PHYSICAL REVIEW A, VOLUME 62, 012107
Quantum properties of classical Fisher information
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The Fisher information of a quantum observable is shown to be proportional tdibdile difference of a
guantum and a classical variance, thus providing a measure of nonclassicalit§ij)ahe rate of entropy
increase under Gaussian diffusion, thus providing a measure of robustness. The joint nonclassicality of position
and momentum observables is shown to be complementary to their joint robustness in an exact sense.

PACS numbds): 03.65.Bz

I. INTRODUCTION Il. FISHER INFORMATION AND FISHER LENGTH

Fisher information was originally introduced by Fisher in  The classical Fisher information associated with transla-
1925[1], as a measure of “intrinsic accuracy” in statistical tions of a one-dimensional observatevith corresponding
estimation theory. It provides in particular a bound on theprobability densityp(x) is given by[1,2]
degree to which members of a family of probability distribu-
tions can be distinguishef®]. Quantum generalizations of FX:I dxp(x)[dIn p(x)/dx]?>>0. (1)
Fisher information may be given, providing corresponding
bounds on the degree to which members of a family of quanThe primary application of this quantity in classical estima-
tum states can be distinguished by measurerf@ntHow-  tjon theory is the lower bound
ever, in both the classical and quantum contexts, the bounds .
are typically not achievable. Hence the primary application VarX=Fy 2
qf t.he E|sher mformaﬂon has been in providing unsharp S the variance ofX, known as the Cramer-Rao inequality
tistical inequalities. [2].

In this paper two curious connections betwesassical
Fisher information andiuantumsystems will be pointed out,
which involve exactequalities First, it is shown that the
classical Fisher information of a quantum observable is pro- 5X=F;1’2. 3
portional to the difference between the quantum variance and ) )
the classical variance of the conjugate observable. Thus it i§0M Ed.(1) 6X is seen to quantify the length scale over
a measure of theonclassicalityof the conjugate observable. Which p(x) [or more precisely Ip(x)] varies appreciably.
Second, it is shown that the classical Fisher information is "€ Cramer-Rao inequality E(R) may then be rewritten as
proportional to the rate of entropy increase of the observablf€ Simple length inequality
when the quantum system is subjected to Gaussian diffusion, AX= 5X @)

i.e., Brownian motion. Hence it is also a measure of the

robustnesof the observable with respect to noise. The re-for the root mean square deviatidrX of X.

sults further lead to natural measures of joint nonclassicality It is worth noting that Eq.(4) can be derived via the
and joint robustness for quantum states, which are inverselgroperties of a length measure of fundamental geometric sig-
related to each other. nificance, theensemble lengtbf X, given by the exponential

Fisher information is defined in the following section, and of the entropy ofp(x):
its relation to statistical measures of uncertainty briefly re-
viewed. In Sec. Il the role of Fisher information as a mea-
sure of nonclassicality is developed and explored, based on a LX_eXF{ f dxpOx)in p(x)
natural decomposition of each quantum observable into
“classical” and a “nonclassical” component. The “joint
nonclassicality” of a quantum system is defined, and it is
conjectured that it has a nontrivial lower bound for pure
quantum states, i.e., such states are inherently nonclassical. J2meAX=Ly=\2mesX. (6)

In Sec. IV the connection between Fisher information and

guantum diffusion is demonstrated, essentially generalizing he first inequality in Eq(6) corresponds to the well known
de Bruijn’s identity for classical systemd—6]. It follows  property that entropy is maximized for a fixed valuefoX

that the robustness of a quantum system with respect to nois®y a Gaussian distribution. The second inequality may be
is inversely proportional to its degree of nonclassicality, i.e.derived from either an identity of de Bruijib,6] (see also

the more robust the state is with respect to noise, the mor8ec. V), or from a logarithmic Sobelov inequalifg], and is
classical it is. Generalizations to higher dimensions arelso saturated by Gaussian distributions. The Cramer-Rao
briefly discussed in Sec. V, and conclusions given in Sec. Vlinequality Eq.(4) immediately follows from Eq(6).

One may also define a corresponding Fideagthfor X,

. (5)

?_X is the unigue measure of uncertainty that satisfies several
basic geometric properties expected of a “lengflr], and
one has
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Ill. MEASURE OF NONCLASSICALITY Var,P=Var,Py+Var,P,. (11)

A. Position

Consider a quantum system described by wave functior’flence the classical and nonclassical contributions are uncor-
#(xX). The position probability density is therp(x) related in variance.

=|4(x)|?, and hence from Eq1) the corresponding Fisher The main result of this section is a simple relationship
informati(;n is between nonclassicality and Fisher information. In particu-

lar, from Eqgs.(7), (10), and(11) one has
Fx:f dx| () [PL o () gp(x) + ¢ " ()] 4% (x) ]2

Fx=(4/h%)(AP,c)>. (12)
=4f dxy* ’(x)z//’(x)+f dx| (X)) |?[ 4" (X)] p(X) The position Fisher information is therefore proportional to
the nonclassical variance of the conjugate momentum.
— () (X)]? A directmeasure of the nonclassicality of the momentum,
S ) representing the size of nonclassical momentum fluctuations,
= (410) (P = (P yl, (7) s given by the root mean square deviatidbR,,.. From Eq.

_ (3) one may equivalently write Eq412) as
whereP denotes the momentum observable conjugat¥, to

and P, is aclassicalmomentum observable corresponding

to the statey, given by the function OXAPn=h12. (13
P (X)=(RI2D)[ " (X)) p(X) = o " (X)] f* (X) ] Thusthe Fisher length of position is inversely proportional

_ , to the nonclassicality of momentumiquation(13) is rather
=hlargy(x)]". ®  similar in form to the Heisenberg uncertainty relation, and

indeed the latter may be immediately derived from it. In

The identification of the observabR, with a classical é)articular, one has

momentum is strongly supported on two grounds. First, th

probability density| #(x)|? is well known to satisfy the clas-
sical continuity equatiofi9] AXAP=6XAP=6XAP, =112, (14)

Ay at+ (X[ ¢(x¥) M~ Py (x)]=0, (9  where the first inequality follows from Ed4), and the sec-

) o ) ond from Eq.(11). The inequalitydXAP=#/2 implicit in
as a direct consequence of the Sclinger equation. Thus Eq. (14) was previously proved by Stafd,6].

m™'P¢(x) is the local velocity of probability flow in posi- Note that the Fisher length is always finite from E¢s.
tion space, implyind>. (x) may be interpreted as a classical g (3), and hence the momentum nonclassicality is never

momentum of a particle at position where the probability - zero. Further, from Eq(11), the momentum nonclassicality
of finding the particle ak is [(x)|*. Second, one has the g maximum, for a fixed value ok P, when the variance of

identity P, vanishes, i.e., wheR,, is a constant. From Ed8) this
(PYy=(Paby (10 occurs when the phase @{x) is linear inx. Thus

following from Eq. (8) (using integration by partsHence AP, =AP iffargy(x) = a+KkoX, (15
the expectation values of the observalifeend P, are equal
for all wave functions. for constantse andkg.

Now, given the quantum and classical momentum observ-
ablesP and P, it is natural to define theonclassicalmo-
mentum of the system bf,.=P—P,,. Thus the momen- B. Momentum
tum P separates into a classical and a nonclassical One may, in direct analogy with Eg&ll), (12), and(13),
contribution. From Eq(8) one has obtain the conjugate equalities

Fp=(4/42)(AX,o)%= (4h2)[Var,X—Var, Xy ], (16)
<PPc|+Pc.P>¢=fdx(Pw>*(Pc.w>+fdx(Pc|w>*(P¢> i ' e

AX, SP=H12, 17)
— (#li) f Ao () 9 ()

for the Fisher informatiofr , and the Fisher lengthP of the

— ¢ (X)P(X)]P¢i(X) momentum observablé® conjugate toX. Here X,.=X
=2( P§|>¢;, —X¢, and
and so from Eq(10) Xe(p)=(i112)[¢"(p) p(p)—¢* ' (p) $*(p)] (18)
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is a classical position observable corresponding to state nonclassicalityd,,.=1, in comparison td,,.=2n+1 for the

where ¢(p) denotes the momentum wave function of the number states. This is in accordance with the picture that the

system. Thu$, and 5P are related to the nonclassicality of relatively localized coherent states correspond to the classi-

the position. cal harmonic motion of a particlgl0]. It should be noted
The identification ofX., as a classical position observable that the Wentzel-Kramers-BrillouiGWKB) approximation,

has a similar justification to the analogous interpretation ofvith its semiclassical interpretation that high energy quan-

P¢ . In particular, conservation of momentum probability tum states correspond to classical regions of motion, does

|#(p)|? implies a continuity equation of the form not imply that such stateg.g., number statgsare them-
selves classical in any sense. In particular, all quantum tran-
dlp(p)|?/ot+ (alap)[| (p)|*F(p)]=0, (190 sition probabilities are correctly asymptotically reproduced

) ) ) for such statefl1], and hence the WKB approximation con-
where F(p) is the momentum flow, i.eforce, associated tains all quantum properties in the high energy limit.
with momentump. If the system is subject to a potential  The definition of joint nonclassicality may be extended to
energyV(x), then multiplying the Schidinger equation in  mixed states, represented by density operators, via @gs.
the momentum representation ki (p), taking the imagi-  (3), and (23). For such states,. can be arbitrarily small
nary part, and expanding(x) in a Taylor series, one finds (e.g., consider thermal states of the harmonic oscillator,
_ ) which have Gaussian position and momentum distributions,
F(p)=—(9/ax)V[Xa(p)]+ O(%7). (20 in the high temperature limit This is reasonable, as one
expects certain mixed states, such as thermal states, to be
equivalent to classical states in appropriate limits. However,
it would be of interest to determine whether there isam-
zero minimum value for the joint nonclassicality qfure
_ states. This would correspond to the idea that there is neces-
(X) = (Xetby- (21 St oulc |
sarily something inherently nonclassical about a pure quan-
tum state. The general uncertainty relatioAAAB

Thus the observabl¥., corresponds to the classical force
—V'(x) associated with the system, to first orderzinOne
has also an equality analogous to EtQ), i.e.,

C. Joint nonclassicality =|([A,B]),//2 (Ref.[9]) implies via Eq.(22) that
A natural(dimensionlessmeasure ojoint nonclassicality
for a quantum state¢y may now be defined, as Ine= |1+ (iR)([Pei Xail) ol (25)
Ine=AXncAP/(112). (220 suggesting the conjectuts.=1 for pure states.

From Egs.(13) and(17) one then has o . _
D. Kinetic energies and quantum potentials
Jne=(h12)(6X5P) 1, (23 From Eq.(7) it is seen that the position Fisher information
Fy is proportional to the difference of a quantum and a clas-
sical kinetic energy. Thus the average energy of a quantum
particle of massn is increased relative to the corresponding
average classical energy by the additional amount

i.e., the joint nonclassicality is inversely proportional to the
product of the position and momentum Fisher lengfRe-
calling that equality holds throughout E¢p) for Gaussian
distributions, it follows thatl,.= 1 for minimum uncertainty
states. Er=%2Fy/(8m). (26)

It is of interest to ask whether there is some maximum
upperbound for joint nonclassicality set by quantum theory, Now, it is known from the de Broglie—Bohm approach to
corresponding to a lower bound for the prodééP. The  quantum mechanics that there is aract correspondence
answer is in the negative; in particular, there is no direChetween a quantum particle and an ensemble of classical
analog of the Heisenberg uncertainty relation Etf) for  particles, where the latter has probability densityx)
Fisher lengths. As an example, consider i energy  —|y,(x)|2, momentumP,(x) associated with positior, and

eigenstate of a one-dimensional harmonic oscillator. For thigg subjected to a quantum potent@(x) in addition to the
case the momentum and position wave functions are botR|zssical potentiaV/(x), where[12]

real up to a constant phase factor. Hence from (&§) and
its analog for the momentum wave function, Q(x)=K2/(8m)[p’ (X)2p(x)2—2p"(X)/p(x)]. (27)

SXSP=(H%14)(AXAP) " t=H/(4n+2), (24) , ,
The average energy increase due @¢x) is therefore

which becomes arbitrarily small as—x. Thus the joint {(Q(X)),. and hence from Eq26) one has
nonclassicality becomes arbitrarily large with increasimg

Note that the first equality in Eq24) holds whenever the (Q(X)),=h?Fy/(8m). (28)
position wave function igup to a linear phase factor and a
translation a symmetric or antisymmetric real function. ThusFy is proportional to the average value of the quantum

It is seen that the coherent states of a harmonic oscillatopotential, providing another link between Fisher information
being minimum uncertainty states, have a relatively smaland nonclassicality. It is tempting, on the basis of this result,
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to regard the first term in Eq27) as a nonclassical kinetic Hence the quantum analogs of E§2) for position and mo-
energy, and the second term as a nonclassical dispersive pmentum can be derived fromsinglequantum diffusion pro-
tential. cess.
Equation (28) was recently derived by Reginat{d3] In particular, the diffusion equation for a classical phase
based on an even stronger connection between the quantwspace ensemblg(x,p) is
potential and Fisher information. In particular, consider the
variation of Fy in Eq. (1) with respect to the probability — p=y(9%/9x?) p+ (5% Ip?) p=y{p.{p.p}}+ o{x,{x,p}},
densityp(x). One then finds, using integration by parts, the
remarkable relation where y and o are rate constants and} is the Poisson
bracket. Under the Dirac correspondeti¢e- (i%) Y[ ] one
thus obtains the quantum diffusion equation
5Fx=(8m/h2)f dxQ(x) dp. (29
p=—(RA[P,[P,p]]-(alh®)[X[X,p]l, (33
This result is the basis of a new approach to quantum me- ) ) .
chanics, where a Fisher information term and a classical hywherep is the density operator describing the sys{dr@.
drodynamical action term are added, representing “episte- 1he evolution of the position probability density(x)
mological” and “ontological” contributions, respectively, to = {X|p|x) is therefore given by
the total actior{13,14). This approach is to be distinguished .
from that of Frieden[15], where essentially generalized  P(X)=— (¥/A2)(X|[P,[P,p]1x) = (a/:*)(X|[X,[X,p]]|X).
Fisher information is defined for wave functions, propor- (34)

. . . 2
tional to the quantum kinetic energ§™/(2m)), The second term on the right vanishes siX¢g)=x|x) by

definition, while the first term reduces tgp; (x) using the
IV. MEASURE OF ROBUSTNESS relation (x|[P,A]|x)=(A/i)d(x|A|x)/dx (derived by ex-

A. de Bruijn’s identity panding|x) in momentum eigenstatesThusp,(x) satisfies
the diffusion equation Eq.30). A similar result obtains for
the evolution of the momentum density, and hence from de
Bruijn’s identity Eq.(32) one has

Consider the entropy increase of an observablsub-
jected to Gaussian diffusion, i.e., Brownian motion. The
probability densityp,(x) satisfies the diffusion equation

: " Fx=75¢(0), Fp=0Sp(0). 35
P=vp! (30) x=¥Sx(0) p=05p(0) (35
Thus, the position and momentum Fisher information of a
guantum system are inversely related to the robustness of the
corresponding observables, with respect to the onset of quan-
_ t 71/21 d —yyexd —y2/(yt)], (31 tum phase space diffusion as per E8p3).
PiX)=(myt) YRoOx—y)exd =y (y0], (31 Noting Egs.(12), (16), and (35), the robustness of the
position is high(small Fyx) when the nonclassicality of the
and hence the initial density is convolved with a Gaussian ofnomentum is low, and vice versa. Thtiee more classical
varianceyt/2. The rate of entropy increase at tim#llows  an observable is, the more robust the conjugate observable
as is with respect to noise

for some diffusion rate constant with solution

S(t)= - f dX[1+In p(x)IPe(X) = YFx(t), (32 B Joint robustness
From Eqgs.(3) and(35) a natural(dimensionlessmeasure

. . . . ) of joint robustness for a quantum system is given b
whereF(t) is the Fisher information at timeand the sec- J g y g y

ond equality follows from Eqgs(1) and (30), using integra- J, = 6XSEP/(h12). (36)
tion by parts.

This link between Fisher information and entropy in-In particular, J, is relatively large when the position and
crease is known ade Bruijn’s identity[4—6]. Since an ob- momentum entropies increasdowly under the onset of
servable that is robust to noise will have a small rate ofphase space diffusion, and vice versa. Note from 24)
entropy increase, and vice versa, it follows thgt=Fx(0) that the joint robustness can be arbitrarily small. Conversely,
is inversely related to theobustnes®f X with respect to the thermal states of the harmonic oscillator have arbitrarily
onset of Gaussian noise. large robustness in the high temperature limit.

The application of de Bruijn’s identity to quantum sys-  Comparison of Eqs(23) and(36) shows that
tems is straightforward. Moreover, even though the position
and momentum observables are complementary, and hence Jndi=1, (37
cannot be specified simultaneously, it turns out that these
observables behave independently when the system is sube., the nonclassicality and robustness of a quantum state
jected to simultaneous position and momentum diffusionare inversely proportionalThis is in accord with other re-
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sults in the literature suggesting that classical behavior isvhich may be interpreted as(dimensionlessnonclassical
associated with robustness to noj&&]. phase space volume. The second is(tlimmensionlessnon-
classicalarea

Ve HIGRER DIMENSIONS IQ=(AR)x_(AR)p, /(1i12)=(hI2)I[(SRIx( 3R],

In more than one dimension the Fisher information gen- (43
eralizes to a matrix. However, the results of the previous ) ) )
sections can and do generalize in different ways, to relation&here AR and 6R are the covariance and Fisher radiuses
involving either the matrix, its trace, or its determinant defined following Eq.(40).

(which are all equivalent in one dimensjorit is therefore The analog of Eq(7) is
g?(\e/g]rlicfgslr;glscji. explicitly the higher-dimensional analogs trFX=(4/h2)[<P- P)y—(Par- Par)u]. (44)

First, for ann-dimensional observablé with probability  anq thus the trace of the Fisher matrix is proportional to the
densityp(x), the analog of the Fisher information in Bd)  gifference of a quantum and a classical kinetic eneegyd
is the (positive definitg Fisher matrix 2] hence to the average of the quantum potential energy as per

Sec. I D). Also, from Eq.(41) one has the Stam inequality

szf anp(X)[V In p(X)][V In p(X)]T, (38) COV(P)?(ﬁ2/4)FX (RefS [4,6]), Wthh multlplled by Eq
(39), yields the Heisenberg uncertainty relation

whereV is the gradient operator anfl denotes the vector CouX)CouP)=(%2/4)1,,, (45)
transpose. The Cramer-Rao inequality E2). then general-
izes to[2] wherel , denotes ther X n identity matrix.
Finally, the de Bruijn identities in Eq.35) generalize to
CovX) =(XXT) = (XWXTy=F* (39  give a somewhat less direct connection between the Fisher

matrix and entropy increase in higher dimensions. In particu-
for the covariance matrix oK, and the inequality chain in lar consider ther-dimensional analog of the diffusion equa-
Eq. (6) becomes tion Eq. (30),

(ARIVM"=AV=(27€) "2V = 8V=(\nsR)", (40) p=(V'TV)p, (46)

where AR and R are the covariance raditisr Cov(X)]Y2 whereI" denotes a real symmetric positive diffusion matrix
and Fisher radiugtr F ]~ 2 respectively;AV and sV are  With constant coefficients. Under the coordinate transforma-
the covariance volumédet Cov(X)]¥? and Fisher volume tion y=I"% this reduces to the canonical forrp,
[detFy]~ 2 respectively; and/y denotes the ensemble vol- =V?p;, and in exact analogy to the derivation of E§2)
ume, given by the exponential of the ensemble entfafly  one finds that thérace of the Fisher matrix folY is equal to
The first and last inequalities are immediate consequences 8ie rate of entropy increase ¥t But it follows directly from

the geometric mean dfpositive matrix eigenvalues being the coordinate transformation th&t, =I"Y%F,I'¥? and S,

no greater than their arithmetic mean; the second inequalitys Sx— (1/2)Indetl’, and hence one has the generalization
corresponds to the variational property that entropy is maxi-

mized for a given covariance by a Gaussian distribution, and Sx()=t[T'Fx(1)] (47)
the third inequality is given by Dembet al. (Sec. IV C of
[6]) of Eqg. (32)

For the case of isotropic diffusio,= yl,,, it follows that
tr Fy is inversely related to the robustnessXfvith respect
to the onset of diffusion noise. In particular, for thgantum

Fx=(4/h2)[Cov.,,( P)— Cov,( PC|)]=(4/ﬁ2)Cov¢,( Pro), isotropic diffusion equation
(41) .
p=—(yI%*)8[P; [P} ,p]1]- (a/1?) &;[X; [ X ’p]](48

For a quantum system described by wave functigr)
one finds, in analogy to Eq§l1) and(12),

whereP,, is a classical momentum vector defined by replac-
ing ' (x) by V¢(x) in Eq.(8), andP=P;+ P, .. Hencethe
position Fisher matrix is proportional to the covariance ma-
trix of the nonclassical momentunf conjugate relation 5(0)=ytrFy, Sp(0)=ctrFp (49)
holds forFp.

There are two natural scalar measures of joint nonclassipf Eq. (35), leading to the natural generalization of Eg6)
cality, which reduce to the measure in E82) for n=1. The

(with summation over repeated indigesne finds the analog

first is J,=(h12) " trFytrFp] Y?=6RySRp/(%12)  (50)
JB=(#/2)""[det Coyy(X o) det Coyy(Pyo) 1H2 for the joint robustness of a quantum state. Comparison of
Egs.(43) and (50) shows that joint nonclassicality and joint
= (#/2)"[detFy detFp]Y?, (42 robustness are inversely related as before.
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VI. CONCLUSIONS nonclassical covariance matrix for the conjugate observable,
and its trace is essentially the rate of entropy increase under

Itis seen that the Fisher information of a guantum observ;[he onset of isotropic diffusion. Joint nonclassicality and

able is essentially the variance of the nonclassical component. L - ;
. int robustness are again simply related, and indeed are in-
of the conjugate observable, as per E4®) and(16). Thus J ; . : L7 )
F.isa mJea%ure of the nonclass?caliltzi/ @3‘ and (vicze versa versely proportional if defined via Fisher radiuses as per Egs.
X " (43) and (50).

Moreover, a measure of joint nonclassicality for two conju- Finally, it is interesting to note that the Fisher length ap-

E‘ears naturally in a bound for the average information, which

SI’nay be obtained per measurementXobn members of an
ensemblef. In particular, this average informatioh(X|€),

is given by the entropy corresponding to the average distri-
ution of X over the ensemble minus the average entropy of
over the members of the ensempls8]. From Eq.(6) one

en immediately has the bound

proportional to the product of their Fisher lengths, as per Eq
(23). It would be of interest to determine whether pure state
have a nontrivial minimum joint nonclassicality.
Application of de Bruijn’s identity to quantum diffusion
processes shows that the Fisher information of an observab
is also essentially the rate of entropy increase of the obser\{—h
able at the onset of phase space diffusion, and hence is in-
versely related to the robustness of the observable with re- H(X|E)<IN[(AX) ¢/ (5X) min] (51)
spect to noise. The Fisher length in particular provides a
direct measure of robustness, being large when the entropie., the information is bounded by the logarithm of the ratio
increase is small and vice versa. The joint robustness of twof two lengths(the ensemble root mean square deviation of
conjugate obervables is therefore defined as being propoi, and the minimum Fisher length &f over the ensemble
tional to the product of their Fisher lengths, as per €8). For higher dimensions corresponding inequalities may be ob-
Joint robustness is simply related to joint nonclassicality asained via Eq.(40). Other information-theoretic inequalities
per Eq.(37): the more nonclassical a state is, the less robusinvolving Fisher information are given by Demtet al. [6],
it is, and vice versa. and further inequalities are discussed by Ronwtral. in the
These results can be generalized to vector observables asntext of obtaining bounds on radial expectation values
indicated in Sec. V, where the Fisher matrix is essentially th¢19].
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