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Temporally stable coherent states in energy-degenerate systems: The hydrogen atom
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Klauder’s recent generalization of the harmonic oscillator coherent states@J. Phys A29, L293 ~1996!#, is
applicable only in nondegenerate systems, requiring some additional structure if applied to systems with
degeneracies. The author suggests how this structure could be added, and applies the complete method to the
hydrogen atom problem. To illustrate how a certain degree of freedom in the construction may be exercised,
states are constructed, which are initially localized and evolve semiclassically, and whose long time evolution
exhibits ‘‘fractional revivals.’’

PACS number~s!: 03.65.Ca, 02.90.1p
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I. INTRODUCTION

Since their early introduction to quantum mechanics,
harmonic oscillator coherent states@1# have served many
purposes. In Schro¨dinger’s conception@2#, they were viewed
as quasiclassical objects, purely quantum in definit
though remarkably classical in behavior. From this persp
tive, some authors have used these states with a clas
limit to study correspondence between quantum and clas
perturbation series@3#. Stemming from Glauber’s study@4#,
coherent states have a wide application in quantum op
@5#, primarily in representations of the electromagnetic fie
In fact, being continuously parametrized, coherent states
ure prominently in the theory of continuous representati
@6,7#.

Many generalizations of coherent states appear in the
erature. Each generalization tends to preserve a small n
ber of the properties of the harmonic oscillator coher
states in the general scheme at the expense of the rema
properties. A recent generalization due to Klauder@8# pre-
serves many, at the expense of few. Klauder’s generaliza
gives states that~a! evolve among themselves in time~tem-
porally stable!, ~b! are continuously parametrized, and~c!
admit a resolution of the identity. As such, no reservatio
are made for ‘‘semiclassical’’ properties such as minimu
uncertainty, though a certain degree of freedom to be
cussed below remains within the construction, which may
optimized according to additional concerns. Two stud
have since appeared@9,10# proposing forth conditions tha
eliminate this degree of freedom, which will be discussed
Sec. IV.

As initially presented, Klauder’s construction is approp
ate for systems without energy degeneracies. With no a
tional structure, the resolution of the identity fails for dege
erate systems. Energy degeneracies arise when indepe
operators commute with the Hamiltonian, suggesting a
algebraic approach to impose the additional structure. T
in the presence of degeneracies, excepting those few cas
truly ‘‘accidental’’ degeneracies, the Perelomov approach
constructing coherent states for the degeneracy group i
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obvious and general path to take@11#.
The attempt to generalize harmonic oscillator coher

states for the hydrogen atom problem is not new. Many
volve the construction of the complete Perelomov states
the dynamical group SO~4,2! @12–15#. Others, including the
current approach, make some use of SO~4! coherent states
@16,17#. Others involve the construction of ‘‘temporall
stable’’ coherent states: Klauder’s original paper@8#, a study
by Majumdar and Sharatchandra@9#, and another by Fox
@18#. The current construction differs from these in some k
respects, which will be pointed out in the course of the pap

Section II discusses the construction due to Klauder,
develops the extension of this construction to degene
states. In Sec. III, the construction is applied to the hydrog
atom problem. Section IV is a discussion regarding the r
that these states and other generalized coherent states h
physical theory, namely, as representations rather than
physical states. The dynamics of an individual state are
plored in Sec. V, in which hydrogenic states are construc
that exhibit fractional and full revivals, and the main poin
of the paper are summarized in Sec. VI.

II. CONSTRUCTION

The generalization due to Klauder@8# is applicable to the
discrete portion of the spectrum of a HamiltonianĤ. ~A
continuum generalization has also appeared@10#.! So, for a
nondegenerateĤ with eigenstatesun& and eigenstate energie
en , the coherent states are given by~using atomic units!

us,g&5M ~s2! (
n50

`
sn exp~2 igen!

Arn

un&, ~2.1!

wheres>0 andg is real. The factorsrn are the moments o
a functionr(u).0,u>0,

rn5E
0

`

unr~u!du, ~2.2!

and the normalizing functionM (s2) is chosen such that
©2000 The American Physical Society04-1
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15^s,gus,g&5M2~s2! (
n50

`
s2n

rn
. ~2.3!

If the discrete portion of the spectrum is finite, the upp
limits of the above sums~and the appropriate expressio
hereafter! may be replaced withnmax.

The choice ofr(u) is the remaining degree of freedom u
to the following restrictions: All the momentsrn exist ~up to
nmax if finite!, and the sum in Eq.~2.3! exists for alls>0.
Such functionsr(u) are known to exist: In the harmoni
oscillator,r(u)5e2u leads to the standard harmonic oscill
tor coherent states.

The statesus,g& clearly are continuously parametrize
The states exhibit temporal stability: exp(2iĤt)us,g&5us,g
1t&. Further, givenr(u) andM2(u), let k(u) be defined by

k~u!M2~u!5r~u!. ~2.4!

Then, the coherent states satisfy the resolution of the id
tity,

1̂5E dm~s,g!us,g&^s,gu, ~2.5!

in which the integration is given by

E dm~s,g!5 lim
G→`

1

2G E
0

`

ds2k~s2!E
2G

G

dg. ~2.6!

The limit is necessary to accommodate possible incomm
surabilities of energy levels. In proving Eq.~2.5!, integration
overg yields the Kronecker deltadenem

, which may be iden-

tified with dnm only in the nondegenerate case. Also, t
identity of Eq. ~2.5! should be regarded as a projection o
erator onto the states contributing tous,g&, i.e., the discrete
portion of the spectrum. These properties in concert m
these states most useful in the representation of arbitr
bound, time evolved states.

To extend the construction to energy degenerate sta
replace Eq.~2.1! with

us,g,x&5N~s2! (
n50

`
sn exp~2 igen!

Arn

Adnun,x&, ~2.7!

wheredn is the degeneracy of thenth energy level,un, x& are
the Perelomov coherent states@11# for the degeneracy grou
G, and the normalizing factorN(s2) is given by

15^s,g,xus,g,x&5N2~s2! (
n50

`
s2ndn

rn
. ~2.8!

In each energy degenerate subspace of the Hilbert space
Perelomov coherent states satisfy the resolution of the id
tity

1̂n5dn V~H !E
X
dh~x!un,x&^n,xu, ~2.9!
01210
r

n-

n-

-

e
ry,

s,

the
n-

in which V(H) is the volume of the isotropy subgroup rel
tive to the fiducial vector in the construction of the Pere
mov coherent states,X5G/H is the quotient space forme
by the degeneracy group with the isotropy subgroup, and
measuredh is induced from the Haar measure on the deg
eracy group. The states Eq.~2.7! therefore satisfy the reso
lution of the identity

1̂5E dm~s,g,x!us,g,x&^s,g,xu, ~2.10!

with

E dm~s,g,x!

5 lim
G→`

1

2G E
0

`

ds2k~s2!E
2G

G

dg vol~H !E
X
dh~x!.

~2.11!

Since the statesun,x& are formed by superpositions ove
states that share a common energy eigenvalueen , they are
also eigenstates of the Hamiltonian and so evolve simply
time. Accordingly, the statesus,g,x& preserve the tempora
stability property of the nondegenerate construction.

Majumdar and Sharatchandra’s construction@9# also
makes explicit use of the Perelomov construction of coher
states for the degeneracy group, and Klauder’s construc
@8# is less explicit in this regard. A significant differenc
between this and these other extensions of Klauder’s c
struction is the treatment of the factordn . Among other
problems@19# Majumdar and Sharatchandra incorporatedn
into the measure after the summation of the state, an op
tion of questionable justifiability. Klauder, using an adap
tion of SO~3! coherent states, incorporatesdn into the states
after, and therefore affecting, normalization. Fox@18# con-
structs temporally stable coherent states, but with a Gaus
taking the place ofsn exp(2igen) in Eq. ~2.1!. As such, a
similar adaptation of his states may be effected by includ
a factor ofAdn as in Eq.~2.7!.

III. SPECIAL CASE: THE HYDROGEN ATOM

The group theoretical treatment of the hydrogen atom
standard in the literature@20–22#. For the hydrogen atom
problem, there are two realizations of the degeneracy gr
SO~4!. One uses the elements of the angular momentum v
tor, L̂ j , and a scaled quantum Runge-Lenz vector,Âj , as
generators of the group, whereas the other decouples t
six generators into two sets,M̂ j5

1
2 (L̂ j1Âj ), and N̂j

5 1
2 (L̂ j2Âj ). In the second representation, one finds t

SO~4!5SO~3!^SO~3!, so that, loosely speaking, a Perel
mov coherent state for SO~4! may be given by the direc
product of two SO~3! coherent states.

The SO~3! coherent states with the fiducial vecto

u j ,2 j &, j 50,1
2 ,1,32 , . . . , aregiven by
4-2
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u j ,z&5 (
m52 j

j F ~2 j !!

~ j 1m!! ~ j 2m!! G
1/2 z j 1m

~11uzu2! j u j ,m&.

~3.1!

The resolution of the identity for these states may be writ

1̂ j5
2 j 11

p E d2z

~11uzu2!2 u j ,z&^ j ,zu, ~3.2!

whered2z5d Rez d Im z, and integration is over the entir
complex plane projected from the unit sphere with the tra
formationz52tan(u/2)e2 if. In the hydrogenic realization
the representations of each copy of SO~3! are of equal di-
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mension (n52 j 11) so the dimensions of the relevant re
resentations of SO~4! aren2, n51,2,3, . . . .

It is now straightforward to construct the coherent sta
for the full system. The coherent states for the hydrog
atom problem by this construction are given by

us,g,z1 ,z2&5N~s2! (
n50

` sn exp~2 igen11!~n11!

Arn

3un11,z1 ,z2& ~3.3!

with
un,z1 ,z2&5 (
m1 ,m252 j

j ~2 j !! z1
j 1m1z2

j 1m2u j ,m1&u j ,m2&

@~ j 1m1!! ~ j 2m1!! ~ j 1m2!! ~ j 2m2!! #1/2~11uz1u2! j~11uz2u2! j . ~3.4!

The statesu j ,m1&u j ,m2& may be related to the standard hydrogen Hamiltonian eigenstatesun,l,m& via Clebsch-Gordon coeffi-
cients. The states Eq.~3.4! satisfy the resolution of the identity

1̂B5
1

p2 E dm~s,g!E d2z1d2z2

~11uz1u2!2~11uz2u2!2 us,g,z1 ,z2&^s,g,z1 ,z2u, ~3.5!
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where the subscriptedB is included to emphasize that this
more appropriately regarded as a projection operator into
bound portion of the Hilbert space. In the specific example
r(u)5e2u, with momentsrn5n!, explicit form may be
given toN(s2) andk(u) by

N~s2!5e2s2/2~113s21s4!21/2 ~3.6!

and

k~u!5113u1u2. ~3.7!

IV. SOME CLARIFICATION

At this point, a few observations are in order. Primari
the term ‘‘temporal stability’’ in no way refers to the tim
evolution of the structure in configuration space. On
through a rather generous interpretation does this cons
tion ‘‘positively’’ solve the long standing problem of form
ing nondispersing wave packets for the hydrogen atom. T
poral stability refers strictly to the mathematical prope
that the states evolve in time among themselves. With
property in mind, some authors@9# have grossly overstate
the the nature of the configuration space time evoluti
while other authors@23,19# have studied in detail the long
time evolution of individual states, even though there is
underlying physical basis either to provide for spatial coh
ence, or to presume states of this description are found in
laboratory at all. The question of how to prepare these st
in the laboratory remains very much open.

Much of the study of generalized coherent states re
more in the mathematical than the physical nature of ma
e
f
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ematical physics. Glauber’s motivation in his study of coh
ent states@4# was not so much that coherent states are fou
in the laboratory, but that they provide a representation
which otherwise difficult calculations become feasib
Glauber noted that certain electric field operators have r
resentations as sums over the modal annihilation opera
In diagonalizing these operators, one arrives at eigenstate
the modal annihilation operators. Restricted to a sin
mode, this corresponds to the annihilation operator definit
of harmonic oscillator coherent states. Hence as annihila
operator coherent states, they arise from a representatio
point of mathematical convenience, not as a conclusion fr
the physics of the problem. In any case, generalizations
annihilation operator coherent states have appeared wid
though the physical motivation to study such definitions
any context besides as representations is unclear.

Glauber also showed how these states may be constru
through the action of a displacement operator on the gro
state. This definition was generalized by Perelomov@24#, a
generalization which has been widely successful. This s
cess is founded upon the properties of the dynamical gr
coming through into the set of coherent states, not from
assertion~which few researchers make! that an individual
state by such a construction matches a state by some p
ration in the laboratory. This success is of a mathemati
not physical, nature again resting upon the use of these s
as a representation.

Of Glauber’s original three definitions, the approach th
appears to invest the most physics is the minimum unc
tainty construction. Indeed, squeezed states, a generaliz
of this construction, are used as descriptions of physical
4-3
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M. G. A. CRAWFORD PHYSICAL REVIEW A 62 012104
pects of certain quantum optical experiments in the labo
tory. Nieto et al. @25# have also developed a generalizati
that minimizes the uncertainty product of a pair of ‘‘natura
operators. Ehrenfest’s relations then lead to the initial evo
tion of the quantum expectation values approximating c
sical evolution. Though this approach is strongest in term
an underlying physical motivation, these states still lack~in
general! any physical hypothesis, which selects for states
this description in the laboratory. As an aside, the Nieto c
struction, though seen from time to time, is not as wid
used as the Perelomov construction for perhaps two reas
First, though it is generally applicable in principle, ma
systems are intractable to carry through to completion~when
the Hamiltonian enters into the ‘‘natural’’ operators!. Sec-
ond, a certain tradeoff appears to be at work: This appro
is somewhat less mathematically endowed than Perelom
approach.

Now consider Klauder’s construction. All of the attra
tions are mathematical in nature. As initially presented,
reservations are made for coherence in configuration sp
~i.e., semiclassical behavior! and there is no general physic
mechanism that would result in finding these states in
laboratory. However, a certain degree of freedom remain
the construction, and two suggestions have separately
peared that a fourth requirement will simultaneously elim
nate the degree of freedom and ensure for the behavio
configuration space. It is likely that a fourth requirement, i
exists, will be physical in nature. The requirement postula
by Majumdar and Sharatchandra@9# is that the measure
found in the resolution of the identity corresponds to t
‘‘canonical’’ measure on classical phase space. They fur
assert that the measure uniquely identifies the set of cohe
states. This assertion is false, as shown by Sixdenierset al.
@26# who demonstrate multiple measures corresponding
the same set of coherent states. Also, though it is conven
from a mathematical point of view, it is unclear why th
measures should correspond at all from a physical poin
view, or even if a meaningful identification~one to one! can
always be made between individual coherent states
points in classical phase space.

A fourth requirement is also postulated by Gazeau a
Klauder@10#, which is motivated by an attempt to formaliz
the connection between the quantum parameters to the
herent state and the classical action-angle variables. Un
tunately, their requirement results in an angle variable wh
rate of change with time is independent of the action, a ra
special circumstance restricted to the harmonic oscillator
a small number of other systems. This is a severe limita
in terms of semiclassical behavior, since this is clearly
odds with how the angle variable evolves in, say, the hyd
gen atom problem.

A degree of freedom also remains in Fox’s construct
@18# of Gaussian generalized coherent states, namely,
width of the Gaussian in question. Note that in this conte
the distribution in energy level, not configuration space,
Gaussian. Fox does not give any criteria that are intende
specify a suitable width. As with the Klauder’s constructio
this degree of freedom may be optimized according to
aim in mind.
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Hence in the absence of an acceptable fourth criter
~none is herein proposed!, we carry on. This limits the con
struction to a mathematical tool, though an interesting ma
ematical tool it is. Note that the time-dependent Schro¨dinger
equation for a time-independent Hamiltonian in this coher
state representation becomes~in atomic units!

]

]g
^s,guc&52

]

]t
^s,guc& ~4.1!

whose solution is trivial. With this expression representi
the unperturbed solution, this would make for an interest
point of departure towards a study of time-dependent per
bation theory. That is, coherent states are useful when c
sidered as an ensemble of states~a representation!, not as
individual states.

Speaking now in the specific case, some authors@23,19#
have suggested that the temporally stable construction of
herent states does not support the possibility of exhibit
full or fractional revivals as described by Averbukh and P
elman @27# or Nauenberg@17#. First, in order to decide
whether a state is to be found in the laboratory, a phys
mechanism for the preparation of these states must be
tulated. Until this has been done, the presence or absenc
a phenomenon, which is, after all, universal, is not releva
Second, these authors did not exploit the degree of freed
that remains in the construction. Without supplying a phy
cal motivation that would lead to finding these states in
laboratory, we shall see that by exploiting this degree
freedom wave functions may be formed by the present c
struction, which exhibit the full panoply of revivals.

V. DYNAMICS

Having thus constructed the states emphasizing, am
other things, time evolution, it is now interesting to consid
the behavior of the states as evolved in time. Other auth
have defined hydrogen atom coherent states with a variet
constructions and with various reports of evolution in ‘‘fi
titious’’ time @13#, or evolution along circular@28,29# or
Keplerian elliptical orbits with possible, eventual state rev
als @16,17#. Coherent states also may be constructed by
present recipe, which travel along elliptical orbits and exhi
fractional revivals.

According to Averbukh and Perelman@27#, fractional re-
vivals are a universal phenomenon exhibited by wave fu
tions provided third-order corrections and higher do not c
tribute significantly to a polynomial approximation to th
energy eigenvalues over contributing energy eigenstates.
panding aboutn5n̄, the hydrogen atom energy levels are

en52
1

2n2 52
1

2n̄2 1
1

n̄3 ~n2n̄!2
3

2n̄4 ~n2n̄!2

1
2

n̄5 ~n2n̄!31¯ . ~5.1!

The first two terms lead to phase angles equal to multiple
2p for times in the vicinity of
4-4
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t5Tr5
2p

3
^n&4. ~5.2!

This signals a wave function revival att5Tr provided the
cubic term is small at the edges of the distribution, i.
4p(Dn)3!3^n&. Note thatTr5Trev/2 in Averbukh and Per-
elman’s notation.

At the heart of these coherent states lies the func
r(u). With r(u)5e2u, one obtains a distribution in eigen
levels characterized by

^n&5s2
s415s214

s413s211
~5.3!

and

~Dn!25s2
s816s6114s4110s214

s816s6111s416s211
, ~5.4!

so that, taking leading order behavior,Dn;A^n&. Substitut-
ing into the above necessary condition for a revival at
5Tr gives 4pA^n&/3!1, which is only satisfied for states i
the immediate vicinity of the trivial coherent state, th
ground state, and certainly violated by states with high p
cipal quantum numbers.

However, the functionr(u) is a ‘‘degree of freedom’’ in
the construction, and may be chosen according to the ap
cation in mind. Accordingly, consider insteadr(u)
5exp(2ua) for some constanta.0 with a view to con-
structing wave packets that exhibit strong revivals. The m
ments of this function are

rn5
1

a
GS n11

a D . ~5.5!

Many of the expressions involved in subsequent calculati
may be handled using properties of the functions of Mitta
Leffler @30#, though they will be treated instead by compa
sons to expressions following fromr(u)5e2u. In fact, using
r(u)5exp(2ua) results in a set of coherent states clos
related to those described by Sixdenierset al. @26#.

Expressions for̂n& and (Dn)2 may be approximated by
recognizing the scalings necessary to map expressions
a51 onto those with generala:

n11→~n11!/a, s→sa. ~5.6!

Hence, one obtains to leading order~large values ofs will
eventually be involved!

^n&;as2a, Dn;asa, ~5.7!

so thatDn;Aa^n&. Substituting this into the minimal con
dition for the first full revival gives 4pa3/2A^n&/3!1, which
may be satisfied ifa is chosen sufficiently small. Withou
discussing the effect of changinga any further, there will be
a tradeoff between large and smalla: Largea will introduce
many significantly contributing energy levels for a given^n&
yielding good spatial localization but weak or nonexiste
revivals, whereas smalla yields strong revivals of poorly
01210
,
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-
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-

s
-
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t

localized states. Note that in this construction a small wi
in n follows from an appropriate choice forr(u), whereas
the same may be accomplished by Fox’s construction@18# by
simply specifying the width to be narrow.

As a typical example, consider the state depicted in Fig
For this state,a5 1

32 and s52.20931059. This results in a
state centered at̂n&5160 with a width of Dn5A5 for
which one expects a full revival att5Tr51.3733109. The
parametersz1,2 to the SO~4! coherent state were chosen
provide an elliptical orbit with eccentricitye50.385, the ma-
jor axis parallel to thex axis, and the angular momentum
parallel to thez axis. The vertical axes are amplitudes of t
wave functions on thex-y plane, calculated at the time
indicated on a square grid 80 000 units in width centered
the origin.

The evolution of this state is as expected. Initially loca
ized, the state evolves semi-classically. The wave func
then spreads out but remains close to the ellipse. As
expected times for the various fractional revivals arrive,
state exhibits the expected revival including the full reviv

FIG. 2. Autocorrelation function of the coherent state at timet.
For this state, the revival time isTr51.3733109 in atomic units.

FIG. 1. Amplitude of coherent state on thex-y plane for times
~a! t50, ~b! t5Tr /5, ~c! t5Tr /4, ~d! t5Tr /3, ~e! t5Tr /2, and~f!
t5Tr .
4-5
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M. G. A. CRAWFORD PHYSICAL REVIEW A 62 012104
at t5Tr , even though an examination of the minimal con
tion for the first revival gives the debatable result 0.29!1.

Figure 2 depicts the autocorrelation function for the sa
state as above, exhibiting the typical pattern characteriz
revivals ~compare with Fig. 2 of Parker and Stroud@31#!.
Figure 3 demonstrates how a smalla shrinks the width of the
state inn.

Commenting again on the assertion by some authors
‘‘temporally stable’’ states for the hydrogen atom cannot e
hibit this phenomenon@23,19#: Their calculations involved,
in terms of the present paper,a51, hence wide distributions
in n that exhibited no appreciable revivals over the tim
frames calculated. Wave function revivals are a univer
phenomenon depending on the nature of the energy ei
level spacings, and in the case of the hydrogen atom,
width Dn. By exploiting the fact that one may chooser(u)
to one’s liking,Dn may be reduced such that the resulta
states do revive. Further, one study@23# used values ofs
leading to^n& equal to 25 and 400. Witĥn&5400, from Eq.
~5.2!, Tr;5.3631010 though their calculation only extend
to t553109. For the other study@19#, values of^n& exhib-
ited were 10 and 200. A full revival should be found usi
^n&5200 at aboutt53.353109 though their calculation
only extends tot553108.

FIG. 3. Distributions in energy level fora51(3) and a
51/32(1).
ica
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VI. CONCLUSION

This approach to defining temporally stable coher
states for the hydrogen atom problem is similar in spirit
those of Majumdar and Sharatchandra@9#, Klauder@8#, and
Fox @18#. Majumdar and Sharatchandra make explicit use
the SO~4! degeneracy group, but treat the factordn differ-
ently. Although Klauder’s construction is specific to the h
drogen atom problem rather than the present general
proach, a similar term appears in that construction t
disrupts normalization. Fox uses a somewhat different c
struction, which avoids the use of the moments of so
functionr(u). Even so, one may construct coherent state
degenerate systems related to Fox’s construction as
present construction is related to Klauder’s original work

The general construction of Eq.~2.7! provides states with
many useful properties. They form a complete set of sta
~in the bound portion of the spectrum! and evolve in time
among themselves. This makes them a clear candidate
use in representations of time evolved, bound states. Fur
there is a freedom in their definition that stems from t
choice of r(u). If r(u) is appropriately chosen, hydroge
atom coherent states may be defined that exhibit the
range of phenomena exhibited by other approaches: in
semiclassical behavior, interference between the head
tail of the state as it disperses about the Keplerian ellip
localization on the Keplerian ellipse, and wave function
vivals at predictable times.

The salient difference between these coherent states
other constructions is the natural and explicit manner
which the energy degeneracies are treated herein, via Pe
mov’s group theoretical construct of generalized coher
states.
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