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We detect an omission in the paper “Conditionally exactly soluble class of quantum potentials” by A. de
Souza DutrdPhys. Rev. A47, R2435(1993]. There, two strongly singularwave bound-state problems have
been claimed completely solvable in closed form. Unfortunately, all the displayed wave functions are merely
asymptotically correct solutions which do not satisfy the appropriate threshold boundary condition. We show
that the incorporation of the threshold boundary conditions only leads to a very partial exact solvability at a
single energy and for special couplings.

PACS numbgs): 03.65.Ca, 03.65.Ge, 02.96p

For the two strongly singulas-wave potentials given, in (r)el,(02). (4)
the unitsh=2u =1, by the formulas
For 1=1,2,... the unphysical componenty eguiar(r)
A ~r~! of the general threshold solution of e@) is mani-
Vil=+7+ 5tz 6=Go=~ 15 (1) festly nonintegrable near~0.
In the s wave withl|=0 a more subtle argumentation is
and needed3]. In practice, the subtlety is usually avoided by the
replacement of Eq4) by the boundary condition
B G 5 .
V2(r)=Ar2’3+rT/3+r—2, G=go= 35 ) :Lnﬂ()w(r)=0. )

de Souza Dutrd1] offered the explicit elementary wave Even when we solve the ordinary harmonic oscillator the
functions as well as closed formulas for all their bound-statdatter boundary condition in the origin offers a more straight-
energies. One of the three couplings is not free: This entitledorward recipe for numerical calculations. Let us repéat:
him to coin their “conditionally” exactly solubléCES sta- analytic potentials Egs. (4) and (5) are equivalent but the
tus. In what follows we intend to demonstrate that in theproof[3] of their equivalence immediately fails for the “very
sense of the Ushveridze’s monogra both these forces next” nonanalyticV(r)~G r~2, r~0, say, in the Kratzer's
V14(r) only remainpartially solvable at specific values of solvable phenomenological model] with G#0, etc. One
the energie€ and couplingsB. must reanalyze the whole quantization procedure anew, even
Our present main point is that all the solutions presentedor the harmonic oscillator, & — 0 [5].
in Ref.[1] still have to satisfy an appropriate and, for reasons For all the similar singular forces with the finite limit in
to be made understandable here, forgotten boundary condgq. (3),
tion in the origin. Indeed, it is well known that for a central

- - . —m 2
potential, the Schidinger equation— AW (F)+V(|F|) W (F) G=lim r?v(r)#0,

N r—0
=EW(r) degenerates to an infinite set of the ordin@iten
called radial decoupled differential equations we have to redefing| +1)+ G=L(L+1). The new param-
P2 (4 1) eterL=/(I+3)?+G—% enters then the modified threshold
——(r)+ ( () V() p(r)=Eg(r), SOIUtions‘pregular(r)%ru—1 and ‘pirregular(r)%r_ﬁ- The ir-
dr? r2 regular one is eliminated as manifestly violating the normal-

izability (4) at £L=1/2.
I=0,1,... (3 The latter bound mearS=3/4 in s wave with|=0. Be-
low such a strength of repulsion the Hamiltonie@ases to
for the separate angular-momentum components of thge self-adjoint The conclusion is strongly counterintuitive.
whole original wave function. The Newton’s excellent re- Mathematically, the problem is serious. First spotted and
view [3] summarizes the detailsinder the assumption of the analyzed by Cass], it means that a6 < 3/4, the textbook
analyticity of Mr) in the origin it shows that and why the quantization of the Kratzer-like singular modeis not
standard thsical requirement of normalizability of bOU”dunique at all A more detailed discussion may be found in
states|| W (r)|| <o is strictly equivalent to the integrability the literature(cf., e.g.,[7] or [8]). In its light, the physics
of their partial waves, community currently accepts a unique way of quantization
which is, mathematically speaking, a mere regularization. It
is often supported by the various sufficiently robast hoc
*Electronic address: znojil@uijf.cas.cz argumentdcf., e.g.,[5] on pp. 157 and 167 or R€f9]).
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TABLE I. Nonvanishing zeroX= X(n,k) of the first few Hermite polynomialsl,(X).

k
n 4 3 2 1

0

1

2 —\12 V12

3 —\32 V312

4 —V(3+6)/2 —N(@E-6)2 V(3-16)12 V(3+6)12

5 —V(5+10)/2 —V(5-10)/2 (5—/10)/2 V(5+10)/2

For our present purposes, in the physical textbook lanstates is based on the solution of the Magyari’'s nonlinear
guage]10], the correct recipe may be formulated as follows.algebraic equationd4]. They determine a few energy levels
(i) In the domain of a weak repulsion we distinguish be-exactly and restrict also the free variability of the available

tween the physical l//regmar(f)”r“l and unphysical couplings.
wi,,egu,ar(r)%r“. As long as both of them remain normal-  In the latter context, potentiald, ,(r) exhibit a certain
izable, we impose an extratrongerboundary condition in  incomplete dynamical symmetry and play an exceptional
the origin, role as quasiexactly solvable in a certain narrower séefse
Ref. [2] for more details This would make the ambitious
lim (r)=0, Ge(0,3/4. (6)  conclusions of Ref[1], if they were all true, even more
r—0 important.

Their analysis must be based on the alternative option
(J9 which requires the threshold boundary conditidfs-
(7) [7]. This is the core of our present message. For the
particular forces(1) and (2) such an approach has already
thoroughly been tested numerically in REJ]. The Liouvil-
lean [15] change of variablesr—x=rc"st and u(r)
—x®o"sh(x) has been employed there. As long as it leaves
the form of the Schrdinger equation unchanged, it reduces
all the bound-state problems with forces of tygé&sand(2)
7) to their “canonical” equivalents with polynomial potentials

It coincides with Eq.(5) but its mathematical meaning of a
convenient choice of the most plausible self-adjoint exten
sion is new.

(i) In the domain of weak attraction, both solutions
lﬂregular(r)%rﬂ-*—1 and ‘ﬂirregular(r)%r_ﬂ are compatible
with Eq. (6). In a sensible physical theory which distin-
guishes between the two, the replacement of Byby an
even stronger artificial constraint is needed,

lim ¢(r)/\r=0, Ge(—1/4,0).
0 Vi(x)=ar 2+br?+cri+...+yrid+zriat2

(iii) Below the lower bounds < — 1/4 one cannot prevent
the spectrum from collapse by any means. Particles would a>-—1/4. ®
definitely fall in the origin. ) . ) )

We may summarize: In practice, bound-state solutions oP" this basis, we may easily deduce the leading-order solu-
the Schidinger differential Eq.(3) may be constructed in tions(near the originalso for our singular potentialé; Ar)

two ways, namely as follows. of Egs.(1) and(2),
(iv) As the regular solutiong¢gyiar) (RS constrained 3/ 14
by the asymptotic normalizability condition Prreguiad 1)~ Pjrreguiar(r) ~T7
¢regular(R):01 R— 0. ‘/’2,regu|ar(r)~r5/61 ¢2,irregular(r)~r1/6-

(v) From the so-called Jost solutiois,s(r) (JS, always  This is to be compared with the Dutra’s wave functions: Say,
exhibiting the square-integrable asymptotic decrease by deffor potentialV,(r) we may quote Eq(9) from [1],
nition.

The former regular-solution approa¢RS) proves useful O)(1)=C (14 exp{ B EBZ ( e E)T
within the framework of the standard Taylor series method 1 2 2E
[11] and in nonnumerical contekt 2]. Schralinger equation
(3) becomes converted into the exactly solvable two-term B(f 112 E)
recurrences for harmonic oscillator, into the three-term recur- 2E
rences for sextic forces, etfl3]. Rather unexpectedly, for
several other potentials, a few bound states may still appeats energies€ = — 34/4 are parametrized bg= 3, and num-
in an exact polynomiali.e., terminating Taylor serig¢$orm. bered by an integer=0,1, . . . . Theformula also contains a
An explicit construction of these exceptional elementarycertain normalization consta@=C,, and Hermite polyno-

XH, . 9
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TABLE II. Parameters of the first few simplest quasiexact stateg,i{r). M counts nodes iny(r):
M =0 means ground state, etc.

M n k Fixed couplingB’=B/8 Binding energyE
2 1 JUe ~0.0370  —(4/9) ~-0.197
3 1 3P ~0.0475  —(4/117 ~—0.055
4 1 J3+B)I(15- V6)? ~0.0525  —[4/(15+6)7? ~-0.029
5 1 J(5+10)/(17- 10y ~0.0555  —[4/(17+10)]> ~-0.018
1 2 2 —Ju ~=-0.037  —(4/9) ~-0.132
4 23— Je)I(15+ \B)? ~0.0102  —[4/(15-\6)]>  ~-0.047
5 25— J10)y1(17+ V10)? ~0.0150  —[4/(17-\10)]> ~—0.028
2 3 2 —J3r ~—0.047  —(411y7 ~—0.055
4 3 _Ji-B)i(15+ Vo) ~—0.010 —[4/(15— 6)7? ~—0.047
3 4 4 i3+ e)I(15- \B)? ~—0.053  —[4/(15+6)]? ~—0.029
5 35— J10)/(17+ V10p ~-0.015  —[4/(17-y10))> ~-0.028
4 5 4 (54 J10)/(17- V10)? ~—0.056 —[4/(17+10)]> ~—0.039

mials H,(x). We immediately detect an irregularity of the energyE it appears under Ed8) in Ref.[1]. This algebraic

latter solution at the origin. self-consistency condition must be combined with Ed).
Similar observation is also made fgn(r) from Eq.(13)  The resulting polynomial equation i@ (of the twelfth de-

in [1]: None of the Dutra’'s wave functions satisfies thegree is easily factorized in closed form. The real roots we

physical boundary conditiof7). An explanation of this ob- need are

vious misunderstanding is, in fact, not too difficult: The so-

lutions were merely constrained by the too wétiough, in
practice, much more frequently encounteraedd, hence, in- — B(n.K)=2 / —A
applicable threshold conditiofb). We may summarize that p=pnk)= 2n+1—X%(n,k)’

this inconsequent use of the boundary conditions would lead
to a physically absurd spectrum covering the whole real line,
Ee(—%,»). They all exist for anyA<<0. This is an important conclusion:
The Dutra’s “nonanonymousi.e., Hermite-polynomial  let us note that Eq(8) of Ref.[1] reappears as Eq16) in
solutions have already evoked a non-negligible response iRef.[16], etc.
the current literature. As an example one might quote Ref. For illustration, let us finally fix the scal&é=—1 and
[16]. Its authors relied on the physical correctness of thedisplay the first few non-numerical specifications of energies
Dutra’s argumentation and were misguided in their mathE=— 3% and their coupling$10) in Table II. The same pa-
ematical appreciation of the role of supersymmetry in thelameters are to be used also in the definit@nof the cor-
similar problems. Still, the majority of their argument re- rect bound-state wave functioMutatis mutandis the en-
mains valid. Hence, let us show in the conclusion how thdirely parallel “return to validity” applies also ta/$”)(r) in
correct physical bound states coincide with Dutra’s wave{1]. We omit the details here, reemphasizing only that both
functions at certain exceptional couplings and energies.  Dutra’s expressions/(l?z)(r) are elementary and still satisfy
Obviously, one has to incorporate simply the necessargthe Schrdinger differential equation, exhibiting also the cor-
constraint(7). An inspection, say, of our sample equati®  rect asymptotic behavior. Thus, we may return, say, to the
reveals thatz/;(lD)(r) satisfies condition(7) if and only ifits  paper by Duttet al.[17], originally motivated by Refl1] as
Hermite-polynomial component acquires an exact nodal zerwell. In the light of our present notes, the importance of the
in the origin. In terms of the known numbeks= X(n,k) latter paper increases: Its authors have, involuntarily, found
[calculated as thkth nontrivial zeros oH,(X), cf. Table |  and constructedo the best of our knowledgehe firstCES
this requirement, unfortunately, fixes the non-Coulombicexample in one dimension.

lin function of the enerdy= — B*/4 . . . .
coupling as a function of the energy=- £/4, Years long discussions of the subject with my colleagues

1 in Theory Group of NPI in Rz and with authors of Refs.
B= =X g3+0. (100  [16] and[17] contributed to this paper. The reference to the
2 highly relevant pap€f9] was kindly communicated to me by
A. de Souza Dutra. He also informed me about his corre-
This makes both these values coupled to the additinal spondence with F. H. Stillinger, the subsequent private com-
fact, Magyari's[14]) constraint. As a cubic equation for the munication with whom is also acknowledged.
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