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Temporally stable coherent states in energy-degenerate systems: The hydrogen atom
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Klauder’s recent generalization of the harmonic oscillator coherent dtht€%hys A29, L293 (1996, is
applicable only in nondegenerate systems, requiring some additional structure if applied to systems with
degeneracies. The author suggests how this structure could be added, and applies the complete method to the
hydrogen atom problem. To illustrate how a certain degree of freedom in the construction may be exercised,
states are constructed, which are initially localized and evolve semiclassically, and whose long time evolution
exhibits “fractional revivals.”

PACS numbsd(s): 03.65.Ca, 02.96:p

[. INTRODUCTION obvious and general path to takkl].
The attempt to generalize harmonic oscillator coherent
Since their early introduction to quantum mechanics, thestates for the hydrogen atom problem is not new. Many in-
harmonic oscillator coherent statg$] have served many Volve the construction of the complete Perelomov states via
purposes. In Schithnger’s conceptiofi2], they were viewed the dynamical group S@,2) [12-15. Others, including the
as quasiclassical objects, purely quantum in definitiorcurrent approach, make some use of(§Qoherent states
though remarkably classical in behavior. From this perspect16,17. Others involve the construction of ‘“temporally
tive, some authors have used these states with a classicgRble” coherent states: Klauder’s original paf a study
limit to study correspondence between quantum and classicQy Majumdar and Sharatchandf@], and another by Fox
perturbation serief3]. Stemming from Glauber’s study], [18]. The current construction differs from these in some key
coherent states have a wide application in quantum opticespects, which will be pointed out in the course of the paper.
[5], primarily in representations of the electromagnetic field. ~Section Il discusses the construction due to Klauder, and
In fact, being continuously parametrized, coherent states figlevelops the extension of this construction to degenerate

ure prominently in the theory of continuous representation$tates. In Sec. lll, the construction is applied to the hydrogen
[6,7]. atom problem. Section IV is a discussion regarding the role

Many generalizations of coherent states appear in the litthat these states and other generalized coherent states hold in
erature. Each generalization tends to preserve a small nurhysical theory, namely, as representations rather than as
ber of the properties of the harmonic oscillator coherenhysical states. The dynamics of an individual state are ex-
states in the general scheme at the expense of the remainifipred in Sec. V, in which hydrogenic states are constructed
properties. A recent generalization due to Klauf®) pre- that exhibit fractional and full revivals, and the main points
serves many, at the expense of few. Klauder's generalizatioff the paper are summarized in Sec. VI.
gives states thaia) evolve among themselves in tinfeem-
porally stablg, (b) are continuously parametrized, aic)
admit a resolution of the identity. As such, no reservations
are made for “semiclassical” properties such as minimum The generalization due to Klaudgd] is applicable to the
uncertainty, though a certain degree of freedom to be disgjiscrete portion of the spectrum of a Hamiltoni&h (A
cussed below remains within the construction, which may bontinuum generalization has also appedtH.) So, for a
optimized according to additional concerns. Two StUd'eShondegeneratEI with eigenstatesn) and eigenstate energies

have since appeard®,10] proposing forth conditions that : X ) i
eliminate this degree of freedom, which will be discussed ine”’ the coherent states are given fsing atomic units

Il. CONSTRUCTION

Sec. IV.
As initially presented, Klauder’'s construction is appropri- ) shexp(—iyey)
ate for systems without energy degeneracies. With no addi- s, 7)=M(s )ngo TW, 23
n

tional structure, the resolution of the identity fails for degen-

erate systems. Energy degeneracies arise when independent

operators commute with the Hamiltonian, suggesting a Lievheres=0 andy is real. The factorg, are the moments of
algebraic approach to impose the additional structure. Thug functionp(u)>0,u=0,

in the presence of degeneracies, excepting those few cases of

truly “accidental” degeneracies, the Perelomov approach to o
constructing coherent states for the degeneracy group is an pn=f u"p(u)du, (2.2
0
*Electronic address: mgacrawf@barrow.uwaterloo.ca and the normalizing functioi (s?) is chosen such that
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* g2n in which V(H) is the volume of the isotropy subgroup rela-
1=(s,y|s,y)=M?(s?) E — (2.3  tive to the fiducial vector in the construction of the Perelo-

n=0 Pn mov coherent stateX=G/H is the quotient space formed
by the degeneracy group with the isotropy subgroup, and the
measureal » is induced from the Haar measure on the degen-
eracy group. The states E(.7) therefore satisfy the reso-
lution of the identity

If the discrete portion of the spectrum is finite, the upper
limits of the above sumsand the appropriate expressions
hereafter may be replaced with,, ..

The choice ofp(u) is the remaining degree of freedom up
to the following restrictions: All the momengs, exist(up to

Nimax If finite), and the sum in Eq2.3 .ex.ists for alls=0. _ 1:f du(s,7,X)|s,7.x){(s, x|, (2.10
Such functionsp(u) are known to exist: In the harmonic
oscillator,p(u) =e " leads to the standard harmonic oscilla-
tor coherent states. with

The statess,y) clearly are continuously parametrized.
The states exhibit temporal stability: exgit)[s,y)=|s,y
+t). Further, giverp(u) andM?(u), letk(u) be defined by f du(s,v.x)

2 — o r
kK(uyM=(u)=p(u). (2.9 _im %J’ dszk(sz)f dyVOI(H)f dn(x).
Then, the coherent states satisfy the resolution of the iden- [ 0 -t %
tity, (2.1
i:f du(s,y)|s, y)(s,l, (2.5 Since the statefn,x are formed by superpositions over

states that share a common energy eigenvajyethey are
also eigenstates of the Hamiltonian and so evolve simply in
time. Accordingly, the statefs,y,x) preserve the temporal
1 stability property of the nondegenerate construction.
j du(s,y)=lim = dszk(sz)f dy. (2.6 Majumdar and Sharatchandra’s constructif@] also
makes explicit use of the Perelomov construction of coherent
states for the degeneracy group, and Klauder’s construction
The limit is necessary to accommodate possible incommeryg] is less explicit in this regard. A significant difference
surabilities of energy levels. In proving E@.9), integration  petween this and these other extensions of Klauder's con-
over yyields the Kronecker deltg, . , which may be iden-  struction is the treatment of the factdr,. Among other
tified with 8, only in the nondegenerate case. Also, theproblems[19] Majumdar and Sharatchandra incorpordte
identity of Eq. (2.5 should be regarded as a projection op-into the measure after the summation of the state, an opera-
erator onto the states contributing |®1y), i.e., the discrete tion of questionable justifiability. Klauder, using an adapta-
portion of the spectrum. These properties in concert makéon of SQO3) coherent states, incorporatgg into the states
these states most useful in the representation of arbitrangfter, and therefore affecting, normalization. H®8| con-

in which the integration is given by

|

bound, time evolved states. structs temporally stable coherent states, but with a Gaussian
To extend the construction to energy degenerate statetgking the place of"exp(—iye,) in Eg. (2.1). As such, a
replace Eq(2.1) with similar adaptation of his states may be effected by including

a factor of /d,, as in Eq.(2.7).

Z s"exp(—ivyep)
n=0 \/P—n Ill. SPECIAL CASE: THE HYDROGEN ATOM
whered,, is the degeneracy of theth energy level|n, x) are The group theoretical treatment of the hydrogen atom is
the Perelomov coherent stafdd] for the degeneracy group Standard in the literaturg20-23. For the hydrogen atom
G, and the normalizing factd(s?) is given by problem, there are two realizations of the degeneracy group
SQO4). One uses the elements of the angular momentum vec-
s?'d, tor, L,, and a scaled quantum Runge-Lenz vecnqr as

1=(s,7.X[s, %X>:N2(Sz)nzo (2.8)  generators of the group, whereas the other decouples these

siX generators into two setsl,\?lj=% (I:j+Aj), and Nj
In each energy degenerate subspace of the Hilbert space, thes (ﬂj—Aj). In the second representation, one finds that
Perelomov coherent states satisfy the resolution of the idersQ(4)=SQ(3)®SQ(3), so that, loosely speaking, a Perelo-
tity mov coherent state for S@ may be given by the direct
product of two S@3) coherent states.

The Sd3) coherent states with the fiducial vector

lj,—i), i=03,13, ..., aregiven by

n

1,=d, V(H)fxdn(x)|n,x)<n,x|, (2.9
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j (2j)! 2 gitm mension =2j+1) so the dimensions of the relevant rep-
lj,0)= E . - I} >71i,m). resentations of S@) aren?, n=1,2,3 ... .
m=j L+m—m!] @+]g It is now straightforward to construct the coherent states
(3.3) for the full system. The coherent states for the hydrogen

The resolution of the identity for these states may be writter oM problem by this construction are given by

A_2j+l d2§ . . o S expl — i ye,, 1) (n+1)
1j_ T f(1+|§|2)2|]!§><11§|1 (32) Yeni1

I8,7,41,02)=N(s) X
=0 Vo,
whered?/=d Re/dIm ¢, and integration is over the entire
complex plane projected from the unit sphere with the trans- X[n+1.41.45) @3
formation £ = —tan(@2)e '?. In the hydrogenic realization,
the representations of each copy of (80are of equal di- with

) ) i (212 ™S ™ i ma) i, my)
,51,§2>—m1’m2:_j [GHmMDIG—m)(G+m) ! (j—m) 1YL+ 42 (1+] )7

(3.9

The stategj,m,)|j,m,) may be related to the standard hydrogen Hamiltonian eigenstekt@s via Clebsch-Gordon coeffi-
cients. The states E@3.4) satisfy the resolution of the identity

A 1 dzgldzgz
1B_?f dM(SJ’)J’ (1+|§1|2)2(1+|§2|2)2|5,%§1,§2><57%§1,§2|: (3.5

where the subscripte is included to emphasize that this is ematical physics. Glauber’'s motivation in his study of coher-
more appropriately regarded as a projection operator into thent state$4] was not so much that coherent states are found
bound portion of the Hilbert space. In the specific example ofn the laboratory, but that they provide a representation in
p(u)=e"", with momentsp,=n!, explicit form may be which otherwise difficult calculations become feasible.
given toN(s?) andk(u) by Glauber noted that certain electric field operators have rep-
resentations as sums over the modal annihilation operators.

2
N(s?)=e"5"2(1+3s%+s%) 712 (38 |n diagonalizing these operators, one arrives at eigenstates of
and the modal annihilation operators. Restricted to a single
mode, this corresponds to the annihilation operator definition
k(u)=1+3u+u?. (3.77  of harmonic oscillator coherent states. Hence as annihilation
operator coherent states, they arise from a representation, a
IV. SOME CLARIFICATION point of mathematical convenience, not as a conclusion from

the physics of the problem. In any case, generalizations of

At this point, a few observations are in order. Primarily, annihilation operator coherent states have appeared widely,
the term “temporal stability” in no way refers to the time though the physical motivation to study such definitions in
evolution of the structure in configuration space. Onlyany context besides as representations is unclear.
through a rather generous interpretation does this construc- Glauber also showed how these states may be constructed
tion “positively” solve the long standing problem of form- through the action of a displacement operator on the ground
ing nondispersing wave packets for the hydrogen atom. Tenstate. This definition was generalized by Perelorf4, a
poral stability refers strictly to the mathematical propertygeneralization which has been widely successful. This suc-
that the states evolve in time among themselves. With thisess is founded upon the properties of the dynamical group
property in mind, some authoff] have grossly overstated coming through into the set of coherent states, not from an
the the nature of the configuration space time evolutionassertion(which few researchers makéhat an individual
while other author$23,19 have studied in detail the long- state by such a construction matches a state by some prepa-
time evolution of individual states, even though there is noration in the laboratory. This success is of a mathematical,
underlying physical basis either to provide for spatial cohernot physical, nature again resting upon the use of these states
ence, or to presume states of this description are found in thas a representation.
laboratory at all. The question of how to prepare these states Of Glauber’s original three definitions, the approach that
in the laboratory remains very much open. appears to invest the most physics is the minimum uncer-

Much of the study of generalized coherent states restginty construction. Indeed, squeezed states, a generalization
more in the mathematical than the physical nature of mathef this construction, are used as descriptions of physical as-
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pects of certain quantum optical experiments in the labora- Hence in the absence of an acceptable fourth criterion
tory. Nieto et al. [25] have also developed a generalization (none is herein proposgdve carry on. This limits the con-
that minimizes the uncertainty product of a pair of “natural” struction to a mathematical tool, though an interesting math-
operators. Ehrenfest's relations then lead to the initial evoluematical tool it is. Note that the time-dependent Sdimger
tion of the quantum expectation values approximating claseduation for a time-independent Hamiltonian in this coherent
sical evolution. Though this approach is strongest in terms oftate representation becon{es atomic units
an underlying physical motivation, these states still léiok
general any physical hypothesis, which selects for states of i(s |y =— i(s ) (4.1)
this description in the laboratory. As an aside, the Nieto con- dy Y >y '
struction, though seen from time to time, is not as widely
used as the Perelomov construction for perhaps two reasonghose solution is trivial. With this expression representing
First, though it is generally applicable in principle, many the unperturbed solution, this would make for an interesting
systems are intractable to carry through to completiinen  point of departure towards a study of time-dependent pertur-
the Hamiltonian enters into the “natural” operatpr§ec-  bation theory. That is, coherent states are useful when con-
ond, a certain tradeoff appears to be at work: This approachidered as an ensemble of statesrepresentation not as
is somewnhat less mathematically endowed than Perelomovigdividual states.
approach. Speaking now in the specific case, some authdgs19

Now consider Klauder’s construction. All of the attrac- have suggested that the temporally stable construction of co-
tions are mathematical in nature. As initially presented, ndierent states does not support the possibility of exhibiting
reservations are made for coherence in configuration spadsll or fractional revivals as described by Averbukh and Per-
(i.e., semiclassical behavioand there is no general physical €lman [27] or Nauenberg[17]. First, in order to decide
mechanism that would result in finding these states in thavhether a state is to be found in the laboratory, a physical
laboratory. However, a certain degree of freedom remains ifmechanism for the preparation of these states must be pos-
the construction, and two suggestions have separately apdlated. Until this has been done, the presence or absence of
peared that a fourth requirement will simultaneously elimi-a phenomenon, which is, after all, universal, is not relevant.
nate the degree of freedom and ensure for the behavior iBecond, these authors did not exploit the degree of freedom
configuration space. It is likely that a fourth requirement, if it that remains in the construction. Without supplying a physi-
exists, will be physical in nature. The requirement postulatedal motivation that would lead to finding these states in the
by Majumdar and Sharatchandff] is that the measure laboratory, we shall see that by exploiting this degree of
found in the resolution of the identity corresponds to thefreedom wave functions may be formed by the present con-
“canonical” measure on classical phase space. They furthegtruction, which exhibit the full panoply of revivals.
assert that the measure uniquely identifies the set of coherent
states. This assertion is false, as shown by Sixdewieas. V. DYNAMICS
[26] who demonstrate multiple measures corresponding to
the same set of coherent states. Also, though it is convenient Having thus constructed the states emphasizing, among
from a mathematical point of view, it is unclear why the other things, time evolution, it is now interesting to consider
measures should correspond at all from a physical point o'lfhe behavior of the states as evolved in time. Other authors
view, or even if a meaningful identificatiofone to ongcan have defined hydrogen atom coherent states with a variety of
always be made between individual coherent states angpPnstructions and with various reports of evolution in “fic-
points in classical phase space. titious” time [13], or evolution along circulaf28,29 or

A fourth requirement is also postulated by Gazeau and<eplerian elliptical orbits with possible, eventual state reviv-
Klauder[10], which is motivated by an attempt to formalize als[16,17. Coherent states also may be constructed by the
the connection between the quantum parameters to the cgresent recipe, which travel along elliptical orbits and exhibit
herent state and the classical action-angle variables. Unfoftactional revivals.
tunately, their requirement results in an angle variable whose According to Averbukh and Perelma@7], fractional re-
rate of change with time is independent of the action, a ratheyivals are a universal phenomenon exhibited by wave func-
special circumstance restricted to the harmonic oscillator anions provided third-order corrections and higher do not con-
a small number of other systems. This is a severe limitatioffioute significantly to a polynomial approximation to the
in terms of semiclassical behavior, since this is clearly ahergy eigenvalues over contributing energy eigenstates. Ex-
odds with how the angle variable evolves in, say, the hydropanding aboun=n, the hydrogen atom energy levels are
gen atom problem.

A degree of freedom also remains in Fox’s construction 1 1 1 3 2
[18] of Gaussian generalized coherent states, namely, the "~ 2= g TN ()
width of the Gaussian in question. Note that in this context,
the distribution in energy level, not configuration space, is
Gaussian. Fox does not give any criteria that are intended to
specify a suitable width. As with the Klauder’s construction,
this degree of freedom may be optimized according to the he first two terms lead to phase angles equal to multiples of
aim in mind. 24 for times in the vicinity of

+=(n-Nn)3+---. (5.9

:>UL| )
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2 .
t—Tr—?(n) . (5.2

This signals a wave function revival &&= T, provided the
cubic term is small at the edges of the distribution, i.e.,

47(An)3<3(n). Note thatT,=T,/2 in Averbukh and Per-
elman’s notation.

At the heart of these coherent states lies the function

p(u). With p(u)=e", one obtains a distribution in eigen-
levels characterized by

_ ,st+5s%+4 3
(W=s"graer1 63
and
A= , S0+ 6%+ 145" +10s%+ 4 54
AN =S et res+r O

so that, taking leading order behavidm~ /(n). Substitut-
ing into the above necessary condition for a revivalt at
=T, gives 47/(n)/3<1, which is only satisfied for states in
the immediate vicinity of the trivial coherent state, the

ground state, and certainly violated by states with high prin—FO

cipal quantum numbers.

However, the functiomp(u) is a “degree of freedom” in
the construction, and may be chosen according to the appl
cation in mind. Accordingly, consider insteag(u)
=exp(—u®) for some constantk>0 with a view to con-
structing wave packets that exhibit strong revivals. The mo
ments of this function are

n+1

(%

(5.9

1
Pn:;F

Many of the expressions involved in subsequent calculation

may be handled using properties of the functions of Mittag-

Leffler [30], though they will be treated instead by compari-
sons to expressions following frop{u)=e™". In fact, using
p(u)=exp(u®) results in a set of coherent states closely
related to those described by Sixdenietsl. [26].
Expressions fokn) and (An)? may be approximated by

recognizing the scalings necessary to map expressions with

a=1 onto those with generat:

n+1—(n+1)/a, s—s“. (5.6

Hence, one obtains to leading ordéarge values of will
eventually be involved

(n)~as®®, An~as?, (5.7)
so thatAn~ \a(n). Substituting this into the minimal con-
dition for the first full revival gives 4ra®2\(n)/3<1, which
may be satisfied ifx is chosen sufficiently small. Without
discussing the effect of changirgany further, there will be
a tradeoff between large and smallLarge « will introduce
many significantly contributing energy levels for a given
yielding good spatial localization but weak or nonexistent
revivals, whereas smalk yields strong revivals of poorly

PHYSICAL REVIEW /2 012104
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FIG. 1. Amplitude of coherent state on tkey plane for times
(@ t=0, (b) t=T,/5, (c) t=T,/4, (d) t=T,/3, (e) t=T,/2, and(f)
t=T,.

localized states. Note that in this construction a small width
in n follows from an appropriate choice fer(u), whereas
the same may be accomplished by Fox’s construgti@hby
simply specifying the width to be narrow.

As a typical example, consider the state depicted in Fig. 1.
r this statea=5; ands=2.209< 10°°. This results in a
state centered atn)=160 with a width of An=+/5 for
\Ilyhich one expects a full revival at=T,=1.373x 10°. The
parameters; , to the S@4) coherent state were chosen to
provide an elliptical orbit with eccentricity=0.385, the ma-

jor axis parallel to thex axis, and the angular momentum

parallel to thez axis. The vertical axes are amplitudes of the
wave functions on the-y plane, calculated at the times
indicated on a square grid 80 000 units in width centered at
the origin.

The evolution of this state is as expected. Initially local-
ized, the state evolves semi-classically. The wave function
then spreads out but remains close to the ellipse. As the
expected times for the various fractional revivals arrive, the
state exhibits the expected revival including the full revival
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FIG. 2. Autocorrelation function of the coherent state at time
For this state, the revival time i, =1.373< 10° in atomic units.

il
1111
I
i
I
I
2 0.4 0.6 14 1.8

x10°

012104-5



M. G. A. CRAWFORD PHYSICAL REVIEW A 62 012104

02 VI. CONCLUSION

This approach to defining temporally stable coherent

0.15} states for the hydrogen atom problem is similar in spirit to
those of Majumdar and Sharatchan{i@d, Klauder[8], and

t+ Fox[18]. Majumdar and Sharatchandra make explicit use of

0.1r the S@4) degeneracy group, but treat the facthy differ-

+ + ently. Although Klauder’s construction is specific to the hy-

drogen atom problem rather than the present general ap-

proach, a similar term appears in that construction that

disrupts normalization. Fox uses a somewhat different con-

struction, which avoids the use of the moments of some

0.051

0 SRR L H ‘s’
120 140 160 180 200 function p(u). Even so, one may construct coherent states in
FIG. 3. Distributions in energy level fom=1(x) and « d€generate systems related to Fox’s construction as the
=1/32(+). present construction is related to Klauder’s original work.

The general construction of ER.7) provides states with
many useful properties. They form a complete set of states
(in the bound portion of the spectrymand evolve in time
Q2mong themselves. This makes them a clear candidate for

se in representations of time evolved, bound states. Further,
ere is a freedom in their definition that stems from the

choice ofp(u). If p(u) is appropriately chosen, hydrogen

atom coherent states may be defined that exhibit the full

Commenting again on the assertion by some authors thagnge of Phenome”?‘ ex.hibited by other approaches: initial
“temporally stable” states for the hydrogen atom cannot ex-S€Miclassical behavior, interference between the head and

hibit this phenomenoii23,19: Their calculations involved, tail of the state as it disperses about the Keplerian ellipse,

in terms of the present paper= 1, hence wide distributions localization on the Keplerian ellipse, and wave function re-
in n that exhibited no appreciable revivals over the timev'v_?_ls at ﬁredic(tjz_if?le tlmest; i th h - d
frames calculated. Wave function revivals are a universal e salient difierence between these conherent states an

phenomenon depending on the nature of the energy eigel‘?-th.er constructions is the natural and explicit. manner in
level spacings, and in the case of the hydrogen atom, th hIC,h the energy degeneraues are treated hereln, via Perelo-
width An. By exploiting the fact that one may chooséu) mov’'s group theoretical construct of generalized coherent
to one’s liking, An may be reduced such that the resuItantStates'
states do revive. Further, one stufB8] used values of

leading to(n) equal to 25 and 400. Witfn) =400, from Eq.

(5.2, T,~5.36x 10" though their calculation only extends  The author is grateful for the support provided by the
to t=5x10°. For the other study19], values of(n) exhib-  Natural Sciences Engineering Research Council of Canada.
ited were 10 and 200. A full revival should be found using The author also wishes to acknowledge useful discussions
(ny=200 at aboutt=3.35x10° though their calculation with Dr. E. R. Vrscay and Dr. J. Paldus, both of the Depart-
only extends ta=5x 1. ment of Applied Mathematics, University of Waterloo.

att=T,, even though an examination of the minimal condi-
tion for the first revival gives the debatable result 6229

Figure 2 depicts the autocorrelation function for the sam
state as above, exhibiting the typical pattern characterizin
revivals (compare with Fig. 2 of Parker and Stro(i81]).
Figure 3 demonstrates how a smalshrinks the width of the
state inn.
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