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Causality, delocalization, and positivity of energy
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In a series of interesting papers Hegerfeldt has shown that quantum systems with positive energy initially
localized in a finite region immediately develop infinite tails. In our paper Hegerfeldt’s theorem is analyzed
using quantum and classical wave packets. We show that Hegerfeldt’s conclusion remains valid in classical
physics. No violation of Einstein’s causality is ever involved. Using only positive frequencies, complex wave
packets are constructed which att50 are real and finitely localized and which, furthermore, are superpositions
of two nonlocal wave packets. The nonlocality is initially cancelled by destructive interference. However, this
cancellation becomes incomplete at arbitrary times immediately afterwards. In agreement with relativity the
two nonlocal wave packets move with the velocity of light, in opposite directions.

PACS number~s!: 03.65.2w, 03.70.1k
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I. INTRODUCTION

Are there deviations from Einstein’s causality? Hegerfe
has written@1#: ‘‘Positivity of the Hamiltonian alone is used
to show that particles, if initially localized in a finite region
immediately develop infinite tails.’’ This seems to imply s
perluminality. One of his examples is the Fermi problem@2#
of two atoms coupled by a radiation field. Consider the init
condition when one of the atoms is in an excited state,
other in the ground state, and no photons are present.
probability to find the second atom in an excited state
nonvanishing immediately after the initial moment, indepe
dently of the distance between the atoms@1,3–5#. Heger-
feldt’s arguments are based on the analyticity of the exp
tation values of the operatorN(V), which gives the
probability to find a particle inside a finite volumeV. He
showed that a state in a quantum system with positive en
localized in a finite volumeV at the instantt50, will de-
velop infinite tails immediately afterwards. Positivity of e
ergy plays an essential role in his proof. In this paper
present an illustration of Hegerfeldt’s theorem, without a
appeal to superluminality. We apply Hegerfeldt’s consid
ation to wave packets. Moreover, we show that Hegerfel
effect appears even for classical fields, if wave packets
constructed from positive frequencies~corresponding to
positive energy quantum fields!.

We first study the positive-frequency solutions of the cl
sical wave equation~Sec. II!. We consider wave packet
F(x,t) localized att50. The localization is due to interfer
ence of the two complex solutions, each propagating ca
ally,

F~x,t !5c~x2t !1c* ~x1t !, ~1!

where ‘‘* ’’ denotes complex conjugation and we takec
51. We show that both wave packets are delocalized. T
present long tails, extending to arbitrary distances and de
ing according to a power law. As we shall show, the ‘‘no
local effect’’ can also be understood from the point of vie
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of the initial conditions. Indeed, in our construction of th
solution ~1! we shall use two conditions; one is the initi
condition of the local shape of the fieldF(x,t) and the other
is the condition of the positivity of frequencies. The fr
quency positivity replaces the usual initial condition on t
time derivative of the field]F/]t. We shall show that our
initial condition with positive frequencies leads to the no
locality of ]F/]t at t50.

In Sec. III we show that similar conclusions are obtain
for the wave packet of a free field in relativistic quantu
field theory. We construct an operator reminiscent of
position operator of Newton-Wigner@6#. The expectation
value of this operator with the state corresponding to
wave packet is local att50. However, it has infinite tails
which are ‘‘hidden’’ at timet50, but emerge immediately
afterwards. We may call this effect a ‘‘curtain’’ effect. N
superluminal propagation is involved. We note that at
same time other quantities such as the energy density ha
nonlocal expectation value in the same state even fort50. It
should be also pointed out that for the Dirac equation th
are no positive energy solutions which can be localized i
finite region~see@1#!. This demonstrates that localization
relativistic quantum field theory cannot be ‘‘complete.’’

II. CLASSICAL WAVE PACKETS

Consider classical wave packets constructed by the s
tions of the wave equation with positive frequency and
calized at timet50. We show that these wave packets w
spread immediately over the whole space. Curiously we h
not found any reference to this effect in the literature. W
start from the wave equation on the real line (c51):

S ]2

]t22
]2

]x2DF~x,t !50. ~2!

The generalcomplexsolution of Eq.~2! is, by the Fourier
transform, of the form
©2000 The American Physical Society03-1
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F~x,t !5
1

2p E
2`

`

dk$f1~k!e2 ivkt1f2~k!eivkt%eikx,

~3!

wherevk5uku and wheref6(k) are arbitrary functions. To
determinef1 andf2 one can use the two initial condition
F(x,0) and Ḟ(x,0). However, one can also consider t
special class of positive-frequency solutions to Eq.~2!, i.e.,
f2(k)[0 and

F1~x,t !5
1

2p E
2`

`

dkf1~k!e2 ivkteikx. ~4!

These positive-frequency solutions are determined by the
tial conditionF(x,0). Note that relation~4! leads to a com-
plex field for tÞ0, even ifF1(x,0) or f1(k) are real. Con-
sider as an example a localized~rectangular! wave packet
with centerx0 , and width 2b at time t50:

Fx0,b~x,0!5
1

2b
Q~b2ux2x0u!. ~5!

The normalization has been chosen so that the integral of
function overx is equal to 1. Then the functionf1(k) is

f1~k!5
1

2b E2`

1`

dxe2 ikxQ~b2ux2x0u!, ~6!

whereQ(x) is the step function, which is 0 forx negative,
and 1 forx positive. Then the functionF(x,t) in Eq. ~4! is
given by

F~x,t !5
1

4pb E2`

1`

dkE
x02b

x01b

dx8e2 i ukut1 ik~x2x8!. ~7!

This is a sum of two functions corresponding to two wa
packets moving in opposite directions,

F~x,t !5c~x2t !1c* ~x1t !, ~8!

where

c~x!5
1

4pb Ex02b

x01b

dx8E
0

1`

dkeik~x2x8!. ~9!

To evaluate the integral overk we introduce the usual regu
larization by adding a positive infinitesimal tox, which leads
to

c~x!52
1

4pbi Ex02b

x01b dx8

x2x81 i0
. ~10!

After integration overx8 we obtain

c~x!5
i

4pb
@ ln~x2x01b1 i0!2 ln~x2x02b1 i0!#.

~11!

The logarithm of a complex number is given by
01210
i-

is

ln~z!5 lnuzu1 i @arg~z!12pn#, ~12!

wheren is an integer. In order to have both terms in Eq.~11!
on the same branch of the logarithm we taken50 for both
of them @due to the difference of the two terms in Eq.~11!
the result does not depend on the particular value ofn#. The
argument ofx1 i0 can be expressed as

arg~x1 i0!5
p

2
@12sgn~x!#, ~13!

where sgn(x)5x/uxu is the sign ofx. Then, inserting Eqs.~12!
and ~13! into Eq. ~11! we obtain

c~x!5
1

8b
@sgn~x2x01b!2sgn~x2x02b!#

1
i

4pb
lnUx2x01b

x2x02bU. ~14!

We see that the functionc(x) in Eq. ~14! consists of a local
real part ~sgn! and a nonlocal imaginary part~log!. For t
Þ0 it is sufficient to replacex by x2t in Eq. ~8!. Similar
result is obtained forc* (x1t). As a result, the function
F(x,t) is also nonlocal because it is the superposition of
two complex functionsc(x2t) and c* (x1t) in Eq. ~8!,
which describe nonlocal objects moving with the speed
light in opposite directions. However, att50 the imaginary
parts cancel each other~see Fig. 1!, and we recover our lo-
calized initial condition~5!, because only the real parts o
these functions, which are local, remain. In all our figur
time t is measured in seconds~s!, the coordinatex is mea-
sured in ‘‘light seconds’’~ls! and wave packet amplitude
are dimensionless. Figure 2 corresponds tot50.25 s. At this
moment the real local parts ofc(x2t) and c* (x1t) have
moved in opposite directions. The nonlocal imaginary pa
of c(x2t) andc* (x1t) have also shifted in opposite direc
tions and no more cancel each other. At this time, the t
waves overlap and we have

uF~x,t !u[uc~x2t !1c* ~x1t !uÞuc~x2t !u1uc* ~x1t !u.
~15!

At t51 s in Fig. 3 the overlapping is small and we have

uF~x,t !u'uc~x2t !u1uc* ~x1t !u. ~16!

We see that the initial conditionF(x,0) is local~Fig. 1! only
because att50 the nonlocal parts cancel each other co
pletely by destructive interference. We may describe the
pearance of nonlocality as a sort of ‘‘curtain effect.’’ Th
nonlocal nature of each wave packetc(x2t) and c* (x
1t) is hidden behind a ‘‘curtain’’ at the initial time and
emerges immediately afterwards. Each of the nonlocal w
packets is complex and propagates at the speed of light

In conclusion, we have illustrated Hegerfeldt’s theore
for classical wave packets. We see that the localization
wave packets corresponding to positive frequency is unst
and involves complex space structures.
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FIG. 1. The real part~dashed lines! and the
imaginary part ~solid lines! of c(x2t) ~a!,
c* (x1t) ~c!, and F(x,t)5c(x2t)1c* (x1t)
~e! as functions ofx at t50; the absolute values
uc(x2t)u ~b!, uc* (x1t)u ~d!, and uF(x,t)u
Þuc(x2t)u1uc* (x1t)u ~f! as functions ofx at
t50.
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Note that the localization of a positive frequency wa
packet is not ‘‘complete,’’ because the time derivative of t
function F(x,t) is nonlocal even att50:

F]F~x,t !

]t G
t50

5
i

2pb S 1

x2x02b
2

1

x2x01bD . ~17!

The wave equation being of second order demands two
tial conditions: for the function itself and for its time deriva
tive. The additional requirement of positivity of frequenc
replaces the second condition. There are no wave pac
containing only positive frequency modes, which are loc
ized together with their time derivative@7#.

III. RELATIVISTIC QUANTUM FIELD

We turn now to relativistic quantum field theory. W
show that the previous discussion is applicable to relativi
quantum particles. In this case the conditionvk.0 appears
naturally since the energyE5\vk must be positive~we take
\51). We consider massless particles with no spin~‘‘pho-
tons’’!. To simplify our consideration we use again a
11)-dimensional spacetime. In terms of second quantiza
we have the scalar field operator

ĉ~x,t !5E
2`

1`

dk̃~ak
†ei ~vkt2kx!1ake

2 i ~vkt2kx!!, ~18!

wheredk̃5dk/(4pvk) is a relativistic invariant measure an
01210
i-

ets
l-

ic

n

vk5uku, ~19!

with c51. The creation and annihilation operatorsak
† andak

of the photon with wave vectork obey the commutation
relation

@ak
† ,ak ,#54pvkd~k2k8!. ~20!

We construct a wave packet from a linear combination
normal modes:

uFx0 ,b~ t !&5E
2`

1`

dk̃fx0 ,b~k!e2 ivktak
†u0&. ~21!

Here u0& is the vacuum state for the field~18!. The fact that
our wave packet is obtained by the action of creation ope
tors on the vacuum state implies that the state consist
normal modes with positive energy. As before, we chose
function fx0 ,b(k) so that the wave packet is localized at t

time t50 in a domain with centerx0 and width 2b,

fx0 ,b~k!5~2vk!
1/2E

2`

1`

dxeikxFx0 ,b~x,0!, ~22!

where

Fx0 ,b~x,0!5
1

~2b!1/2Q~b2ux2x0u!. ~23!
3-3
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FIG. 2. The real part~dashed lines! and the
imaginary part ~solid lines! of c(x2t) ~a!,
c* (x1t) ~c!, and F(x,t)5c(x2t)1c* (x1t)
~e! as functions ofx at t50.25 s; the absolute
values uc(x2t)u ~b!, uc* (x1t)u ~d!, and
uF(x,t)uÞuc(x2t)u1uc* (x1t)u ~f! as func-
tions of x at t50.25 s.
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The functionFx0 ,b(x,0) is normalized to ensure the norma

ization of the stateuFx0 ,b(0)& in Eq. ~21!.

Let us introduce the operatorr(x):

r~x!5a†~x!a~x!, ~24!

wherea†(x) anda(x) are defined by

a†~x!5E
2`

1`

dk̃~2vk!
1/2e2 ikxak

† ,

a~x!5E
2`

1`

dk̃~2vk!
1/2eikxak . ~25!

These operators satisfy the commutation relation

@a~x!,a†~x8!#5d~x2x8!. ~26!

This construction follows the ideas of the construction
positions operators by Newton and Wigner@6#. We shall
express the localization of our stateuFx0 ,b(t)& in terms of

the expectation value of the operatorr(x). We call a state
localized if the expectation value ofr(x) in this state van-
ishes whenx is outside a finite region. Our choice o
fx0 ,b(k) in Eq. ~22! andFx0 ,b(x) in Eq. ~23! guarantees tha

the stateuFx0 ,b(t)& is localized att50 in the domain@x0

2b,x01b#, i.e.,
01210
f

^Fx0 ,b~0!ur~x!uFx0 ,b~0!&5
1

2b
Q~b2ux2x0u!. ~27!

Using Eq.~25! we obtain the time evolution of this quantit

^Fx0 ,b~ t !ur~x!uFx0 ,b~ t !&

5E È 1`

dk̃dk̃8~4vkvk8!
1/2e2 i ~k2k8!x

3^Fx0 ,b~ t !uak
†ak8uFx0 ,b~ t !& ~28!

where ^Fx0 ,b(t)uak
†ak8uFx0 ,b(t)& is expressed using ou

form of the wave packet~21! as follows:

^Fx0 ,b~ t !uak
†ak8uFx0 ,b~ t !&

5E È 1`

d l̃ d l̃ 8fx0 ,b* ~ l !fx0 ,b~ l 8!

3ei ~v l2v l8!t^0ualak
†ak8al 8

† u0&. ~29!

Using the commutation relation~20! we integrate Eq.~29!
over l and l 8 and then insert the result into Eq.~28!. Taking
into account the positivity of energy~19! and the form of the
function fx0 ,b(k) in Eq. ~22! we obtain
3-4
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FIG. 3. The real part~dashed lines! and the
imaginary part ~solid lines! of c(x2t) ~a!,
c* (x1t) ~c!, and F(x,t)5c(x2t)1c* (x1t)
~e! as functions ofx at t51 s; the absolute value
uc(x2t)u ~b!, uc* (x1t)u ~d!, and uF(x,t)u
Þuc(x2t)u1uc* (x1t)u ~f! as functions ofx at
t51 s.
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^Fx0 ,b~ t !ur~x!uFx0 ,b~ t !&

5U 1

2p~2b!1/2E
x01b

x02b

dx8E
2`

1`

dke2 i ukut1 ik~x2x8!U2

.

~30!

By comparison with Eq.~7! we see that this quantity is equ
to the absolute value squared of the classical functionF(x,t)
up to the normalization constant. Our discussion of nonloc
ity remains, therefore, also valid in the quantum case, and
expression inside the absolute value in Eq.~30! is a super-
position of two nonlocal wave packets that move in oppos
directions at the speed of light. In the Appendix we give
second example using an analogy with Fermi’s problem@2#.

Let us note that in quantum field theory localization d
pends on the observable. If a state is local from the poin
view of one observable, it can be nonlocal from the point
view of another. In our example the expectation value of
operatorr(x) is local in the stateuFx0 ,b(0)&. At the same
time, the energy density of the field in the same state
nonlocal. Indeed, the energy densityT00(x) of the free mass-
less field~18! is

T00~x!5
1

2
XS ]ĉ

]t
D 2

1S ]ĉ

]x
D 2C. ~31!
01210
l-
he

e

-
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It contains the derivatives of the field operator.@As we have
seen in classical case, the time derivative of the funct
F(x,t) is nonlocal even att50.# To determine the expecta
tion value ofT00(x) in the stateuFx0 ,b(0)& taking into ac-
count the positivity of energy~19! we first calculate this
expectation value for a finitet and then take the limitt→0.
Using Eqs.~18!–~23! we obtain

^Fx0 ,b~0!uT00~x!uFx0 ,b~0!&

5
1

4pb S 1

ux2bu
1

1

ux1bu
2

12sgn~x2b!sgn~x1b!

Aux2buAux1bu
D ,

~32!

where we putx050 to simplify the expression. This quantit
is obviously nonlocal.

IV. CONCLUSION

Positivity of energy for quantum fields~or frequency for
classical fields! leads to a decomposition of localized wav
packets in terms of nonlocal wave packets with long ta
The long tails, which cancel each other initially, appear i
mediately afterwards as the nonlocal wave packets mov
3-5
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opposite directions. In our examples the long tails decay w
the distancex according tob/x for b/x!1, whereb is the
size of the localized wave packet. They are precursors to
usual wave propagation. Although we may have instant
teractions, these are not the result of superluminal propa
tion, but of ‘‘preformed’’ structures.

We shall study the interaction between nonlocal structu
in a separate paper. We have then ‘‘contact interaction
due to the overlapping of the long tails. We shall also sh
that the photon clouds around atoms and molecules are
local, which leads to the precursor effect and eliminates
apparent deviation from causality in Fermi’s two-atom pro
lem. However, it is true that the two atoms ‘‘feel’’ each oth
instantaneously. Even inside a relativistic theory~the wave
equation is Lorenz invariant! there is place for instantaneou
interactions due to nonlocality.

Einstein’s relativistic events are associated to four dim
sional points. Here we see nonlocal but still relativis
events that are due to the instability of localization as sho
in the examples presented in this paper.

ACKNOWLEDGMENTS

The authors would like to thank Professor B. Pavlov a
Professor I. Antoniou for comments and fruitful discussio
This work was carried out with financial support of the I
ternational Solvay Institutes, the European Commission
PRIT Project No. 28890 NTGONGS. This work was pa
tially supported by the Engineering Research Program of
Office of Basic Energy Sciences at the U.S. Departmen
Energy, Grant No. DE-FG03-94ER14465, and the Rober
Welch Foundation, Grant No. F-0365.

APPENDIX

Here we show an analogy of our problem with Ferm
two-atom problem. We prepare our wave packetuFx0 ,b(t)&
‘‘localized’’ at t50. At time t we project this state on a
second wave packetuFx1 ,b(0)&, which is localized in a do-

main with centerx1Þx0 and width 2b, and plays the role of
a measurement device. We choosex1 so thatx12x0.2b.
Then, att50 these two states do not overlap and the sc
product^Fx1 ,b(0)uFx0 ,b(t)& vanishes. We consider this sc
lar product as a function oft, i.e., at each momentt we
project the evolving wave packetuFx0 ,b(x,t)& on the local-

ized stateuFx1 ,b(0)&. As we have shown, the initially local
ized packet, which evolves in time, is nonlocal immediat
after t50 and our scalar product has a nonvanishing va
This can be interpreted as the second~localized! wave packet
‘‘feeling’’ the existence of the first one even att,x12x0
22b when the causal component of the first wave pac
still did not reach the domain of localization of the seco
wave packet. The scalar product^Fx1 ,b(0)uFx0 ,b(t)& grows
as the overlapping of the two wave packets increases~see
Fig. 4!. We expect some essential change of this grow
when the main part of the first wave packet correspondin
the position of its local~‘‘causal’’! component reaches th
domain of localization of the second wave packet. Then
01210
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the moving component goes away, the scalar product
creases. To show this, we write this scalar product using
~21! in the following form:

^Fx1 ,b~0!uFx0 ,b~ t !&

5E E
2`

1`

dkdk8fx1 ,b* ~k!fx0 ,b~k8!

3e2 ivkt^0uakak8
† u0&. ~A1!

We perform the integration overk8 with the help of the
commutation relation~20!. Then, inserting Eqs.~22! and~23!
we obtain

^Fx1 ,b~x,0!uFx0 ,b~x,t !&

5
1

4pb Ex12b

x11b

dx8E
x02b

x11b

dx9E
2`

1`

dke2 i ukut1 ik~x82x9!.

~A2!

FIG. 4. ^F0,b(t)ur(x)uF0,b(t)& ~evolving object! and
^F2,b(0)ur(x)uF2,b(0)& ~right rectangle! with no overlap att50
~a!, overlapping only by the nonlocal tail att50.75 s~b!, and over-
lapping also by the local~causal! component att51.25 s~c!.
3-6
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FIG. 5. The real part~a! and ~b!, the imagi-
nary part~c! and ~d!, and the absolute value~e!
and ~f! of ^F2,b(0)uF0,b(t)& as functions oft for
b50.5 ls @~a!, ~c!, ~e!# and b50.01 ls @~b!, ~d!,
~f!#.
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Using a regularization similar to Eq.~7!, we integrate overk
and obtain

^Fx1 ,b~0!uFx0 ,b~ t !&

5
1

4p ib E
x12b

x11b

dx8E
x02b

x01b

dx9

3S 1

t2x81x92 i0
2

1

t1x82x92 i0D . ~A3!

The integration overx8 andx9 and a rearrangement of term
give us

^Fx1 ,b~0!uFx0 ,b~ t !&5c1~x12x01t2 i0!

2c1~x12x02t1 i0!, ~A4!

where

c1~x!5
1

4p ib
@~x22b!ln~x22b!1~x12b!

3 ln~x12b!22x ln~x!#. ~A5!
01210
Then, using Eqs.~12! and ~13! we come to

^Fx1 ,b~0!uFx0 ,b~ t !&5c2~x12x02t !1c2* ~x12x01t !,
~A6!

where

c2~x!5
1

8b
~ ux22bu1ux12bu22uxu!1

i

4pb

3„~x22b!lnux22bu

1~x12b!lnux12bu22xlnuxu….

Figure 5 shows the real part, the imaginary part, and
absolute value of the scalar product^Fx1 ,b(0)uFx0 ,b(t)& as
functions oft for two different values of the wave packet
width b. The real component is nonvanishing only in th
time interval corresponding to the overlapping of the loc
ized components. In contrast, the imaginary part is nonv
ishing immediately aftert50, because it reflects the overlap
ping of nonlocal components. Figure 5 also shows that
‘‘causal’’ part of the effect is much bigger than the cont
bution of the long tails, if the size of the wave pack
is much less than the distance between the domains
localization.
3-7
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