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Causality, delocalization, and positivity of energy

E. Karpov! G. OrdoneZ? T. Petrosky*? I. Prigoginel® and G. Pronkb®
International Solvay Institutes for Physics and Chemistry, Case Postale 231, Campus Plaine ULB, Boulevard du Triomphe,
Bruxelles 1050, Belgium
2Center for Studies in Statistical Mechanics and Complex Systems, The University of Texas at Austin, Austin, Texas 78712
SInstitute for High Energy Physics, Protvino, Moscow Region 142284, Russia
(Received 25 October 1999; published 8 June 2000

In a series of interesting papers Hegerfeldt has shown that quantum systems with positive energy initially
localized in a finite region immediately develop infinite tails. In our paper Hegerfeldt's theorem is analyzed
using quantum and classical wave packets. We show that Hegerfeldt's conclusion remains valid in classical
physics. No violation of Einstein’s causality is ever involved. Using only positive frequencies, complex wave
packets are constructed whichtatO are real and finitely localized and which, furthermore, are superpositions
of two nonlocal wave packets. The nonlocality is initially cancelled by destructive interference. However, this
cancellation becomes incomplete at arbitrary times immediately afterwards. In agreement with relativity the
two nonlocal wave packets move with the velocity of light, in opposite directions.

PACS numbe(s): 03.65—w, 03.70+k

[. INTRODUCTION of the initial conditions. Indeed, in our construction of the
solution (1) we shall use two conditions; one is the initial
Are there deviations from Einstein’s causality? Hegerfeldtcondition of the local shape of the fiefpl(x,t) and the other
has written[1]: “Positivity of the Hamiltonian alone is used is the condition of the positivity of frequencies. The fre-
to show that particles, if initially localized in a finite region, quency positivity replaces the usual initial condition on the
immediately develop infinite tails.” This seems to imply su- time derivative of the field®/dt. We shall show that our
perluminality. One of his examples is the Fermi problgth initial condition with positive frequencies leads to the non-
of two atoms coupled by a radiation field. Consider the initiallocality of d®/dt att=0.
condition when one of the atoms is in an excited state, the In Sec. lll we show that similar conclusions are obtained
other in the ground state, and no photons are present. THer the wave packet of a free field in relativistic quantum
probability to find the second atom in an excited state idfield theory. We construct an operator reminiscent of the
nonvanishing immediately after the initial moment, indepen-position operator of Newton-Wign€i6]. The expectation
dently of the distance between the atofds3—5. Heger- value of this operator with the state corresponding to our
feldt’'s arguments are based on the analyticity of the expecwave packet is local at=0. However, it has infinite tails
tation values of the operatoN(V), which gives the which are “hidden” at timet=0, but emerge immediately
probability to find a particle inside a finite volum@. He  afterwards. We may call this effect a “curtain” effect. No
showed that a state in a quantum system with positive energyuperluminal propagation is involved. We note that at the
localized in a finite volumeV at the instant=0, will de-  same time other quantities such as the energy density have a
velop infinite tails immediately afterwards. Positivity of en- nonlocal expectation value in the same state even=fd. It
ergy plays an essential role in his proof. In this paper weshould be also pointed out that for the Dirac equation there
present an illustration of Hegerfeldt's theorem, without anyare no positive energy solutions which can be localized in a
appeal to superluminality. We apply Hegerfeldt's consider-finite region(see[1]). This demonstrates that localization in
ation to wave packets. Moreover, we show that Hegerfeldt'selativistic quantum field theory cannot be “complete.”
effect appears even for classical fields, if wave packets are
constructed from positive frequenciggorresponding to
positive energy quantum fields
We first study the positive-frequency solutions of the clas-  Consider classical wave packets constructed by the solu-
sical wave equatior{Sec. I). We consider wave packets tions of the wave equation with positive frequency and lo-
®(x,t) localized att=0. The localization is due to interfer- calized at timet=0. We show that these wave packets will
ence of the two complex solutions, each propagating causspread immediately over the whole space. Curiously we have
ally, not found any reference to this effect in the literature. We
start from the wave equation on the real line=(1):

II. CLASSICAL WAVE PACKETS

D (x,t) = p(X—1) + ¢* (x+1), (o
2 2
where “*” denotes complex conjugation and we take ((9_2_ —2)<I>(x,t)=0. 2
=1. We show that both wave packets are delocalized. They gt= ox

present long tails, extending to arbitrary distances and decay-
ing according to a power law. As we shall show, the “non-The generaktomplexsolution of Eq.(2) is, by the Fourier
local effect” can also be understood from the point of view transform, of the form
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Blx.t) = %f mdk{¢+(k)e““’kt+ b (ke In(z)=In|z|+i[arg z) +2mn], (12

&) wheren is an integer. In order to r_]ave both terms in EL)
on the same branch of the logarithm we takeO for both

wherew,=|k| and whereg .. (k) are arbitrary functions. To of them[due to the difference of the two terms in E41)

determineg . and¢_ one can use the two initial conditions the result does not depend on the particular value]oThe

®(x,0) and d(x,0). However, one can also consider the&rgument ox+i0 can be expressed as

special class of positive-frequency solutions to B, i.e.,

¢ (K)=0 and argx+i0)= ;[1—sgr(x)], (13)

Dy (x,1)= f dke, (kje ', 4 where sgrX)=x/|x is the sign ofx. Then, inserting Eqg12)
and(13) into Eq.(11) we obtain
These positive-frequency solutions are determined by the ini-
tial condition®(x,0). Note that relatiori4) leads to a com-
plex field fort# 0, even if®, (x,0) or ¢, (k) are real. Con-
sider as an example a localizédectangular wave packet

1
Y(X)= g [SgriX—Xo+b) = sgnx—xo—b)]

with centerx,, and width 2 at timet=0: + i In X_X0+b} (14)
Admhb " | X—Xg—b|’
1
Ppp(x,0)= 5O (b— |X=Xol).- (3 We see that the functior(x) in Eq. (14) consists of a local

real part(sgn and a nonlocal imaginary paftog). For t
The normalization has been chosen so that the integral of thig 0 it is sufficient to replacex by x—t in Eq. (8). Similar
function overx is equal to 1. Then the functio#, (k) is result is obtained fory* (x+t). As a result, the function
d(x,t) is also nonlocal because it is the superposition of the
two complex functionsy(x—t) and * (x+1t) in Eq. (8),
which describe nonlocal objects moving with the speed of
light in opposite directions. However, &0 the imaginary
where®(x) is the step function, which is 0 for negative, parts cancel each othésee Fig. 1, and we recover our lo-
and 1 forx positive. Then the functiod(x,t) in Eq. (4) is  calized initial condition(5), because only the real parts of
given by these functions, which are local, remain. In all our figures
L time t is measured in seconds), the coordinatex is mea-
o , : sured in “light seconds”(Is) and wave packet amplitudes
Px.t)= MJ_DO dkLO_b dx'e koD, (@) are dimensionless. Figure 2 corresponds+®.25s. At this
moment the real local parts @f(x—t) and ¢* (x+t) have
This is a sum of two functions corresponding to two wavemoved in opposite directions. The nonlocal imaginary parts

1 [+ ,
#00=5p [ axe om-lx-x).  ®

packets moving in opposite directions, of /(x—1) andy* (x+1) have also shifted in opposite direc-
tions and no more cancel each other. At this time, the two
D (X,t)=h(x—t)+ * (x+1), (8)  waves overlap and we have
where |®(x,0)| =[x =)+ % (x+ )| # (X =) | +|* (x+1)).
(15
1 of ék X—X )
Y= 708 4xb f dx’ f dk ©) At t=1 s in Fig. 3 the overlapping is small and we have
To evaluate the integral ovérwe introduce the usual regu- | (x, )| =[p(x—t)|+]¢* (x+1)]. (16)
larization by adding a positive infinitesimal Xxpwhich leads
to We see that the initial conditio® (x,0) is local(Fig. 1) only
because at=0 the nonlocal parts cancel each other com-
1 xo+b  dx’ pletely by destructive interference. We may describe the ap-
Pp(x)=- A7bi J; bX—X +i0" (10 pearance of nonlocality as a sort of “curtain effect.” The
. nonlocal nature of each wave packg{x—t) and ¢* (x
After integration overx’ we obtain +t) is hidden behind a “curtain” at the initial time and

emerges immediately afterwards. Each of the nonlocal wave
packets is complex and propagates at the speed of light.
P(x)=7 b“”(x Xo+b+i0)=In(x=Xo—=b+i0)]. In conclusion, we have illustrated Hegerfeldt's theorem
(1)  for classical wave packets. We see that the localization of
wave packets corresponding to positive frequency is unstable
The logarithm of a complex number is given by and involves complex space structures.
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Note that the localization of a positive frequency wave w =K, (19
packet is not “complete,” because the time derivative of the
function ®(x,t) is nonlocal even at=0: with c=1. The creation and annihilation operatajsanday
. of the photon with wave vectok obey the commutation
P 1 1 (17  'elation
at  |_, 2mb\Xx=Xo—b X—=Xo+b/
[a),ay,]=4mwd(k—k'). (20)

The wave equation being of second order demands two ini-

tial conditions: for the function itself and for its time deriva- We construct a wave packet from a linear combination of
tive. The additional requirement of positivity of frequency normal modes:

replaces the second condition. There are no wave packets

containing only positive frequency modes, which are local- +oo it
ized together with their time derivati&]. [Py, b(t))= le dkey, p(k)e ' “Kal0). (21
lll. RELATIVISTIC QUANTUM FIELD Here |0) is the vacuum state for the field8). The fact that

our wave packet is obtained by the action of creation opera-
Jors on the vacuum state implies that the state consists of
guantum particles. In this case the conditiog>0 appears norm.al modes with positive energy. As be'fore, we chose the
naturally since the enerds= w, must be positivéwe take function ¢X0,b(k) so that the wave packet is localized at the

fi=1). We consider massless particles with no spipho-  time t=0 in a domain with centex, and width 2,
tons”). To simplify our consideration we use again a (1 .

+1)-dimensional spacetime. In terms of second quantization _ w2 [ 77 o Likx

we have the scalar field operator o b= (20| dx€TDy 5(x,0), (22

We turn now to relativistic quantum field theory. We
show that the previous discussion is applicable to relativisti

- +oo ‘ .
lﬂ(X,t):J dk(aje' (k04 g e i@ =Ky - (1g) where

— o0

1
wheredk=dk/(47w)) is a relativistic invariant measure and Dy 60 = (2b)”2®(b_ [x=Xol)- (23

012103-3



E. KARPOV et al.

a z—-1

) Yz —1)
1
4] _——
= 1 2
~0\fs
1

x(1ls)

PHYSICAL REVIEW A 62 012103

v*(z +t)
1

<)
N & 5
1
|
-1

-2

x(1ls)

FIG. 2. The real parfdashed lingsand the
imaginary part (solid lines of ¢(x—t) (a),
P* (x+1) (c), and P(x,t) = ¢p(x—1t) + ¢* (x+1)
(e) as functions ofx at t=0.25s; the absolute
values |¢(x—1)| (b), |¢*(x+t)| (d), and
|D(x, )| # | p(x—1)|+|¢* (x+t)| (f) as func-
tions ofx att=0.25s.

The functiond)xoyb(x,O) is normalized to ensure the normal-

ization of the statd;CI)XO,b(O)) in Eq. (21).
Let us introduce the operatpi(x):

p(x)=a'(x)a(x), (24)
wherea'(x) anda(x) are defined by
+oo .
aT(x)=J dk(2w) Y% *a],
+oo .
a(x)= f dk(2w,)Y%e"**a, . (25)
These operators satisfy the commutation relation
[a(x),a’(x’)]=8(x—x"). (26)

This construction follows the ideas of the construction of

positions operators by Newton and Wignd]. We shall
express the localization of our stdl@xo,b(t» in terms of
the expectation value of the operajefx). We call a state
localized if the expectation value @f(x) in this state van-
ishes whenx is outside a finite region. Our choice of
¢X01b(k) in Eq.(22) and(bxo,b(x) in Eq. (23) guarantees that
the state|d)x0'b(t)> is localized att=0 in the domain[xg
—b,xy+b], i.e,

1
(P (0] P(X)| Dy 5(0))= 5 O(b—[x=c|). (27)
Using Eq.(25) we obtain the time evolution of this quantity
<(I)xo,b(t)|P(X)|q)x0,b(t)>

+oo ) ,
=ff dkdk’ (4w ) Yo (KK

XDy, p(t)|afa| Py, b(t)) (28)

where ((I)Xo,b(t)|alak,|<bx0,b(t)) is expressed using our
form of the wave packe21) as follows:

(Dy, b(t)|afa Py, b(t))
+OC ~ o~
=[] g, w01

xe“~°Y0|aafa a,|0). (29)

Using the commutation relatio(R0) we integrate Eq(29)

overl andl’ and then insert the result into E@8). Taking

into account the positivity of energyt9) and the form of the
function d)xo,b(k) in Eq. (22) we obtain
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FIG. 3. The real parfdashed lingsand the
imaginary part (solid lineg of ¥(x—t) (a),
P* (x+t) (c), and D(x,t) = J(x—t) + * (x+1t)
(e) as functions ok att=1 s; the absolute values
lp(x—=1)| (b), |¢*(x+t)| (d), and [D(x,1)]
#|g(x—t)|+]y* (x+1)| (f) as functions ofx at

t=1s.
(Dyy b(D]p(X)[ Dy p(1)) It contains the derivatives of the field operatohks we have
o o seen in classical case, the time derivative of the function
1 Xo—b too ]2 d(x,t) is nonlocal even at=0.] To determine the expecta-
— dx’ dke i|k|t+ik(x—x") ) . . . .
2m(2b) 2 xg+b . tion value of Too(X) in the statelCDXOYb(O» taking into ac-

count the positivity of energy19 we first calculate this
(30 expectation value for a finiteand then take the limit— 0.

By comparison with Eq(7) we see that this quantity is equal Using Eqs.(18)~(23) we obtain
to the absolute value squared of the classical functigr,t)

up to the normalization constant. Our discussion of nonlocal-  (®, (0)|Tyo(X)| P, ,(0))
ity remains, therefore, also valid in the quantum case, and the o o

exprgssion inside the absolute value in E2D) is a super- 1 1 1 1—sgn(x—b)sgr(x+b)
position of two nonlocal wave packets that move in opposite = +
directions at the speed of light. In the Appendix we give a 4mb\ [x—b[ = [x+b| VIx=b[V|x+b|

second example using an analogy with Fermi’s prob[gin
Let us note that in quantum field theory localization de-
pends on the observable. If a state is local from the point of _ T . . .
) . ; where we puky,= 0 to simplify the expression. This quantity
view of one observable, it can be nonlocal from the point of; .
. ; is obviously nonlocal.
view of another. In our example the expectation value of the

operatorp(x) is local in the state}CDXO,b(O». At the same
time, the energy density of the field in the same state is

(32

IV. CONCLUSION

nonlocal. Indeed, the energy densiiyy(x) of the free mass- Positivity of energy for quantum field®r frequency for
less field(18) is classical fieldsleads to a decomposition of localized wave
a\ 2 A\ 2 packets in terms of nonlocal wave packets with long tails.
Tog(X) = 1((‘9_‘#) +(‘9_¢) ) (31) The long tails, which cancel each other initially, appear im-
0 2\\ at X mediately afterwards as the nonlocal wave packets move in
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opposite directions. In our examples the long tails decay with a) 1.4
the distancex according tob/x for b/x<1, whereb is the 1.2
size of the localized wave packet. They are precursors to the
usual wave propagation. Although we may have instant in-
teractions, these are not the result of superluminal propaga-
tion, but of “preformed” structures.

We shall study the interaction between nonlocal structures
in a separate paper. We have then “contact interactions,”
due to the overlapping of the long tails. We shall also show = -1 3 3 3 ¥(1s)
that the photon clouds around atoms and molecules are non-
local, which leads to the precursor effect and eliminates the
apparent deviation from causality in Fermi’s two-atom prob-
lem. However, it is true that the two atoms “feel” each other
instantaneously. Even inside a relativistic thegilye wave
equation is Lorenz invariahthere is place for instantaneous
interactions due to nonlocality.

Einstein’s relativistic events are associated to four dimen-
sional points. Here we see nonlocal but still relativistic
events that are due to the instability of localization as shown
in the examples presented in this paper.

o o o o
S

b)

x(1ls)
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Here we show an analogy of our problem with Fermi's jhe moving component goes away, the scalar product de-
two-atom problem. We prepare our wave padkef, (1))  creases. To show this, we write this scalar product using Eq.
“localized” at t=0. At time t we project this state on an (21) in the following form:
second wave pack¢d>xlyb(0)>, which is localized in a do-
main with centex; # X and width 2, and plays the role of
a measurement device. We chooseso thatx; — x> 2b. (@, b(0)| Py, b(1))

Then, att=0 these two states do not overlap and the scalar
product((bxl,b(0)|®xoyb(t)) vanishes. We consider this sca-

lar product as a function of, i.e., at each momertt we
project the evolving wave packébxo,b(x,t» on the local- . :
ized statd®, (0)). As we have shown, the initially local- x e '“k(0]acay,[0). (A1)

ized packet, which evolves in time, is nonlocal immediately

aftert=0 and our scalar product has a nonvanishing valueye perform the integration ovek’ with the help of the
This can be interpreted as the secdlodalized wave packet  commutation relatiof20). Then, inserting Eqg22) and(23)

“feeling” the existence of the first one even &tx;—Xq we obtain

—2b when the causal component of the first wave packet

still did not reach the domain of localization of the second

_ f f_*:dkdw:l,b(kmo,b(k’)

wave packet. The scalar prodl(d)xl,b(O)kbxo,b(t)) grows (q)xl,b(X,O)M)xo,b(X,t))

as the overlapping of the two wave packets incredses

Fig. 4. We expect some essential change of this growth 1 [xtb X1 +b T R
N . i — dx’ dx’ dke i|klt+ik(x" —x ).

when the main part of the first wave packet corresponding to 47b Jy _y ‘b .

the position of its local*“‘causal”) component reaches the ! 0

domain of localization of the second wave packet. Then, as (A2)
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a)  R(D2,4(0)[Pop(2)) b)  R(P2,(0)|Pos(t))
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Using a regularization similar to E¢7), we integrate ovek
and obtain

<(I)x1,b(0)|q)x0,b(t)>

1 X1+b Xpth
=—— dx’f dx”
4ib X1—b Xg—b
X ! A3
t—=x'"+x"—i0 t+x'—x"—i0})" (A3)

The integration ovex’ andx” and a rearrangement of terms
give us

(Dx, 6(0)[ Dy b(1))=1(X3—Xo+1—10)

— i (Xy—Xg—t+i0), (A4)
where
Pi(x)= b [(x—=2b)In(x—2b) + (x+2hb)
XIn(x+2b)—2xIn(x)]. (A5)

Then, using Eqgs(12) and(13) we come to

(@x, p(0)[ Dy b(1))=ha(Xa—=Xo— 1) + 3 (Xg=Xo+1),
(AB)

where

1
Yo(X)= %(|x—2b|+|x+ 2b|—2|x|)+

47b
X ((x—2b)In|x—2b|

+ (x+2b)In|x+ 2b| — 2xIn|x|).

Figure 5 shows the real part, the imaginary part, and the
absolute value of the scalar produ{@xllb(O)ldbxo,b(t)) as

functions oft for two different values of the wave packet’s
width b. The real component is nonvanishing only in the
time interval corresponding to the overlapping of the local-
ized components. In contrast, the imaginary part is nonvan-
ishing immediately after=0, because it reflects the overlap-
ping of nonlocal components. Figure 5 also shows that the
“causal” part of the effect is much bigger than the contri-
bution of the long tails, if the size of the wave packet
is much less than the distance between the domains of
localization.
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