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Tunneling times in the Copenhagen interpretation of quantum mechanics

M. Abolhasant?* and M. Golsharfi®'
nstitute for Studies in Theoretical Physics and Mathematics (IPM), P.O. Box 19395-5531, Tehran, Iran
’Department of Physics, Khajeh Nassir-Al-Deen Toosi University of Technology, P.O. Box 15418, Tehran, Iran
3Department of Physics, Sharif University of Technology, P.O. Box 11365-9161, Tehran, Iran
(Received 15 December 1999; published 14 June 2000

Recently, people have calculated tunneling’s characteristic times within Bohmian mechanics. Contrary to
some characteristic times defined within the framework of the standard interpretation of quantum mechanics,
these have reasonable values. Here, we introduce one of the available definitions for tunneling’s characteristic
times within the standard interpretation as the best definition that can be accepted for the tunneling times. We
show that, due to experimental limitations, Bohmian mechanics leads to the same tunneling times.

PACS numbd(s): 03.65.Ca, 73.40.Gk, 74.56r

[. INTRODUCTION tunneling time in the framework of Bohmian mechanics to
select one of available definitions for quantum tunneling
A problem that does not have a clearcut answer in quantimes (QTT) within the standard interpretation as the best
tum mechanics is the time that it takes for an electron to pasgefinition.
through a potential barrier. This is a problem that is impor- Our paper is organized as follows: after introducing the
tant from both a theoretical perspectif2] and a techno- Olkhovsky-Recami and Muga-Brouard-Sala QTT, by using a
logical view|[3,4]. heuristic argument in Sec. Il, we introduce, in Sec. lll, the
In quantum mechanics, time enters as a parameter rathBohmian QTT. Then, in Sec. IV we give a critical discussion
than an observabléo which an operator can be assighed about Cushing’s thought experiment and about what it really
Thus, there is no direct way to calculate tunneling timesmeasures.
People have tried to introduce quantities that have the dimen-
sion of time and can somehow be associated with the pas- !l TUNNELING'S CHARACTERISTIC TIMES
sage of the particle through the barrier. These efforts have IN THE COPENHAGEN FRAMEWORK

led to the introduction of several times, some of which are 1 begin with, we consider the time at which a particle
completely unrelated to the othgfs-17]. Some people have aqses through a definite point in space. We describe the

used the Larmor precession as a clg8k to measure the anicle by a Gaussian wave packet which is incident from
duration of tunneling for a steady stdt,7] or for a wave  he |eft. The most natural way to estimate this time of pas-
packet[8]. Others have used Feynman paths like real path§ge js to find the time at which the peak of the wave packet

to calculate an average tunneling time with the weightingy,qqes through that point. But this is not the right criterion
function exdiSx(t) )/}, whereSis the action associated with ¢, finding the time of passage of the partidieven if the

the pathx(t)—where x(t)'s are Feynman paths initiated \\aye packet is symmetridalTo clarify the matter, we divide
from a point on the left of the barrier and ending at anothekpe packet, in the middle, into two parts. The probability of
point on the right of it[9]. On the other hand, a group of finging the particle in the front section fsand the same is

people have used some features of an incident wave packg,e for the back section. We represent the transit time of the
and the comparable features of the transmitted packet t0 iRsanter of gravity of the front section by and that of the

troduce a delay as tunneling inj20,18. There are many pacy section byt,. The average time for the particle’s pas-
other approaches, some of which are mentioned in RefS, e through that point &= 3 (t, +t,). If the transit time for

[10-17. But, there is no general consensus among physicist§,s neak of the wave is denoted hwe have
about the meaning of them and about which, if any, of them " wavel bywe hav

is the proper tunneling time. In Bohmian mechanjds], X1
however, there is a unique way of identifying the time of t=t= v (1a
passage through a barrier. This time has a reasonable behav- ¢
ior with respect to the width of the barrier and the energy of X
the particle[20,21]. L=t+ =, (1b)
It is expected that with the availability of reliable experi- g
mental results in the near future, an appropriate definitiorwhereuv q is the group velocity of the wave packet andand
can be selected from the available ones, or that the grounx, are, respectively, the distances of the centers of gravity of
would be prepared for a more appropriate definition of thethe front and the back sections of the packet from its peak
transmission time. But now, we want to use the definition ofposition, when these centers pass the point under consider-
ation. Thus, we have
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By looking at Eq.(3), one notices that(x) is in fact the

O80108, average time for the passage of the probability der|sity
0.6000F throughx. Since the probability density represents the prob-
— ability of the presence of the patrticle, it is natural to take the
§ 0.5090 [ average time for the passage of probability density through a
© T point as a measure of the average time for particle’s passage
= 05080} through that point. But, while part of the probability flux
e passes through the barrier, the particle itself might not be
0.5970 detected on the other side of the barrier. We do not, however,
expect to get a definite prediction for an individual system,
0.59605 8 TR T R Ve T and in the Iabora’gory we usually consider an ensemble of
systems. Thus, it is natural to take the average time for the
o A) passage of the probability density as a measure of the aver-

age time for the particle’'s passage. From now on, we talk
FIG. 1. Average time for the transmission of the probability flux about the partide’s average time of transit. Consider, a par-
(...)and the passage of the peiak), for packets having different tjcle incident on a barrier from the left. Then, one can easily
widths (o). extend Eq(3) to define average times for the particle’s en-
) ) trance into the barriers{,), the particle’s exit from the right
If the wave packet did not spread, andx, would remain  gjqe of the barrier £1,), and the particle’s exit from the left

equal andr would be equal ta. But, since the wave packet side of the barrier(?ug. To simplify the matter we use the
spreadsT #t. In fact, the average transit time for the particle following notations:

is later than that of the wave’s peak. Because the spreading
of the packet decreases the transit time of the center of grav-
ity of the wave’s front section, and increases that of the back = ; ;
section. But the change is not symmetriGat., X, # X,), as (- O)= J’o dt--- ()] HOr=j(x.l, ©
the back section of the wave experiences the spreading for a
longer time.

Now, consider a wave packet(x,t), which is incident
from the left and approaches a far pofThe best time that
we can attribute to the particle’s passage throxgh

wherej (x,t) represents the probability current density at the
point x at timet, and® is the usual step function. Using this
definition and Eq(3), we definer;,, 5, and} , as

f tlg(x,1)|?v (x,t)dt f dttj(a,t)®@[+j(a,t)] v
0 0 (t®),
T(X = 0 ] (3) Tiﬂ: 0 = @ 4+ ! (6a)
f [pxt)Po(x,tdt f dtjaner+j@n] (@
0 0
whereuv (x,t) = j (x,t)/]| #(x,1)|?, j (x,t) being the probability .
current Qenfsity. In fact, we have di_viqed the wave paqket f dttj(b,t)®[+j(b,t)] N
into infinitesimal elements. The transit time when the particle _Jo _(tO), b
is in one of these elements is weighted by the probability of Tout™ e _ _ - @), (6b)
finding the particle there(i.e., |¢(x,t)[2dx=|y(x,1)|? JO dtj(b,t)®[+]j(b,t)] b
Xv(x,t)dt). Figure 1 illustrates the difference between this
time and the time that the peak passes that point. For narrow
wave packets, for which the rate of spreading is large, this o ) .
difference is large. From Ed3), one can define a distribu- fo dtt(—)j(a,t)e[—j(at)] (t0)-
tion for the transit time througk, TR = e =, (60
* . .
Ot D fo di—)jane[—jan] (O
X, X, X,
P(x,t)= — 0 LR
lp(x,1)|2v(x,t)dt IT* . .
0 Y0 (x,0) wherea andb represent the coordinates of the left and right

side of the barrier, respectively. Using these times, one can
where|T|? is the transition probability for passing through write the tlme§ thatMthe part|cle_ sperg)dMs in the barrier before
Xo. Dumont and Marchioro introduced this definition for the the transmission+"™) or reflection ") as
distribution of the time at which a particle passes through the
far side of a potential barrig22]. They did not find it pos- M=71 = Tin, (7a)
sible to define the time spent by the particle in the barrier.
Leavens showed that this is also the distribution for the same oM R
time in Bohmian mechanid®3]. TR = Tout™ Tin- (7b)
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We shall call them OM timés(referring to Olkhovsky and tion |#(x,,0)|?. If we know the initial positionx, of the
Recami 24] and Muga, Brouard, and Sdl25]). The average particle, we can find its position at a later tinx€x,;t), from
time spent by the particle in the barrier, irrespective of beingeq. (12). Then, when a particle encounters a barrier, it is
transmitted or reflected, the so-called dwelling time, is thusletermined whether the particle passes through the barrier or
given by not, and one can determine when the particle enters the bar-
oM © om ~ om rier and when it leaves the barrier. Thus the time spent by the
Tq =(@)y 7+ (@) TR, (8)  particle within the barrier is easily calculated. But, since we

4 _ o do not know the particle’s initial position, we consider an
where ©), and ), represent the probability of the par- onsemple of initial positions, given by the distribution

ticle’s exit from the right and left sides of the barrier, respec—| ¥(Xo,t)|2. Then we calculate the average time spent by the
t|_vely. Novl/, the probability of the pa_r_tlcle’S exit fme th,e particle within the barrier. To compare the time of reflection
right, (®), , is equal to the probability of the particle’s o transmission in this framework with OM characteristic

transmission through the barrié|*. But the probability of  (imes, we first consider the time of arrivabay, for a particle
the particle’s exit from the left, @), , is not equal to the that was at, att=0

probability of reflection from the barriefR|?, because the

particle could be reflected without entering the barrier. Using o )
Eq. (7), one can write Eq(8) in the form (X1 %0) = c dX 1(X;Xo) 8(X1 =), (13
Xo
oM _ T - R +
7q" = (0)p Tout (0), Tou= ()4 Tin. (9 where the integral is defined along the Bohmian path

where we have made use of the fact thé){ +(©); which starts atxy. This relation can also be written in the

=(0). , which follows from the conservation of probability. form

The first two terms in Eq(9) represent the average of a o

particle’s exit time from the barrier, irrespective of the direc- t(Xq;Xo) = f dt|o (X(Xg;t),D)[té(X;—X(Xg;t)), (14
tion of the exit. Using Eq(6) we can write the right-hand 0

side of Eq.(9) in the form where

oM_ f:dtt[j(b,t)—j(a,t)]. (10) B, x(xg )= |f((>:E:1)-t_)tt))l |
0t

Using the continuty equation, one can easily show that Eqgj,qe it is possible for the particle to pass the paiptwice
(10) coincides with the standard dwelling time defined by (due to reflection from the barrierwe definet™(xo:x,) in

(15

o b the following manner:
TD=f dtf [p(x,1)|%dx. (11
0 a . o
t—(xo;xl)=fO dt|v (X(Xg;t), )|t (X1 —X(Xg;t))

IIl. TUNNELING'S CHARACTERISTIC TIMES _
IN BOHMIAN FRAMEWORK XO(Fv(X(Xg;t),1)), (16)

In the causal interpretation of quantum mechanics, prowheret™ andt™ correspond to the cases where the particle
posed by Bohn{19], a particle has a well-defined position passes; from left to right and from right to left, respec-
and velocity at each instant, where the latter is obtained frontively. Since for long periods of time, a particle either passes
a field y/(x,t) satisfying the Schidinger equation. If the par- or is reflecteddepending on it,), we define®g and®+ in

ticle is atx at the timet, its velocity is given by the following way[20,21]:
j(x,1) O1(xg)=1, Og(xg)=0 (fortransmissioh, (173
v(Xt)=———. (12
lp(x, 1) O+1(x0)=0, Og(xo)=1 (forreflection. (17b

For a particle that is prepared in the stdiec,0) att=0, any  Thus, we have®(xg) + Or(Xy) =1. Using these functions,
uncertainty in its dynamical variables is a result of our igno-the average times spent by the transmitted and the reflected
rance about its initial positiory. Our information about the particles,7% and 75, respectively, are given by

particle’s initial position is given by a probability distribu-
5_ {7 (X0;0)O1(X0)) —(t" (X0;2) O7(Xo))

T , (183
T (O1(x0))
INote that in the orginal definition of Olkhovsky and Recami, 3 N
temporal integrations run from-o to +o. In Ref. [26] they TB_<t (X0;8)Or(Xg)) —(t" (X0;2) Or(Xo)) (18b)
B=

discussed that the substitution of integrals of the tygefor inte-
grals fZ have physical significance. Any way, we shall use
relations(6). where

(Or(Xg)) ’
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+ 00 04r S
o= Tao o dwoonl a9
0.3} °
but (Og(X0))=|T|? and (Og(xe))=|R|? [20]. Thus, we _
have for the dwelling time 3 o
£ ozl o © °
PR [TP A3+ RS 2 -
e 0° .
={t"(X0;0)O1(Xg) )+ {t ™ (Xo;2)OR(X0)) 01F o
O e oo .o "
—(t"(x:0)), (20 + T
< 0 > ﬁfg ) ) ! ! ! |

where we have made use of the fact thgt+ ©@g=1. Using
the fact that [ 2dx,f (X(Xg,t),t)] 4(X0,0)|28(X— X(Xg,1))
=f(x,t)|4(x,0)|2, one can easily show that

(1" (%0:0)O1(%0))=(tO)y , (21a 07} o
_ _ 06F °
(17 (x0:2)OR(X0)) =(10), , (21b) .
__ 0s5f o
(t*(x0;@)=(10); . (210 $ o4l o °
TC) (o]
Thus, 75 is equal to73™ and therefore equal tep. Of T 03} ooo .
course, the equality of; and 7, was shown earlier by Leav- B oot o .
ens[20,21]. But the relationg21) are new and they are im- o O cesse o o s e
portant because they show the relation between OM charac- 01F &
teristic times and those defined in Bohmian mechanics. poss®” 5 7} 5 5 TR
Notice that in the causal interpretation of Bohm, one defines
two average entrance timeﬁTn and T?n , depending on d &)
whether the particle is reflected or transmitted: (b)
(o]
T _<t+(XO!a)®T(XO)> (224 1.0 .
in— O-(Xx ' o
(07(x0)) sl ]
(t*(x0,2)Or(%0)) 7 o °
R= O , (22b) & osf o
RUAO w o
o [e]
o L o .
whereas OM have defined only one average time. This is (1 0.4 0 L
because in the standard interpretation of quantum mechanics, o .
it is not definite whether a particle that has entered a barrier, 0.2¢ gttt s
is transmitted or reflected. It is natural to have the average ﬁﬂ@@f . . ‘ . .
time for particle’s entrance, irrespective of whether it is re- 2 4 6 8 10 12
flected or transmitted, to be equal 4|27 +|R|27, d &)
=(t"(xp;a)) in the Bohmian framework. Then, we must (c)

R . .

have_ t0). =IT|*7+|R|*7, , which is easy to prove. FIG. 2. Diagramga), (b), and(c) show the dependence of the

It is natural to expect that the average time for particle’syansmission timer; in terms of the width of a square barrier with
transmision through a potential barrier to be a function of thgpe heightv,=10 eV and the incident enerdgp=7%2k2/2m=5 eV.
width of the barrier. This time should generally increase Withthese diagrams represent, respectively, Gaussian wave packets
the width of barrier. However, due to quantum effects, onenaving the widthr=6, 12, and 18 A. We have shown the Bohmian
does not expect it to be a linear function of this width. Mostresults by hollow spheres and those of the standard interpretation by
of the times defined within the framework of the standardsolid circles.
interpretation of quantum mechanics, do not have this prop-
erty, and some of them even yield negative times! On thdimes. The numerical method used to solve the time-
other hand, we expect the transition time to decrease with theéependent Schdinger equation was the fourth ordéin
increase in the energy of the incident particle. The transitioime stepsst) symmetrized product formula method, devel-
time in OM approach has both of these properties . Theoped by De Readf29]. We chosedx= 7/30k,, wherek,
diagrams in Figs. 2 and 3 represent the trasmission time asa\/ZmEO/ﬁ2 and 8t=6x?/25 in all calulations E, is the
function of the width of the barrier and as a function of theenergy of the incident Gaussian wave patkéne notices
particle’s energy, respectively, for both Bohmian and OMthat OM transmission time coincides with that of the Bohm-
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7 tum tunneling timgQTT) in the standard quantum mechan-
0.20 ics.
(2) There is a well-defined account of QTT in Bohmian
°© interpretation. If it can be measured, then such a measure-
o ment would constitute a test of the interpretation .
o (3) It might be possible to measure the Bohmian QTT
0.10F ° with an experiment of a certain type.
* ., o0 (4) Therefore, from point$2) and(3), if an experiment of
that type is possible, such an experiment could serve as a test
® of Bohm’s interpretation.
. e (5) Because of pointl), the outcome of an experiment of
that type would not support or refute the Copenhagen inter-
o e pretation.
In a recent paper, Bedaf@], by referring to pointg1),
12), and(5) questioned Cushing’s conclusion. Her argument
was based on the fact that the two theories have different
Fpicroontologies. Therefore, the QTT obtainable from Bohm-
lan mechanics has no counterpart in the standard quantum
mechanics. Thus, the measurement of such a time cannot be
ian case for largéT|? (i.e., d<2 in the diagrams of Fig. 2 consit_jered a test. between t_he two theor?es; Here, we shall
and E,>V, in the diagram of Fig. B This is natural, be- qugstlon poin{3), i.e., the claim that Cushmg_s thought ex-
cause while the average time for the particle’s exit from the?€riment can be used to measure Bohmian times.
right side of the barrier is always the same in both ap- Cushing’s experiment consists of a potential barrier be-
proaches, in the limit of T|>— 1, the average entrance time tweenx; andx, with width d (d=b—a). A detectorD+ is
for the tansmitted particle is the same in the OM approachocated atx, on the right of the barrier and a detecg, is
and in the Bohmian approac}thzH 1= Ti-|;1‘> Tin). Thus in located atx; on the left of the barrierx;<a<b<x,). Elec-
this limit we have7$= r?"". On other hand, as we said ear- {rons are quent from the lefD; records the arrlvgl times
lier, the average time for the particle’s exit from the left, in Of the transmitted electrons & andD records the times of
the OM approach, is generally different from that of the Bo-the reflected electron at. The distance fronx, to the left
hmian case. But, if we chooseto be a point farrelative to ~ side of the barrie(a) is much more than the width of the
the width of the wave packefrom the left side of the bar- wave packet. The same holds fog. The recording of the
rier, then the time for the particle’s exit from the left side is arrival time of the incident electron at will collapse the
the same in both approaches, since, in this casgR  wave function. In that case, any subsequent tunneling time
—1, the average time of entrance for reflected particles irprediction on the basic of the known incident wave packet
the causal approach becomes equal to the average time wbuld be quite useless. To resolve this problem, Cushing
entrance in the OM approactR|?>— 1= Tﬁ—mm). Thus we  considers the preparation of the state of the incident particle

have T;: =™ It appears that the OM approach gives theatxy, rather than its detection. Thus, the time recordex} at
most natural definition for a positive definite transmissionis the preparation time for the transit of the particleDif
time, within the framework of the standard interpretation ofwould detect it, and the preparation time for the reflected
quantum mechanics. paticle, if Dg would detect it. To provide this condition, we
prepare a source of electrons in front of which there is a
shutter. The shutter starts to open little befdge=0 and
closes little aftety. Thust, is the most probable time for the

It is generally believed that the standard quantum mepassage of the electron frax. In other wordst, is the time

chanics and the Bohmian mechanics have identical prediavhen the peak of the wave packet passgsBy choosing a
tions for physical observables. On the other hand, there is n@geak source, we can be sure to have at most one electron
Hermitian operator associated with time. Is it possible toemerging from the shutter’s opening. The time of passage for
consider a phenomenon involving time, e.g., tunneling, tahe particle throughx; is t;=t,+Ax/v,, whereAx is the
differentiate between these two theories? By considering jidth of the packet and,, is the speed of the particle. Cush-
thought experiment, Cushing gave a positive response to thigg claims that “in principle, this error could be made as
question. His argument was the followif,2]. small as we like(for large enoughy,)” [1]. In our opinion,

(1) There is presently no satisfactory account of a quanthe error must be compared with, not witht,. In fact, we
want to obtainry which is the difference between the two
times ¢,—t,), wheret, is the time that the electron is de-

20f course, in relatiori6b) if we choseb, a point in the interior of ~ tected atx, by Dt). The error could be small if we compare
barrier width, 7™ may become negative, but small in absolute it with t; andt, but not if we compare it with their differ-
value[28,27]. ence. Thus, we must have

0.15f

T (10™sec)

0.05} ¢

FIG. 3. This diagram shows the transit time for a square barrie
of width b—a=3 A and of heightv,=10 eV, for Gaussian wave
packets havingr=12 A and differents energies. We have shown
Bohmian results by hollow spheres and those of the standard inte
pretation by solid circles.

IV. EXPERIMENTAL TEST
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AX In fact, OM'’s is the only definition that gives the same
U—O<TT- (23 result, at the experimental level, as the Bohmian mechanics,
although it does not associate an operator writliat least up
By referring to Fig. 3, one can see that decreases quicker t0 now. In this way, we have used a theory with additional
than 14,. Thus, the increase in, decreases the right-hand Mmicroontology(Bohmian mechanigso give the best defini-
side of Eq.(23) more than its left-hand side and we are nottion for a quantity in a theory with less microontology. Bo-
able to decrease the relative error in this way. One may hop@m'’s theory may also shed light on other definitions of QTT
to obtain condition(23) by decreasing\x. But decreasing N the standard quantum mechanics.
AXx is not useful. Because, by referring to Fig&a)22(c) one
can see that; decreases almost linearly withx. V. CONCLUSION

Experimental limitations dictate that the arrival time of Considering the fact that the microontology of the Copen-

particles to the barrier be measured independent of whethgf, e theory includes the wave functigorobability ampli-
they shall be reflected or transmittéce., state preparation  y,de), and not pointlike particles, the best time one could
time). Thus, although Bohm's theory consider§ and 7y, attribute to the passage of a particle from a point of space is
it must pay attention only to the measurements ©f  the average time of the passage of probability flEg (3)].
=|T|?7,+|RI?7f , to avoid experimental limitations. In this The generalization of this time to QTT leads one to OM's
way the precise time that it attributes to the particle’s transtimes. On the other hand, the microontology of Bohmian
mission through the barrier or reflection i€ and 7R™,  mechanics includes pointlike particles in addition to the
respectively. Thus, at the experimental level, even in the casgave function, and it leads uniquely to the Bohmian QTT
of tunneling times we have the same predictions in the twgEq. (18)]. We have compared them for different widths and
theories. In fact, here we encounter a problem like the casenergies of the wave packets in Figs. 2 and 3 by use of
of the celebrated two-slit experiment. In the framework ofnumerical calculations.

Bohmian mechanics, all particles observed on the lowpf Now, the Bohmian QTT could not be measured due to
pen half of the screen must come from the lowappey slit.  experimental limitations. The best times that could be ob-
But, any effort to know which particle came from which slit tained in Bohmian mechanics are the same as OM’s. The
destroys the interference pattern. Thus, in the two-slit experiagreement of one of the severalailable definitions of the
ment, the two theories come to the same result due to exper®TT in the Copenhagen quantum mechanics with the unique
mental limitations. It appears that, from various definitionsdefinition of the Bohmian mechanics separates it from the
given for QTT in the framework of the standard quantumothers, because it is reasonable to expect the same prediction
mechanics, our choice of OM’s is the best because, in oufor the two theories, even in the case of the QTT.

opinion, it is the best time that can be related to the tunneling

phenomena in the framework of the standard interpretation ACKNOWLEDGMENTS
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