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Tunneling times in the Copenhagen interpretation of quantum mechanics
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Recently, people have calculated tunneling’s characteristic times within Bohmian mechanics. Contrary to
some characteristic times defined within the framework of the standard interpretation of quantum mechanics,
these have reasonable values. Here, we introduce one of the available definitions for tunneling’s characteristic
times within the standard interpretation as the best definition that can be accepted for the tunneling times. We
show that, due to experimental limitations, Bohmian mechanics leads to the same tunneling times.

PACS number~s!: 03.65.Ca, 73.40.Gk, 74.50.1r
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I. INTRODUCTION

A problem that does not have a clearcut answer in qu
tum mechanics is the time that it takes for an electron to p
through a potential barrier. This is a problem that is imp
tant from both a theoretical perspective@1,2# and a techno-
logical view @3,4#.

In quantum mechanics, time enters as a parameter ra
than an observable~to which an operator can be assigne!.
Thus, there is no direct way to calculate tunneling tim
People have tried to introduce quantities that have the dim
sion of time and can somehow be associated with the
sage of the particle through the barrier. These efforts h
led to the introduction of several times, some of which a
completely unrelated to the others@5–17#. Some people have
used the Larmor precession as a clock@5# to measure the
duration of tunneling for a steady state@6,7# or for a wave
packet@8#. Others have used Feynman paths like real pa
to calculate an average tunneling time with the weight
function exp$iS@x(t)#/\%, whereS is the action associated wit
the path x(t)—where x(t)’s are Feynman paths initiate
from a point on the left of the barrier and ending at anot
point on the right of it@9#. On the other hand, a group o
people have used some features of an incident wave pa
and the comparable features of the transmitted packet to
troduce a delay as tunneling time@10,18#. There are many
other approaches, some of which are mentioned in R
@10–17#. But, there is no general consensus among physic
about the meaning of them and about which, if any, of th
is the proper tunneling time. In Bohmian mechanics@19#,
however, there is a unique way of identifying the time
passage through a barrier. This time has a reasonable be
ior with respect to the width of the barrier and the energy
the particle@20,21#.

It is expected that with the availability of reliable expe
mental results in the near future, an appropriate definit
can be selected from the available ones, or that the gro
would be prepared for a more appropriate definition of
transmission time. But now, we want to use the definition
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tunneling time in the framework of Bohmian mechanics
select one of available definitions for quantum tunneli
times ~QTT! within the standard interpretation as the be
definition.

Our paper is organized as follows: after introducing t
Olkhovsky-Recami and Muga-Brouard-Sala QTT, by usin
heuristic argument in Sec. II, we introduce, in Sec. III, t
Bohmian QTT. Then, in Sec. IV we give a critical discussi
about Cushing’s thought experiment and about what it re
measures.

II. TUNNELING’S CHARACTERISTIC TIMES
IN THE COPENHAGEN FRAMEWORK

To begin with, we consider the time at which a partic
passes through a definite point in space. We describe
particle by a Gaussian wave packet which is incident fr
the left. The most natural way to estimate this time of p
sage is to find the time at which the peak of the wave pac
passes through that point. But this is not the right criter
for finding the time of passage of the particle~even if the
wave packet is symmetrical!. To clarify the matter, we divide
the packet, in the middle, into two parts. The probability
finding the particle in the front section is12 and the same is
true for the back section. We represent the transit time of
center of gravity of the front section byt1 and that of the
back section byt2. The average time for the particle’s pa
sage through that point isT5 1

2 (t11t2). If the transit time for
the peak of the wave is denoted byt, we have

t15t2
x1

vg
, ~1a!

t25t1
x2

vg
, ~1b!

wherevg is the group velocity of the wave packet andx1 and
x2 are, respectively, the distances of the centers of gravit
the front and the back sections of the packet from its p
position, when these centers pass the point under cons
ation. Thus, we have

T5
1

2
~ t11t2!5t1

x22x1

2vg
. ~2!
©2000 The American Physical Society06-1
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If the wave packet did not spread,x1 andx2 would remain
equal andT would be equal tot. But, since the wave packe
spreads,TÞt. In fact, the average transit time for the partic
is later than that of the wave’s peak. Because the sprea
of the packet decreases the transit time of the center of g
ity of the wave’s front section, and increases that of the b
section. But the change is not symmetrical~i.e., x1Þx2), as
the back section of the wave experiences the spreading
longer time.

Now, consider a wave packetc(x,t), which is incident
from the left and approaches a far pointx. The best time that
we can attribute to the particle’s passage throughx is

t~x!5

E
0

`

tuc~x,t !u2v~x,t !dt

E
0

`

uc~x,t !u2v~x,t !dt

, ~3!

wherev(x,t)5 j (x,t)/uc(x,t)u2, j (x,t) being the probability
current density. In fact, we have divided the wave pac
into infinitesimal elements. The transit time when the parti
is in one of these elements is weighted by the probability
finding the particle there~i.e., uc(x,t)u2dx5uc(x,t)u2
3v(x,t)dt). Figure 1 illustrates the difference between th
time and the time that the peak passes that point. For na
wave packets, for which the rate of spreading is large,
difference is large. From Eq.~3!, one can define a distribu
tion for the transit time throughx,

P~x,t !5
uc~x,t !u2v~x,t !

E
0

`

uc~x,t !u2v~x,t !dt

5
j ~x,t !

uTu2
, ~4!

where uTu2 is the transition probability for passing throug
x0. Dumont and Marchioro introduced this definition for th
distribution of the time at which a particle passes through
far side of a potential barrier@22#. They did not find it pos-
sible to define the time spent by the particle in the barr
Leavens showed that this is also the distribution for the sa
time in Bohmian mechanics@23#.

FIG. 1. Average time for the transmission of the probability fl
~ . . . ! and the passage of the peak~—!, for packets having differen
widths (s).
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By looking at Eq.~3!, one notices thatt(x) is in fact the
average time for the passage of the probability densityucu2
throughx. Since the probability density represents the pro
ability of the presence of the particle, it is natural to take t
average time for the passage of probability density throug
point as a measure of the average time for particle’s pass
through that point. But, while part of the probability flu
passes through the barrier, the particle itself might not
detected on the other side of the barrier. We do not, howe
expect to get a definite prediction for an individual syste
and in the laboratory we usually consider an ensemble
systems. Thus, it is natural to take the average time for
passage of the probability density as a measure of the a
age time for the particle’s passage. From now on, we t
about the particle’s average time of transit. Consider, a p
ticle incident on a barrier from the left. Then, one can eas
extend Eq.~3! to define average times for the particle’s e
trance into the barrier (t in), the particle’s exit from the right
side of the barrier (tout

T ), and the particle’s exit from the lef
side of the barrier (tout

R ). To simplify the matter we use the
following notations:

~•••Q!x
65E

0

`

dt•••~6 ! j ~x,t !Q@6 j ~x,t !#, ~5!

where j (x,t) represents the probability current density at t
point x at timet, andQ is the usual step function. Using thi
definition and Eq.~3!, we definet in , tout

R , andtout
T as

t in5

E
0

`

dt t j~a,t !Q@1 j ~a,t !#

E
0

`

dt j~a,t !Q@1 j ~a,t !#

5
~ tQ!a

1

~Q!a
1

, ~6a!

tout
T 5

E
0

`

dt t j~b,t !Q@1 j ~b,t !#

E
0

`

dt j~b,t !Q@1 j ~b,t !#

5
~ tQ!b

1

~Q!b
1

, ~6b!

tout
R 5

E
0

`

dt t~2 ! j ~a,t !Q@2 j ~a,t !#

E
0

`

dt~2 ! j ~a,t !Q@2 j ~a,t !#

5
~ tQ!a

2

~Q!a
2 , ~6c!

wherea andb represent the coordinates of the left and rig
side of the barrier, respectively. Using these times, one
write the times that the particle spends in the barrier bef
the transmission (tT

OM) or reflection (tR
OM) as

tT
OM5tout

T 2t in , ~7a!

tR
OM5tout

R 2t in . ~7b!
6-2
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We shall call them OM times1 ~referring to Olkhovsky and
Recami@24# and Muga, Brouard, and Sala@25#!. The average
time spent by the particle in the barrier, irrespective of be
transmitted or reflected, the so-called dwelling time, is th
given by

td
OM5~Q!b

1tT
OM1~Q!a

2tR
OM , ~8!

where (Q)b
1 and (Q)a

2 represent the probability of the pa
ticle’s exit from the right and left sides of the barrier, respe
tively. Now, the probability of the particle’s exit from th
right, (Q)b

1 , is equal to the probability of the particle’
transmission through the barrier,uTu2. But the probability of
the particle’s exit from the left, (Q)a

2 , is not equal to the
probability of reflection from the barrier,uRu2, because the
particle could be reflected without entering the barrier. Us
Eq. ~7!, one can write Eq.~8! in the form

td
OM5~Q!b

1tout
T 1~Q!a

2tout
R 2~Q!a

1
t in , ~9!

where we have made use of the fact that (Q)b
11(Q)a

2

5(Q)a
1 , which follows from the conservation of probability

The first two terms in Eq.~9! represent the average of
particle’s exit time from the barrier, irrespective of the dire
tion of the exit. Using Eq.~6! we can write the right-hand
side of Eq.~9! in the form

td
OM5E

0

`

dt t@ j ~b,t !2 j ~a,t !#. ~10!

Using the continuty equation, one can easily show that
~10! coincides with the standard dwelling time defined by

tD5E
0

`

dtE
a

b

uc~x,t !u2dx. ~11!

III. TUNNELING’S CHARACTERISTIC TIMES
IN BOHMIAN FRAMEWORK

In the causal interpretation of quantum mechanics, p
posed by Bohm@19#, a particle has a well-defined positio
and velocity at each instant, where the latter is obtained fr
a fieldc(x,t) satisfying the Schro¨dinger equation. If the par
ticle is atx at the timet, its velocity is given by

v~x,t !5
j ~x,t !

uc~x,t !u2
. ~12!

For a particle that is prepared in the statec(x,0) att50, any
uncertainty in its dynamical variables is a result of our ign
rance about its initial positionx0. Our information about the
particle’s initial position is given by a probability distribu

1Note that in the orginal definition of Olkhovsky and Recam
temporal integrations run from2` to 1`. In Ref. @26# they
discussed that the substitution of integrals of the type*0

` for inte-
grals *2`

1` have physical significance. Any way, we shall u
relations~6!.
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tion uc(x0,0)u2. If we know the initial positionx0 of the
particle, we can find its position at a later time,x(x0 ;t), from
Eq. ~12!. Then, when a particle encounters a barrier, it
determined whether the particle passes through the barrie
not, and one can determine when the particle enters the
rier and when it leaves the barrier. Thus the time spent by
particle within the barrier is easily calculated. But, since
do not know the particle’s initial position, we consider a
ensemble of initial positions, given by the distributio
uc(x0 ,t)u2. Then we calculate the average time spent by
particle within the barrier. To compare the time of reflecti
or transmission in this framework with OM characteris
times, we first consider the time of arrival atx1, for a particle
that was atx0 at t50

t~x1 ;x0!5E
Cx0

dx t~x;x0!d~x12x!, ~13!

where the integral is defined along the Bohmian pathCx0

which starts atx0. This relation can also be written in th
form

t~x1 ;x0!5E
0

`

dtuv„x~x0 ;t !,t…utd„x12x~x0 ;t !…, ~14!

where

d„x12x~x0 ;t !…5
d~ t~x1!2t !

uv„x~x0 ;t !,t…u
. ~15!

Since it is possible for the particle to pass the pointx1 twice
~due to reflection from the barrier!, we definet6(x0 ;x1) in
the following manner:

t6~x0 ;x1!5E
0

`

dtuv„x~x0 ;t !,t…utd„x12x~x0 ;t !…

3Q~6v„x~x0 ;t !,t…!, ~16!

wheret1 and t2 correspond to the cases where the parti
passesx1 from left to right and from right to left, respec
tively. Since for long periods of time, a particle either pass
or is reflected~depending on itsx0), we defineQR andQT in
the following way@20,21#:

QT~x0!51, QR~x0!50 ~ for transmission!, ~17a!

QT~x0!50, QR~x0!51 ~ for reflection!. ~17b!

Thus, we haveQT(x0)1QR(x0)51. Using these functions
the average times spent by the transmitted and the refle
particles,tT

B andtR
B , respectively, are given by

tT
B5

^t1~x0 ;b!QT~x0!&2^t1~x0 ;a!QT~x0!&

^QT~x0!&
, ~18a!

tR
B5

^t2~x0 ;a!QR~x0!&2^t1~x0 ;a!QR~x0!&

^QR~x0!&
, ~18b!

where
6-3
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^•••&5E
2`

1`

dx0•••uc~x0 ,t !u2, ~19!

but ^QR(x0)&5uTu2 and ^QR(x0)&5uRu2 @20#. Thus, we
have for the dwelling time

td
B5uTu2tT

B1uRu2t
R

B

5^t1~x0 ;b!QT~x0!&1^t2~x0 ;a!QR~x0!&

2^t1~x0 ;a!&, ~20!

where we have made use of the fact thatQT1QR51. Using
the fact that *2`

1`dx0f „x(x0 ,t),t…uc(x0,0)u2d„x2x(x0 ,t)…
5 f (x,t)uc(x,0)u2, one can easily show that

^t1~x0 ;b!QT~x0!&5~ tQ!b
1 , ~21a!

^t2~x0 ;a!QR~x0!&5~ tQ!a
2 , ~21b!

^t1~x0 ;a!&5~ tQ!a
1 . ~21c!

Thus, td
B is equal totd

OM and therefore equal totD . Of
course, the equality oftd

B andtD was shown earlier by Leav
ens@20,21#. But the relations~21! are new and they are im
portant because they show the relation between OM cha
teristic times and those defined in Bohmian mechan
Notice that in the causal interpretation of Bohm, one defi
two average entrance timest in

T
and t in

R
, depending on

whether the particle is reflected or transmitted:

t in
T 5

^t1~x0 ,a!QT~x0!&

^QT~x0!&
, ~22a!

t in
R 5

^t1~x0 ,a!QR~x0!&

^QR~x0!&
, ~22b!

whereas OM have defined only one average time. Thi
because in the standard interpretation of quantum mecha
it is not definite whether a particle that has entered a bar
is transmitted or reflected. It is natural to have the aver
time for particle’s entrance, irrespective of whether it is
flected or transmitted, to be equal touTu2t in

T 1uRu2t in
R

5^t1(x0 ;a)& in the Bohmian framework. Then, we mu
have (tQ)a

15uTu2t in
T 1uRu2t in

R
, which is easy to prove.

It is natural to expect that the average time for particl
transmision through a potential barrier to be a function of
width of the barrier. This time should generally increase w
the width of barrier. However, due to quantum effects, o
does not expect it to be a linear function of this width. Mo
of the times defined within the framework of the standa
interpretation of quantum mechanics, do not have this pr
erty, and some of them even yield negative times! On
other hand, we expect the transition time to decrease with
increase in the energy of the incident particle. The transit
time in OM approach has both of these properties . T
diagrams in Figs. 2 and 3 represent the trasmission time
function of the width of the barrier and as a function of t
particle’s energy, respectively, for both Bohmian and O
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times. The numerical method used to solve the tim
dependent Schro¨dinger equation was the fourth order~in
time stepsdt) symmetrized product formula method, deve
oped by De Readt@29#. We chosedx5p/30k0, wherek0

5A2mE0 /\2 and dt5dx2/25 in all calulations (E0 is the
energy of the incident Gaussian wave packet!. One notices
that OM transmission time coincides with that of the Boh

FIG. 2. Diagrams~a!, ~b!, and ~c! show the dependence of th
transmission timetT in terms of the width of a square barrier wit
the heightV0510 eV and the incident energyE05\2k0

2/2m55 eV.
These diagrams represent, respectively, Gaussian wave pa
having the widths56, 12, and 18 Å. We have shown the Bohmia
results by hollow spheres and those of the standard interpretatio
solid circles.
6-4
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TUNNELING TIMES IN THE COPENHAGEN . . . PHYSICAL REVIEW A62 012106
ian case for largeuTu2 ~i.e., d,2 in the diagrams of Fig. 2
and E0.V0 in the diagram of Fig. 3!. This is natural, be-
cause while the average time for the particle’s exit from
right side of the barrier is always the same in both a
proaches, in the limit ofuTu2→1, the average entrance tim
for the tansmitted particle is the same in the OM appro
and in the Bohmian approach (uTu2→1⇒t in

T →t in). Thus in
this limit we havetT

B
5tT

OM . On other hand, as we said ea
lier, the average time for the particle’s exit from the left,
the OM approach, is generally different from that of the B
hmian case. But, if we choosea to be a point far~relative to
the width of the wave packet! from the left side of the bar-
rier, then the time for the particle’s exit from the left side
the same in both approaches, since, in this case foruRu2
→1, the average time of entrance for reflected particles
the causal approach becomes equal to the average tim
entrance in the OM approach (uRu2→1⇒t in

R →t in). Thus we
havetR

B
5tR

OM . It appears that the OM approach gives t
most natural definition for a positive definite transmissi
time, within the framework of the standard interpretation
quantum mechanics.2

IV. EXPERIMENTAL TEST

It is generally believed that the standard quantum m
chanics and the Bohmian mechanics have identical pre
tions for physical observables. On the other hand, there i
Hermitian operator associated with time. Is it possible
consider a phenomenon involving time, e.g., tunneling,
differentiate between these two theories? By considerin
thought experiment, Cushing gave a positive response to
question. His argument was the following@1,2#.

~1! There is presently no satisfactory account of a qu

2Of course, in relation~6b! if we choseb, a point in the interior of
barrier width, tT

OM may become negative, but small in absolu
value @28,27#.

FIG. 3. This diagram shows the transit time for a square bar
of width b2a53 Å and of heightV0510 eV, for Gaussian wave
packets havings512 Å and differents energies. We have show
Bohmian results by hollow spheres and those of the standard i
pretation by solid circles.
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tum tunneling time~QTT! in the standard quantum mecha
ics.

~2! There is a well-defined account of QTT in Bohmia
interpretation. If it can be measured, then such a meas
ment would constitute a test of the interpretation .

~3! It might be possible to measure the Bohmian QT
with an experiment of a certain type.

~4! Therefore, from points~2! and~3!, if an experiment of
that type is possible, such an experiment could serve as a
of Bohm’s interpretation.

~5! Because of point~1!, the outcome of an experiment o
that type would not support or refute the Copenhagen in
pretation.

In a recent paper, Bedard@2#, by referring to points~1!,
~2!, and~5! questioned Cushing’s conclusion. Her argume
was based on the fact that the two theories have diffe
microontologies. Therefore, the QTT obtainable from Boh
ian mechanics has no counterpart in the standard quan
mechanics. Thus, the measurement of such a time canno
considered a test between the two theories. Here, we s
question point~3!, i.e., the claim that Cushing’s thought ex
periment can be used to measure Bohmian times.

Cushing’s experiment consists of a potential barrier
tweenx1 andx2 with width d (d5b2a). A detectorDT is
located atx2 on the right of the barrier and a detectorDR is
located atx1 on the left of the barrier (x1,a,b,x2). Elec-
trons are incident from the left.DT records the arrival times
of the transmitted electrons atx2 andDR records the times of
the reflected electron atx1. The distance fromx1 to the left
side of the barrier~a! is much more than the width of th
wave packet. The same holds forx2. The recording of the
arrival time of the incident electron atx1 will collapse the
wave function. In that case, any subsequent tunneling t
prediction on the basic of the known incident wave pac
would be quite useless. To resolve this problem, Cush
considers the preparation of the state of the incident part
at x1, rather than its detection. Thus, the time recorded ax1

is the preparation time for the transit of the particle, ifDT

would detect it, and the preparation time for the reflec
paticle, if DR would detect it. To provide this condition, w
prepare a source of electrons in front of which there is
shutter. The shutter starts to open little beforet050 and
closes little aftert0. Thust0 is the most probable time for th
passage of the electron fromx1. In other words,t0 is the time
when the peak of the wave packet passesx1. By choosing a
weak source, we can be sure to have at most one elec
emerging from the shutter’s opening. The time of passage
the particle throughx1 is t15t06Dx/vo , whereDx is the
width of the packet andv0 is the speed of the particle. Cush
ing claims that ‘‘in principle, this error could be made a
small as we like~for large enoughv0)’’ @1#. In our opinion,
the error must be compared withtT , not with t1. In fact, we
want to obtaintT which is the difference between the tw
times (t22t1), wheret2 is the time that the electron is de
tected atx2 by DT). The error could be small if we compar
it with t1 and t2 but not if we compare it with their differ-
ence. Thus, we must have

r

r-
6-5
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Dx

v0
!tT . ~23!

By referring to Fig. 3, one can see thattT decreases quicke
than 1/v0. Thus, the increase inv0 decreases the right-han
side of Eq.~23! more than its left-hand side and we are n
able to decrease the relative error in this way. One may h
to obtain condition~23! by decreasingDx. But decreasing
Dx is not useful. Because, by referring to Figs. 2~a!–2~c! one
can see thattT decreases almost linearly withDx.

Experimental limitations dictate that the arrival time
particles to the barrier be measured independent of whe
they shall be reflected or transmitted~i.e., state preparation
time!. Thus, although Bohm’s theory considerst in

T andt in
R ,

it must pay attention only to the measurements oft in

5uTu2t in
T 1uRu2t in

R , to avoid experimental limitations. In thi
way the precise time that it attributes to the particle’s tra
mission through the barrier or reflection istT

OM and tR
OM ,

respectively. Thus, at the experimental level, even in the c
of tunneling times we have the same predictions in the
theories. In fact, here we encounter a problem like the c
of the celebrated two-slit experiment. In the framework
Bohmian mechanics, all particles observed on the lower~up-
per! half of the screen must come from the lower~upper! slit.
But, any effort to know which particle came from which s
destroys the interference pattern. Thus, in the two-slit exp
ment, the two theories come to the same result due to exp
mental limitations. It appears that, from various definitio
given for QTT in the framework of the standard quantu
mechanics, our choice of OM’s is the best because, in
opinion, it is the best time that can be related to the tunne
phenomena in the framework of the standard interpreta
of quantum mechanics. We can justify our claim in the f
lowing way.

~1! There is a unique and well-defined account of QTT
Bohm’s interpretation.

~2! There are several accounts of QTT in standard in
pretation.

~3! These two theories have the same prediction for
servables.

~4! The Bohmian prediction for QTT coincides with on
of the Copenhagen’s QTT~OM’s!.
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In fact, OM’s is the only definition that gives the sam
result, at the experimental level, as the Bohmian mechan
although it does not associate an operator withtT ~at least up
to now!. In this way, we have used a theory with addition
microontology~Bohmian mechanics! to give the best defini-
tion for a quantity in a theory with less microontology. Bo
hm’s theory may also shed light on other definitions of QT
in the standard quantum mechanics.

V. CONCLUSION

Considering the fact that the microontology of the Cope
hagen theory includes the wave function~probability ampli-
tude!, and not pointlike particles, the best time one cou
attribute to the passage of a particle from a point of spac
the average time of the passage of probability flux@Eq .~3!#.
The generalization of this time to QTT leads one to OM
times. On the other hand, the microontology of Bohmi
mechanics includes pointlike particles in addition to t
wave function, and it leads uniquely to the Bohmian QT
@Eq. ~18!#. We have compared them for different widths a
energies of the wave packets in Figs. 2 and 3 by use
numerical calculations.

Now, the Bohmian QTT could not be measured due
experimental limitations. The best times that could be o
tained in Bohmian mechanics are the same as OM’s.
agreement of one of the several3 available definitions of the
QTT in the Copenhagen quantum mechanics with the uni
definition of the Bohmian mechanics separates it from
others, because it is reasonable to expect the same predi
for the two theories, even in the case of the QTT.
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@7# M. Büttiker, Phys. Rev. B27, 6178~1983!.
@8# J.P. Falck and E.H. Hauge, Phys. Rev. B38, 3287~1988!.
@9# D. Sokolorski and L.M. Baskin, Phys. Rev. A36, 4604~1987!.

@10# E.H. Hauge, J.P. Falck, and T.A. Fjeldly, Phys. Rev. B36,
4203 ~1987!.
l.

@11# W. Jaworski and D.M. Wardlaw, Phys. Rev. A37, 2843
~1988!.

@12# Ming-Quey Chen and M.S. Wang, Phys. Lett. B149B, 441
~1990!.
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