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Comment on ‘‘Conditionally exactly soluble class of quantum potentials’’
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We detect an omission in the paper ‘‘Conditionally exactly soluble class of quantum potentials’’ by A. de
Souza Dutra@Phys. Rev. A47, R2435~1993!#. There, two strongly singulars-wave bound-state problems have
been claimed completely solvable in closed form. Unfortunately, all the displayed wave functions are merely
asymptotically correct solutions which do not satisfy the appropriate threshold boundary condition. We show
that the incorporation of the threshold boundary conditions only leads to a very partial exact solvability at a
single energy and for special couplings.

PACS number~s!: 03.65.Ca, 03.65.Ge, 02.90.1p
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For the two strongly singulars-wave potentials given, in
the units\52m51, by the formulas

V1~r !5
A

r
1

B

r 1/2
1

G

r 2 , G5G052
3

16
~1!

and

V2~r !5A r2/31
B

r 2/3
1

G

r 2 , G5g052
5

36
, ~2!

de Souza Dutra@1# offered the explicit elementary wav
functions as well as closed formulas for all their bound-st
energies. One of the three couplings is not free: This enti
him to coin their ‘‘conditionally’’ exactly soluble~CES! sta-
tus. In what follows we intend to demonstrate that in t
sense of the Ushveridze’s monograph@2# both these forces
V1,2(r ) only remainpartially solvable at specific values o
the energiesE and couplingsB.

Our present main point is that all the solutions presen
in Ref. @1# still have to satisfy an appropriate and, for reaso
to be made understandable here, forgotten boundary co
tion in the origin. Indeed, it is well known that for a centr
potential, the Schro¨dinger equation2DC(rW)1V(urWu)C(rW)
5EC(rW) degenerates to an infinite set of the ordinary~often
called radial! decoupled differential equations

2
d2

dr2
c~r !1

l ~ l 11!

r 2
c~r !1V~r !c~r !5Ec~r !,

l 50,1, . . . ~3!

for the separate angular-momentum components of
whole original wave function. The Newton’s excellent r
view @3# summarizes the details.Under the assumption of th
analyticity of V(r ) in the origin it shows that and why the
standard physical requirement of normalizability of bou
statesuuC(rW)uu,` is strictly equivalent to the integrability
of their partial waves,
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c~r !PL2~0,̀ !. ~4!

For l 51,2, . . . the unphysical componentc irregular(r )
'r 2 l of the general threshold solution of eq.~3! is mani-
festly nonintegrable nearr'0.

In the s wave with l 50 a more subtle argumentation
needed@3#. In practice, the subtlety is usually avoided by t
replacement of Eq.~4! by the boundary condition

lim
r→0

c~r !50. ~5!

Even when we solve the ordinary harmonic oscillator t
latter boundary condition in the origin offers a more straig
forward recipe for numerical calculations. Let us repeat:for
analytic potentials, Eqs. ~4! and ~5! are equivalent but the
proof @3# of their equivalence immediately fails for the ‘‘ver
next’’ nonanalyticV(r )'G r22, r'0, say, in the Kratzer’s
solvable phenomenological model@4# with GÞ0, etc. One
must reanalyze the whole quantization procedure anew, e
for the harmonic oscillator, atG→0 @5#.

For all the similar singular forces with the finite limit in
Eq. ~3!,

G5 lim
r→0

r 2V~r !Þ0,

we have to redefinel ( l 11)1G5L(L11). The new param-

eterL5A( l 1 1
2 )21G2 1

2 enters then the modified thresho
solutionsc regular(r )'r L11 and c irregular(r )'r 2L. The ir-
regular one is eliminated as manifestly violating the norm
izability ~4! at L>1/2.

The latter bound meansG>3/4 in s wave with l 50. Be-
low such a strength of repulsion the Hamiltonianceases to
be self-adjoint. The conclusion is strongly counterintuitive
Mathematically, the problem is serious. First spotted a
analyzed by Case@6#, it means that atG,3/4, the textbook
quantization of the Kratzer-like singular modelsis not
unique at all. A more detailed discussion may be found
the literature~cf., e.g., @7# or @8#!. In its light, the physics
community currently accepts a unique way of quantizat
which is, mathematically speaking, a mere regularization
is often supported by the various sufficiently robustad hoc
arguments~cf., e.g.,@5# on pp. 157 and 167 or Ref.@9#!.
©2000 The American Physical Society01-1
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TABLE I. Nonvanishing zerosX5X(n,k) of the first few Hermite polynomialsHn(X).

k
n 4 3 2 1

0

1

2 2A1/2 A1/2

3 2A3/2 A3/2

4 2A(31A6)/2 2A(32A6)/2 A(32A6)/2 A(31A6)/2

5 2A(51A10)/2 2A(52A10)/2 A(52A10)/2 A(51A10)/2
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For our present purposes, in the physical textbook l
guage@10#, the correct recipe may be formulated as follow

~i! In the domain of a weak repulsion we distinguish b
tween the physical c regular(r )'r L11 and unphysical
c irregular(r )'r 2L. As long as both of them remain norma
izable, we impose an extra,strongerboundary condition in
the origin,

lim
r→0

c~r !50, GP~0,3/4!. ~6!

It coincides with Eq.~5! but its mathematical meaning of
convenient choice of the most plausible self-adjoint ext
sion is new.

~ii ! In the domain of weak attraction, both solution
c regular(r )'r L11 and c irregular(r )'r 2L are compatible
with Eq. ~6!. In a sensible physical theory which distin
guishes between the two, the replacement of Eq.~6! by an
even stronger artificial constraint is needed,

lim
r→0

c~r !/Ar 50, GP~21/4,0!. ~7!

~iii ! Below the lower boundG<21/4 one cannot preven
the spectrum from collapse by any means. Particles wo
definitely fall in the origin.

We may summarize: In practice, bound-state solutions
the Schro¨dinger differential Eq.~3! may be constructed in
two ways, namely as follows.

~iv! As the regular solutionsc regular(r ) ~RS! constrained
by the asymptotic normalizability condition

c regular~R!50, R→`.

~v! From the so-called Jost solutionscJost(r ) ~JS!, always
exhibiting the square-integrable asymptotic decrease by d
nition.

The former regular-solution approach~RS! proves useful
within the framework of the standard Taylor series meth
@11# and in nonnumerical context@12#. Schrödinger equation
~3! becomes converted into the exactly solvable two-te
recurrences for harmonic oscillator, into the three-term rec
rences for sextic forces, etc.@13#. Rather unexpectedly, fo
several other potentials, a few bound states may still app
in an exact polynomial~i.e., terminating Taylor series! form.
An explicit construction of these exceptional elementa
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states is based on the solution of the Magyari’s nonlin
algebraic equations@14#. They determine a few energy leve
exactly and restrict also the free variability of the availab
couplings.

In the latter context, potentialsV1,2(r ) exhibit a certain
incomplete dynamical symmetry and play an exceptio
role as quasiexactly solvable in a certain narrower sense~cf.
Ref. @2# for more details!. This would make the ambitious
conclusions of Ref.@1#, if they were all true, even more
important.

Their analysis must be based on the alternative op
~JS! which requires the threshold boundary conditions~5!–
~7! @7#. This is the core of our present message. For
particular forces~1! and ~2! such an approach has alread
thoroughly been tested numerically in Ref.@9#. The Liouvil-
lean @15# change of variablesr→x5r const and c(r )
→xconstx(x) has been employed there. As long as it leav
the form of the Schro¨dinger equation unchanged, it reduc
all the bound-state problems with forces of types~1! and~2!
to their ‘‘canonical’’ equivalents with polynomial potential

VT~x!5ar221b r21c r41•••1y r4q1z r4q12,

a.21/4. ~8!

On this basis, we may easily deduce the leading-order s
tions ~near the origin! also for our singular potentialsV1,2(r )
of Eqs.~1! and ~2!,

c1,regular~r !;r 3/4, c1,irregular~r !;r 1/4,

c2,regular~r !;r 5/6, c2,irregular~r !;r 1/6.

This is to be compared with the Dutra’s wave functions: S
for potentialV1(r ) we may quote Eq.~9! from @1#,

c1
(D)~r !5C r1/4 expF2

1

2
b2 S r 1/22

B

2ED 2G
3HnFb S r 1/22

B

2ED G . ~9!

Its energiesE52b4/4 are parametrized byb5bn and num-
bered by an integern50,1, . . . . Theformula also contains a
certain normalization constantC5Cn and Hermite polyno-
1-2
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TABLE II. Parameters of the first few simplest quasiexact states inV1(r ). M counts nodes inc1(r ):
M50 means ground state, etc.

M n k Fixed couplingB85B/8 Binding energyE

0 2 1 A1/93 ;0.0370 2(4/9)2 ;20.197

3 1 A3/113 ;0.0475 2(4/11)2 ;20.055

4 1 A(31A6)/(152A6)3 ;0.0525 2@4/(151A6)#2 ;20.029

5 1 A(51A10)/(172A10)3 ;0.0555 2@4/(171A10)#2 ;20.018

1 2 2 2A1/93 ;20.037 2(4/9)2 ;20.132

4 2 A(32A6)/(151A6)3 ;0.0102 2@4/(152A6)#2 ;20.047

5 2 A(52A10)/(171A10)3 ;0.0150 2@4/(172A10)#2 ;20.028

2 3 2 2A3/113 ;20.047 2(4/11)2 ;20.055

4 3 2A(32A6)/(151A6)3 ;20.010 2@4/(152A6)#2 ;20.047

3 4 4 2A(31A6)/(152A6)3 ;20.053 2@4/(151A6)#2 ;20.029

5 3 2A(52A10)/(171A10)3 ;20.015 2@4/(172A10)#2 ;20.028

4 5 4 2A(51A10)/(172A10)3 ;20.056 2@4/(171A10)#2 ;20.039
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mials Hn(x). We immediately detect an irregularity of th
latter solution at the origin.

Similar observation is also made forc2(r ) from Eq. ~13!
in @1#: None of the Dutra’s wave functions satisfies t
physical boundary condition~7!. An explanation of this ob-
vious misunderstanding is, in fact, not too difficult: The s
lutions were merely constrained by the too weak~though, in
practice, much more frequently encountered! and, hence, in-
applicable threshold condition~5!. We may summarize tha
this inconsequent use of the boundary conditions would l
to a physically absurd spectrum covering the whole real li
EP(2`,`).

The Dutra’s ‘‘nonanonymous’’~i.e., Hermite-polynomial!
solutions have already evoked a non-negligible respons
the current literature. As an example one might quote R
@16#. Its authors relied on the physical correctness of
Dutra’s argumentation and were misguided in their ma
ematical appreciation of the role of supersymmetry in
similar problems. Still, the majority of their argument r
mains valid. Hence, let us show in the conclusion how
correct physical bound states coincide with Dutra’s wa
functions at certain exceptional couplings and energies.

Obviously, one has to incorporate simply the necess
constraint~7!. An inspection, say, of our sample equation~9!
reveals thatc1

(D)(r ) satisfies condition~7! if and only if its
Hermite-polynomial component acquires an exact nodal z
in the origin. In terms of the known numbersX5X(n,k)
@calculated as thekth nontrivial zeros ofHn(X), cf. Table I#
this requirement, unfortunately, fixes the non-Coulom
coupling as a function of the energyE52b4/4,

B5
1

2
X b3Þ0. ~10!

This makes both these values coupled to the additiona~in
fact, Magyari’s@14#! constraint. As a cubic equation for th
06610
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energyE it appears under Eq.~8! in Ref. @1#. This algebraic
self-consistency condition must be combined with Eq.~10!.
The resulting polynomial equation inb ~of the twelfth de-
gree! is easily factorized in closed form. The real roots w
need are

b5b~n,k!52A 2A

2n112X2~n,k!
.

They all exist for anyA,0. This is an important conclusion
let us note that Eq.~8! of Ref. @1# reappears as Eq.~16! in
Ref. @16#, etc.

For illustration, let us finally fix the scaleA521 and
display the first few non-numerical specifications of energ
E52b4 and their couplings~10! in Table II. The same pa-
rameters are to be used also in the definition~9! of the cor-
rect bound-state wave function.Mutatis mutandis, the en-
tirely parallel ‘‘return to validity’’ applies also toc2

(D)(r ) in
@1#. We omit the details here, reemphasizing only that b
Dutra’s expressionsc1,2

(D)(r ) are elementary and still satisf
the Schro¨dinger differential equation, exhibiting also the co
rect asymptotic behavior. Thus, we may return, say, to
paper by Duttet al. @17#, originally motivated by Ref.@1# as
well. In the light of our present notes, the importance of t
latter paper increases: Its authors have, involuntarily, fou
and constructed~to the best of our knowledge! the firstCES
example in one dimension.

Years long discussions of the subject with my colleagu
in Theory Group of NPI in Rˇ ež and with authors of Refs
@16# and @17# contributed to this paper. The reference to t
highly relevant paper@9# was kindly communicated to me b
A. de Souza Dutra. He also informed me about his cor
spondence with F. H. Stillinger, the subsequent private co
munication with whom is also acknowledged.
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