~4/\2!@VarcX2VarcXcl#, ~16!

DXncdP5\/2, ~17!

for the Fisher informationFP and the Fisher lengthdP of the
momentum observableP conjugate to X. Here Xnc5X
2Xcl , and

Xcl~p!5~ i\/2!@f8~p!/f~p!2f* 8~p!/f* ~p!# ~18!
7-2
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QUANTUM PROPERTIES OF CLASSICAL FISHER . . . PHYSICAL REVIEW A 62 012107
is a classical position observable corresponding to statec,
where f(p) denotes the momentum wave function of t
system. ThusFP anddP are related to the nonclassicality o
the position.

The identification ofXcl as a classical position observab
has a similar justification to the analogous interpretation
Pcl . In particular, conservation of momentum probabil
uf(p)u2 implies a continuity equation of the form

]uf~p!u2/]t1~]/]p!@ uf~p!u2F~p!#50, ~19!

where F(p) is the momentum flow, i.e.,force, associated
with momentump. If the system is subject to a potenti
energyV(x), then multiplying the Schro¨dinger equation in
the momentum representation byf* (p), taking the imagi-
nary part, and expandingV(x) in a Taylor series, one finds

F~p!52~]/]x!V@Xcl~p!#1O~\2!. ~20!

Thus the observableXcl corresponds to the classical forc
2V8(x) associated with the system, to first order in\. One
has also an equality analogous to Eq.~10!, i.e.,

^X&c5^Xcl&c . ~21!

C. Joint nonclassicality

A natural~dimensionless! measure ofjoint nonclassicality
for a quantum statec may now be defined, as

Jnc5DXncDPnc /~\/2!. ~22!

From Eqs.~13! and ~17! one then has

Jnc5~\/2!~dXdP!21, ~23!

i.e., the joint nonclassicality is inversely proportional to th
product of the position and momentum Fisher lengths. Re-
calling that equality holds throughout Eq.~6! for Gaussian
distributions, it follows thatJnc51 for minimum uncertainty
states.

It is of interest to ask whether there is some maxim
upperbound for joint nonclassicality set by quantum theo
corresponding to a lower bound for the productdXdP. The
answer is in the negative; in particular, there is no dir
analog of the Heisenberg uncertainty relation Eq.~14! for
Fisher lengths. As an example, consider thenth energy
eigenstate of a one-dimensional harmonic oscillator. For
case the momentum and position wave functions are b
real up to a constant phase factor. Hence from Eq.~15! and
its analog for the momentum wave function,

dXdP5~\2/4!~DXDP!215\/~4n12!, ~24!

which becomes arbitrarily small asn→`. Thus the joint
nonclassicality becomes arbitrarily large with increasingn.
Note that the first equality in Eq.~24! holds whenever the
position wave function is~up to a linear phase factor and
translation! a symmetric or antisymmetric real function.

It is seen that the coherent states of a harmonic oscilla
being minimum uncertainty states, have a relatively sm
01210
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nonclassicalityJnc51, in comparison toJnc52n11 for the
number states. This is in accordance with the picture that
relatively localized coherent states correspond to the cla
cal harmonic motion of a particle@10#. It should be noted
that the Wentzel-Kramers-Brillouin~WKB! approximation,
with its semiclassical interpretation that high energy qu
tum states correspond to classical regions of motion, d
not imply that such states~e.g., number states! are them-
selves classical in any sense. In particular, all quantum t
sition probabilities are correctly asymptotically reproduc
for such states@11#, and hence the WKB approximation con
tains all quantum properties in the high energy limit.

The definition of joint nonclassicality may be extended
mixed states, represented by density operators, via Eqs.~1!,
~3!, and ~23!. For such statesJnc can be arbitrarily small
~e.g., consider thermal states of the harmonic oscilla
which have Gaussian position and momentum distributio
in the high temperature limit!. This is reasonable, as on
expects certain mixed states, such as thermal states, t
equivalent to classical states in appropriate limits. Howev
it would be of interest to determine whether there is anon-
zero minimum value for the joint nonclassicality ofpure
states. This would correspond to the idea that there is ne
sarily something inherently nonclassical about a pure qu
tum state. The general uncertainty relationDADB
>u^@A,B#&cu/2 ~Ref. @9#! implies via Eq.~22! that

Jnc>u11~ i /\!^@Pcl ,Xcl#&cu, ~25!

suggesting the conjectureJnc>1 for pure states.

D. Kinetic energies and quantum potentials

From Eq.~7! it is seen that the position Fisher informatio
FX is proportional to the difference of a quantum and a cl
sical kinetic energy. Thus the average energy of a quan
particle of massm is increased relative to the correspondi
average classical energy by the additional amount

EF5\2FX /~8m!. ~26!

Now, it is known from the de Broglie–Bohm approach
quantum mechanics that there is anexact correspondence
between a quantum particle and an ensemble of class
particles, where the latter has probability densityp(x)
5uc(x)u2, momentumPcl(x) associated with positionx, and
is subjected to a quantum potentialQ(x) in addition to the
classical potentialV(x), where@12#

Q~x!5\2/~8m!@p8~x!2/p~x!222p9~x!/p~x!#. ~27!

The average energy increase due toQ(x) is therefore
^Q(x)&c , and hence from Eq.~26! one has

^Q~x!&c5\2FX /~8m!. ~28!

ThusFX is proportional to the average value of the quantu
potential, providing another link between Fisher informati
and nonclassicality. It is tempting, on the basis of this res
7-3
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MICHAEL J. W. HALL PHYSICAL REVIEW A 62 012107
to regard the first term in Eq.~27! as a nonclassical kineti
energy, and the second term as a nonclassical dispersiv
tential.

Equation ~28! was recently derived by Reginatto@13#
based on an even stronger connection between the qua
potential and Fisher information. In particular, consider
variation of FX in Eq. ~1! with respect to the probability
densityp(x). One then finds, using integration by parts, t
remarkable relation

dFX5~8m/\2!E dxQ~x!dp. ~29!

This result is the basis of a new approach to quantum
chanics, where a Fisher information term and a classical
drodynamical action term are added, representing ‘‘epi
mological’’ and ‘‘ontological’’ contributions, respectively, to
the total action@13,14#. This approach is to be distinguishe
from that of Frieden@15#, where essentially ageneralized
Fisher information is defined for wave functions, propo
tional to the quantum kinetic energy^P2/(2m)&c .

IV. MEASURE OF ROBUSTNESS

A. de Bruijn’s identity

Consider the entropy increase of an observableX sub-
jected to Gaussian diffusion, i.e., Brownian motion. T
probability densitypt(x) satisfies the diffusion equation

ṗt5gpt9 ~30!

for some diffusion rate constantg, with solution

pt~x!5~pgt !21/2E dyp0~x2y!exp@2y2/~gt !#, ~31!

and hence the initial density is convolved with a Gaussian
variancegt/2. The rate of entropy increase at timet follows
as

ṠX~ t !52E dx@11 ln pt~x!# ṗt~x!5gFX~ t !, ~32!

whereFX(t) is the Fisher information at timet and the sec-
ond equality follows from Eqs.~1! and ~30!, using integra-
tion by parts.

This link between Fisher information and entropy i
crease is known asde Bruijn’s identity@4–6#. Since an ob-
servable that is robust to noise will have a small rate
entropy increase, and vice versa, it follows thatFX5FX(0)
is inversely related to therobustnessof X with respect to the
onset of Gaussian noise.

The application of de Bruijn’s identity to quantum sy
tems is straightforward. Moreover, even though the posit
and momentum observables are complementary, and h
cannot be specified simultaneously, it turns out that th
observables behave independently when the system is
jected to simultaneous position and momentum diffusi
01210
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Hence the quantum analogs of Eq.~32! for position and mo-
mentum can be derived from asinglequantum diffusion pro-
cess.

In particular, the diffusion equation for a classical pha
space ensembler(x,p) is

ṙ5g~]2/]x2!r1s~]2/]p2!r5gˆp,$p,r%‰1sˆx,$x,r%‰,

where g and s are rate constants and$ % is the Poisson
bracket. Under the Dirac correspondence$ %→( i\)21@ # one
thus obtains the quantum diffusion equation

ṙ52~g/\2!†P,@P,r#‡2~s/\2!†X,@X,r#‡, ~33!

wherer is the density operator describing the system@16#.
The evolution of the position probability densitypt(x)

5^xurux& is therefore given by

ṗt~x!52~g/\2!^xu†P,@P,r#‡ux&2~s/\2!^xu†X,@X,r#‡ux&.
~34!

The second term on the right vanishes sinceXux&5xux& by
definition, while the first term reduces togpt9(x) using the
relation ^xu@P,A#ux&5(\/ i )d^xuAux&/dx ~derived by ex-
pandingux& in momentum eigenstates!. Thuspt(x) satisfies
the diffusion equation Eq.~30!. A similar result obtains for
the evolution of the momentum density, and hence from
Bruijn’s identity Eq.~32! one has

FX5gṠX~0!, FP5sṠP~0!. ~35!

Thus, the position and momentum Fisher information o
quantum system are inversely related to the robustness o
corresponding observables, with respect to the onset of q
tum phase space diffusion as per Eq.~33!.

Noting Eqs. ~12!, ~16!, and ~35!, the robustness of the
position is high~small FX) when the nonclassicality of the
momentum is low, and vice versa. Thusthe more classical
an observable is, the more robust the conjugate observa
is with respect to noise.

B. Joint robustness

From Eqs.~3! and~35! a natural~dimensionless! measure
of joint robustness for a quantum system is given by

Jr5dXdP/~\/2!. ~36!

In particular, Jr is relatively large when the position and
momentum entropies increaseslowly under the onset of
phase space diffusion, and vice versa. Note from Eq.~24!
that the joint robustness can be arbitrarily small. Convers
thermal states of the harmonic oscillator have arbitra
large robustness in the high temperature limit.

Comparison of Eqs.~23! and ~36! shows that

JncJr51, ~37!

i.e., the nonclassicality and robustness of a quantum st
are inversely proportional. This is in accord with other re-
7-4
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QUANTUM PROPERTIES OF CLASSICAL FISHER . . . PHYSICAL REVIEW A 62 012107
sults in the literature suggesting that classical behavio
associated with robustness to noise@17#.

V. HIGHER DIMENSIONS

In more than one dimension the Fisher information g
eralizes to a matrix. However, the results of the previo
sections can and do generalize in different ways, to relati
involving either the matrix, its trace, or its determina
~which are all equivalent in one dimension!. It is therefore
useful to indicate explicitly the higher-dimensional analo
of various results.

First, for ann-dimensional observableX with probability
densityp(x), the analog of the Fisher information in Eq.~1!
is the ~positive definite! Fisher matrix@2#

FX5E dnxp~x!@¹ ln p~x!#@¹ ln p~x!#T, ~38!

where¹ is the gradient operator andT denotes the vecto
transpose. The Cramer-Rao inequality Eq.~2! then general-
izes to@2#

Cov~X!5^XXT&2^X&^XT&>FX
21 ~39!

for the covariance matrix ofX, and the inequality chain in
Eq. ~6! becomes

~DR/An!n>DV>~2pe!2n/2VX>dV>~AndR!n, ~40!

whereDR and dR are the covariance radius@ tr Cov(X)#1/2

and Fisher radius@ tr FX#21/2 respectively;DV and dV are
the covariance volume@det Cov(X)#1/2 and Fisher volume
@detFX#21/2 respectively; andVX denotes the ensemble vo
ume, given by the exponential of the ensemble entropy@7#.
The first and last inequalities are immediate consequence
the geometric mean of~positive! matrix eigenvalues being
no greater than their arithmetic mean; the second inequ
corresponds to the variational property that entropy is ma
mized for a given covariance by a Gaussian distribution,
the third inequality is given by Demboet al. ~Sec. IV C of
@6#!.

For a quantum system described by wave functionc(x)
one finds, in analogy to Eqs.~11! and ~12!,

FX5~4/\2!@Covc~P!2Covc~Pcl!#5~4/\2!Covc~Pnc!,
~41!

wherePcl is a classical momentum vector defined by repl
ing c8(x) by ¹c(x) in Eq. ~8!, andP5Pcl1Pnc . Hencethe
position Fisher matrix is proportional to the covariance m
trix of the nonclassical momentum. A conjugate relation
holds forFP .

There are two natural scalar measures of joint noncla
cality, which reduce to the measure in Eq.~22! for n51. The
first is

Jnc
(1)5~\/2!2n@det Covc~Xnc!det Covc~Pnc!#

1/2

5~\/2!n@detFX detFP#1/2, ~42!
01210
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which may be interpreted as a~dimensionless! nonclassical
phase space volume. The second is the~dimensionless! non-
classicalarea

Jnc
(2)5~DR!Xnc

~DR!Pnc
/~\/2!5~\/2!/@~dR!X~dR!P#,

~43!

where DR and dR are the covariance and Fisher radius
defined following Eq.~40!.

The analog of Eq.~7! is

tr FX5~4/\2!@^P•P&c2^Pcl•Pcl&c#, ~44!

and thus the trace of the Fisher matrix is proportional to
difference of a quantum and a classical kinetic energy~and
hence to the average of the quantum potential energy as
Sec. III D!. Also, from Eq.~41! one has the Stam inequalit
Cov(P)>(\2/4)FX ~Refs. @4,6#!, which multiplied by Eq.
~39!, yields the Heisenberg uncertainty relation

Cov~X!Cov~P!>~\2/4!I n , ~45!

whereI n denotes then3n identity matrix.
Finally, the de Bruijn identities in Eq.~35! generalize to

give a somewhat less direct connection between the Fi
matrix and entropy increase in higher dimensions. In parti
lar consider then-dimensional analog of the diffusion equa
tion Eq. ~30!,

ṗt5~¹TG¹!pt , ~46!

whereG denotes a real symmetric positive diffusion matr
with constant coefficients. Under the coordinate transform
tion y5G21/2x this reduces to the canonical formṗt
5¹2pt , and in exact analogy to the derivation of Eq.~32!
one finds that thetraceof the Fisher matrix forY is equal to
the rate of entropy increase ofY. But it follows directly from
the coordinate transformation thatFY5G1/2FXG1/2 and SY
5SX2(1/2)ln detG, and hence one has the generalization

ṠX~ t !5tr@GFX~ t !# ~47!

of Eq. ~32!.
For the case of isotropic diffusion,G5gI n , it follows that

tr FX is inversely related to the robustness ofX with respect
to the onset of diffusion noise. In particular, for thequantum
isotropic diffusion equation

ṙ52~g/\2!d i j †Pi ,@Pj ,r#‡2~s/\2!d i j †Xi ,@Xj ,r#‡
~48!

~with summation over repeated indices!, one finds the analog

ṠX~0!5g tr FX, ṠP~0!5s tr FP ~49!

of Eq. ~35!, leading to the natural generalization of Eq.~36!

Jr5~\/2!21@ tr FX tr FP#21/25dRXdRP /~\/2! ~50!

for the joint robustness of a quantum state. Comparison
Eqs.~43! and ~50! shows that joint nonclassicality and join
robustness are inversely related as before.
7-5
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VI. CONCLUSIONS

It is seen that the Fisher information of a quantum obse
able is essentially the variance of the nonclassical compo
of the conjugate observable, as per Eqs.~12! and~16!. Thus
FX is a measure of the nonclassicality ofP, and vice versa.
Moreover, a measure of joint nonclassicality for two con
gate observables may be naturally defined to be inver
proportional to the product of their Fisher lengths, as per
~23!. It would be of interest to determine whether pure sta
have a nontrivial minimum joint nonclassicality.

Application of de Bruijn’s identity to quantum diffusion
processes shows that the Fisher information of an observ
is also essentially the rate of entropy increase of the obs
able at the onset of phase space diffusion, and hence i
versely related to the robustness of the observable with
spect to noise. The Fisher length in particular provide
direct measure of robustness, being large when the entr
increase is small and vice versa. The joint robustness of
conjugate obervables is therefore defined as being pro
tional to the product of their Fisher lengths, as per Eq.~36!.
Joint robustness is simply related to joint nonclassicality
per Eq.~37!: the more nonclassical a state is, the less rob
it is, and vice versa.

These results can be generalized to vector observable
indicated in Sec. V, where the Fisher matrix is essentially
ry

nf.
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nonclassical covariance matrix for the conjugate observa
and its trace is essentially the rate of entropy increase un
the onset of isotropic diffusion. Joint nonclassicality a
joint robustness are again simply related, and indeed are
versely proportional if defined via Fisher radiuses as per E
~43! and ~50!.

Finally, it is interesting to note that the Fisher length a
pears naturally in a bound for the average information, wh
may be obtained per measurement ofX on members of an
ensembleE. In particular, this average information,I (XuE),
is given by the entropy corresponding to the average dis
bution of X over the ensemble minus the average entropy
X over the members of the ensemble@18#. From Eq.~6! one
then immediately has the bound

I ~XuE!< ln@~DX!E /~dX!min# ~51!

i.e., the information is bounded by the logarithm of the ra
of two lengths~the ensemble root mean square deviation
X, and the minimum Fisher length ofX over the ensemble!.
For higher dimensions corresponding inequalities may be
tained via Eq.~40!. Other information-theoretic inequalitie
involving Fisher information are given by Demboet al. @6#,
and further inequalities are discussed by Romeraet al. in the
context of obtaining bounds on radial expectation valu
@19#.
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